應用卡西歐繪圖型計算機與最佳經濟調度程式做最佳發電調度 Optimal Generation Dispatch Using CASIO Graphing Calculators and Optimal Economic Dispatch Program

廖基宏

Ji-Horng Liaw

建國科技大學電機工程學系 Department of Electrical Engineering, Chienkuo Technology University E-mail: jihorng@seed.net.tw

摘要

本文提出電力系統最佳經濟調度程式並以CASIO繪圖型計算機來呈現,忽略損失與發電機發電量的限制,使對於電力系統經濟調度分析更便利且節省操作時間。CASIO繪圖型計算機包含多功能 繪圖指令工具以及大型繪圖螢幕,能快速簡單地繪出各種多樣化圖形曲線。為了驗證所提出程式的 方便性,本文以一個具有三座火力電廠的電力系統例題加以說明。

關鍵詞:最佳化,經濟調度,卡西歐,繪圖型計算機。

Abstract

The analysis programs to power system optimal economic dispatch that neglecting losses and generation limits for CASIO Graphing Calculators CFX-9850G are presented. These programs make the study of power system economic dispatch easy and time saving. A collection of versatile graphing tools plus a large display for CASIO Graphing Calculators makes it easy to draw a variety of function graphs quickly and easily. To demonstrate the simplicity of the proposed approach, an application to a power system which has three thermal plants is introduced.

Keywords: optimization, economic dispatch, CASIO, graphing calculators.

1. 简介

電力系統經濟調度相關研究常常涉及最佳化 的運算[1,2],若研究人員以一般傳統工程用計算 機做電力系統經濟調度的相關計算,將使運算問 題的時間加長,不僅浪費時間,更使研究效率降 低,且無增量成本曲線的結果圖形可供參考,完 全只能憑想像。若使用電腦套裝的專業軟體來執 行,雖然執行程式與時間效率都相當方便,卻顯 的佔用空間且浪費資源。本文提出以一個以圖 1 所示之 CASIO 繪圖型計算機 CFX-9850G 為主的 電力系統最佳經濟調度程式,忽略損失與發電機 發電量的限制,針對有三部發電機的電力系統, 已知各發電機的成本曲線與系統總負載量,分別 計算最佳經濟調度的各發電機發電量、增量燃料 成本(incremental fuel-cost)與總成本,並繪出增量 成本曲線。此時 CASIO 繪圖型系列的計算機便 是工程人員的最佳幫手,目前市售工程計算機朝 向高階化,對於繁雜的計算與繪圖均能以 CASIO 的類 BASIC 程式來完成[3,4],降低複雜 的計算過程,使工程研究人員藉由透過高階計算 機的程式設計應用,提昇研究之意願與效率。

2. 發電之最佳調度

忽略輸電線耗損及發電機發電量限制是最簡單的經濟調度。而所有發電機與負載均連接於此 系統中的唯一匯流排上,如圖 2 所示。發電機發 電量總和為總和負載 P_D。

最佳化即為使每座發電機的成本函數*C_i*的 總和*C_i*為最低,*C_i*假設已知,定義如下:

$$C_{t} = \sum_{i=1}^{n_{g}} C_{i} = \sum_{i=1}^{n} (\alpha_{i} + \beta_{i} P_{i} + \gamma P_{i}^{2})$$
(1)

另外必須受制之限制條件為

$$C_i$$
:總和發電成本
 C_i :第 i 台發電機發電成本
 P_i :第 i 台發電機發電量
 P_D :總和負載需求
 n_a :可調度發電機總數

使用 Lagrange multiplier method 解最佳化問題, 目標函式如下:

$$L = C_{i} + \lambda (P_{D} - \sum_{i=1}^{n_{s}} P_{i})$$

$$\Leftrightarrow \frac{\partial L}{\partial P_{i}} = \frac{\partial C_{i}}{\partial P_{i}} - \lambda = 0$$

$$\Leftrightarrow \mathbb{R}P \frac{\partial C_{i}}{\partial P_{i}} = \frac{dC_{i}}{dP_{i}} = \lambda$$
(3)

所以最佳化之條件如下:

$$\frac{dC_i}{dP_i} = \beta_i + 2\gamma_i P_i = \lambda \qquad i = 1, \dots, n_g$$
(4)

另外再令
$$\frac{\partial L}{\partial \lambda} = 0$$
,則與式(2)相同,所以滿足式(2)
的最佳化發電量為

$$P_i = \frac{\lambda - \beta_i}{2\gamma_i} \tag{5}$$

將式(5)帶入式(2),即可得到 λ 解如下:

$$\lambda = \frac{P_D + \sum_{i=1}^{n_g} \frac{\beta_i}{2\gamma_i}}{\sum_{i=1}^{n_g} \frac{1}{2\gamma_i}}$$
(6)

再將式(6)帶回式(5)中即可求出最佳化的各發電機發電量 P_i。

3. 最佳經濟調度程式設計

本文假設系統無損失,且不限制發電機之 發電量,針對系統為三部機組,提出 CASIO 最 佳經濟調度程式 OED,程式操作步驟如表 1 所 示,程式碼如表 2 所示。表 1 之程式操作步驟要 求使用者依序輸入資料為各發電機成本函式中的 $\alpha_1,\beta_1,\gamma_1,\alpha_2,\beta_2,\gamma_2,\alpha_3,\beta_3,\gamma_3$ 以及總負載需量 P_D 後,連續按下九次"EXE" (execute)按鍵後,程式將輸出總發電成本最小的 各發電機最佳化發電量 P_1,P_2,P_3 、增量成本 λ 、 各發電機發電成本 C_1,C_2,C_3 與總發電成本 C_i , 最後能自動產生增量成本曲線,並可以計算機的 TRACE 功能,追蹤各發電機發電量。

表 2 程式碼中,以 CASIO 的類 BASIC 程 式來完成,此程式語言具有容易理解符合人類思 維的特性,透過此程式語言來撰寫程式,對於研 究者或電力系統學習者相較於其他電力軟體顯得 易於上手。

4. 應用實例說明

本文以三部座火力發電廠為例的經濟調度 做說明,三部發電機的燃料成本函式(\$/h)如下 [5,6]:

$$C_1 = 500 + 9P_1 + 0.004P_1^2$$

$$C_2 = 2000 + 5P_2 + 0.004P_2^2$$

$$C_3 = 3500 + 5P_3 + 0.004P_3^2$$

其中發電量的單位為 MW,總負載需量 P_D 為 1800MW,不考慮輸電線損失與發電機發電量的 限制,分別對 C_1, C_2, C_3 中的 P_1, P_2, P_3 微分可得 如下:

$$\frac{dC_1}{dP_1} = 9 + 0.008P_1 = \lambda$$
(7)

$$\frac{dC_2}{dP_2} = 5 + 0.08P_2 = \lambda \tag{8}$$

$$\frac{dC_3}{dP_3} = 1 + 0.08P_3 = \lambda \tag{9}$$

式(7)與式(8)整理可得

$$P_{2} = \frac{4 + 0.008P_{1}}{0.008}$$

式(7)與式(9)整理可得
$$P_{3} = \frac{8 + 0.08P_{1}}{0.008}$$

又 $P_{1} + P_{2} + P_{3} = 3000$
所以 $3P_{1} + 1500 = 3000$

 $P_1 = 500 MW$

 $P_2 = 1000 MW$

 $P_3 = 1500 MW$

$$\lambda = 13 \text{MWh}$$

 $C_t = C_1 + C_2 + C_3$ = 6000+11000+14000 = 31000\$

使用 CASIO CFX-9850G 程式執行結果如圖 3 至圖 14 所示,其中圖 3 至圖 5 為各發電機燃料 成本函式的輸入畫面,圖 6 為總負載需量的輸入 畫面,圖 7 為最佳化的各發電機發電量輸出畫 面,圖 8 與圖 9 為各發電機成本與最小總成本書 出畫面。圖 10 為系統增量成本曲線,其中曲線 由左至右分別為第三部、第二部以及第一部發電 機之增量成本曲線。圖 11 為經由計算機 trace 功 能追蹤的第三部發電機發電量,圖 12 為經由計 算機 trace 功能追蹤的第二部發電機發電量,圖 13 為經由計算機 trace 功能追蹤的第一部發電機 發電量。圖 14 為增量成本曲線座標軸設定範 圍。圖 11 至圖 13 的數值可經由繪圖計算機的圖 形拉近拉遠功能(zoom),讓數值更為精確。

5. 結論

經由本程式計算,完成此例題所需要花費之時間相當簡短,因為 CASIO CFX9850G 可以繪出增量成本曲線圖,更能加強對電力系統經濟調度的理解,比起使用一般傳統型工程計算機,使用上顯得更為便利且有效率,更能增加電力系統 學習者之意願。

6. 參考文獻

- Ji-Horng Liaw, 2011, "Programs Design to Power System Optimal Economic Dispatch Analysis for CASIO Graphing Calculators CFX-9850G," *The 32th National Symposium on Electrical Power Engineering*, New Taipei City, Taiwan, Proceedings, pp. 1133-1137.
- [2] Ji-Horng Liaw, 2012, "Optimal Generation Dispatch Using CASIO Graphing Calculators CFX-9850G and Optimal Economic Dispatch Analysis Programs," International Conference on Safety & Security Management and Engineering Technology 2012(ICSSMET2012),

Chiayi, Taiwan, Proceedings, Vol. 2 of 2, pp. 62-65

- [3] CASIO fx-9850G PLUS User's Guide, Casio Computer Co., Ltd., 2001.
- [4] J. Arrillaga, N. R. Watson, Computer Modelling of Electrical Power Systems, John Wiley & Sons, Ltd., 2001.
- [5] J. W. Nilsson, S. A. Riedel, Electric Circuits, 6thed., Prentice Hall, Inc., 2000.
- [6] H. Sssdat, *Power System Analysis*, McGraw-Hill Co., Inc., 1999.

圖 1. CASIO 繪圖型計算機 FX-9850GB PLUS

圖2. 各發電機直接接至系統唯一匯流排

輸入	輸出
OED	C1?
輸入發電機1的 α_1	?
輸入發電機 1 的 $oldsymbol{eta}_1$?
輸入發電機 1 的 γ_1	C2?
輸入發電機 2 的 α_2	?
輸入發電機 2 的 eta_2	?
輸入發電機 2 的 γ_2	C3?
輸入發電機 3 的 α_3	?
輸入發電機 3 的 eta_3	?
輸入發電機 3 的 γ_3	PD?
輸入總和負載(MW)	
EXE	P1(輸出 P1 最佳發電量)
EXE	P2(輸出 P2 最佳發電量)
EXE	P3(輸出 P3 最佳發電量)
EXE	L(輸出增量成本λ)
EXE	C1(輸出 P1 發電成本)
EXE	C2(輸出 P2 發電成本)
EXE	C3(輸出 P3 發電成本)
EXE	TC(最小發電成本)
EXE	繪出增量成本曲線
TRACE	追蹤各發電機最佳發電量

表 1. CASIO 最佳經濟調度程式 OED 操作步驟

OED										
0	\rightarrow	Α	2	Z	:	Cls	:	دد	С	
1	"	:	?	\rightarrow	Α	:	?	\rightarrow	В	
:	?	\rightarrow	С	:	"	С	2	"	:	
?	\rightarrow	D	:	?	\rightarrow	Е	:	?	\rightarrow	
F	:	"	С	3	"	:	?	\rightarrow	G	
:	?	\rightarrow	Н	:	?	\rightarrow	Ι	:	دد	
Р	D	"	:	?	\rightarrow	J	:	(J	
-	(В	-	Е)	÷	(2	F	
)	-	(В	-	Н)	÷	(2	
Ι))	÷	(1	+	С	÷	F	
+	С	÷	Ι)	\rightarrow	Р	:	(В	
-	Е	+	2	С	Р)	÷	2	F	
\rightarrow	Q	:	(В	-	Н	+	2	С	
Р)	÷	2	Ι	\rightarrow	R	:	В	+	
2	С	Р	\rightarrow	L	:	Α	+	В	Р	
+	С	Р	2	\rightarrow	М	:	D	+	Е	
Q	+	F	Q	2	\rightarrow	N	:	G	+	
Н	R	+	Ι	R	2	\rightarrow	0	:	"	
Р	1	"	:	Р		دد	Р	2	"	
:	Q		دد	Р	3	"	:	R		
"	L	"	•	L		"	С	1	"	
:	М		دد	С	2	"	:	N		
"	С	3	"	:	0		"	Т	С	
"	•	М	+	Ν	+	0		GraphY=	2	
С	Х	+	В		GraphY=	2	F	Х	+	
Е		GraphY=	2	Ι	Х	+	Н		GraphY=	
L										

表 2. CASIO 最佳經濟調度程式 OED

2013 綠色科技工程與應用研討會(GTEA) 中華民國一百零二年五月二十四日

中華民國 臺灣 臺中市 國立勤益科技大學 論文編號:GT5-022

圖 3. 第一部發電機燃料成本資料輸入

圖 4 第二部發電機燃料成本資料輸入

圖 5. 第三部發電機燃料成本資料輸入

圖 6. 總負載需量輸入

圖 7. 最佳化發電量輸出

圖 8 增量成本與各發電機成本輸出

圖 9. 最小總成本輸出

圖 10. 增量成本曲線圖

圖 11. 第三部發電機發電量

圖 12 第二部發電機發電量

圖 14. 增量成本曲線圖座標範圍設定