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Abstract

This paper deals with the problem of delay-partitioning-based asymptotic stability analysis for large-scale systems
with neutral delay and switched-type. By applying weighting-delay-parameter approach, introducing both singular
model transformation technique and Finsler’s lemma, and constructing an augmented Lyapunov-Krasovskii functional
combined with free matrices, a novel delay-partitioning-dependent stability criterion is derived to guarantee the
asymptotic stability of above systems. The obtained criterion is formulated in terms of matrix inequalities, which can be
efficiently solved via standard numerical software. Two numerical examples are included to show that the proposed
method is effective and can provide less conservative results.
Keywords: Large-scale systems, neutral delay, asymptotic stability, weighting-delay-parameter approach, singular
model transformation.
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1. Introduction N —

It is well known that a wide class of physical systems Z Xj(t)+Bijx;t—d ()]} (1a)
in power systems, chemical procedure control systems, =l
navigation systems, automobile speed change system, etc. #
may be appropriately described by the switched model.

.__

Switched systems are a special class of hybrid dynamical 2 a‘®=1 xO=@O, te[-h 0 (1b)
systems, which consist of a family of subsystems and a k=1

switching law specifying the switching between the 1, when the switched system is

subsystems. Recently, there has been increasing interest ak(t) = described by the kth mode (1c)

in the stability problem of switched systems with time

DI o : 0, otherwise
delay due to their significance both in theory and

applications. To the best of our knowledge, it seems that where x; () e R"™ is the state vector of the ith subsystem,

few people have st‘udied the asymptotic s'tabil'ity problgm /'\ /'\ Bu’ Bu’ C are known constant matrices with

for large-scale switched-type systems with time-varying

neutral delay. This has motivated our research. appropriate dimensions, i=12,-,N, k=12,---,r. The
In this paper, we will give preliminary knowledge for delay d(t) is a time-varying continuous function

our main result. First of all, consider the following n ; . .

large-scale switched-type system with time-varying satisfying 0<d(t)<h andd(®)<pu.@(t) is a given
neutral delay continuous vector-valued initial function.

r The following notations will be used throughout this

X (t):z a* A @)+ A X (t—d 1))+ CF X (t—d (t)) paper. The notation F>G (F >G ) means that the

matrix F-G is positive definite  (positive
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semi-definite) for two symmetric matrices F, G. I; is
an identity matrix of appropriate dimensions.

Assumption 1[1]: All the eigenvalues of matrices Cik,
i=1,2,---,N , are inside the unit circle.

Lemma 1[2]: For any real vectors «|,&, and any
matrix M > 0 with appropriate dimensions, it follows that

2K Ky <K M 711(1 + 1) Mic, 2)

Lemma 2[3]: For any symmetric positive definite
matrix P and scalars A >0, o6>1, the following
inequality holds

—jj sel(s)Pe(s)ds < —j; e'(s)P e(s)ds

_@-D 1 T
— ([ e@as)
x P(re(s) ds) 3)
0
Lemma 3[4]: For any symmetric positive definite
matrix Q and scalars 0<b, <b, , the following
inequality holds
tb, 1 . 1 T,
= [y X' OQXO)I<———[x(t b))~ x(t-b,)'Q
2 201
x [X(t=b;)—x(t-b,)] “

Lemma 4(Finsler’s lemma)[5]: Consider a vector
¢ eR", asymmetric positive definite matrix S e R™"

and a matrix De R™" | such that rank(D)<n. The
following conditions are equivalent:

(1)¢TS¢ <0, V¢ suchthat DE =0, & #0 (5a)
Gi)(DH)'sbt <0 (5b)
2. Main Result

In the following theorem, a novel delay-partitioning-
dependent criterion for asymptotic stability of
large-scale neutral-delay switched-type system (1) is
proposed in terms of matrix inequalities.

Theorem 1: Under Assumption 1, the large-scale
neutral-delay switched-type system (1) is asymptotically
stable for i=1,2,---,N and k=12,---,r, if there exist
positive definite matrices L;j; , Ly > Lsysi » Vi » Yai »
lei’ Z22i5233i9 Z44i’ ZSSi’ Z66i= Z77’ Pi7 Qi= Ri’ Ui,
Wi, Woi, Wai, Wyis Xyi, Xy, M mijv Mjj, My,
matrices Hi, K Ly, Lisis Losis Ziois Zisis Ziais Zisio
Zisi> Z17is L3is Loai> Lasis Lasi> o715 Laai> Lasis Laeis

ij> real

Zyi» Zasis Zagis Lazis Zsei»  Zsiin Zgri»  and
scalars 0<p<1, &;>1 such that the following

conditions hold
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Yii Hi:|
>0 (6a)
e
Lii Liai Lisi
Lizi Logi Lyzi >0 (6b)

LT3i L;Si L33i

Zio| Z0yi Zosi Z3gi Zagi Zasi Zagi Zai | >0 (6¢)

(I=)X4i =277 >0 (6d)
(D)1, D <0 (6¢)
{(l }fié’)u' ;ﬂzo (6h
where
0 0 ]
0 00 0
L 0 0 0 0
D=/ I 0 0 0 (7a)
001 00
0001 0
00 0 0 I
_Hlli l_IIZI l_IISI 1_[14i 1_IISI l_IIGI 1_[17|_
HirZi 1_IZZI 1_123| 1_[24i 1_[25l 1_126| l_127|
1_[11“3& H;i l_13»3i 1_134i 1_135| l_136| 1_[37|
M| M, Iy Moy My Ty Mg Mgy (7b)
Mg Ty Iy Moy Mg T g

=R A TR L)X, Z Wy Wy
+Ki+ Ly tWi+Yyi+ ph Ui +2y)
+§:{Ri[BiIJSMij(BiI})T+§i}( Mij(gi}()T]RﬁMﬂl +'\7|ﬁ1} (70)
=
j#
M3=R R +A)'Q+H+pZ,y, T3 =RA+pZyy  (7d)
T4 :th14i+ﬁ[(1—ﬂ)xu 23] (7¢)

5= RiCik“L,Dthsi JTh6i=phZy i+ Ly, I 5=Z 515 (7)

N

H22i :W3i + Y2i +ph222i —2Q| + ZQI [Bllj M ij (BIIJ( )T
j=1
j#i

+3T Mij (3:'()T]Qi (72)
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,5=Q A +phZyy, Ty=phZ,y, (7h)
K )
[L5i=QiCi+phZysi, [ygi=pN 2,6, Ilyg =255 (71)
N — ~
5= phZssi— (1= )Wy + Yy;) +Z(M i+Mih (75
=1
}#i
[4=phZ;4, [5i=—(1—p)H+ ph Z;s; (7k)
56 = PhZsgi, Tygi = 235 (71)
1 o
My =—Kj = —[(1= )X = Z77] =Xy
ph h
—(1= pr) Wy +ph Z 44 (7m)
S
H45i:phz45is i :th46i +lezi s Mygi=2Zy5i (7n)
[s5i=phZs5i—(1-0(Wy+Y5) , Tlssi=phZsg;, Ns5=Zs5  (70)
S
Mgsi =phZggi+ Lo; —lezis g7 =Z g7 + Lasi (7p)
0;-1
I75i= Lygi ————=Xy; (79
ph
Proof: Based on singular model transformation [6],

system (1) can be written as

X (1) =y (D) (8a)

0= 2" (=i () +C{'y; (t—d (1) +A% O + A% t—d (1)
k=1

N

+> 7 [Biix; (1) +
-
}¢i

B x; (t—d ()1} (8b)

By means of the idea of [7] and [8], we use the following
Lyapunov-Krasovskii functional to derive the stability
criterion

N
V(1) = D Vi (1) + Vi () + Vg (1) + Vi (1) + Vs (8) + Vi (1)
i=1

V5 (0 +Vgi () +Vo; (D) + Vi O +Vii (D] (9)
where
T T i Of|R 0] x()
Vi =[x'® o] { . 0} {Ri QJ {yi (t)} (10a)
t T
Va® =[x W (s)ds (10b)
t T
V=[x oWsx (s)ds (100)
Vi =, vy, (s)ds (10d)
tor
Vsi® =[xl (s)ds (10¢)
VaO=]" [0 U)o (10)
_ [t x()[ Yo Hi][x(s)
V7|(t)_ J-t—d(t) l:y(s):||:HlT Y21:||:y(s):|ds (1Og)
Ve =" [, WO Xiyi(o)sdo (10)
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0 t
Va® =] [ & iyl Xy yi(s)dsde (10)
t o T )
Via®=[ [, ., e@9ze@.sisdo  (10)
. 5O Lysi Lo Losi %0
iO=[| %@ | |Lilaboy|| 60 | do(10K)
L L
fl iy thotaiba| [ yiods

where &(6,9)=[x (0) ¥() ' (6—d(8)) X (60— pd(6))
v (0—-d(9)) x'(0—h) y(s)]" and matrix Z, is defined in

(6¢).
Taking the time derivative of V(t) along the

trajectories of system (1) and noting that 0<d(t)<h
and d(t) < 1, it yields
N
V() = D [Vyi (6) + Vi (£) + Vi (1) + Vi (1) +Vs; (£) + Vi (1)
i=1

V50 +Vei () +Vo (1) +V, g O+, D] (1)

where
Vi®=20© ¥ O] ['3 gj
[ yi(H)
> -y (0 +Clyt-d(t)
k=1
U+ A% + A% -da) (122)
N
£ [ByX; () + Byx;(t —d(®)])
" |
Vai (1) < XT (W (D)
~(1= )X (t = d ()W x; (t—d (1) (12b)
Vii (1) < X (HWai; (1)
— (1= p) i (t-pd (Wy % (t—pd (1) (120)
Vi (1) < YT (OW,; y; (t)
—(1= w)y] (t-d (D)W y; (t-d (D) (12d)
Vi (1) < X7 (OWy; % (D) =X (E=h) Wy x;(t - h) (12¢)
Vi (1) < phx{(®U; xi(t)
t T
~U=pf U (s)ds (129

; X(t) Yy H X(t)
V”“)S{ym} {H vJ[y(tJ
o [xa=dnT Vi Hi [ x—dty
d “){ya—d(t»} {Hf Yzly('f—d(t))} (12)
Vi (1) < hy{'(t) X;; 3 ()
t

~A=mf _, YOX;yi(s)ds

" (12h)
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Vor 0 %06 YO X i O [ 51976 Xy (5)0s

t—pd(t)
[y X s (12i

Xi (t)
yi (D)

Vit = pco) )

yi(t—d(t))
| x(t=h) |
(Zi Zoi Zis Ziy Zis Zigi|| %®

2% Zo Zys Zosi Zos Zog Yi(®

25 Zyy Zyi Zow Zss Zsg || x(t—d(®)
Zlyi Zoyi Zsgi Zug Zas Zagi || Xit—pd(0)
Z1Tsi Zszi Z3Tsi ZZsi Zssi Zsg || Yit—d(t))
_ZlT6i Zysi Zssi Zig Zsgi Zgi || %(t=h) |

+J-tt—,0d(t) 2% (VZy7; +Yi (DZ71yi(s)ds
’ -[ ttfpd<t)2[xiT(t = d(O)Z574X (t-pd () Z7i]ys ()
* .[tt—/)ri(t)2 [yi (t—d(®)Zsz+% (t—h)Z;]yi(s)ds
t N '
+ J-t_pd(t) Yi (8) Z77iYi(s)ds (12j)
5@ L1 ii Lii Lasi %O
Xi(t=h) LisilosiLog X i(t=h)

J‘t dmyl (s)ds |—13||-23| Lasi yl() S

Vi) = (12k)

Applymg Lemma 1, we have

Z;Z;ZX (DR Bix; (t)
i=1j
j#i

N N

Z;Z[X (t)RiB MIJ(BIj)TRX (t)+X (t)Mu j(t)]

O
N
Z

i=1

#i

X (D[R, BIM

Mz

i (BOTR + M x (D) (13a)

S
LA

i
i

N N
D2 2y QB x; (1)

i=lj
i

=1
N N
<222 YT OQBIM; BH'Qi O +X M x(1)]

i=1

j#i

N N

=D > IO QBIM;BD'Q Y () +X OM%(1)]
i=l j=l
j#

(13b)
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N N
D> 2% (DR, Bix; (t—d(t)

:1J
i

[x (ORBEM;; (BT Rix; ()

MZ N
Mz

T
oC
EN

+xT(t—d(®)M'x; (t—d(1)]

N N
=33 [x (ORBIM (B Rix; (1)
i=1 j=1
J#i
+x7 (t—d(t)M 5% (t—d(t))] (13¢)
N N
220 (HQ;B x; (t—d (1))
-
N N
< I OQBIM (B ' Quyi(h)
i=1 j=1
j#i

+xT (= d(t)M'x;(t—d(1))]

N N
:ZZ yl (t)Qlaj |](aj) Q|y|(t)

=1

[
-

j#i

+xiT(t—d(t))I\ﬁj}lxi(t—d(t))] (13d)

According to Lemma 2 and using the idea of [9], we get

t T
_It—pd(t) §i Yi (S)Xzi Yi (S)dS

RN !
s> Ut pd(t)yi(s)ds} xz{j g Yi(S)0s }

_ J'tt_pd(t) ylT (S) X2i yi (S)dS (143)

0= X" (OK;x (1) = X (t = pd (t)K; x;(t

t T
-2 j iy SO Kyi(9)ds

- pd ()
(14b)

From (6d), (12h), (12j) and Lemma 3, we have
[y YT OU= 00X =Zr7 1y (9
< —ﬁ[xm % (t=pd )] T )X~ Z 7
x [x (0 = x (t—pd (t)] (152)
—f::ﬁd(t) S,Yi (8)X 5y (s)ds
< —%[xi(t —pd (1) X (t-h) | X,

x [x (t—pd (1) - % (t—h)] (15b)



2013 % ¢ 41 22 fu* 7554 § (GTEA)
PEAR-FF-&£T - Lep

From (11) — (15), we obtain
N
V) < a“Ofof 01T o)

i=l k=

0t xi(9)]'[A= o Ki Txi(s)
L-pd(o[yms)H K xzi}[yi(s)JdS}(m)

(1) Yt X t—d®) x(t-pd(t)

yit—dw) ' e-n (v

t—pd(t)
[T, is defined in (7b).
Based on Leibniz-Newton formula, we get

where a;(t)=

and matrix

X (0=t -pd)- [ L hi@ds =0 (17)
This means

Dia; (1) =0 (18)
where D; =[I; 0 0 —I, 0 0 —1].

From Lemma 4, it is seen that a)iT(t)Hia)i(t) <0is
equivalent to inequality (6e). Obviously, if inequalities
(6e) and (6f) hold, then V(t) <0, which ensures that
system (8) is asymptotically stable [1]. It means that
system (1) is asymptotically stable, too. The proof is

completed.

3. Numerical Examples

In this section, two examples are given to show the
benefits of our result.

Example 1: Consider the following large-scale switched
time-varying-delay system composed of two individual
switched systems:

Switched system 1 (k= 1):

, 55 0 ~0.5 04
X (t) = 0 —33 X (t) + 01 —03 X (t—d(t))
0.5 0
{05 02} z(t){oll O} X, (t—d (1)
~10
{ }Xs(t)ﬂ{o | O} X3 (t—d(t))
, 83 0 70
Xz(t)={ 0 } X, (1) + { 0.5 — }Xz(t—d(t))
0203 1.102
o1 07O 03 o X (t-d(®)

Lroa] oo [-ros] o
10302 3O+ 0.7 0.1 3(t—d(®)
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%5 (1) = 92 0 o+ L] X, (t —d (1))
o -72 05-3|"°

J004] o [OT0] e
1o 12®OF] g, | et-dm)

00051 o [01] 4
1o o [MOH [ E-dD)

Switched system 2 (k = 2):

W0 0S5 w0, xe-ao

0.1 02 0
J{O.l O}sz [0.2 0.1} %(t=d®)

0.1 0 0.
+[O OJ x(0)+ [Oz 0}x3(t d()

x'2<t)=[‘3'6 _05} Xz(t)‘{ o 5}xz(t d()

0 0.1 0.
+[0.5 0} (O+ {01 O}Mt d(t)

L[02 0 ")+ 0 0.1
0 02| 0.1 0

O P O Sl PR

0.1 0 0 0.1
+[O O.I}Xz(t)J{ }xz(t d()

00 00.3
+[O.2 0} xl(t){o 0.2} X (t—d()

Our purpose in example 1 is to find the maximum
allowed delay h ofd(t) satisfying d(t) < u, such that the
switched system (19) is asymptotically stable. A
comparison between our Theorem 1 and the method of

[10] is shown in Table 1, which also displays the
maximum allowed delay h and its time derivative u for

(19a)

} X;(t—d (1))

(19b)

guaranteeing the asymptotic stability of system (19).
Obviously, it can be seen that the

delay-partitioning-dependent stability criterion in this
paper is less conservative than one given by [10].

Table 1. Allowable delay bound & for different #

H h ([10]) h (Our Theorem 1)
0.5 Fail 6.5731
1.0 Fail 5.3286
1.5 Fail 47217
2.0 Fail 4.1153
25 Fail 2.9025
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Example 2: Consider the following switched systems
with time-varying delay

Switched system 1:

X(t)= {‘ . S}X(t){_o(.)il 8:2} xt-d(t)  (20a)

Switched system 2:
X(t) = [_ 3'2 B 27} X(t) + [8; gﬂ X(t—d(t)) (20b)

Our purpose in example 2 is to find the maximum
allowed delay h ofd(t) satisfying d(t) < z, such that the
switched system (20) is asymptotically stable. A
comparison between our Theorem 1 and the methods of
[11], [12] and [13] is shown in Table 2, which also
displays the maximum allowed delay h and its time
derivative 4 for guaranteeing the asymptotic stability

of system (20). It is clear that our new method produces
better results than those in [11], [12] and [13].

Table 2. Allowable delay bound & for different #

H th (11D h(q12]) | h([13]) |h (Our Theorem 1)
0.1 [1.5319| 2.6381 | 3.7215 9.8128

0.3 10.9287 | 2.0236 | 2.8738 8.9236

0.7 10.6093 | 1.1153 | 1.5596 7.7531

0.9 [0.5182| 0.7928 | 1.2361 6.5762

1.1 10.3016 | 0.5527 | 0.7329 5.3573
4. Conclusion

A class of large-scale system with time-varying neutral
delay and switched-type is studied in this paper. Based
on weighting-delay-parameter approach, an augmented
Lyapunov-Krasovskii functional form combined with
free matrices, singular model transformation technique
and Finsler’s lemma, a new delay-partitioning-dependent
stability criterion is derived in terms of matrix
inequalities. Two numerical examples are given to show
the effectiveness and benefits of the proposed criterion.
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