國立勤益科技大學

電子工程系研究所碩士班

碩士論文

耦合線式雙頻結構之探討 An Investigation on Coupled Line Dual-Band Structure Using in UHF and Microwave Bands

niversity of tect

研究生: 巫仲鎧

指導教授: 曾振東 博士

中華民國 九十九 年 七 月

耦合線式雙頻結構之探討

An Investigation on Coupled Line Dual-Band Structure Using in UHF and Microwave Bands

> 研究生:巫仲鎧 指導教授:曾振東 博士

國立勤益科技大學 電子工程系研究所碩士班 碩士論文

A Thesis Submitted to Department of Electronic Engineering National Chin-Yi University of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Design in Institute of Electronic Engineering

July 2010 Taiping, Taichung, Taiwan, Republic of China

中華民國九十九年七月

論文題目:耦合線式雙頻結構之探討 校院所:國立勤益科技大學電子工程系研究所 研究生:亚仲鎧

中文摘要

本文提出一種雙頻段(Dual Band)電路設計方法,利用串接耦合線 (Coupled line)結構替換一段傳輸線以獲得雙頻效果,特性分析以傳輸 線與耦合線模式進行。並將此方法運用於鼠圈式(Rat-Race)功率分配 器、分枝線(Branch-Line)耦合器、柴比雪夫響應(Chebyshev response) 帶通濾波器、並接傳輸線-帶通濾波器(Bandpass Filter)、並接傳輸線-帶拒濾波器(Bandstop Filter)和枝幹耦合式衰減器。實際電路使用 Anritsu-37269D向量網路分析儀進行量測,模擬與量測結果顯示具有 良好的一致性,驗證所提方法之正確性。

Title of Thesis : An Investigation on Couple	d Line Dual-Band Structure	e Using in UHF
and Microwave Bands		
Name of Institute : Institute of Electronic F	Engineering	
National Chin-Yi Univ	ersity of Technology	Pages: 83
Student : Chung-Kai Wu	Advisor : Dr. Ja	an-Dong Tseng

Abstract

A dual band design method using a coupled line section to replace a transmission line section is proposed. The structure was analyzed by transmission line theory and obtained the equivalent relation between the transmission line and the coupled line. To verify this method, a dual band rat-race hybrid, branch-line, three-order Chebyshev response bandpass filter, bandpass filter and bandstop filter of parallel tansmission line, and branch-line type attenuator circuits were designed, fabricated and measured. The measured results show very good agreement with the simulation data.

誌 謝

兩年的研究生涯終於順利結束,當中要感謝許多老師與同學的指 導和幫忙。首先要感謝的是我的指導教授曾振東博士,老師作學問時 認真嚴謹的態度是我最好的典範,在老師的指導下,得以完成本論 文。口試期間,承蒙交大電信系黃瑞彬教授及勤益科大林光浩教授在 口試時對本論文提供建議,使得本論文更加完備。感謝各位教授在口 試期間的幫助與指教讓此次的研究工作畫下完美的句點。

在實驗室的日子裡,感謝文德學長、小柯學長、建文學長、宜賢 學長、姵文、千琦、聖巖、David、柏軒、姵琪、千華、其成、順興、 文嘉、懷鈺、楷涵、鈞任、夢得,給我的建議、幫助及共有的美好回 憶、歡樂。當然也要感謝一起渡過研究生涯的同學們。

最後,僅將此論文獻給我最親愛的父母、家人及女友淑萍,感謝 你們無私的愛,給予我關懷與支持,讓我無後顧之憂,全力完成學業, 願與你們分享這份喜悅與榮耀。

鋖	F

中文摘要
英文摘要
誌謝
目錄
圖目錄
第一章 緒論
1.1 前言
1.2 章節概述
第二章 傳輸線簡介
2.1 傳輸線原理
2.1.1 傳輸線的集總元件電路模型
2.1.2 有載的無損傳輸線
2.1.3 四分之一波長阻抗轉換器
2.1.4 有損傳輸線
2.2 微帶傳輸線
2.3 耦合線
2.3.1 串接耦合線
第三章 應用於雙頻段之耦合線結構
3.1 鼠圈式(Rat-Race)功率分配器
3.2 分枝線(Branch-line)耦合器
3.3 柴比雪夫響應(Chebyshev response)三階帶通濾波器
3.4 並接傳輸線-帶通濾波器
3.5 並接傳輸線-帶拒濾波器
3.6 枝幹耦合式衰減器
第四章 結論
參考文獻
作者簡介

圖目錄

圖 2.1	一段微量長度傳輸線的等效電路,與其電壓、電流的定義 (a)電
	壓與電流的定義 (b)集總等效電路
圖 2.2	末端負載為阻抗 ZL 的傳輸線
圖 2.3	負載短路的傳輸線1
圖 2.4	短路負載的傳輸線上 (a)電壓波 (b)電流波 (c)電抗($R_{in}=0$ 或 ∞)的
	變化1
圖 2.5	負載為開路的傳輸線1
圖 2.6	開路負載傳輸線上 (a)電壓波 (b)電流波 (c)電抗(R _{in} =0 或∞)的變
	化1
圖 2.7	在雨不同特性阻抗之傳輸線介面上的反射與穿透1
圖 2.8	四分之一波長阻抗轉換器 2
圖 2.9	微帶傳輸線 (a)幾何結構 (b)電磁力線分佈2
圖 2.10	微帶線中準 TEM 波的等效幾何圖,以常數 &e 的等效均勻介質,
	取代空氣區及厚度 d, 常數 Er 為的介質板 2
圖 2.11	耦合線段的相關電流與電壓定義-平行耦合線段端埠電壓與電流
	的定義2
圖 2.12	耦合線段的相關電流與電壓定義-平行耦合線段的奇、偶模電流 2
圖 2.13	串接耦合線結構3
圖 3.1	串接耦合線等效一段傳輸線 (a)傳輸線分成三部分 (b)將中間的
	傳輸線替換為串接耦合線 3
圖 3.2	第二頻段與第一頻段的比率與耦合長度關係圖 (a) Z ₁ =70.7Ω (b)
	$Z_1=50\Omega$ (c) $Z_1=35.35\Omega$ (d) $Z_1=25\Omega$ 3
圖 3.3	使用串接耦合線替代一段傳輸線之 Rat-race 電路結構圖4
圖 3.4	使用串接耦合線替代一段傳輸線之 Rat-race 電路實體圖
	(4.803cm×4.462cm) 4
圖 3.5	使用串接耦合線替代一段傳輸線之 Rat-race S11 與 S21 模擬與量
	測圖4
圖 3.6	使用串接耦合線替代一段傳輸線之 Rat-race S31 與 S41 模擬與量
	測圖4
圖 3.7	使用串接耦合線替代一段傳輸線之 Rat-race ∠S21與∠S31模擬與
	量測圖4
圖 3.8	使用串接耦合線替代一段傳輸線之Branch-line 電路結構圖 4
圖 3.9	使用串接耦合線替代一段傳輸線之 Branch-line 電路實體圖
	(3.624cm×4.417cm) 4
圖 3.10	使用串接耦合線替代一段傳輸線之 Branch-line S11 與 S21 模擬與
	量測圖4
圖 3.11	使用串接耦合線替代一段傳輸線之 Branch-line S31 與 S41 模擬與
	量測圖4

圖 3.12	使用串接耦合線替代一段傳輸線之 $Branch-line \angle S_{21}$ 與 $\angle S_{31}$ 模擬
	與量測圖
圖 3.13	三階低通濾波器原型
圖 3.14	三階L、C帶通濾波結構
圖 3.15	運用阻抗轉換器(K inverter)設計帶通濾波器
圖 3.16	標準的帶通濾波電路結構圖
圖 3.17	使用串接耦合線替代一段傳輸線之帶通濾波電路結構圖
圖 3.18	使用串接耦合線替代一段傳輸線之帶通濾波電路實體圖
	(11cm×5.2cm)
圖 3.19	使用串接耦合線替代一段傳輸線之帶通濾波電路 S11 與 S21 之模
	擬與量測圖
圖 3.20	並接傳輸線-帶通濾波器結構
圖 3.21	使用串接耦合線替代一段傳輸線之並接傳輸線-帶通濾波器結構
	B
圖 3.22	使用串接耦合線替代一段傳輸線之並接傳輸線-帶通濾波器實體
	圖(6.755cm×4.72cm)
圖 3.23	使用串接耦合線替代一段傳輸線之並接傳輸線-帶通濾波器 S11
	與 S21 模擬與量測圖
圖 3.24	並接傳輸線-帶拒濾波器結構
圖 3.25	使用串接耦合線替代一段傳輸線之並接傳輸線-帶拒濾波器結構
	圖
圖 3.26	使用串接耦合線替代一段傳輸線之並接傳輸線-帶拒濾波器實體
	圖(3.507cm×2.757cm)
圖 3.27	使用串接耦合線替代一段傳輸線之並接傳輸線-帶拒濾波器 S11
	與 S21 模擬與量測圖
圖 3.28	使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器結構
圖 3.29	奇偶模電路分析結構-偶模/偶模
圖 3.30	奇偶模電路分析結構-偶模/奇模
圖 3.31	奇偶模電路分析結構-奇模/偶模
圖 3.32	奇偶模電路分析結構-奇模/奇模
圖 3.33	四埠枝幹耦合器加兩負載示意圖
圖 3.34	衰减量與電阻器關係圖
圖 3.35	使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器電路結構
	圖
圖 3.36	使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器電路實體
	圖 (61.68mm×53.3mm)
圖 3.37	使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器模擬與實
	測 S11 、 S41 參數 (R=8.61 歐姆,衰減量-3dB)
圖 3.38	使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器模擬與實
	測 S11 、 S41 參數 (R=150 歐姆,衰減量-6dB)

第一章 緒論

1.1 前言

隨著現代通訊系統的快速發展,高效能、縮小化體積[1-3]與多頻 段是必然的趨勢。通訊電路和設備也都朝向雙頻段(Dual band)、多頻 段(Multi band)或寬頻(Broad band)發展,包括天線[4-5]、放大器[6]、 濾波器[7-9]、功率分配器[10]及其他微波被動電路。

雙頻段系統可分成兩個種類,一是利用開關切換操作在不同頻 段、另一種是同時提供在雙頻段操作。傳統上,要在不同的頻段下同 時操作,需透過結合多個電路,但此方法需要較大的功率消耗,為克 服此問題,提出同時提供在雙頻段操作的電路。故近年來雙頻段(Dual band)電路在無線通訊系統上,已成為研究與發展的重點之一,並受 到廣大的重視。

目前雙頻段(Dual band)的具體作法大致上有:結合兩個不同頻率 的低通和帶通濾波器使用J inverter和串聯諧振器之方法來實現[11]、 利用電氣長度為λ/4之T型(T-shaped) 的開路殘段與傳輸線關係調整 達到雙頻效果[12,13]、使用不同尺寸之開路環形諧振器設計(Folded open-loop ring resonator),藉由調整開路環形諧振器之尺寸改變帶通 的諧振頻率點來實現[14]和透過適當地選擇步階式阻抗諧振器 (Stepped-impedance resonator)的阻抗比率達到雙頻之效果[15,16]等方 法。本文則提出以耦合線(Coupled line)結構替換一段傳輸線,以形成 雙頻特性。

本文所提之串接耦合線,結構簡單、方便設計與製作。首先導出 串接耦合線與一段傳輸線段之等效關係式,接著進行整段傳輸線之等 效,再套入適當的條件,即可得三倍頻點的計算公式,並依此公式計 算第二頻段的中心頻率。

1.2 章節概述

本論文共分四章;第一章為緒論,介紹現有雙頻段電路的製作方法,第二章對傳輸線理論做完整的說明[17],第三章介紹串接耦合線 替代傳輸線製作的雙頻電路,包括:鼠圈式(Rat-Race)功率分配器、 分枝線(Branch-Line)耦合器、柴比雪夫響應(Chebyshev response)帶通 濾波器、並接傳輸線-帶通濾波器(Bandpass Filter)、並接傳輸線-帶拒 濾波器(Bandstop Filter)和枝幹耦合式衰減器,第四章為結論。

第二章 傳輸線簡介

2.1 傳輸線原理

・ 前介

場論分析與基本電路學之間的間隙,可藉由傳輸線原理[17]銜接 起來。因此,在微波網路的分析中,傳輸線理論扮演著非常重要的角 色。這一章將說明波在傳輸線上傳播的現象,並經由擴充電路學的概 念,及簡化馬克斯威爾(Maxwell)方程式來加以理解。

傳輸線

在電子系統中,信號和能量必須從信號產生源(Signal generator) 端傳送至負載端(Load terminal),或在系統中從某一元件傳遞到另一 元件。當被傳遞的電子信號為低頻時,信號能量大部分是以電場的形 式來傳遞,磁場所攜帶的能量遠小於電場中的能量,故可使用兩線式 (Two wires)傳輸線連接電源端和負載兩端以傳遞能量和信號。當欲傳 送之信號的頻率提高到射頻或微波頻段時,能量則是交替地儲存於電 磁波中的電場和磁場,在經由某些實體結構(Physical structures)將電 磁波從一端傳送到另一端,以達到能量及信號傳遞的目的。任何能夠 從一處將電磁波導引到另一處的導波實體結構均稱為傳輸線 (Transmission lines)。 2.1.1 傳輸線的集總元件電路模型

基本電路學與傳輸線理論最大的不同點,在於元件的電氣大小。 在電路學中,均假設整個網路比波長小很多;而傳輸線的大小長短則 不受任何限制,可以短於一個波長,也可以長到數個波長。因此,傳 輸線是一個散佈式的網路,也就是說,在傳輸線上不同的位置,電流 與電壓的大小與相位均不相同。

圖 2.1 一段微量長度傳輸線的等效電路,與其電壓、電流的定義

傳輸線通常皆以兩條等長的導線表示,如圖 2.1(a)所示,原因是 TEM 波的傳輸線一定至少有兩個導體。圖 2.1(a)中一小段長為Δz 的 傳輸線,可用圖 2.1(b)的集總元件電路模型描述。圖中的 R、L、G、 C 為傳輸線每單位長度的物理量,其定義為:

 $R = 兩個導體中單位長度的串聯電阻,單位是 <math>\Omega/m$ 。

L= 兩個導體中個單位長度的串聯電感,單位是 H/m。

G = 單位長度的並聯電導,單位是 S/m。

C = 單位長度的並聯電容,單位是 F/m。

串聯的電感 L 為兩導體的總自感,並聯電容 C 是因兩導體的距離接 近而產生的,串聯電阻 R 為傳輸線導體具有限導電率時,所必須考慮 的電阻,而並聯電導 G 則與兩導體之間的介質損耗有直接的關係。 因此, R 與 G 代表傳輸線的損耗。一段有限長度的傳輸線,可視為許 多如圖 2.1(b)的小段傳輸線串接而成。

在圖 2.2(b)的電路中,由柯希荷夫電壓定律可得:

$$v(z,t) - R\Delta z i(z,t) - L\Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z,t) = 0$$
(2-1a)

由柯希荷夫電流定律可得

$$i(z,t) - G\Delta zv(z + \Delta z, t) - C\Delta z \frac{\partial v(z + \Delta z, t)}{\partial t} - i(z + \Delta z, t) = 0$$
(2-1b)

將(2-1a)與(2-1b) 除以∆z,並取∆z→0 的極限,可得到下面的微分方 程式:

$$\frac{\partial v(z,t)}{\partial z} = -Ri(z,t) - L\frac{\partial i(z,t)}{\partial t}$$

$$\frac{\partial i(z,t)}{\partial z} = -Gv(z,t) - C\frac{\partial v(z,t)}{\partial t}$$
(2-2a)
(2-2b)

以此兩式為時域的傳輸線方程式,或稱為電報方程式。 在弦式穩態時,以餘弦 cos 為表示電磁物理量相量的基準,(2-2)可化 簡為

$$\frac{dV(z)}{dz} = -(R + j\omega L)I(z)$$

$$\frac{dI(z)}{dz} = -(G + j\omega C)V(z)$$
(2-3a)
(2-3b)

在此也可發現(2-3)式的數學形式和馬克斯威爾旋度方程式相當類似。

• 傳輸線上的電波傳播

將(2-3a)與(2-3b)兩式聯立解出,可得傳輸線上電壓 V(z) 與電流 I(z) 的波動方程式如下:

$$\frac{d^{2}V(z)}{dz^{2}} - \gamma^{2}V(z) = 0$$
(2-4a)
$$\frac{d^{2}I(z)}{dz^{2}} - \gamma^{2}I(z) = 0$$
(2-4b)

其中
$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$
 (2-5)
是與頻率有關的複傳播常數。(2-4)的行進波解為
 $V(z) = V_o^+ e^{-\gamma z} + V_o^- e^{\gamma z}$ (2-6a)

$$I(z) = I_o^+ e^{-\gamma z} + I_o^- e^{\gamma z}$$
 (2-6b)

其中 e⁻™項表示波往+z 方向傳播, e[™]項表示波往-z 方向傳播。將(2-3a) 代入(2-6a)的電壓波,可得傳輸線上的電流波:

$$I(z) = \frac{\gamma}{R + j\omega L} [V_o^+ e^{-\gamma z} - V_o^- e^{\gamma z}]$$

將此式與(2-6b)兩式相比較,可得傳輸線的特性阻抗 Z₀,定義如下:

$$Z_0 = \frac{R + j\omega L}{\gamma} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$
(2-7)

特性阻抗 Z₀建立了傳輸線上電壓與電流的關係如下:

$$\frac{V_0^+}{I_0^+} = Z_0 = \frac{-V_0^-}{I_0^-}$$

所以, (2-6b)可寫成

$$I(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{\gamma z}$$
(2-8)

回到時域中, 電壓波的數學式為

$$v(z,t) = |V_0^+| \cos(\omega t - \beta z + \phi^+) e^{-\alpha z} + |V_0^-| \cos(\omega t + \beta z + \phi^-) e^{\alpha z}$$
(2-9)

其中 ϕ^{\pm} 為複數電壓 V_0^{\pm} 的相角。依照荷姆霍茲波動方程式中的無損介 質中的平面波的推導,可知波長為

$$\lambda = \frac{2\pi}{\beta}$$
相位速度為
(2-10)

$$v_p = \frac{\omega}{\beta} = \lambda f \tag{2-11}$$

無損傳輸線

對於有損的傳輸線,上述的公式都適用,其傳播常數與特性阻抗 均為複數。但是,在許多實際的情況,傳輸線的損耗性都很低,甚至 可以忽略不計。如此一來。上述的公式就可進一步簡化。令(2-5)中的 R=G=0,可得傳播常數

$$\gamma = \alpha + j\beta = j\omega\sqrt{LC} \tag{2-12a}$$

或
$$\beta = \omega \sqrt{LC}$$
 (2-12b)

$$\alpha = 0 \tag{2-12c}$$

- 8 -

正如我們所料,無損傳輸線的衰減常數為零。(2-7)中的特性阻抗可化 簡為

$$Z_0 = \sqrt{\frac{L}{C}} \tag{2-13}$$

為一實數。所以,無損傳輸線上的電壓波與電流波的數學式為

$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z}$$
(2-14a)

$$I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta z}$$
(2-14b)

波長為

$$\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{\omega\sqrt{LC}}$$
(2-15)
度為

相位速度為

$$v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$

(2-16)

2.1.2 有載的無損傳輸線

圖 2.2 所示為一無損傳輸線,其終端接到一個阻抗為 ZL 的負載。 用此圖可說明傳輸線上電波的反射,在散佈式電路系統中,反射波是 一種基本的特性。

niversity of

假設由 Z<O 處的波源所產生的入射波為V₀⁺e^{-jk}。已知行進波的電壓與 電流之比值為特性阻抗 Z₀,傳輸線的末端是一個任意的阻抗 Z_L≠Z₀。 在負載端,電壓與電流的比值必為 Z_L,所以,在傳輸線的負載端必 產生反射波,才能同時滿足這兩個條件。於是傳輸線上的總電壓可如 (2-14a)寫成入射波與反射波的電壓和:

$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z}$$
(2-17a)

同理,傳輸線上的總電流亦可如(2-14b):

$$I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta}$$

(2-17b)

在 z=0 處,負載上的總電壓與總電流的關係為

$$Z_{L} = \frac{V(0)}{I(0)} = \frac{V_{0}^{+} + V_{0}^{-}}{V_{0}^{+} - V_{0}^{-}} Z_{0}$$

將V0⁻解出可得

$$V_0^- = \frac{Z_L - Z_0}{Z_L + Z_0} V_0^+$$

反射電壓波振幅與入射電壓波振幅的比值,稱為反射係數 Γ :

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$
(2-18)

of

用同樣的方式,也可以定義出電流反射係數,但不難發現,電流 反射係數與電壓反射係數之間,僅差一個負號。因此,為避免混淆, 在此僅用電壓反射係數。傳輸線上的總電壓波與總電流波為

$$V(z) = V_0^+ [e^{-j\beta z} + \Gamma e^{j\beta z}]$$
(2-19a)

$$I(z) = \frac{V_0^+}{Z_0} [e^{-j\beta z} - \Gamma e^{j\beta z}]$$
(2-19b)

從上式可看出,電流波與電壓波均含入射波與反射波,這種波稱之為 駐波(Standing wave)。只有在 Γ=0 時,才沒有反射波。從(2-18)知, 唯有讓負載阻抗 Z_L等於特性阻抗 Z₀,才可得到 Γ=0,這種負載稱為 與傳輸線匹配的負載,或簡稱匹配負載。

在傳輸線上任意一點 z ,時平均功率流為

$$P_{av} = \frac{1}{2} \operatorname{Re}[V(z)I(z)^*] = \frac{1}{2} \frac{\left|V_0^+\right|^2}{Z_0} \operatorname{Re}\{1 - \Gamma^* e^{-2j\beta z} + \Gamma e^{2j\beta z} - \left|\Gamma\right|^2\}$$

上式用到了(2-19)。大括弧中間的兩項可用 A-A*=2jIm(A) 代入,結果 為一純虛數。所以上式又可化簡為

$$P_{av} = \frac{1}{2} \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} (1 - \left|\Gamma\right|^{2})$$

(2-20)

因此,傳輸線上任意一點的時平均功率流為常數,並且負載所接收到 的功率,就是入射功率(|V₀⁺|²/2Z₀)減去反射功率(|V₀|²|Γ|²/2Z₀)。若Γ=0, 負載可接收到極大的功率;反之若|Γ|=1,則負載就接收不到任何的功 率。在上面的討論中,假設信號源與傳輸線端是匹配的,因此,從負 載端反射回來的波,在信號源處不會再有反射。

當傳輸線的負載沒有完全匹配時,負載端無法接收到從信號源送出的全部功率。損失的部分稱為反射損失(Return Loss: RL),其定義(用

dB 表示)為

$$RL = -20\log|\Gamma|dB \tag{2-21}$$

故匹配負載(Γ=0)的反射損失為無限大 dB(沒有反射功率);反之,造成全反射(|Γ|=1)的負載,其反射損失為 0dB(所有的入射功率均被反射回去)。

若負載與傳輸線匹配,反射係數為零,線上電壓波的振幅大小 |V(z)|=|V₀⁺|為定值,不會隨著 Z 不同而改變其值。如果負載不匹配, 反射波加上入射波,會在傳輸線上形成駐波,線上的電壓波振幅大小 就不再是定值。由(2-19a)

(2-22)說明:沿著傳輸線看,電壓波的振幅會上下起伏。在 e^{j(θ-2βl)} =1 的位置,振幅為極大值:

$$V_{\max} = |V_0^+| (1+|\Gamma|)$$
(2-23a)

. .

$$V_{\min} = |V_0^+| (1 - |\Gamma|)$$
(2-23b)

當|Γ|值增加,V_{max}與V_{min}的比值也會增加。因此,有一個指標可用以 描述負載匹配的程度,稱為駐波比(SWR),定義為

$$SWR = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$
 (2-24)

此物理量又稱為電壓駐波比(Voltage Standing Wave Ration: VSWR)。 從(2-24)可看出,VSWR為一實數,並且 1≤VSWR≤∞,當 VSWR=1 時,表示負載完全匹配。

從 (2-22) 可看出,連續兩電壓極大(或極小)值的距離為 $\ell = 2\pi/2\beta = \pi\lambda/2\pi = \lambda/2$,且相鄰極大與極小值間的距離為 $\ell = \pi/2\beta = \lambda/4$,λ為電波在傳輸線上的波長。

在(2-18)中,反射係數的定義是:負載端的反射波對入射波電壓的比值。事實上,反射係數的觀念,可應用在傳輸線上任何一點。從(2-17a) 知,在z=-l,反射波與入射波的電壓比值為

$$\Gamma(\ell) = \frac{V_0^- e^{-j\beta\ell}}{V_0^+ e^{j\beta\ell}} = \Gamma(0)e^{-2j\beta\ell}$$

(2-25)

式中的 Γ(0)為 z=0 處的反射係數,請參考(2-18)。想要沿著傳輸線檢 視負載匹配的程度時,此式就很好用。

我們已經知道傳輸線上每一點的時平均功率流為固定值,但是在 負載未匹配的傳輸線上,電壓卻會上下起伏。因此,在傳輸線上任一 點看進去的輸入阻抗,也會隨位置改變。利用(2-19a,b)的 V(z)與 I(z), 在距離負載 \ell=-z處,往負載方向看進去的輸入阻抗為

$$Z_{in} = \frac{V(-\ell)}{I(-\ell)} = \frac{V_o^+ [e^{j\beta\ell} + \Gamma e^{-j\beta\ell}]}{V_o^+ [e^{j\beta\ell} - \Gamma e^{-j\beta\ell}]} Z_0 = \frac{1 + \Gamma e^{-2j\beta\ell}}{1 - \Gamma e^{-2j\beta\ell}} Z_0$$
(2-26)

將(2-18)的 Γ代入(2-26),可得到更有用的公式:

$$Z_{in} = Z_0 \frac{(Z_L + Z_0)e^{j\beta\ell} + (Z_L - Z_0)e^{-j\beta\ell}}{(Z_L + Z_0)e^{j\beta\ell} - (Z_L - Z_0)e^{-j\beta\ell}}$$
$$= Z_0 \frac{Z_L \cos\beta\ell + jZ_0 \sin\beta\ell}{Z_0 \cos\beta\ell + jZ_L \sin\beta\ell}$$
$$= Z_0 \frac{Z_L + jZ_0 \tan\beta\ell}{Z_0 + jZ_L \tan\beta\ell}$$
(2-27)

此式說明:末端接任意負載的一段傳輸線,其輸入阻抗的計算公式。 以下稱此式為『傳輸線的阻抗公式』,接著討論一些特殊的負載情形。

無損傳輸線與特殊負載

無損傳輸線所接的負載,會是一些特殊的負載,所以現在先討論 這些負載情形及其特性。

如圖 2.3 中負載端短路的傳輸線,Z_L=0,由(2-18)知其反射係數為 Γ=-1;又由(2-24)知其 VSWR 為無限大。所以從(2-19)可得線上的電 壓與電流為

$$V(z) = V_0^+ [e^{-j\beta z} - e^{j\beta z}] = -2jV_0^+ \sin\beta z$$
(2-28a)

$$I(z) = \frac{V_0^+}{Z_0} [e^{-j\beta z} + e^{j\beta z}] = \frac{2V_0^+}{Z_0} \cos\beta z$$
(2-28b)

很明顯,負載端的電壓 V=0(因為短路,電壓必為零),而其電流卻為 極大值。由(2-27)或直接由V(-ℓ)/I(-ℓ),得其輸入阻抗為

$$Z_{in} = jZ_0 \tan \beta \ell \tag{2-28c}$$

對任意的 ℓ 值,此輸入阻抗均為純虛數,其值可能由-j ∞ 變化到+j ∞ 。 例如,當 $\ell=0$, $Z_{in}=0$;若 $\ell=\lambda/4$,則 $Z_{in}=\infty$ (開路)。(2-28c)也同時指出,輸入阻抗為 ℓ 的週期函數,其週期為 $\lambda/2$ 。傳輸線上的電壓波、電流波,及輸入電抗隨 z 的變化如圖 2.4 所示。

(a)

(c) 圖 2.4 短路負載的傳輸線上 (a)電壓波 (b)電流波 (c)電抗(R_{in}=0 或∞)的變化

接著討論圖 2.5 中的開路負載,Z_L=∞。將(2-18)的分母與分子同 除 Z_L,並令 Z_L→∞,可證明其反射係數為 Γ=1,其 VSWR 值也是無 限大。由(2-19),線上的電壓與電流為

很明顯可看出,負載端的電流為零,電壓為極大,符合開路負載的條件,其輸入阻抗為

$$Z_{in} = -jZ_0 \cot \beta \ell \tag{2-29c}$$

對任意的ℓ值,Z_{in}值也是純虛數。線上的電壓波、電流波與輸入電抗 如圖 2.6 所示。

(a)

圖 2.6 開路負載傳輸線上 (a)電壓波 (b)電流波 (c)電抗(R_{in}=0 或∞)的變化 現在討論一些特殊長度的有載傳輸線。若ℓ=λ/2, 由(2-27)得

 $Z_{in} = Z_L \tag{2-30}$

也就是說,不論傳輸線的特性阻抗為何,半波長(或其整數倍)的傳輸線並不會轉換阻抗的值,或者說從距離負載半波長處看進去的輸入阻抗,就是負載的阻抗。

若傳輸線為四分之一波長,或為 $\ell = \lambda/4 + n\lambda/2, n = 1, 2, 3, \dots, in(2-27)$ 知,

其輸入阻抗為

$$Z_{in} = \frac{Z_0^2}{Z_L}$$
(2-31)

這種傳輸線段稱為四分之一波長阻抗轉換器,因為它具有逆轉負載阻抗的功能,並隨傳輸線的特性阻抗而變。

如圖 2.7 所示,特性阻抗為 Z₀的傳輸線,負載為另一條特性阻抗 為 Z₁ 的傳輸線,此負載傳輸線可以是無限長,或是末端接匹配負載 的有限長度傳輸線,線上沒有任何反射波。因此,由饋入線看到的阻 抗為 Z₁,反射係數 Γ 為

圖 2.7 在兩不同特性阻抗之傳輸線介面上的反射與穿透

並非全部的入射波都被反射回去,會有一部分穿過介面,進入第二條線,其電壓振幅由穿透係數T決定。

由(2-19a), z<0區的電壓數學式為

$$V(z) = V_0^+ (e^{-j\beta z} + \Gamma e^{j\beta z}) , \quad z < 0$$
(2-33a)

式中V₀⁺為饋入線上入射波的振幅。在 z>0 區,只有往+z 方向的波, 可寫為

$$V(z) = V_0^+ T e^{-j\beta z} , \quad z > 0$$
(2-33b)

利用 z=0 處電壓相等,可得穿透係數T:

$$T = 1 + \Gamma = 1 + \frac{Z_1 - Z_0}{Z_1 + Z_0} = \frac{2Z_1}{Z_1 + Z_0}$$
(2-34)

電路中任一兩點間的穿透係數,通常以 dB 表示,稱為介入損失(IL)

$$IL = -20\log|T|dB \tag{2-35}$$

2.1.3 四分之一波長阻抗轉換器

四分之一波長阻抗轉換器是一個很實用的阻抗匹配電路,因為其 結構簡單,很適合藉以進一步闡述阻抗不匹配的傳輸線上各種駐波的 性質。我們先從阻抗的觀點分析,再用匹配電路中的多重反射解釋其 結果。

阻抗的觀點

圖 2.8 為一個用到四分之一波長阻抗轉換器的電路,負載電阻為 R_L,饋入線的特性阻抗為 Z₀,令兩者均為已知的實數。在兩元件之 間的就是一段 λ/4 的無損傳輸線,其特性阻抗為 Z₁。我們希望利用該 λ/4 傳輸線,將負載匹配到 Z₀傳輸線,換句話說,也就是希望從 λ/4 傳輸線看進去時,可以得到 Γ=0。由(2-27),輸入阻抗可寫為

$$Z_{in} = Z_1 \frac{R_L + jZ_1 \tan \beta \ell}{Z_1 + jR_L \tan \beta \ell}$$
(2-36)

圖 2.8 四分之一波長阻抗轉換器

為了能在 $\beta \ell = (2\pi/\lambda)(\lambda/4) = \pi/2$ 時計算上式,先將分母與分子同除 $\tan \beta \ell$,並取 $\beta \ell \rightarrow \pi/2$ 的極限後,可得

$$Z_{in} = \frac{Z_1^2}{R_L} \tag{2-37}$$

為了要讓 $\Gamma=0$, Z_{in} 必須等於 Z_0 , 因此

$$Z_1 = \sqrt{Z_0 R_L}$$

(2-38)

Z1 為波源阻抗與負載阻抗的幾何平均數。雖然 λ/4 傳輸線上會有駐 波,但饋入線上卻沒有駐波。請注意:上述結果僅限於阻抗匹配線段 長度為 λ/4 或其奇數倍(2n+1)λ/4 時才成立。所以,完美的匹配僅限於 某頻率點(及其奇數倍頻);若頻率稍有偏離,就無法完全匹配。 2.1.4 有損傳輸線

實際上,任何的傳輸線都會因導體的有限導電性與介質的存在而 有損耗,但這些損耗都不大。在許多實際的問題中,這些損耗都可以 忽略不計;但是在某些情況下,考慮這些損耗卻是必須的,譬如傳輸 線的衰減常數與共振腔的 Q 值等。這一節將介紹損耗對傳輸線特性 的影響,並說明衰減常數的計算方法。

• 低損傳輸線

絕大部份的微波傳輸線都屬低損耗性(若非如此,該傳輸線就不具 實用價值)。當損耗很小,可用近似式簡化傳輸線的參數 γ=α+jβ 與 Z₀。 由(2-5)式,複傳播常數的數學式為

$$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$$

(2-39)

重新整理後,可得

程後,可得
$$\gamma = \sqrt{(j\omega L)(j\omega C) \left(1 + \frac{R}{j\omega L}\right) \left(1 + \frac{G}{j\omega C}\right)}$$

$$= j\omega\sqrt{LC}\sqrt{1-j\left(\frac{R}{\omega L}+\frac{G}{\omega C}\right)-\frac{RG}{\omega^{2}LC}}$$
(2-40)

假如傳輸線的損耗性很低,可假設*R* << ω²*LC* 且*G* << ω*C*,也就是說導 體與介質的損耗都很低。顯然*RG* << ω²*LG*,所以(2-40)可簡化為

$$\gamma = j\omega\sqrt{LC}\sqrt{1 - j\left(\frac{R}{\omega L} + \frac{G}{\omega C}\right)}$$
(2-41)

假如忽略上式中的(R/ωL+G/ωC),则γ為純虛數(無損耗)。因此,採 用泰勒展開式的前兩項,以得到近似γ的實數項:

$$\gamma \stackrel{\sim}{=} j\omega\sqrt{LC} \Biggl[1 - \frac{j}{2} \Biggl(\frac{R}{\omega L} + \frac{G}{\omega C} \Biggr) \Biggr]$$

所以,

$$\alpha = \frac{1}{2} \left(R \sqrt{\frac{C}{L}} + G \sqrt{\frac{L}{C}} \right) = \frac{1}{2} \left(\frac{R}{Z_0} + G Z_0 \right)$$
(2-42a)

$$\beta \tilde{=} \omega \sqrt{LC} \tag{2-42b}$$

其中Z₀ = √L/C 為傳輸線無損耗時的特性阻抗。請注意:(2-42b)的 β 與無損耗的(2-12)完全相同。用同樣的近似方法,可得低損傳輸線的 近似特性阻抗也是實數:

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \cong \sqrt{\frac{L}{C}}$$
(2-43)

(2-42)~(2-43)就是傳輸線在高頻、低損時的近似公式。這些公式很重要,因為低損傳輸線的傳播常數及特性阻抗,與無損傳輸線的情形相當接近。

• 無失真傳輸線

從(2-39)與(2-40)可看出,有損傳輸線的傳播常數中,相位常數 β 通常是複雜的頻率函數,尤其是如(2-42b),除非傳輸線不具損耗性, 否則 β 不會剛好是頻率的線性函數。如果 β 不是頻率的線性函數(如 $\beta=\alpha\omega$),則相位速度 $v_p=\omega/\beta$ 會隨頻率改變而不同,其結果是寬頻信號 中的各頻率成分,會以不同的相位速度行進,到達傳輸線末端接收電 路的時間也先後有別,這就造成所謂的頻散,屬於信號失真的一種, 這種情況當然盡量避免。還好,通常β偏離線性函數的程度都不會太 大。但是如果傳輸線很長,則頻散的效應會很明顯。

特別值得一提的是,有一種特殊的有損傳輸線,其相位常數為頻率的線性函數,這種線稱為無失真傳輸線,其傳輸線參數彼此間的關係如下:

 $\frac{R}{L} = \frac{G}{C}$

(2-44)

依照此式的條件, (2-40)的複傳播常數可化簡為

$$\gamma = j\omega\sqrt{LC}\sqrt{1-2j\frac{R}{\omega L} - \frac{R^2}{\omega^2 L^2}}$$
$$= j\omega\sqrt{LC}\left(1-j\frac{R}{\omega L}\right)$$
$$= R\sqrt{\frac{C}{L}} + j\omega\sqrt{LC} = \alpha + j\beta$$

(2-45)

此式證明β=ω√LC為頻率的線性函數。(2-45)亦說明衰減常數 α=R√C/L也與頻率無關。所以,所有頻率成分的衰減量均相同(事實 上,R會與頻率有一點點關係)。因此,無失真傳輸線並非無損,但 卻可以使高速脈波或調變包絡信號完全沒有失真的通過。設計無失真 傳輸線時,通常需要增加L,做法是在傳輸線上加週期性的串聯電感。 2.2 微帶傳輸線

微帶傳輸線又簡稱微帶線(Microstrip Line)是最廣泛使用的平面傳 輸線之一,主要的原因是微帶線可用 PCB 照相蝕刻法製造,也非常 容易與其他的主動或被動微波電路連接且積體化。其幾何結構如圖 2.9(a)所示,寬度為 W 的金屬線在厚度為 d,介質常數為 Er 的接地介 質板上;電磁力線的分佈如圖 2.9(b)所示。

如果沒有介質板(ϵ_r =1),可用映像定理,將接地面移除,並於其下 方取微帶線的映像,整個結構成為一個雙導體傳輸線,其導體為金屬 薄片,寬為W,線距離為2d。顯然此線為TEM傳輸線, v_p =c, β =k₀。 兩導體之間的介質與上方的空氣區(y>d)構成非均勻介質,使微帶 線的波導性質及分析變得很複雜。在夾心帶線中,所有的電磁場都在 均勻的介質中;而微帶線則是絕大部分的電磁力線集中在微帶金屬與 接地面之間的介質區,一小部分的電磁力線在上方的空氣區。因為 TEM 波在介質區的相位速度為 $c/\sqrt{\epsilon_r}$,在空氣區則為 c;所以只要 $\epsilon_r>1,兩者就不相同,在介質介面上,兩區電磁場的相位就無法完全$ 匹配,所以純 TEM 波不能存在於微帶線中。

實際上,存在於微帶線的是一種 TM-TE 的混合波。絕大部分的微帶線中,介質基板的電氣厚度都很小(d<<λ),所以電磁場分佈很接近 TEM 波,稱為準 TEM 波。換句話說,電磁力線的分佈很接近靜電場。 因此,若用靜電或準靜電的分析微帶線,應該也可以得到很好的相位 速度、傳播常數及特性阻抗近似值。此時相位速度與傳播常數可表示

為

(2-52)

 $\beta = k_0 \sqrt{\in_e}$

 $v_p = \frac{c}{\sqrt{\epsilon}}$

(2-53)

其中 ∈_e稱為微帶線的等效介質常數。由於一部分的場力線在介質中, 一部分在空氣中,所以等效介質常數會介於1與 ε_r之間

 $1 < \in_e < \in_r$

其中∈。的大小與基板介質厚度 d、導體寬度 W 有關。

• 等效介質常數、特性阻抗、衰減常數的近似公式

微带線的等效介質常數可近似為

$$\in_{e} = \frac{\in_{r} + 1}{2} + \frac{\in_{r} - 1}{2} \frac{1}{\sqrt{1 + 12d/W}}$$
(2-54)

等效介質常數的意義是:微帶線的介質區與空氣區可以用一常數為 ε_e 的均勻介質取代,如圖 2.10 所示。得到 ε_e 之值後,相位速度及傳播常

圖 2.10 微帶線中準 TEM 波的等效幾何圖,以常數 Ee 的等效均勻介質,取代空 氣區及厚度 d,常數 Er 為的介質板

若已知微帶線的結構尺寸,特性阻抗可由以下公式近似:

$$Z_{0} = \begin{cases} \frac{60}{\sqrt{\epsilon_{e}}} \ln\left(\frac{8d}{W} + \frac{W}{4d}\right) \\ \frac{120\pi}{\sqrt{\epsilon_{e}}[W/d + 1.393 + 0.667 \ln(W/d + 1.444)]} & W/d \le 1 \\ W/d \ge 1 (2-55) \end{cases}$$

若給定特性阻抗 Z₀ 及介質常數 ε_r, W/d 值可由下式近似式求出

$$\frac{W}{d} = \begin{cases} \frac{8e^{A}}{e^{2A} - 2} \\ \frac{2}{\pi} \left[B - 1 - \ln(2B - 1) + \frac{\epsilon_{r} - 1}{2\epsilon_{r}} \left\{ \ln(B - 1) + 0.39 - \frac{0.61}{\epsilon_{r}} \right\} \right] \frac{W}{d} < 2 \\ W/d > 2 \end{cases}$$

$$A = \frac{Z_{0}}{60} \sqrt{\frac{\epsilon_{r} + 1}{2}} + \frac{\epsilon_{r} - 1}{\epsilon_{r} + 1} \left(0.23 + \frac{0.11}{\epsilon_{r}} \right)$$

$$(2-56)$$

其中

$$B = \frac{377\pi}{2Z_0\sqrt{\epsilon_r}}$$

將微帶線視為準 TEM 線時,介質損耗的衰減常數可由下式計算:

$$\alpha_d = \frac{k_0 \in_r (\in_e -1) \tan \delta}{2\sqrt{\in_e} (\in_r -1)} np / m$$
(2-57)

其中 $\tan \delta$ 為介質的損耗正切值,此式是由 $\alpha_d = \frac{k \tan \delta}{2} np/m$ (TEM 波)乘

上以下的『充填比例』而得:

$$\frac{\epsilon_r (\epsilon_e - 1)}{\epsilon_e (\epsilon_r - 1)} \tag{2-58}$$

乘上此修正項的目的,是因為有部份的場在(無損的)空氣中,部份在 (有損的)介質中。導體損耗的衰減常數可由下式近似:

$$\alpha_c = \frac{R_s}{Z_0 W} n p / m \tag{2-59}$$

其中 $R_s = \sqrt{\omega\mu_0/2\sigma}$ 為金屬的表面電阻,除了一些半導體材質的基板 外,絕大部分微帶線的導體損耗會比介質損耗高出許多。

2.3 耦合線

如圖 2.11 所示的平行耦合線段,其端埠電壓與電流如圖定義。可 利用圖 2.12 奇偶模分析結果的疊加[18,19],推導出此四端埠網路的開 路阻抗矩陣。

圖 2.11 耦合線段的相關電流與電壓定義-平行耦合線段端埠電壓與電流的定義

圖 2.12 耦合線段的相關電流與電壓定義-平行耦合線段的奇、偶模電流

在圖 2.12 中, i1 與 i3 兩電流源使該線操作於偶模中, 而 i2 與 i4 兩電流源使該線操作於奇模。由重疊原理, 端埠的總電流 Ii 可用偶模與奇模 電路表示如下:

$$I_{1} = i_{1} + i_{2}$$

$$I_{2} = i_{1} - i_{2}$$

$$I_{3} = i_{3} - i_{4}$$

$$I_{4} = i_{3} + i_{4}$$
(2-60a)
(2-60b)
(2-60c)
(2-60d)

先考慮輸入為 i₁ 的偶模,如果其他端埠均為開路,端埠1或2所 看到的阻抗為

$$Z_{in}^{e} = -jZ_{0e} \cot\beta\ell \tag{2-61}$$

導體上的電壓數學式為

$$v_{a}^{1}(z) = v_{b}^{1}(z) = V_{e}^{+} \left[e^{-j\beta(z-\ell)} + e^{j\beta(z-\ell)} \right]$$

= $2V_{e}^{+} \cos \beta(\ell - z)$ (2-62)
因此,端埠1或2上的電壓為

$$v_a^1(0) = v_b^1(0) = 2V_e^+ \cos \beta \ell = i_1 Z_{in}^e$$

上式與式(2-61)合併後,可將式(2-62)以 i1表示為

$$v_a^1(z) = v_b^1(z) = -jZ_{0e} \frac{\cos\beta(\ell - z)}{\sin\beta\ell} i_1$$
(2-63)

同理,以i3電流源所推的傳輸線偶模,其電壓為

$$v_a^3(z) = v_b^3(z) = -jZ_{0e} \frac{\cos\beta z}{\sin\beta\ell} i_3$$
(2-64)

75

50g

在考慮輸入為 i2 的奇模,如果其他端埠均為開路,端埠1或2所看到的阻抗為

$$Z_{in}^{o} = -jZ_{0o} \cot \beta \ell \tag{2-65}$$

導體上的電壓為

$$v_{a}^{2}(z) = -v_{b}^{2}(z) = V_{o}^{+} \left[e^{-j\beta(z-\ell)} + e^{j\beta(z-\ell)} \right]$$

= $2V_{o}^{+} \cos \beta(\ell-z)$ (2-66)

端埠1或2的電壓為

$$v_a^2(0) = -v_b^2(0) = 2V_o^+ \cos\beta\ell = i_2 Z_{in}^o$$

上式與式(2-65)合併後,可將式(2-66)以 i2表示為

$$v_a^2(z) = -v_b^2(z) = -jZ_{0o} \frac{\cos\beta(\ell - z)}{\sin\beta\ell} i_2$$
(2-67)

同理,以i4所推的傳輸線奇模電壓為

$$v_a^4(z) = -v_b^4(z) = -jZ_{0o} \frac{\cos\beta z}{\sin\beta \ell} i_4$$
(2-68)

所以,端埠1的總電壓為

$$V_{1} = v_{a}^{1}(0) + v_{a}^{2}(0) + v_{a}^{3}(0) + v_{a}^{4}(0)$$

= $-j(Z_{0e}i_{1} + Z_{0o}i_{2})\cot\theta - j(Z_{0e}i_{3} + Z_{0o}i_{4})\csc\theta$ (2-69)

使用式(2-63)、(2-64)、(2-67)與(2-68), 且θ=βℓ。接著,將式(2-60) 中的 i_i解出,並以 I 表示:

$$i_{1} = \frac{1}{2}(I_{1} + I_{2})$$
(2-70a)
$$i_{2} = \frac{1}{2}(I_{1} - I_{2})$$
(2-70b)
$$i_{3} = \frac{1}{2}(I_{3} + I_{4})$$
(2-70c)
$$i_{4} = \frac{1}{2}(I_{4} - I_{3})$$
(2-70d)

將式(2-70)代入(2-69)後,可得

$$V_{1} = \frac{-j}{2} (Z_{0e}I_{1} + Z_{0e}I_{2} + Z_{0o}I_{1} - Z_{0o}I_{2}) \cot\theta$$

$$\frac{-j}{2} (Z_{0e}I_{3} + Z_{0e}I_{4} + Z_{0e}I_{4} - Z_{0o}I_{3}) \csc\theta$$
(2-71)

上式(2-71)已明顯列出耦合線段開路阻抗矩陣[Z]第一行中的所有元素。根據結構的對稱性,只要知道該矩陣的第一行,就可以知道其他的所有元素,各元素的數學式如下:

$$Z_{11} = Z_{22} = Z_{33} = Z_{44} = -\frac{j}{2}(Z_{oe} + Z_{oo})\cot\theta$$
(2-72a)

$$Z_{12} = Z_{21} = Z_{34} = Z_{43} = -\frac{j}{2}(Z_{oe} - Z_{oo})\cot\theta$$
 (2-72b)

$$Z_{13} = Z_{31} = Z_{24} = Z_{42} = -\frac{j}{2} (Z_{oe} - Z_{oo}) \csc \theta$$
 (2-72c)

$$Z_{14} = Z_{41} = Z_{23} = Z_{32} = -\frac{j}{2} (Z_{oe} + Z_{oo}) \csc \theta$$
 (2-72d)

2.3.1 串接耦合線(C section)

如圖 2.13 所示,為一串接耦合線(C section)結構,其奇、偶模特 性阻抗為 Z_{oo}、Z_{oe},電氣長度為 θ,由右下至右上依序設定端埠為 1、 2、3 及 4,並將端埠 3 及 4 連接。首先將四埠矩陣列出,如式(2-73) 所示

$$\begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} & Z_{13} & Z_{14} \\ Z_{21} & Z_{22} & Z_{23} & Z_{24} \\ Z_{31} & Z_{32} & Z_{33} & Z_{34} \\ Z_{41} & Z_{42} & Z_{43} & Z_{44} \end{bmatrix} \begin{bmatrix} I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \end{bmatrix}$$
(2-73)

接著將式(2-73)矩陣展開可得到下列4式

$$V_{1} = Z_{11}I_{1} + Z_{12}I_{2} + Z_{13}I_{3} + Z_{14}I_{4}$$

$$V_{2} = Z_{21}I_{1} + Z_{22}I_{2} + Z_{23}I_{3} + Z_{24}I_{4}$$

$$V_{3} = Z_{31}I_{1} + Z_{32}I_{2} + Z_{33}I_{3} + Z_{34}I_{4}$$

$$V_{4} = Z_{41}I_{1} + Z_{42}I_{2} + Z_{43}I_{3} + Z_{44}I_{4}$$

由圖 2.14 可知,當埠 3 及 4 連接時,邊界條件為 V₃=V₄, I₃=-I₄,將 其代入上列 4 式,經整理後可得式(2-74)

$$V_{1} = Z_{11}I_{1} + Z_{12}I_{2} + (Z_{13} - Z_{14})I_{3} = Z_{11}I_{1} + Z_{12}I_{2} + jI_{3}Z_{oo}\csc\theta \quad (2-74a)$$

$$V_{2} = Z_{21}I_{1} + Z_{22}I_{2} + (Z_{23} - Z_{24})I_{3} = Z_{21}I_{1} + Z_{22}I_{2} - jI_{3}Z_{oo}\csc\theta \quad (2-74b)$$

$$V_{3} = Z_{31}I_{1} + Z_{32}I_{2} + (Z_{33} - Z_{34})I_{3} \quad (2-74c)$$

$$V_{4} = Z_{41}I_{1} + Z_{42}I_{2} + (Z_{43} - Z_{44})I_{3} \quad (2-74d)$$

當
$$V_3 = V_4$$
時,公式可表示為
 $Z_{31}I_1 + Z_{32}I_2 + (Z_{33} - Z_{34})I_3 = Z_{41}I_1 + Z_{42}I_2 + (Z_{43} - Z_{44})I_3$

並將公式(2-72)代入上式後,可整理成

$$I_{3} = \frac{-jI_{1}Z_{oo}\csc\theta + jI_{2}Z_{oo}\csc\theta}{-2jZ_{oo}\cot\theta}$$

將公式(2-72)及 I3代回式(2-74a)及式(2-74b),整理後可得下列兩式

$$V_1 = -\frac{j}{2} (Z_{oe} \cot \theta - Z_{oo} \tan \theta) I_1 - \frac{j}{2} (Z_{oe} \cot \theta + Z_{oo} \tan \theta) I_2 \qquad (2-75)$$

$$V_2 = -\frac{j}{2}(Z_{oe}\cot\theta + Z_{oo}\tan\theta)I_1 - \frac{j}{2}(Z_{oe}\cot\theta - Z_{oo}\tan\theta)I_2 \qquad (2-76)$$

式(2-75)及(2-76)雨式合併成式(2-77)

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z'_{11} & Z'_{12} \\ Z'_{21} & Z'_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$
(2-77)

即可將此串接耦合線(C section)之[Z]矩陣推導得到,如下式所示

$$\begin{bmatrix} Z_{11}' & Z_{12}' \\ Z_{21}' & Z_{22}' \end{bmatrix} = \begin{bmatrix} -\frac{j}{2}(Z_{oe}\cot\theta - Z_{oo}\tan\theta) & -\frac{j}{2}(Z_{oe}\cot\theta + Z_{oo}\tan\theta) \\ -\frac{j}{2}(Z_{oe}\cot\theta + Z_{oo}\tan\theta) & -\frac{j}{2}(Z_{oe}\cot\theta - Z_{oo}\tan\theta) \end{bmatrix}$$

接著將[Z]矩陣轉成傳輸矩陣(ABCD)後即可得

× 3

$$A = \frac{Z'_{11}}{Z'_{21}} = \frac{Z_{oe} \cot \theta - Z_{oo} \tan \theta}{Z_{oe} \cot \theta + Z_{oo} \tan \theta}$$

$$A = \frac{Z'_{11}}{Z'_{21}} = \frac{Z_{oe} \cot \theta - Z_{oo} \tan \theta}{Z_{oe} \cot \theta + Z_{oo} \tan \theta}$$
$$B = \frac{Z'_{11}Z'_{22} - Z'_{21}Z'_{12}}{Z'_{21}} = \frac{2jZ_{oo}Z_{oe}}{Z_{oe} \cot \theta + Z_{oo} \tan \theta}$$

$$C = \frac{1}{Z'_{21}} = \frac{2j}{Z_{oe} \cot \theta + Z_{oo} \tan \theta}$$

$$D = \frac{Z'_{22}}{Z'_{21}} = \frac{Z_{oe} \cot \theta - Z_{oo} \tan \theta}{Z_{oe} \cot \theta + Z_{oo} \tan \theta}$$

第三章 應用於雙頻段之耦合線結構

圖 3.1(a)為一段傳輸線任意分為三部份,其中 Z₁為特性阻抗,θ₁、 θ₂和 θ₃分別為這三部份之電氣長度。將圖 3.1(a)之中間的傳輸線以一 段耦合線取代如圖 3.1(b)所示,其中 Z₀₀、Z_{0e}代表耦合線的奇模及偶 模特性阻抗,θ為耦合線之電氣長度。 由傳輸線理論[17]及耦合線阻 抗矩陣[18,19]可推導得出特性阻抗為 Z₁、電氣長度為 θ₁之傳輸線與 一段耦合線之傳輸(ABCD)矩陣如式(3-1)、(3-2)所示:

(b)將中間的傳輸線替換為串接耦合線 圖 3.1 串接耦合線等效一段傳輸線

$$\begin{bmatrix} \cos \theta_{1} & jZ_{1} \sin \theta_{1} \\ jY_{1} \sin \theta_{1} & \cos \theta_{1} \end{bmatrix}$$

$$\begin{bmatrix} Z_{oe} \cot \theta - Z_{oo} \tan \theta \\ Z_{oe} \cot \theta + Z_{oo} \tan \theta \\ \frac{2j}{Z_{oe} \cot \theta + Z_{oo}} \tan \theta \\ \frac{Z_{oe} \cot \theta + Z_{oo} \tan \theta}{Z_{oe} \cot \theta - Z_{oo} \tan \theta} \end{bmatrix}$$

$$(3-1)$$

$$(3-2)$$

式(3-2)中之 Z_{00} 、 Z_{0e} 代表耦合線的奇模及偶模特性阻抗, θ 為耦合線

之電氣長度。觀察公式(3-1)和(3-2)矩陣的關係,得知等效電路須滿足式(3-3)、(3-4)及(3-5)三個等式

$$\cos\theta_1 = (Z_{oe} \cot\theta - Z_{oo} \tan\theta) / (Z_{oe} \cot\theta + Z_{oo} \tan\theta)$$
(3-3)

$$Z_{1}\sin\theta_{1} = 2Z_{oo}Z_{oe}/(Z_{oe}\cot\theta + Z_{oo}\tan\theta)$$
(3-4)

$$Y_1 \sin \theta_1 = 2/(Z_{oe} \cot \theta + Z_{oo} \tan \theta)$$
(3-5)

由式(3-3)、(3-4)及(3-5)可得下列三式

$$Z_{1} = \sqrt{Z_{oo}Z_{oe}}$$
(3-6)

$$\theta = \tan^{-1} \left(Z_{1} \tan\left(\frac{\theta_{1}}{2}\right) / Z_{oo} \right)$$
(3-7)

$$\theta = \tan^{-1} \left(Z_{oe} \tan\left(\frac{\theta_{1}}{2}\right) / Z_{1} \right)$$
(3-8)

若給定傳輸線特性阻抗 Z_1 、電氣長度 θ_1 和耦合線的奇模或偶模特 性阻抗 Z_{00} 、 Z_{0e} 其中一項皆可求出串接耦合線之電氣長度 θ ,接著將 耦合線及兩段傳輸線串接與整段傳輸線進行等效,將圖 3.1(a)整段傳 輸線電氣長度設為 $\theta_T(\theta_1 + \theta_2 + \theta_3 = \theta_T)$,其圖 3.1(a)、(b)之傳輸(ABCD) 矩陣如式(3-9)、(3-10)所示。

$$\begin{bmatrix} \cos \theta_T & j Z_1 \sin \theta_T \\ j Y_1 \sin \theta_T & \cos \theta_T \end{bmatrix}$$
(3-9)

$$\begin{bmatrix} \cos\theta_2 & jZ_1\sin\theta_2 \\ jY_1\sin\theta_2 & \cos\theta_2 \end{bmatrix} \begin{bmatrix} \frac{Z_{oe}\cot\theta - Z_{oo}\tan\theta}{Z_{oe}\cot\theta + Z_{oo}\tan\theta} & \frac{2jZ_{oo}Z_{oe}}{Z_{oe}\cot\theta + Z_{oo}\tan\theta} \\ \frac{2j}{Z_{oe}\cot\theta + Z_{oo}\tan\theta} & \frac{Z_{oe}\cot\theta - Z_{oo}\tan\theta}{Z_{oe}\cot\theta + Z_{oo}\tan\theta} \end{bmatrix} \begin{bmatrix} \cos\theta_3 & jZ_1\sin\theta_3 \\ jY_1\sin\theta_3 & \cos\theta_3 \end{bmatrix}$$
(3-10)

為方便計算令 θ₂=θ₃,並將 θ₂=θ₃與式(3-6)條件帶入式(3-10)矩陣,再 經過計算得到傳輸(ABCD)矩陣表示如下

$$\begin{bmatrix} \frac{(Z_{oe} - Z_{oo} \tan^2 \theta) \cos(2\theta_2) - 2 \tan \theta(Z_1 \sin(2\theta_2))}{Z_{oe} + Z_{oo} \tan^2 \theta} \frac{j((Z_{oe} - Z_{oo} \tan^2 \theta)Z_1 \sin(2\theta_2) + 2 \tan \theta Z_1^2 \cos(2\theta_2))}{Z_{oe} + Z_{oo} \tan^2 \theta} \\ \frac{j((Z_{oe} - Z_{oo} \tan^2 \theta)Y_1 \sin(2\theta_2) + 2 \tan \theta \cos(2\theta_2))}{Z_{oe} + Z_{oo} \tan^2 \theta} \frac{(Z_{oe} - Z_{oo} \tan^2 \theta) \cos(2\theta_2) - 2 \tan \theta(Z_1 \sin(2\theta_2))}{Z_{oe} + Z_{oo} \tan^2 \theta} \end{bmatrix}$$

$$(3-11)$$

若式(3-9)與(3-11)之傳輸(ABCD)矩陣相等,可以得到式(3-12)

$$\cos \theta_T = \frac{\left(Z_{oe} - Z_{oo} \tan^2 \theta\right) \cos(2\theta_2) - 2 \tan \theta (Z_1 \sin(2\theta_2))}{Z_{oe} + Z_{oo} \tan^2 \theta}$$
(3-12)

為求出第二頻段頻率點,帶入電氣長度與頻率關係式[17],令串接耦 合線之電氣長度 $\theta=\beta\ell=nf/f_0$ 、傳輸線電氣長度為 $\theta_2=\theta_3=\beta\ell_2=mf/f_0$,帶 入式(3-12)後可得式(3-13)。其中 β 為傳播常數($\beta=2\pi/\lambda,\lambda$)、為波長), ℓ 與 ℓ_2 為c串接耦合線與傳輸線實際長度, f_0 為第一頻段之頻率點,n、 m為比率值。

$$\cos \theta_{T} = \frac{\left(Z_{oe} - Z_{oo} \tan^{2}\left(\frac{nf}{f_{0}}\right)\right) \cos\left(2\frac{mf}{f_{0}}\right) - 2\tan\left(\frac{nf}{f_{0}}\right) \left(Z_{1} \sin\left(\frac{2mf}{f_{0}}\right)\right)}{Z_{oe} + Z_{oo} \tan^{2}\left(\frac{nf}{f_{0}}\right)}$$
(3-13)

由傳輸線理論[17]可知,當傳輸線電氣長度等於四分之一波長 (θ_T=90°)時,第一和奇次諧波頻率點信號會無損耗通過。本文利用耦 合線及串接兩段傳輸線代替此段傳輸線,因此滿足式(3-14)之頻率點 f 信號也會無損耗的通過。由式(3-14)可知,若給定耦合線的奇模與偶 模特性阻抗 Z_{oo}、Z_{oe},第一頻段頻率點 f₀, n、m 值,經計算後可得第 二頻段頻率點 f。

$$\left(Z_{oe} - Z_{oo} \tan^{2}\left(\frac{nf}{f_{0}}\right)\right) \cos\left(\frac{2mf}{f_{0}}\right) - 2\tan\left(\frac{nf}{f_{0}}\right) \left(Z_{1} \sin\left(\frac{2mf}{f_{0}}\right)\right) = 0$$
(3-14)

圖 3.2(a)、(b)、(c)及(d)分別為特性阻抗 Z₁=70.7Ω、50Ω、35.35Ω 和 25Ω 的第一頻段與第二頻段的比率與耦合長度的關係圖。觀察這 四個圖,可知當奇模及偶模特性阻抗 Z₀₀、Z_{0e}愈接近,則第二頻段頻 率點會往原本三倍頻移動,若串接耦合線電氣長度θ愈大,則第二頻 段頻率點會往反方向移動,而不同的特性阻抗可移動的頻段比率也將 不同。

運用這四張圖只要先決定欲設計的第二頻段,並計算出第二頻率點與

第一頻率點比率,接著選擇適當的奇模與偶模特性阻抗 Z_{oo}、Z_{oe},對 應至 Y 軸的耦合線長度θ,進行電路製作即可達到所需要雙頻的效果。

圖 3.2 第二頻段與第一頻段的比率與耦合長度關係圖

依上述設計方法應用於鼠圈式(Rat-race)功率分配器、分枝線 (Branch-line)耦合器、柴比雪夫響應(Chebyshev response)三階帶通濾 波器、並接傳輸線-帶通濾波器與並接傳輸線-帶拒濾波器,以達到調 整第二頻段中心頻率之效果,形成雙頻應用的目標。

1:1

3.1 鼠圈式(Rat-Race)功率分配器

傳統鼠圈式(Rat-race)功率分配器 [20],其基本結構為三段電氣長 度 90°和一段電氣長度 270°的傳輸線組合而成,若設計輸出為半功率 則特性阻抗皆為 70.7 Ω 。依本方法,設定第一頻段中心頻率 f₀ 為 0.915GHz,首先隨意給定適當的奇模特性阻抗 Z₀₀和傳輸線電氣長度 θ_1 ,帶入式(3-6)、(3-7)和(3-14)計算出其他數值和第二頻段頻率點 f, 觀察此頻率點與所需頻率位置,逐步改變耦合線段長度,使第二頻段 頻率點移至設定的頻率點上。例如:給定奇模特性阻抗 Z₀₀=44.37 Ω 、 傳輸線電氣長度 θ_1 =35°,由 θ_1 =35°可求出 θ_2 =27.5°。將奇模特性阻抗 Z₀₀帶入式(3-6)可求出偶模特性阻抗Z_{0e}=112.65 Ω ,再將奇模特性阻抗 Z₀₀帶口式(3-7)或將偶模特性阻抗Z_{0e}帶回式(3-8),求出串接耦合線電 氟長度 θ =26.67°。將這些數值帶入式(3-14),經計算後可得式(3-15), 可解出頻率 f 為 0.915 和 2.444GHz。

$$44.37\tan^2(29.14f) + 141.4\tan(29.14f)\tan(60.1f) - 112.65 = 0$$
(3-15)

電路實作使用 FR-4 雙面板進行,基板厚度為 1.6mm,相對介電 常數為 4.3。以電磁模擬軟體(IE3D)內含之 Line Gauge,進行微帶線 結構尺寸計算,可得 L1=5mm、L2=11.835mm、L3=16mm、 L4=19.4mm、L5=13.74mm、W1=3.1mm、W2=2.54mm、W3=1.64mm、 g=0.2mm,輸入與輸出埠之特性阻抗為 50 歐姆,線寬為 W1=3.1mm, 任意給定長度 L1=5mm 以方便製作。電路結構如圖 3.3,實際電路如 圖 3.4 所示,電路尺寸為 4.803cm×4.462cm,並以向量網路分析儀 Anritsu-37269D 進行量測。

圖 3.3 使用串接耦合線替代一段傳輸線之 Rat-race 電路結構圖

圖 3.4 使用串接耦合線替代一段傳輸線之 Rat-race 電路實體圖 (4.803cm×4.462cm)

圖 3.5 和 3.6 分別為電路之散射參數[S₁₁]、[S₂₁]與[S₃₁]、[S₄₁]模擬與 實際量測結果,實線為實測值、虛線上有標誌的為 Microwave Office 模擬傳統鼠圈式(Rat-race)功率分配器的模擬值。由圖 3.5 和 3.6 可觀 察出傳統的結構第一和第二頻段中心頻率分別在 0.915 和 2.75GHz, 而本結構中心頻率分別在 0.915 和 2.45GHz,不過在實測上頻率偏高 至 2.55GHz。圖 3.5 顯示傳統鼠圈式功率分配器的[S₂₁]在第一和第二 頻段中心頻率 0.915 和 2.75GHz 模擬值皆為-3.01dB,本結構在第一和 第二頻段中心頻率 0.915 和 2.45GHz 實測值為-3.32dB 和-4.36dB。圖 3.6 則顯示傳統鼠圈式功率分配器的[S₃₁]在第一和第二頻段中心頻率 0.915 和 2.75GHz 模擬值皆為-3.01dB,本結構在第一和

圖 3.6 使用串接耦合線替代一段傳輸線之 Rat-race |S31|與|S41|模擬與量測圖

圖 3.7 為電路之相位圖。本結構第一和第二頻段中心頻率為 0.915 和 2.45GHz,實際量測結果 $\angle S_{21}$ 和 $\angle S_{31}$ 的相位分別為 107.42°、 108.86°和 58.7°、53.01°,相位差為 1.44°和 5.69°。而傳統功率分配器 在第一和第二頻段中心頻率 0.915GHz 和 2.75GHz,模擬結果 $\angle S_{21}$ 和 $\angle S_{31}$ 相位皆為 90°,相位差為 0°。

圖 3.7 使用串接耦合線替代一段傳輸線之 Rat-race $\angle S_{21}$ 與 $\angle S_{31}$ 模擬與量測圖

3.2分枝線(Branch-line)耦合器

傳統二階分枝線(Branch-line)耦合器 [20],基本結構為四段電氣 長度為 90°傳輸線連接而成,若設計輸出為半功率則特性阻抗分別為 50Ω 、 35.35Ω 、 50Ω 和 35.35Ω 。依本方法,設定第一頻段中心頻率 fa 為 0.915GHz, 首先隨意給定適當的奇模特性阻抗 Zoo 和傳輸線電氣長 度 θ₁, 帶入式(3-6)、(3-7)和(3-14)計算出其他數值和第二頻段頻率點 f, 觀察此頻率點與所需頻率點位置, 逐步改變耦合線段長度, 使第 二頻段頻率點移至設定的頻率點上。當特性阻抗為 50Ω 時給定奇模 特性阻抗 $Z_{00}=37.83\Omega$ 、傳輸線電氣長度 $\theta_1=35^\circ$,由 $\theta_1=35^\circ$ 可知 θ2=27.5°。將奇模特性阻抗 Zoo 帶入式(3-6)可求出偶模特性阻抗 $Z_{oe}=66.07\Omega$,在將奇模特性阻抗 Z_{oo} 帶回式(3-7)或將偶模特性阻抗 Z_{oe} 带回式(3-8),求出串接耦合線電氣長度 0=22.62°;當特性阻抗為 35.35 Ω 時,給定奇模特性阻抗 Z₀₀=26.6 Ω 、傳輸線電氣長度 θ_1 =35°, 由 $\theta_1=35$ °可知 $\theta_2=27.5$ °。將奇模特性阻抗 Z₀₀ 帶入式(3-6)可求出偶模 特性阻抗 Z_{oe} =46.97 Ω ,再將奇模特性阻抗 Z_{oo} 帶回式(3-7)或將偶模特 性阻抗 Z_{oe} 帶回式(3-8),求出串接耦合線電氣長度 $\theta=22.73^{\circ}$ 。將上述 特性阻抗為 50 和 35.35 Ω 計算出的數值帶入式(3-14),經計算後可得 式(3-16)、(3-17),解出頻率f為0.915和2.588、2.585GHz。

 $37.83 \tan^{2}(24.729f) + 100 \tan(24.729f) \tan(60.1f) - 66.07 = 0$ (3-16) $26.6 \tan^{2}(24.84f) + 70.7 \tan(24.84f) \tan(60.1f) - 46.97 = 0$ (3-17)

電路實作使用 FR-4 雙面板進行,基版厚度為 1.6mm, 相對介電 常數為 4.3。以電磁模擬軟體(IE3D)內含之 Line Gauge,進行微帶線 結構尺寸計算,可得 L1=10mm、L2=10.43mm、L3=13.86mm、 L4=9.15mm、L5=8.21mm、W1=3.1mm、W2=5.87mm、W3=5.29mm、 g1=0.2mm、g2=0.4mm,輸入與輸出埠之特性阻抗為 50 歐姆,線寬 為 W1=3.1mm,任意給定長度 L1=10mm 以方便製作。電路結構如圖 3.8 所示,實際電路如圖 3.9 所示,電路尺寸為 3.624cm×4.417cm,並 以向量網路分析儀 Anritsu-37269D 進行量測。

圖 3.8 使用串接耦合線替代一段傳輸線之 Branch-line 電路結構圖

圖 3.9 使用串接耦合線替代一段傳輸線之 Branch-line 電路實體圖 (3.624cm×4.417cm)

圖 3.10 和 3.11 分別為電路之散射參數|S₁₁|、|S₂₁|與|S₃₁|、|S₄₁|模擬 與實際量測結果,實線為實測值、虛線上有標誌的為 Microwave Office 模擬傳統分枝線(Branch-line)耦合器的模擬值。由圖 3.10 和 3.11 可觀 察出傳統的結構第一和第二頻段中心頻率分別在 0.915 和 2.75GHz, 而本結構中心頻率分別在 0.915 和 2.58GHz, 不過在實測上頻率偏高 至 2.6GHz。圖 3.10 顯示傳統分枝線耦合器的|S₂₁|在第一和第二頻段 中心頻率 0.915 和 2.75GHz 模擬值皆為-3.01dB,本結構在第一和第二 頻段中心頻率 0.915 和 2.58GHz 實測值為-2.93dB 和-3.76dB。而在圖 3.11 顯示傳統分枝線耦合器的|S₃₁|在第一和第二頻段中心頻率 0.915GHz 和 2.75GHz 模擬值皆為-3.01dB,本結構在第一和第二

圖 3.11 使用串接耦合線替代一段傳輸線之 Branch-line |S31|與|S41|模擬與量測圖

圖 3.12 為電路之相位圖。在本結構第一和第二頻段中心頻率 0.915 和 2.58GHz 時,實際量測結果 $\angle S_{21}$ 和 $\angle S_{31}$ 相位分別為-135.38°、 134.73°和-16.296°、74.45°,相位差為 89.89°和 90.746°。而傳統功率 分配器在第一和第二頻段中心頻率 0.915GHz 和 2.75GHz,模擬結果 $\angle S_{21}$ 和 $\angle S_{31}$ 相位分別為-90°、180°和 90°、-180°,相位差皆為 90°。

圖 3.12 使用串接耦合線替代一段傳輸線之 Branch-line $\angle S_{21}$ 與 $\angle S_{31}$ 模擬與量測

啚

3.3 柴比雪夫響應(Chebyshev response)三階帶通濾波器

依本方法應用於標準的柴比雪夫響應(Chebyshev response)三階帶 通濾波器,以達到調整第二頻段中心頻率之效果,形成雙頻應用的目 標。首先進行三階柴比雪夫響應(Chebyshev response)帶通濾波器電路 設計,中心頻率為 0.915GHz, 漣波值為 0.1dB,電路特性阻抗 Z₀ 設 為 50Ω。

圖 3.13 為三階柴比雪夫響應(Chebyshev response)低通濾波器電路 原型,階數為 3, 漣波為 0.1dB,由查表得知標準化的數值為 g₁=L₁= 1.0315、g₂=C₂=1.1474、g₃=L₃=1.0315。

圖 3.13 三階低通濾波器原型

利用標準低通濾波器原型轉換成簡易的帶通濾波器,如圖 3.14,透過並聯及串聯諧振電路的公式[17]可將 L[']_n及 C[']_n的值計算出來,其 中Δ為比例頻寬、Z₀為特性阻抗、f₀為中心頻率

串聯諧振

$$C_n' = \frac{\Delta}{2\pi f_0 L_n Z_0} \tag{3-18}$$

$$L_n' = \frac{L_n Z_0}{2\pi f_0 \Delta} \tag{3-19}$$

並聯諧振

圖 3.14 三階 L、C 帶通濾波結構

設定比例頻寬 Δ 為 50%,其中 $\Delta = (\omega_2 - \omega_1)/\omega_0$,利用公式(3-18)、 (3-19)、(3-20)及(3-21)可計算出對應的 $L_n \sim C_n$ 元件值($L_1 = 17.9$ nH、 $C_1 = 1.68$ pF、 $L_2 = 3.79$ nH、 $C_2 = 7.98$ pF、 $L_3 = 17.9$ nH、 $C_3 = 1.68$ pF),接 著運用阻抗轉換器(K inverter)將元件轉成傳輸線,如圖 3.15,帶入 g_n , $n=1 \sim 2 \sim 3...$,由阻抗轉換器(K inverter)公式轉換[17]得到傳輸線數值

$$Z_{01} = \frac{\pi Z_0 \Delta}{4g_n} = \frac{\pi \times 50 \times 0.5}{4 \times g_1} \cong 19.03 \Omega \cong Z_{03}$$

$$Z_{02} = \frac{\pi Z_0 \Delta}{4g_n} = \frac{\pi \times 50 \times 0.5}{4 \times g_2} = 17.1 \,\mathrm{I}\Omega$$

圖 3.15 運用阻抗轉換器(K inverter)設計帶通濾波器

由此可得特性阻抗 Z_{01} 、 Z_{02} 、 Z_{03} , 電氣長度 θ_{01} 、 θ_{02} 、 θ_{03} 為 90° , 且 Z_{01} 、 Z_{02} 、 Z_{03} 尾端短路。由阻抗轉換 K 的特性阻抗 K= $(L^{'}_{1}/C^{'}_{2})^{1/2}$, 由圖 3.14 三階 L、C 帶通濾波結構的 $L^{'}_{1}$ 、 $C^{'}_{2}$ 可求出 K 值, 且 θ_{0} =90°

of

$$K = \sqrt{\frac{L_1'}{C_2'}} = \sqrt{\frac{17.9nH}{7.98\,pF}} = \sqrt{2243.1} \cong 47.36\Omega$$

求出所有數值後,進行電路實作,為了讓阻抗較為匹配將尾端短路之 傳輸線以並聯形式呈現,故Z₀₁=Z₀₃=38.06Ω,Z₀₂=34.22Ω。電路實作 使用 FR-4 雙面板進行,基板厚度為 1.6mm,相對介電常數為 4.3。以 電磁模擬軟體(IE3D)內含之 Line Gauge,進行微帶線結構尺寸計算, 可得 W1=3.1mm、W2=3.25mm、W3=3.4mm、W4=4.75mm、

- 52 -

W5=5.54mm 、 L1=5mm 、 L2=1mm 、 L3=45.2mm 、 L4=4mm 、 L5=40.32mm、L6=40.16mm, 輸入與輸出埠之特性阻抗為 50 歐姆,線寬為 W1=3.1mm, 任意給定長度 L1=5mm 以方便製作。電路結構 如圖 3.16,電路尺寸為 19.2cm×9.2cm。

依本方法套用至上述標準的柴比雪夫響應(Chebyshev response)三 階帶通濾波器,首先隨意給定適當的奇模特性阻抗 Z_{00} 和傳輸線電氣 長度 θ_1 ,帶入式(3-6)、(3-7)和(3-14)計算出其他數值和第二頻段頻率 點 f,觀察此頻率點與所需頻率位置,逐步改變耦合線段長度,使第 二頻段頻率點移至設定的頻率點上。例如:當特性阻抗為 47.36 Ω 時 給定奇模特性阻抗 Z_{00} =36.75 Ω 、傳輸線電氣長度 θ_1 =50°,由 θ_1 =50° 可知 θ_2 =20°。將奇模特性阻抗 Z_{00} 帶入式(3-6)可求出偶模特性阻抗 Z_{oe} =61.02Ω,在將奇模特性阻抗 Z_{oo} 帶回式(3-7)或將偶模特性阻抗 Z_{oe} 帶回式(3-8),求出串接耦合線電氣長度 θ=31°;當特性阻抗為 38.06Ω 時,給定奇模特性阻抗 Z_{oo} =29.53Ω、傳輸線電氣長度 θ₁=50°,由 θ₁=50° 可知 θ₂=20°。將奇模特性阻抗 Z_{oo} 帶入式(3-6)可求出偶模特性阻抗 Z_{oe} =49.04Ω,再將奇模特性阻抗 Z_{oo} 帶回式(3-7)或將偶模特性阻抗 Z_{oe} 帶回式(3-8),求出串接耦合線電氣長度 θ=31°;當特性阻抗為 34.22Ω 時,給定奇模特性阻抗 Z_{oo} =26.55Ω、傳輸線電氣長度 θ₁=50°,由 θ₁=50° 可知 θ₂=20°。將奇模特性阻抗 Z_{oo} 帶回式(3-6)可求出偶模特性阻抗 Z_{oe} =44.09Ω,再將奇模特性阻抗 Z_{oo} 帶回式(3-6)可求出偶模特性阻抗 Z_{oe} =44.09Ω,再將奇模特性阻抗 Z_{oo} 帶回式(3-7)或將偶模特性阻抗 Z_{oe} 帶回式(3-8),求出串接耦合線電氣長度 θ=31°。將上述特性阻抗為 47.36、38.06和 34.22Ω 計算出的數值帶入式(3-14),經計算後可得式 (3-22)、(3-23)及(3-24),解出頻率f皆為 0.915和 2.456GHz。

 $36.75 \tan^{2}(33.879f) + 94.72 \tan(33.879f) \tan(43.7f) - 61.02 = 0 (3-22)$ $29.53 \tan^{2}(33.879f) + 76.12 \tan(33.879f) \tan(43.7f) - 49.04 = 0 (3-23)$ $26.55 \tan^{2}(33.879f) + 68.44 \tan(33.879f) \tan(43.7f) - 44.09 = 0 (3-24)$

電路實作使用 FR-4 雙面板進行,基版厚度為 1.6mm,相對介電 常數為 4.3。以電磁模擬軟體(IE3D)內含之 Line Gauge,進行微帶線 結構尺寸計算,可得 W1=3.1mm、W2=6.54mm、W3=6.35mm、

W4=9.94mm、W5=5.54mm、W6=4.8mm、W7=8.71mm、W8=4.75mm、 W9=3.25mm、 W10=3.4mm、L1=5mm、L2=2mm、L3=8.94mm、 L4=13.7mm、L5=1.1mm、L6=4mm、L7=10.2mm、L8=0.4mm、 L9=9mm、L10=1.1mm、L11=0.9mm、L12=17.37mm、L13=1mm、 L14=0.8mm、L15=16.68mm、g1=0.48mm、g2=0.26mm、g3=0.33mm, 輸入與輸出埠之特性阻抗為 50 歐姆,線寬為 W1=3.1mm,任意給定 長度 L1=5mm 以方便製作。電路結構如圖 3.17 所示,實際電路如圖 3.18 所示,電路尺寸為 11cm×5.2cm,兩電路皆以向量網路分析儀 Anritsu-37269D 進行量測。

圖 3.17 使用串接耦合線替代一段傳輸線之帶通濾波電路結構圖

圖 3.18 使用串接耦合線替代一段傳輸線之帶通濾波電路實體圖(11cm×5.2cm) 圖 3.19 為電路之散射參數|S₁₁|與|S₂₁|模擬與實際量測結果,實線有 標誌的為標準的帶通濾波電路實測值、較粗的線為運用本方法的帶通 濾波結構實測值、較細的線為運用本方法的帶通濾波結構 IE3D 模擬 值。

圖 3.19 使用串接耦合線替代一段傳輸線之帶通濾波電路|S11|與|S21|模擬與量測圖

由圖 3.19 可觀察出傳統的結構在第一和第二頻段中心頻率分別在 0.915 和 2.75GHz,而本結構中心頻率分別在 0.915 和 2.45GHz。其中 傳統的結構|S₁₁|若以-10dB 為參考,第一及第二頻段小於此值的頻率 範圍為 0.74-1.09GHz 和 2.56-2.94GHz(實測)。而|S₂₁|在第一和第二頻 段中心頻率 0.915 和 2.75GHz 值為-0.96 和-2.85dB(實測)。本結構|S₁₁| 若也以-10dB 為參考,第一及第二頻段小於此值的頻率範圍為 0.74-1.09GHz(實測),0.72-1.04GHz(模擬)和 2.32-2.68GHz(實測), 2.27-2.55GHz(模擬)。而|S₂₁|在第一和第二頻段中心頻率 0.915 和 2.45GHz 值為-1.29 和-3.48dB(實測),-0.8 和-1.59dB(模擬)。由此得知 運用本方法使得原本第二頻段由 2.75GHz 移至 2.45GHz,實際電路量 測與模擬結果顯示,模擬值與量測值相當吻合。

Shin-Yi University of Tes

3.4 並接傳輸線-帶通濾波器

依本方法應用於並接傳輸線-帶通濾波器(參考由許晏國及曾振東 於 2004 年 NST 提出之結構[21]),達到調整第二頻段中心頻率之效 果,形成雙頻應用的目標。首先進行並接傳輸線-帶通濾波器電路設 計,其結構如圖 3.20 所示,利用 Z_a與 Z_b 兩段傳輸線進行並接,中心 頻率為 0.915GHz,傳輸線特性阻抗 Z_a、Z_b分別為 25Ω、50Ω,電氣 長度 θ_a、θ_b分別為 90°與 270°。

圖 3.20 並接傳輸線-帶通濾波器結構

依本方法,設定第一頻段中心頻率 f_0 為 0.915GHz,首先隨意給定 適當的奇模特性阻抗 Z_{00} 和傳輸線電氣長度 θ_1 ,帶入式(3-6)、(3-7)和 (3-14)計算出其他數值和第二頻段頻率點f,觀察此頻率點與所需頻率 點位置,逐步改變耦合線段長度,使第二頻段頻率點移至設定的頻率 點上。當特性阻抗為 50 Ω 時給定奇模特性阻抗 Z_{00} =36 Ω 、傳輸線電氣 長度 θ_1 =43°,由 θ_1 =43°可知 θ_2 =23.5°。將奇模特性阻抗 Z_{00} 帶入式(3-6) 可求出偶模特性阻抗 Z_{oe} =69.44 Ω , 在將奇模特性阻抗 Z_{oo} 帶回式(3-7) 或將偶模特性阻抗 Z_{oe} 帶回式(3-8),求出串接耦合線電氣長度 θ =28.68°;當特性阻抗為 25 Ω 時,給定奇模特性阻抗 Z_{oo} =20.5 Ω 、傳 輸線電氣長度 θ_1 =59.5°,由 θ_1 =59.5°可知 θ_2 =15.25°。將奇模特性阻抗 Z_{oo} 帶入式(3-6)可求出偶模特性阻抗 Z_{oe} =30.49 Ω ,再將奇模特性阻抗 Z_{oo} 帶回式(3-7)或將偶模特性阻抗 Z_{oe} =30.49 Ω ,再將奇模特性阻抗 Z_{oo} 帶回式(3-7)或將偶模特性阻抗 Z_{oe} 帶回式(3-8),求出串接耦合線電 氟長度 θ =34.87°。將上述特性阻抗為 50 和 25 Ω 計算出的數值帶入式 (3-14),經計算後分別可得式(3-25)、(3-26),解出頻率 f 為 0.915 和 2.45。

 $36\tan^{2}(31.344f) + 100\tan(31.344f)\tan(51.366f) - 69.44 = 0 (3-25)$ $20.5\tan^{2}(38.11f) + 50\tan(38.11f)\tan(33.33f) - 30.49 = 0 (3-26)$

電路實作使用 FR-4 雙面板進行,基版厚度為 1.6mm, 相對介電 常數為 4.3。以電磁模擬軟體(IE3D)內含之 Line Gauge,進行微帶線 結構尺寸計算,可得 L1=17mm、L2=9.01mm、L3=12.47mm、 L4=7.84mm、L5=13.41mm、L6=9.84mm、L7=10.94mm、W1=3.1mm、 W2=8.48mm、W3=7.64mm、W4=2.59mm、g1=0.25mm、g2=0.29mm, 輸入與輸出埠之特性阻抗為 50 歐姆,線寬為 W1=3.1mm,任意給定 長度 L1=17mm 以方便製作。電路結構如圖 3.21 所示,實際電路如圖 3.22 所示,電路尺寸為 6.755cm×4.72cm,並以向量網路分析儀 Anritsu-37269D 進行量測。

圖 3.21 使用串接耦合線替代一段傳輸線之並接傳輸線-帶通濾波器結構圖

圖 3.22 使用串接耦合線替代一段傳輸線之並接傳輸線-帶通濾波器實體圖 (6.755cm×4.72cm)

圖 3.23 為電路之散射參數|S11|與|S21|模擬與實際量測結果,實線為 運用本方法之並接傳輸線-帶通濾波電路實測值、虛線為運用 Microwave Office 模擬傳統並接傳輸線-帶通濾波結構模擬值。由圖 3.23 可觀察出傳統的結構在第一和第二頻段中心頻率分別在 0.915 和 2.75GHz, 而本結構中心頻率分別在 0.915 和 2.45GHz。其中傳統的 結構|S11|若以-10dB 為參考,第一及第二頻段小於此值的頻率範圍為 0.84-0.99GHz 和 2.67-2.82GHz。而|S21|在第一和第二頻段中心頻率 0.915 和 2.75GHz 值為 0dB(MWO 模擬)。本結構|S11|若也以-10dB 為 參考,第一及第二頻段小於此值的頻率範圍為 0.81-1.01GHz 和 2.42-2.57GHz。而|S21|在第一和第二頻段中心頻率 0.915 和 2.45GHz 值為-1.03 和-3dB(實測)。由此得知運用本方法使得原本第二頻段由 2.75GHz 移至 2.45GHz, 實際電路量測與模擬結果顯示, 模擬值與量 hin- Yi University of 測值相當吻合。

圖 3.23 使用串接耦合線替代一段傳輸線之並接傳輸線-帶通濾波器|S11|與|S21|模 擬與量測圖

3.5 並接傳輸線-帶拒濾波器

依本方法應用於並接傳輸線-帶拒濾波器(參考由許晏國及曾振東 於 2004 年 NST 提出之結構[21]),以達到調整第二頻段中心頻率之效 果,形成雙頻應用的目標。首先進行並接傳輸線-帶拒濾波器電路設 計,其結構如圖 3.24 所示,利用 Z_a與 Z_b 兩段傳輸線進行並接,中心 頻率為 2.45GHz,傳輸線特性阻抗 Z_a、Z_b皆為 50Ω,電氣長度 θ_a、θ_b 分別為 90°與 270°。

依本方法,設定第一頻段中心頻率 f_0 為 2.45GHz,首先隨意給定 適當的奇模特性阻抗 Z_{00} 和傳輸線電氣長度 θ_1 ,帶入式(3-6)、(3-7)和 (3-14)計算出其他數值和第二頻段頻率點 f,觀察此頻率點與所需頻率 點位置,逐步改變耦合線段長度,使第二頻段頻率點移至設定的頻率 點上。當特性阻抗為 50Ω 時給定奇模特性阻抗 $Z_{00}=36\Omega$ 、傳輸線電氣 長度 $\theta_1=73^\circ$,由 $\theta_1=73^\circ$ 可知 $\theta_2=8.5^\circ$ 。將奇模特性阻抗 Z_{00} 帶入式(3-6) 可求出偶模特性阻抗 Z_{oe} =69.44 Ω ,在將奇模特性阻抗 Z_{oo} 帶回式(3-7) 或將偶模特性阻抗 Z_{oe} 帶回式(3-8),求出串接耦合線電氣長度 θ =45.78°。將上述特性阻抗為 50 Ω 計算出的數值帶入式(3-14),經計 算後可得式(3-27),解出頻率 f 為 2.45 和 5.8。

$$36\tan^2(18.68f) + 100\tan(18.68f)\tan(6.94f) - 69.44 = 0 \quad (3-27)$$

電路實作使用 FR-4 雙面板進行,基版厚度為 1.6mm, 相對介電 常數為 4.3。以電磁模擬軟體(IE3D)內含之 Line Gauge,進行微帶線 結構尺寸計算,可得 L1=10mm、L2=1.7mm、L3=6.25mm、W1=3.1mm、 W2=2.59mm、g1=0.29mm,輸入與輸出埠之特性阻抗為 50 歐姆,線 寬為 W1=3.1mm,任意給定長度 L1=10mm 以方便製作。電路結構如 圖 3.25 所示,實際電路如圖 3.26 所示,電路尺寸為 3.507cm×2.757cm, 並以向量網路分析儀 Anritsu-37269D 進行量測。

圖 3.25 使用串接耦合線替代一段傳輸線之並接傳輸線-帶拒濾波器結構圖

圖 3.26 使用串接耦合線替代一段傳輸線之並接傳輸線-帶拒濾波器實體圖 (3.507cm×2.757cm)

圖 3.27 為電路之散射參數|S₁₁|與|S₂₁|模擬與實際量測結果,實線為 運用本方法之並接傳輸線-帶拒濾波電路實測值、虛線為運用 Microwave Office 模擬傳統並接傳輸線-帶拒濾波結構模擬值。由圖 3.27 可觀察出傳統的結構在第一和第二頻段中心頻率分別在 2.45 和 7.35GHz,而本結構中心頻率分別在 2.45 和 5.8GHz。其中傳統的結 構|S₂₁|若以-10dB 為參考,第一及第二頻段小於此值的頻率範圍為 2.01-2.89GHz和6.91-7.78GHz。而|S₁₁|在第一和第二頻段中心頻率2.45 和7.35GHz 值為 0dB(MWO 模擬)。本結構|S₂₁|若也以-10dB 為參考, 第一及第二頻段小於此值的頻率範圍為 1.86-2.82GHz 和 5.59-6.46GHz。而|S₁₁|在第一和第二頻段中心頻率 2.45 和 5.8GHz 值 為-0.97 和-1.98dB(實測)。由此得知運用本方法使得原本第二頻段由 7.35GHz 移至 5.8GHz,實際電路量測與模擬結果顯示,模擬值與量 測值相當吻合。

圖 3.27 使用串接耦合線替代一段傳輸線之並接傳輸線-帶拒濾波器|S₁₁|與|S₂₁|模 擬與量測圖

3.6 枝幹耦合式衰減器

以傳統二階枝幹耦合器[20]為基礎,將兩端輸出埠接上並聯電阻 下地,形成衰減器,並套用串接耦合線結構將原四分之一波長之傳輸 線替換,達到雙頻效果。提出之應用於雙頻段枝幹耦合式衰減器結構 如圖 3.28 所示,首先,進行原始四埠網路結構分析,接著利用四埠 轉二埠公式進行轉換,推導出二埠之散射參數|S|,即可求得電路衰減 量並進行驗證。

圖 3.28 使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器結構

原始雙頻段枝幹耦合器四埠網路,其結構具有上下及左右對稱特

性,將電路直切及橫切即可進行奇、偶模分析,如圖 $3.29 \times 3.30 \times 3.31$ 及 3.32 所示。 $Z_1 \times Z_2$ 為傳輸線的特性阻抗, θ_1 與 θ_2 為傳輸線電氣長 度。 $Z_{001} \times Z_{002}$, $Z_{0e1} \times Z_{0e2}$ 分別為耦合線的奇模及偶模特性阻抗, θ_a 與 θ_b 為耦合線電氣長度。

圖 3.29 奇偶模電路分析結構-偶模/偶模 圖 3.30 奇偶模電路分析結構-偶模/奇模

圖 3.31 奇偶模電路分析結構-奇模/偶模 圖 3.32 奇偶模電路分析結構-奇模/奇模

可推導得到偶模、偶模,偶模、奇模,奇模、偶模與奇模、奇模 四個電路的輸入阻抗分別如式(3-28)、(3-29)、(3-30)與(3-31)所示

$$Z_{in}^{ee} = \frac{-(Z_{1}^{2} \tan \theta_{1} - Z_{1}Z_{oe1} \cot \theta_{a})(Z_{2}^{2} \tan \theta_{2} - Z_{2}Z_{oe2} \cot \theta_{b})}{j(Z_{1}^{2} \tan \theta_{1} - Z_{1}Z_{oe1} \cot \theta_{a})(Z_{2} + Z_{oe2} \cot \theta_{b} \tan \theta_{2})} + j(Z_{2}^{2} \tan \theta_{2} - Z_{2}Z_{oe2} \cot \theta_{b})(Z_{1} + Z_{oe1} \cot \theta_{b} \tan \theta_{1})}$$
(3-28)

$$Z_{in}^{eo} = \frac{-(Z_{oo1}Z_{1}\tan\theta_{a} + Z_{1}^{2}\tan\theta_{1})(Z_{2}^{2}\tan\theta_{2} - Z_{2}Z_{oe2}\cot\theta_{b})}{j(Z_{oo1}Z_{1}\tan\theta_{a} + Z_{1}^{2}\tan\theta_{1})(Z_{2} + Z_{oe2}\cot\theta_{b}\tan\theta_{2})} + j(Z_{2}^{2}\tan\theta_{2} - Z_{2}Z_{oe2}\cot\theta_{b})(Z_{1} - Z_{oo1}\tan\theta_{a}\tan\theta_{1})$$
(3-29)

$$Z_{in}^{oe} = \frac{-\left(Z_1^2 \tan \theta_1 - Z_{oe1}Z_1 \cot \theta_a\right) \left(Z_{oo2}Z_2 \tan \theta_b + Z_2^2 \tan \theta_2\right)}{j\left(Z_1^2 \tan \theta_1 - Z_{oe1}Z_1 \cot \theta_a\right) \left(Z_2 - Z_{oo2} \tan \theta_b \tan \theta_2\right)} + j\left(Z_{oo2}Z_2 \tan \theta_b + Z_2^2 \tan \theta_2\right) \left(Z_1 + Z_{oe1} \cot \theta_a \tan \theta_1\right)$$
(3-30)

$$Z_{in}^{oo} = \frac{-\left(Z_{oo1}Z_1 \tan \theta_a + Z_1^2 \tan \theta_1\right)\left(Z_{oo2}Z_2 \tan \theta_b + Z_2^2 \tan \theta_2\right)}{j\left(Z_{oo1}Z_1 \tan \theta_a + Z_1^2 \tan \theta_1\right)\left(Z_2 - Z_{oo2} \tan \theta_b \tan \theta_2\right)} + j\left(Z_{oo2}Z_2 \tan \theta_b + Z_2^2 \tan \theta_2\right)\left(Z_1 - Z_{oo1} \tan \theta_a \tan \theta_1\right)$$
(3-31)

計算出奇模及偶模電路阻抗後,可分別導出奇偶模之反射係數 Γ_a 、 $\Gamma_b \cdot \Gamma_c 與 \Gamma_d 如式(3-32)-(3-35)所示$ $\Gamma_a = \frac{Z_{in}^{ee} - Z_0}{Z_{in}^{ee} + Z_0}$ (3-32) $\Gamma_b = \frac{Z_{in}^{eo} - Z_0}{Z_{in}^{eo} + Z_0}$ (3-33) $\Gamma_c = \frac{Z_{in}^{oe} - Z_0}{Z_{in}^{oe} + Z_0}$ (3-34)

$$Z_{in}^{\alpha} + Z_0 \tag{3-34}$$

$$\Gamma_d = \frac{Z_{in}^{oo} - Z_0}{2}$$

$$^{a} Z_{in}^{oo} + Z_{0}$$
 (3-35)

導出反射係數後,即可求得散射參數S,公式如式(3-36)-(3-39)所示 $S_{11} = \frac{1}{4} (\Gamma_a + \Gamma_b + \Gamma_c + \Gamma_d)$ (3-36)

$$S_{12} = S_{21} = \frac{1}{4} \left(\Gamma_a - \Gamma_b + \Gamma_c - \Gamma_d \right)$$
(3-37)

$$S_{13} = S_{31} = \frac{1}{4} \left(\Gamma_a - \Gamma_b - \Gamma_c + \Gamma_d \right)$$
(3-38)

$$S_{14} = S_{41} = \frac{1}{4} \left(\Gamma_a + \Gamma_b - \Gamma_c - \Gamma_d \right)$$
(3-39)

接著進行四埠轉二埠公式推導,二埠網路示意圖如圖 3.33 所示,由 圖中可知邊界條件為

圖 3.33 四埠枝幹耦合器加兩負載示意圖

原始四埠S矩陣為

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$

可寫成

$$\begin{bmatrix} b_{1} \\ b_{4} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{14} \\ S_{41} & S_{44} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{4} \end{bmatrix} + \begin{bmatrix} S_{12} & S_{13} \\ S_{42} & S_{43} \end{bmatrix} \begin{bmatrix} a_{2} \\ a_{3} \end{bmatrix}$$

$$\begin{bmatrix} b_{2} \\ b_{3} \end{bmatrix} = \begin{bmatrix} S_{21} & S_{24} \\ S_{31} & S_{34} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{4} \end{bmatrix} + \begin{bmatrix} S_{22} & S_{23} \\ S_{32} & S_{33} \end{bmatrix} \begin{bmatrix} a_{2} \\ a_{3} \end{bmatrix}$$
(3-41)

带入條件(式(3-40)),可得

 $\begin{bmatrix} \Gamma_2^{-1} & 0 \\ 0 & \Gamma_3^{-1} \end{bmatrix} \begin{bmatrix} a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} S_{21} & S_{24} \\ S_{31} & S_{34} \end{bmatrix} \begin{bmatrix} a_1 \\ a_4 \end{bmatrix} + \begin{bmatrix} S_{22} & S_{23} \\ S_{32} & S_{33} \end{bmatrix} \begin{bmatrix} a_2 \\ a_3 \end{bmatrix}$

經移項,運算後如下式所示

$$\begin{bmatrix} a_2 \\ a_3 \end{bmatrix} = \frac{1}{(\Gamma_2^{-1} - S_{22})(\Gamma_3^{-1} - S_{33}) - S_{23}S_{32}} \begin{bmatrix} (\Gamma_3^{-1} - S_{33})S_{21} + S_{23}S_{31} & (\Gamma_3^{-1} - S_{33})S_{24} + S_{23}S_{34} \\ S_{32}S_{21} + (\Gamma_2^{-1} - S_{22})S_{31} & S_{32}S_{24} + (\Gamma_2^{-1} - S_{22})S_{34} \end{bmatrix} \begin{bmatrix} a_1 \\ a_4 \end{bmatrix}$$

將上式帶入式(3-41)即可求得四埠轉二埠之散射矩陣[S]

$$\begin{bmatrix} S_{11} & S_{14} \\ S_{41} & S_{44} \end{bmatrix}^{Two \ port} = \left\{ \begin{bmatrix} S_{11} & S_{14} \\ S_{41} & S_{44} \end{bmatrix} + \frac{1}{\left[\left(\Gamma_{2}^{-1} - S_{22} \right) \left(\Gamma_{3}^{-1} - S_{33} \right) - S_{23} S_{32} \right] \right\}$$

$$\begin{bmatrix} S_{12} \begin{bmatrix} \left(\Gamma_{3}^{-1} - S_{33} \right) S_{21} + S_{23} S_{31} \end{bmatrix} + S_{13} \begin{bmatrix} S_{32} S_{21} + \left(\Gamma_{2}^{-1} - S_{22} \right) S_{31} \end{bmatrix}$$

$$\begin{bmatrix} S_{12} \begin{bmatrix} \left(\Gamma_{3}^{-1} - S_{33} \right) S_{21} + S_{23} S_{31} \end{bmatrix} + S_{43} \begin{bmatrix} S_{32} S_{21} + \left(\Gamma_{2}^{-1} - S_{22} \right) S_{31} \end{bmatrix}$$

$$S_{12} \begin{bmatrix} \left(\Gamma_{3}^{-1} - S_{33} \right) S_{24} + S_{23} S_{34} \end{bmatrix} + S_{13} \begin{bmatrix} S_{32} S_{24} + \left(\Gamma_{2}^{-1} - S_{22} \right) S_{34} \end{bmatrix} \end{bmatrix}$$

$$S_{42} \begin{bmatrix} \left(\Gamma_{3}^{-1} - S_{33} \right) S_{24} + S_{23} S_{34} \end{bmatrix} + S_{43} \begin{bmatrix} S_{32} S_{24} + \left(\Gamma_{2}^{-1} - S_{22} \right) S_{34} \end{bmatrix} \end{bmatrix}$$

$$(3-42)$$

由第三章分析得知,若要設計第一、第二頻段於 0.925、2.45GHz 有 很多組數值,若給定 Z₁=35.35Ω,θ₁=15.99°,Z₂=50Ω,θ₁=15.74°, Z_{oe1} =44.63 Ω , Z_{oo1} =28 Ω , Z_{oe2} =62.5 Ω , Z_{oo2} =40 Ω , θ_a = θ_b =15.99°, 帶入

式(3-28)-(3-31)可分別求得

 $Z_{in}^{ee} \cong -j20.7$, $Z_{in}^{eo} \cong j120.6$, $Z_{in}^{oe} \cong -j120.6$, $Z_{in}^{oo} \cong j20.7$

接著帶入式(3-32)-(3-35)可分別求得 $\Gamma_a = -0.707 - j0.707$ 、 $\Gamma_b = 0.707 + j0.707$ 、 $\Gamma_c = 0.707 - j0.707$ $\Gamma_d = -0.707 + j0.707$

求出反射係數後,即可求得散射參數 S,帶入式(3-36)-(3-39)即可求出 其四埠散射矩陣為

$\int S_{11}$	S_{12}	<i>S</i> ₁₃	S_{14}^{-}	1	0	- <i>j</i> 0.707	-0.707	0 -
S ₂₁	S_{22}	S 23	S_{24}	L	- <i>j</i> 0.707	0	0	-0.707
S ₃₁	S_{32}	<i>S</i> ₃₃	<i>S</i> ₃₄		-0.707	0	0	- <i>j</i> 0.707
S_{41}	S_{42}	S_{43}	S_{44}_{-}	. \	0	-0.707	- <i>j</i> 0.707	0

將求出的矩陣帶入式(3-42)將其轉為二埠矩陣,可得

$$\begin{bmatrix} S_{11} & S_{14} \\ S_{41} & S_{44} \end{bmatrix}^{Two \ port} = \frac{1}{\Gamma_2^{-1}\Gamma_3^{-1}} \begin{bmatrix} 0 & j\frac{\Gamma_3^{-1}}{2} + j\frac{\Gamma_2^{-1}}{2} \\ j\frac{\Gamma_3^{-1}}{2} + j\frac{\Gamma_2^{-1}}{2} & 0 \end{bmatrix}$$
(3-43)

上式公式整理後可得輸出散射參數(|S|)與電阻(R)之關係式,如式(3-44) 所示

$$|S_{41}|^{Two \ port} (dB) = 20 \log \left(\sqrt{\left(\frac{R - Z_0}{R + Z_0}\right)^2} \right)$$
 (3-44)

求出式(3-44)後,利用數值分析軟體 Matlab 將衰減量與電阻的關係圖 畫出,如圖 3.34 所示。由此圖可觀察出,以 50 歐姆為中心,若要設 計一衰減量,可由兩個電阻值達成,原因是因當電阻器為 50 歐姆時, 與傳統的枝幹耦合器具相同特性, |S41|即為隔離端埠,具有良好之隔 離特性。

圖 3.34 衰減量與電阻器關係圖

傳統二階枝幹耦合器(Branch-Line)[20],基本結構為四段電氣長度 為 90°傳輸線連接而成,若設計輸出為半功率則特性阻抗分別為 $50\Omega \times 35.35\Omega \times 50\Omega$ 和 $35.35\Omega \circ 若要設計第一 \times 第二頻段於 0.925 \times$ 2.45GHz,給定 $Z_1=35.35\Omega$, $\theta_1=15.99^\circ$, $Z_2=50\Omega$, $\theta_1=15.74^\circ$, $Z_{oe1}=44.63\Omega$, $Z_{oo1}=28\Omega$, $Z_{oe2}=62.5\Omega$, $Z_{oo2}=40\Omega$, $\theta_a=\theta_b=15.99^\circ$

電路實作使用 FR-4 雙面板進行,基版厚度為 1.6mm,相對介電 常數為 4.3。以電磁模擬軟體(IE3D)內含之 Line Gauge,進行微帶線 結構尺寸計算,可得 $L_1=10mm \cdot L_2=17.57mm \cdot L_3=17.2mm \cdot L_4=6.2mm \cdot$ $L_5=3.2mm \cdot L_6=8.1mm \cdot L_7=5.08mm \cdot L_8=3.54mm \cdot L_9=3.1mm \cdot$ $W_1=3.1mm \cdot W_2=9.81mm \cdot W_3=6.4mm \cdot W_4=5.29mm \cdot W_5=4.73mm \cdot$ $W_6=2.86mm \cdot g_1=0.35mm \cdot g_2=0.676mm , 輸入與輸出埠之特性阻抗為$ 50 歐姆,線寬為 $W_1=3.1mm$,任意給定長度 $L_1=10mm$ 以方便製作。 電路結構如圖 3.35 所示,實際電路如圖 3.36 所示,電路尺寸為 61.68mm×53.3mm。

圖 3.35 使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器電路結構圖

圖 3.36 使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器電路實體圖 (61.68mm×53.3mm)

3.6.1 R 為 8.61 歐姆(衰減量為-3dB)時

經上述電路分析後,若電阻 R 為 8.61 歐姆(因實際無此阻抗,以 61.9 歐姆與 10 歐姆兩個進行並聯),系統阻抗 Z₀為 50 歐姆時,帶入 式(3-44)後經計算後可得

$$|S_{41}|^{Two port} (dB) = 20 \log \left(\sqrt{\left(\frac{8.61 - 50}{8.61 + 50}\right)^2} \right) = 20 \log 0.70619 = -3.021 dB$$

圖 3.37 為雙埠電路之散射參數|S₁₁|與|S₄₁|模擬與實際量測結果,實 線為實測值、虛線為電磁模擬軟體-IE3D 模擬值,其中有菱形標誌的 為|S₁₁|、無標誌的為|S₄₁|。由圖 3.37 可觀察出中心頻率在 0.915 和 2.45GHz 時,模擬之|S₁₁|分別為-27.68dB、-17.87dB,模擬之|S₄₁|分別 為-3.5dB、-4.12dB;實際量測之|S₁₁|分別為-19.88dB、-31.35dB,實際 量測之|S₄₁|分別為-3.98dB、-5.17dB。模擬與實際量測結果顯示,具有 良好的一致性,驗證所提方法之正確性。

圖 3.37 使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器模擬與實測|S₁₁|、 |S₄₁|參數 (R=8.61 歐姆,衰減量-3dB)

3.6.2 R為150歐姆(衰減量為-6dB)時

當電阻 R 為 150 歐姆, 系統阻抗 Z₀ 為 50 歐姆時, 帶入式(3-44) 後經計算後可得

$$|S_{41}|^{T_{wo port}} (dB) = 20 \log \left(\sqrt{\left(\frac{150 - 50}{150 + 50}\right)^2} \right) = 20 \log 0.5 = -6.02 dB$$

圖 3.38 為雙埠電路之散射參數|S11|與|S41|模擬與實際量測結果,實

線為實測值、虛線為電磁模擬軟體-IE3D 模擬值,其中有菱形標誌的 為|S₁₁|、無標誌的為|S₄₁|。由圖 3.38 可觀察出中心頻率在 0.915 和 2.45GHz 時,模擬之|S₁₁|分別為-33.77dB、-22.17dB,模擬之|S₄₁|分別 為-6.37dB、-6.52dB;實際量測之|S₁₁|分別為-25.77dB、-30.8dB,實際 量測之|S₄₁|分別為-6.8dB、-11.3dB。模擬與實際量測結果顯示,具有 良好的一致性,驗證所提方法之正確性。

圖 3.38 使用串接耦合線替代一段傳輸線之枝幹耦合式衰減器模擬與實測|S₁₁|、 |S₄₁|參數 (R=150 歐姆,衰減量-6dB)

第四章 結論

本文提出一種雙頻段(Dual band)電路設計方法,以串接耦合線替換 一段傳輸線,並利用耦合線之耦合效應改變三倍頻點,以獲得雙頻的 效果。電路分析利用耦合傳輸線理論,推導出傳輸線與耦合線之等效 關係及第二頻段之頻率點公式。並依計算式求得第二頻段頻率點,逐 步改變耦合線段長度,使第二頻段頻率點調整至所需頻率位置。

本方法應用於鼠圈式(Rat-race)功率分配器、分枝線(Branch-line)耦合 器、柴比雪夫響應(Chebyshev response)三階帶通濾波器、並接傳輸線-帶通濾波器、並接傳輸線-帶拒濾波器和枝幹耦合式衰減器雙頻設計, 以驗證電路設計之適用性。實際電路量測與模擬結果顯示,模擬值與 量測值相當吻合。

- Tu, W. H. and Chang, K., "Compact second harmonic-suppressed bandstop and bandpass filters using open stubs," *IEEE Trans. on Microwave Theory and Tech.*, vol. 54, pp. 2497-2502, 2006.
- [2] Settaluri, R. K., Weisshaar, A., Lim, C. and Tripathi, V. K., "Compact multi-level folded coupled line RF couplers," *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 4, pp. 1721-1724, 1999.
- [3] Settaluri, R. K., Sundberg, G., Weisshaar, A. and Tripathi, V. K., "Compact folded line rat-race hybrid couplers," *IEEE Microwave and Guided Wave Letters*, vol. 10, pp. 61-63, 2000.
- [4] Kuo, Y. L. and Wong, K. L., "Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations," *IEEE Trans. Antennas Propag.*, vol. 51, pp. 2187-2192, 2003.
- [5] Raj, R. K., Joseph, M., Aanandan, C. K., Vasudevan, K. and Mohanan, P., "A New Compact Microstrip-Fed Dual-Band Coplanar Antenna for WLAN Applications," *IEEE Trans. Antennas Propag.*, vol. 54, pp. 3755-3762, 2006.
- [6] Hashemi, H. and Hajimiri, A., "Concurrent multi-band low-noise amplifiers theory, design and applications," *IEEE Trans. Microwave Theory Tech.*, vol. 50, pp. 288-301, 2002.
- [7] Tsai, L. C. and Hsue, C. W., "Dual-band bandpass filters using equal-length coupled serial-shunted lines and Z-transform technique," *IEEE Trans. Microwave Theory Tech.*, vol. 52, pp. 1111-1117, 2004.
- [8] Chuang, M. L., "Concurrent dual band filter using single set of microstrip open-loop resonators," *Electron. Letters*, vol. 41, pp. 1013-1014, 2005.
- [9] Uchida, H., Kamino, H., Totani, K., Yoneda, N., Miyazaki, M., Konishi, Y., Makino, S., Hirokawa, J., and Ando, M., "Dual-band-rejection filter for distortion reduction in RF transmitters," *IEEE Trans. Microwave Theory Tech.*, vol. 52, pp. 2550-2556, 2004.
- [10] Cheng, K.-K. M. and Wong, F. L., "A novel approach to the design and implementation of dual-band compact planar 90° branch-line coupler," *IEEE Trans. Microwave Theory and Tech.*, vol. 52, pp. 2458-2463, 2004.
- [11] Xuehui, Guan, Zhewang, Ma, Peng, Cai1, Guohui, Li, Yoshio, Kobayashi, Tetsuo, Anada and Gen, Hagiwara, "A Dual-Band Bandpass Filter Synthesized by Using Frequency Transformation and Circuit Conversion Technique," in *Proc. Asia Pacific Microw. Conf.*, 2005.
- [12] Zhang, H. and Chen, K. J., "A Stub Tapped Branch-Line Coupler for Dual-Band Operations," *IEEE Microwave and Wireless Components Letters*, vol. 17,

pp.106-108, 2007.

- [13] Park M.-J. and Lee B., "A Dual-Band Wilkinson Power Divider," *IEEE Microwave and Wireless Components Letters*, vol. 18, pp. 85-87, 2008.
- [14] Chen, C. Y. and Hsu, C. Y., "A simple and effective method for microstrip dual-band filters design," *IEEE Microwave and Wireless Components Letters*, vol. 16, pp. 246-248, 2006.
- [15] Chang, S. F., Jeng, Y. H. and Chen, J. L., "Dual-band step-impedance bandpass filter for multimode wireless LANs," *IEE Electronics Letters*, vol. 40, pp. 38-39, 2004.
- [16] Chang, S. F., Chen, J. L. and Chang, S. C., "New dual-band bandpass filters with step-impedance resonators in comb and hairpin structures," in *Proc. Asia Pacific Microw. Conf.*, pp. 793-796, 2003.
- [17] Pozar, D. M., Microwave Engineering, Second Edition, New York: Wiley, 1998.
- [18] Jones, E. M. T., "Coupled-Strip-Transmission-Line Filters and Directional Couplers," IEEE Trans. Microwave Theory and Tech., vol. 4, pp. 75-81, 1956.
- [19] Zysman, G. I. and Johnson, A. K., "Coupled Transmission Line Networks in an Inhomogeneous Dielectric Medium," *IEEE Trans. Microwave Theory and Tech.*, vol. 17, pp. 753-759, 1969.
- [20] Reed, J. and Wheeler, G. J., "A Method of Analysis of Symmetrical Four-Port Networks," *IEEE Trans. Microwave Theory and Tech.*, vol. 4, pp. 246-252(1956).
- [21] 許晏國、曾振東,"並接傳輸線結構之分析與應用", National Symposium on Telecommunications, pp.1163-1168, 2004.

簡歷

學生巫仲鎧,來自彰化縣二林鎮,家中共有五人。四技就讀國立勤 益科技大學,於民國 97 年 6 月畢業。專題由曾振東教授指導,研究關 於通訊高頻電路理論與實務電路設計,學習並熟悉多種高頻模擬軟 體,如 IE3D、HFSS、Microwave Office、GEMS 等,儀器方面熟悉 使用雕刻機、頻譜分析儀、網路分析儀等,並累積多種微波電路之實 務設計經驗。

研究所求學期間,在曾振東教授的指導下更深入探討通訊射頻學 程,研究的項目包括:<u>射頻被動電路之研究、射頻檢波器製作、射頻</u> <u>放大器製作及天線設計與製作</u>等。研究所期間與指導教授共同提出五 項專利申請。研究之餘,也與指導教授一同參加 98 年南投縣舉辦"日 月潭國際萬人泳渡"及登山(合歡東峰)活動,借此沈澱思緒,找尋新的 靈感。並在 98 年 4 月很榮幸擔任短期交流的交換學生,並與指導教授 一同前往日本 北海道-北見工業大學進行學術交流。在研究所求學的 這二年裡,不管是在待人處事或是研究學習及解決問題上,都讓我學 習到許多寶貴的經驗。下表為研究所求學期間,投稿論文及申請專利 資料:

-82-

發表論文									
[1] J;	an-Dong Tseng, Chung-Kai W	u, "Dual-Band Bandpass Filter for RFID							
A	Applications," International Symposium on Antennas and Propagation(ISAP), Taipei								
Т	Taiwan, Oct. 27-30, 2008.								
[2] 4	[2] 巫仲鎧,曾振東,"使用 PI 型結構設計雙頻段威爾京生功率分配器,"The 2 nd								
C	Cross-Strait Technology, Humanity Education and Academy-Industry Cooperation								
Conference(THE), Dec. 04-05, 2008.									
[3] 巫仲鎧,曾振東,"具抑制寬頻帶雜波之新型威爾京生功率分配器," National									
S	Symposium on Telecommunications(NST), Dec. 05-06, 2008.								
[4] A	[4] 巫仲鎧,曾振東,"應用於 0.925/5.8GHz RFID 之雙頻段威爾京生功率分配器," 2009 两								
岸	岸三地 RFID 科技暨產業應用研討會, Jan. 08-09, 2009.								
[5] 좌	[5] 巫仲鎧,曾振東,"耦合線結構之高頻電容測試器," EMC Technology and Practices								
S	<i>Symposium</i> , Apr. 23-24, 2009.								
[6] J:	[6] Jan-Dong Tseng, Chung-Kai Wu, "Coupled line structure for HF capacitance testing."								
4	4th International Conference on Electromagnetic Near-Field Characterization and								
Ir	Imaging(ICONIC), Taipei Taiwan, June. 24-26, 2009.								
		112							
申請專利									
申請E	3期 發明人	發明名稱							
2009	.03曾振東、巫仲鎧	耦合線結構之高頻電容測試器							
2010	.04 曾振東、巫仲鎧	枝幹耦合式雙頻衰減器							
2010	.04 曾振東、巫仲鎧	枝幹耦合式電容測試器							
2010	.06 曾振東、巫仲鎧、陳柏軒	被動式電場強度檢波器							
2010	.06 曾振東、陳柏軒、巫仲鎧	悠遊卡防盜刷保護裝置之設計							