國立勤益科技大學九十八學年度研究所碩士班招生筆試試題卷 所別:化工與材料工程系 組別: 科目:物理化學 准考證號碼:□□□□□□□(考生自填)
考生注意事項: 一、考試時間 100 分鐘。 二、應考人不得自行攜帶電子計算器,一律由本校統一提供 三、本試題共八大題
試題一:〈每小題3分共30分〉
 What volume is occupied by 19.6 g of methane (CH₄) at 27°C and 1.59 atm? a) 1.71L b)18.9 L c) 27.7 L d) 302 L
2. Which conditions of <i>P</i> , <i>T</i> , and <i>n</i> , respectively, are most ideal? a) high <i>P</i> , high <i>T</i> , high <i>n</i> b) low <i>P</i> , low <i>T</i> , low <i>n</i> c) high <i>P</i> , low <i>T</i> , high <i>n</i> d) low <i>P</i> , high <i>T</i> , low <i>n</i>
3. Four identical 1.0-L flasks contain the gases He, Cl ₂ , CH ₄ , and NH ₃ , each at 0°C and 1 atm pressure. Which gas has the highest density? a) He b) Cl ₂ c) CH ₄ d) NH ₃
 Four identical 1.0-L flasks contain the gases He, Cl₂, CH₄, and NH₃, each at 0°C and 1 atm pressure. For which gas do the molecules have the highest average velocity? a)He b) Cl₂ c) CH₄ d) NH₃
5. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) -24.8 J b) 14.8 J c) 55.2 J d) -15.2 J
 6. Which of the following statements correctly describes the signs of q and w for the following exothermic process at P = 1 atm and T = 370 K? H₂O(g) → H₂O(l) a)q and w are negative. b)q is positive, w is negative. c)q is negative, w is positive. d)q and w are both positive. e)q and w are both zero.
7. You take 200. g of a solid at 30.0°C and let it melt in 400. g of water. The water temperature decreases from 85.1°C to 30.0°C. Calculate the heat of fusion of this solid. a)125 J/g b) 285 J/g c)461 J/g d)518 J/g

- 8. Which of the following concentration measures will change in value as the temperature of a solution changes? a) mass percent b) molarity c) molality d) mole fraction
- 9. The solubility of O_2 in water is 0.590 g/L at an oxygen pressure of 15 atm. What is the Henry's law constant for O_2 (in units of L-atm/mol)? a) 3.93×10^{-3} b) 1.23×10^{-3} c) 8.14×10^2 d) 1.26
- 10. Consider the reaction $X \to Y + Z$ Which of the following is a possible rate law? a) Rate = k[X] b) Rate = k[Y] c) Rate = k[Y][Z] d) Rate = k[X][Y]

試題二:〈10分〉

For a system of 3.0 mol of argon (assumed ideal) compressed reversibly and isothermally at 298K from a volume of 200.0 L to 20.0 L. Calculate q, w, $\triangle U$, and $\triangle H$.

試題三:〈 10 分〉

Calculate the entropy of mixing per mole of air taking the composition by volume to be 79% N2, 20% O2, and 1% Ar.

試題四: 〈10分〉

Water is vaporized reversibly at 100° C and 1.013 bar. The heat of vaporization is 40.69 KJmol⁻¹. (a) What are values of q, \triangle G, and \triangle S for the water?(5%)

(b) What is the value of $\triangle S$ for the water plus the heat reservoir at 100° C?(5%)

試題五:〈10分〉

At 100°C and 2 bar pressure the degree of dissociation of phosgene is 6.30×10⁻⁵. Calculate Kp, Kc and Kx for the dissociation.

$$COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g)$$

The normal boiling temperature of ethanol is equal to 78.5° C and the molar enthalpy change of vaporization is equal to 40.5 KJ/mol. Estimate the vapor pressure of ethanol at 100.0° C.

試題七: 〈 10 分〉

At 373.15Kand 1.0atm, the Gibbs energy change of vaporization of water is zero and the enthalpy change is 40670J/mol. Find the Gibbs energy change of vaporization of water at 383.15K and 1.0atm.(If △H is constant).

試題八:〈10分〉

a. Derive the general formula by definition $\mu = (\partial T / \partial P)_H$?(5%)

$$\mu = -\frac{1}{C_P} \left(\frac{\partial H}{\partial P} \right)_T$$
 μ is the Joule-Thomson coefficient.

b.The Helmholtz free energy given the symbol A, is defined by A=E-TS. Derive the formula $\begin{bmatrix} \partial (\Delta A) \end{bmatrix} = -\Delta E = 2.65\%$

$$\left[\frac{\partial}{\partial T}(\frac{\Delta A}{T})\right]_{P} = \frac{-\Delta E}{T^{2}} ? (5\%)$$