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Abstract 
The stability problem on delay-dependent exponential convergence for neutral-type systems with nonlinear 

perturbations is investigated in this paper. A linear matrix inequality (LMI) based exponential stability criterion is 
derived by means of the Lyapunov-Krasovskii functional approach and a parameterized model transformation technique. 
An example is used to illustrate the less conservative result of the proposed approach compared with the previous one. 
Keywords：Neutral-type systems, delay-dependent exponential convergence, nonlinear perturbations, parameterized 

model transformation. 
 

摘要 
本文旨在研究非線性擾動中立型系統之延遲相關指數收斂穩定問題。藉由李亞普諾-克羅斯威斯基泛函數方

法與參數模型轉換技巧，針對上述系統，提出線性矩陣不等式指數穩定測試準則。舉例證實本研究方法明顯改

善文獻結果。 
關鍵字：中立型系統，延遲相關指數收斂，非線性擾動，參數模型轉換。 

 

1. Introduction 

It is well known that time delay is commonly 
encountered in the behavior of many physical processes 
and very often is the main cause for poor performance 
and instability of control systems. Therefore, stability 
problem of time delay systems is a topic of great 
practical importance that has attracted a considerable 
amount of interest over the past years. Many methods 
such as the Lyapunov-Krasovskii functional approach, 
matrix norm technique, matrix measure technique, 
Bellman-Gronwall technique, etc., have been proposed in 
the literature [1-11] for testing the stability of time delay 
systems. Current efforts on this topic can be divided into 
two categories, namely delay-dependent stability criteria 
and delay-independent stability criteria. Generally 
speaking, the delay-dependent results are often less 

conservative than the delay-independent results. 
Moreover, most results are concerning both retarded type 
delayed systems and neutral-type delayed systems 
without nonlinear perturbations. To the best of our 

knowledge, few results have been reported in the 
literature concerning the problem of delay-dependent 
robust stability for neutral-type delayed systems with 
nonlinear perturbations. In this paper, a delay-dependent 
criterion for guaranteeing the exponential stability of 
neutral-type systems with constant time-delay and 
nonlinear perturbations is derived by using the 
Lyapunov-Krasovskii functional method and a 
parameterized model transformation technique. The 
stability criterion is formulated in an LMI form. The 
proposed criterion can be applied to the delay-dependent 
asymptotic stability testing and is shown to be less 
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conservative than the existing results in the literature 
[7,8,9,10]. 

Consider the following neutral-type time-delay 

systems with nonlinear perturbations   
))(),(),(()()()()( htxhtxtxfhtxChtxBtAxtx −−+−+−+= &&&  (1) 

]0,[),()( htttx −∈= φ  (2) 

where  is the state vector;nRtx ∈)( A ,  and 

 are constant matrices;  is a positive 
constant time-delay; 

B
nnRC ×∈ h

)(tφ is a given continuous 

vector-valued initial function;  ))(),(),(( htxhtxtxf −− &  

represents the nonlinear perturbations satisfying 
)()()())(),(),(( 210 htxhtxtxhtxhtxtxf −+−+≤−− && βββ  (3) 

where ,0β 1β and 2β are positive constants. 

Definition 1: The system (1) is said to have a stability 
degree α (or to be exponentially stable), with ,0>α  if 

the state of (1) can be written as  and the 

system governing the state  is asymptotically stable. 

In this case, the parameter α is called the convergence 

rate. 

)()( tzetx tα−=
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  To study the exponential stability of the system (1), we 

introduce a model transformation [1] described by the 
operator D:  with nn RRhC →− )],0,([0

∫ − −−+=
t
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where E is a matrix parameter to be chosen. 

Remark 1: In view of [2], for the case where ,0=α  a 

sufficient condition for the stability of operator  

is 

)( tzD

.1<+ CEh  Moreover, an LMI-based sufficient 

condition is given by [1] as 
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where I is the identity matrix. Besides, in order to 

analyze the exponential stability of system (1), the 

following lemma, which significantly reduces the 

conservatism of the above two conditions, will be used in 

the derivation of the main result. 

Lemma 1[1]: Given a scalar ρ  satisfying ,10 << ρ  

then for the case where ,0=α  the operator  is 

stable if there exists a symmetric positive definite 

matrix

)( tzD

X such that the following LMI holds  
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2. Main Result 

Now, we present a delay-dependent criterion that 

guarantees the exponential stability of system (1). 

Theorem 1: Consider the neutral-type time-delay system 

with nonlinear perturbations in (3). Given scalars 
0>α , ρ satisfying ,10 << ρ and δ satisfying 

,10 << δ then for any constant time-delay  this 

system is exponentially stable with the convergence rate 
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where 
hWQIAIAUPAAPM TT +++++++= )()(3 2

01 ααβ  (8a) 

)()(2 CBIAePCAeBPM Thh T +++−= ααα  (8b) 
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Proof: Let  where ),()( tzetx tα−= .0>α  Thus, from 
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Furthermore, the system (9) can be written as  

]))()()([ ∫ − −−+
t

ht

hh htCzedsszEetz
td

d αα  

)(),(),(()()( htzhtztzfhtzBtzA −−+−+= &  (11) 

Choose the Lyapunov-Krasovskii functional for system 
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The time derivative of  along the trajectory of 
system (11) is given by  
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Applying the following well-known inequality to (13) 
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and are defined in (8a), (8b), (8c), (8d), 

respectively. It is easy to see that  if 
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From (7) and lemma 1, the operator  is stable. 

Therefore, we conclude that the system (9) and the 

system (11) are both asymptotically stable, i.e., the 

system (1) is exponentially stable with the convergence 

rate 

)( tzD

α . Thus, the proof is completed. 
 

for any vectors  and scalar nRba ∈, ,0>ε  we 
obtain 

3. Numerical Example 
Example 1: Consider the following neutral-type 

time-delay system with nonlinear perturbations  
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  First, we shall compare our delay-dependent stability 
criterion with those in [7,8,9,10] for checking the 
asymptotic stability of the system (16). Applying 
Theorem 1 with ,0=α  by setting 5.0=ρ  and 
choosing  using the Matlab LMI Toolbox, it is 
found that the system (16) is asymptotically stable for 
any constant time delay 

,CE =

.6238.2≤h  If we choose 
 the upper bound of time delay h is 4.3615. 

On the other hand, the maximum values of time delay h 
obtained in [7,8,9,10] for guaranteeing the asymptotic 
stability of the system (16) are 0.5871, 0.7325, 0.9168, 
and 1.1732, respectively. Thus, for this example, the 
delay-dependent stability criterion of this paper gives a 
less conservative result than those obtained by the 
methods in [7,8,9,10]. In addition, this example also 
shows that choosing an appropriate parameter 

,1.0 CE =

E  can 
maximize the allowable delay bound for guaranteeing the 
asymptotic stability of the above system. 
  Next, we consider the effect of the time delay h on the 
convergence rateα . Again applying Theorem 1, we can 
find the fact that the convergence rate α  decreases 
when the time delay h increases (i.e. ,2.0=h  

;6021.0=α   ,8.0=h ;2328.0=α  ,5.1=h  
;0715.0=α   ,8.1=h ;0316.0=α  ,5.2=h  

0139.0=α ). Furthermore, the result of [11] guarantees 
the exponential stability of system (16) with time delay 

when convergence rate 2.0=h 0135.0=α . Hence, the 
Theorem 1 in this paper significantly improves the result 
of [11].  

4. Conclusion 
This paper has considered the stability problem for 

neutral-type time-delay systems with nonlinear 
perturbations. Based on the new Lyapunov-Krasovskii 
functional approach and a parameterized model 
transformation technique, a less conservative 
delay-dependent robust exponential stability condition is 
established. By comparing the proposed result with the 
recent published papers through a numerical example, it 
is shown that the derived criterion is less conservative 
than several recent results.  
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