國立勤益科技大學九十九學年度研究所碩士班招生筆試試題卷

所別:電子工程系 組別:電子組

科目:電子學

准考證號碼:□□□□□□□□(考生自填)

考生注意事項:

一、考試時間100分鐘。

二、作答可由考場統一提供電子計算機。

Ξ,

試題一: 〈10分〉

An amplifier with an input resistance of $10 \text{ K}\Omega$, when driven by a current source of 1 uA and a source resistance of $100 \text{ K}\Omega$, has a short-circuit output current of 10 mA and an open-circuit output voltage of 10 V. When driving a $4 \text{-K}\Omega$ load, what are the value of voltage gain, current gain, and power gain?

試題二:〈10分〉

For the circuit in Fig. p2, find the values of voltage gain V_o/V_i , the current gain i_I/i_I , and the power gain P_I/P_I .

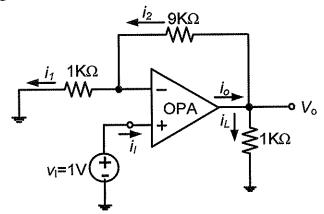
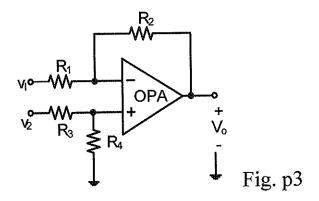
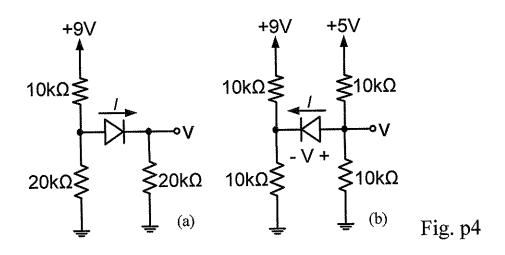



Fig. p2


試題三: 〈10分〉

Derive an expression of the circuit in Fig. p3 for the voltage $Vo=(R_2/R_1)(V_2-V_1)$, if we choose $(R_3/R_4)=(R_1/R_2)$.

試題四:〈10分〉

Assuming that the diodes in the circuits of Fig. p4 are ideal, utilize Theven's theorem to simplify the circuits and thus find the values of the labeled currents I and voltages V, assume diode has a 0.7V drop when conducing.

試題五:〈10分〉

Design limiter circuits using only diodes and $10~\text{K}\Omega$ resistors to provide an output signal limited to the range:

- (a) -0.7V and above
- (b) -2.1V and above
- (c) $\pm 1.4v$

Assume the each diode has a 0.7V drop when conducing.

試題六:〈10分〉

The MOSFET in Fig. p6 has $V_t = 1V$, $k_n' = 100 \mu A/V^2$, and $\lambda = 0$. Find the required values of W/L and of R so that when $v_I = V_{DD} = +5V$, $r_{DS} = 50\Omega$, and $v_O = 50 mV$.

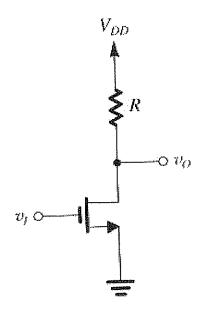


Fig. p6

試題七:〈15分〉

A CS amplifier using an NMOS transistor biased in the manner of Fig. p7 for which $g_m = 2mA/V$ is found to have an overall voltage gain G_v of -16V/V. What value should a resistance R_s inserted in the source lead have to reduce the voltage gain by a factor of 4?

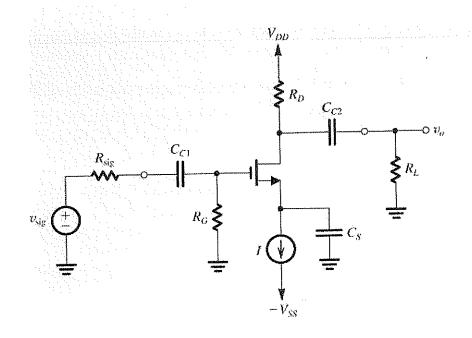


Fig. p7

第3頁〈共4頁〉

試題八:〈10分〉

The transistor in the circuit of Fig. p8 has a very high β . Find V_E and V_C for $V_B = +2V$. Assume $V_{BE} \cong 0.7V$.

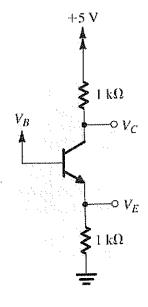


Fig. p8

試題九:〈15分〉

Consider the current-mirror circuit of Fig. p9 with two transistors having equal channel lengths but with Q_2 having a width four times that of Q_1 . If I_{REF} is $20 \,\mu A$ and the transistors are operating at an overdrive voltage of 0.3 V, what I_O results? What is the minimum allowable value of V_O for proper operation of the current source? If $V_I = 0.5V$, at what value of V_O will the nominal value of I_O be obtained? If V_O increases by 1 V, what is the corresponding increase in I_O ? Let $V_A = 25V$.

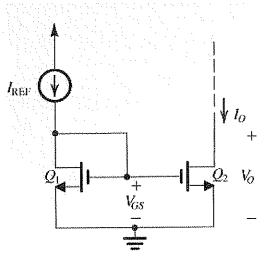


Fig. p9

第4頁〈共4頁〉