

國立勤益科技大學

電子工程系研究所

碩士論文

基於過驅電壓與電流調校之運算放大器 設計方法論

Operational Amplifier Design Methodology

Based on the Overdrive-Voltage and

Current Regulation

Chin-Yi University of the

指導教授:謝韶徽 博士

研 究 生:林俊宏

中華民國 九十九 年 七 月

基於過驅電壓與電流調校之運算放大器設計方法論

Operational Amplifier Design Methodology Based on the Overdrive-Voltage and Current Regulation

> 指導教授:謝韶徽 博士 研究生:林俊宏

國立勤益科技大學

電子工程系研究所

碩士論文

Submitted in partial fulfillment of the requirements For the degree of Master of Engineering In Institute of Electronic Engineering from the National Chin-Yi University of Technology

July 2010 Taiping, Taichung, Taiwan, Republic of China

中華民國 九十九 年 七 月

國家圖書館

博碩士論文電子檔案上網授權書

本授權書所授權之論文爲授權人在國立勤益科技大學電子工程系 98 學年度第2學期取得碩士學位之論文。

論文題目:基於過驅電壓與電流調校之運算放大器設計方法論 指導教授:謝韶徽

茲同意將授權人擁有著作權之上列論文全文(含摘要),非專屬、 無償授權國家圖書館,不限地域、時間與次數,以微縮、光碟或其 他各種數位化方式將上列論文重製,並得將數位化之上列論文及論 文電子檔以上載網路方式,提供讀者基於個人非營利性質之線上檢 索、閱覽、下載或列印。

□ 上列論文爲授權人向經濟部智慧財產局申請專利之附件或相關文件之一(專利 申請案號:),請於 年 月 日後再將上列論 文公開或上載網路。

団 因上列論文尚未正式對外發表,請於102年 7月 20日後再將上列論文公開 或上載網路。

授權人:林俊宏

.

親筆簽名及蓋章: 林 展 完 民國 ? 7年 7月 20日

電話:05-6320265傳真: 聯絡地址:雲林縣虎尾鎭興中里98號 E-Mail: s49713010@student.ncut.edu.tw

國立勤益科技大學

博碩士論文全文上網授權書

(提供授權人裝訂於紙本論文書名頁之次頁用)

論文題目:基於過驅電壓與電流調校之運算放大器設計方法論 指導教授:謝韶徽

■ 同意

. .

本人具有著作權之論文全文資料,非專屬、無償授予本人畢業學校 圖書館,不限地域、時間與次數,以微縮、光碟或數位化等各種方 式重製與利用,提供讀者基於著作權法合理使用範圍內之線上檢 索、閱覽、下載及列印。

論文全文上載網路公開之範圍及時間:

校內區域網路	11	中華民國	102	年	7	月	20	日公開
校外網際網路		中華民國	102	年	7	月	20	日公開

國立勤益科技大學

研究所碩士班

論文口試委員會審定書

本校 電子工程系 碩士班 林俊宏 君

所提論文 基於過驅電壓與電流調校之運算放大器設計方法論 合於碩士資格水準,業經本委員會評審認可。

誌謝

本論文能夠順利完成首先要感謝指導教授 謝韶徽博士,非常感謝 老師在這兩年之中的教導,讓我在專業知識以及待人處事上受益良 多。同時也感謝口試委員黃德成、蕭敏學、洪進華以及洪玉城四位教 授的建議與指導,在此致上最深的敬意。

同時也要感謝實驗室的學長旻明、健成、智揚、詠贊,同學威修、 明恩、登淵、翰均、桂菁、與學弟明家、承翰、威誠、柏全、祺堯、 翔峻、陽哲,讓我在這兩年的求學生活中留下了許多美好回憶。另外 要特別感謝威修在我進入實驗室的兩年以來對我各方面的幫助,還有 健成學長在我初學類比電路之時提供許多寶貴的意見,以及詠讚學長 和登淵在休閒之餘一起玩三國時始終是我最好的隊友,感謝你們。

在此感謝台積電(TSMC)與國家晶片系統設計中心(CIC)提供晶片 相關製程、模擬與實現環境,並協助本論文晶片製作,也感謝下線評 審所提供的寶貴意見以及相關作業人員的辛苦。

最後感謝在背後默默幫助我的家人朋友還有女友,在這兩年的研究 生涯中一直給我幫助與關懷,此份喜悅與榮耀我要與你們一同分享。 最後,謹以此論文獻給我最敬愛的媽媽,沒有媽媽的付出就沒有今天 的我。

V

中文摘要

本論文提出一個新的運算放大器(Operational Amplifier, OPA)的設 計方法,利用過驅電壓(Overdrive-Voltage)來個別推算每個電晶體操作 在飽和區所需的各端點電壓,然後藉由模擬工具進行操作點分析來獲 得適當的電晶體尺寸與參數,最後再將這些參數與電路的規格進行比 對與修正。此法可用於多種電路架構,簡易快速且無複雜的人工計算, 並保有電路設計者對參數變動的敏感度。

基於提出之過驅電壓與電流調校之運算放大器設計方法論,應用 於不同組態的四種運算放大器設計,分別為:兩級組態、疊接組態、 摺疊疊接組態與軌對軌輸入組態共四種運算放大器;同時,四種組態 運算放大器設計分別以 TSMC 0.18um 與 0.35um 兩種製程技術去實現 設計,以觀察提出之基於過驅電壓與電流調校之運算放大器設計方法 論之實用性與有效性。實驗結果證實,本文提出之基於過驅電壓與電 流調校之運算放大器設計方法適用於四種不同組態的運算放大器電路 架構的設計,並適用於 TSMC CMOS 0.35µm 與 0.18µm 兩種不同製程 技術,本研究所提出之方法除了可應用於多種電路架構與製程技術, 並且具有下列優點:設計時間可大幅減少、初始設計的規格完成度高 以及保有設計者對參數變動的敏感度。因此,本研究提出之基於過驅 電壓與電流調校之運算放大器設計方法論為實用而有效的。

關鍵詞:運算放大器、過驅電壓

VI

Abstract

In this thesis, a novel operational amplifier (OPA) design methodology by using the relation of overdrive-voltage and current regulation is proposed. The proposed design methodology has advantages of easy design, reduced iterative refinements, applicable to many operation amplifier circuit structures, and so on.

Based on the proposed design methodology, operational amplifiers are designed for four configurations including two-stage structure, cascode structure, folded-cascode structure and rail-to-rail input structure. In addition, four operational amplifier structures are designed for both TSMC 0.35µm and 0.18µm process technologies by using the proposed design approach for instance. The simulation results fully meet the requirements of specification for different operational amplifier configurations and process technologies. Therefore, the proposed operation amplifier design methodology is valid and practical.

Keywords: Operational Amplifier, Overdrive-Voltage

目	錄
日	鈢

中	文摘	要	Ι
英	文摘	要(Abstract)	· II
目	錄		Ш
圖	目錄		V
表	目錄		VII
第	一章	緒論	1
	1 1	mar A	1
	1.1	刖 言	1
	1.2	竹	Ζ
第	二章	運算放大器結構	3
	2.1	丙級組態	3
		2.1.1 電路架構	3
		2.1.2 偏移電壓	4
		2.1.3 輸入共模範圍與輸出擺幅	5
		2.1.4 電壓增益	7
		2.1.5 頻率響應與相位邊限	10
		2.1.6 迴轉率	12
	2.2	疊接組態	14
		2.2.1 電路架構	14
		2.2.2 偏移電壓	15
		2.2.3 輸入共模範圍與輸出擺幅	15
		2.2.4 電壓增益	17
		2.2.5 頻率響應	18
		2.2.6 迴轉率	19
	2.3	摺疊疊接組態	20
		2.3.1 電路架構	20
		2.3.2 偏移電壓	21
		2.3.3 輸入共模範圍與輸出擺幅	21
		2.3.4 電壓增益	23
		2.3.5 頻率響應	24
	_	2.3.6 迴轉率	25
	2.4	軌對軌輸入組態	26
		2.4.1 電路架構	26

	2.4.2 偏移電壓	27
	2.4.3 輸入共模範圍與輸出擺幅	27
	2.4.4 電壓增益	28
	2.4.5 頻率響應	29
	2.4.6 迴轉率	30
2.5	比較	30
第三章	設計方法論	31
3.1	設計方法與流程	31
	3.1.1 設計流程	31
	3.1.2 偏壓電流的決定	35
	3.1.3 通道長度與本質增益	35
	3.1.4 過驅電壓的選擇	36
3.2	兩級組態之設計	38
3.3	疊接組態之設計	51
3.4	摺疊疊接組態之設計	60
3.5	軌對軌輸入組態之設計	69
3.6	討論	78
第四章	電路最佳化	79
4.1	兩級組態之最佳化	79
4.2	疊接組態之最佳化	83
4.3	摺疊疊接組態之最佳化	88
4.4	軌對軌輸入組態之最佳化	93
第五章	結論	99
参考文)	tt	101
作者簡	歷〕	103

圖目錄

2.1	典型兩級 CMOS 運算放大器架構	3
2.2	兩級運算放大器之小信號等效電路	7
2.3	加上一個與 Cc 串聯的電阻 Rc 後的等效電路	11
2.4	以一大步級信號輸入一單增益隨耦器	12
2.5	疊接運算放大器的電路架構	14
2.6	疊接運算放大器的小信號等效電路	18
2.7	摺疊疊接運算放大器的電路架構	20
2.8	軌對軌輸入運算放大器的電路架構	26
3.1	規格需求與初始設計之關係圖	31
3.2	典型的主動負載差動放大器	33
3.3	單獨取出 M1 並加上三個端點電壓	33
3.4	設計流程圖	34
3.5	過驅電壓與本質增益的關係	37
3.6	兩級組態之波德圖與相位邊限 PM (0.18μm)	45
3.7	兩級組態之迴轉率(0.18μm)	45
3.8	兩級組態之輸出擺幅(0.18μm)	46
3.9	兩級組態之輸入共模範圍(0.18μm)	46
3.10	兩級組態之波德圖與相位邊限(0.35μm)	49
3.11	兩級組態之迴轉率(0.35μm)	49
3.12	兩級組態之輸出擺幅(0.35μm)	50
3.13	兩級組態之輸入共模範圍(0.35μm)	50
3.14	疊接組態之波德圖與相位邊限(0.18µm)	54
3.15	疊接組態之迴轉率(0.18μm)	54
3.16	疊接組態之輸出擺幅(0.18µm)	55
3.17	疊接組態之輸入共模範圍(0.18μm)	55
3.18	疊接組態之波德圖與相位邊限(0.35µm)	58
3.19	疊接組態之迴轉率(0.35μm)	58
3.20	疊接組態之輸出擺幅(0.35µm)	59
3.21	疊接組態之輸入共模範圍(0.35μm)	59
3.22	摺疊疊接組態之波德圖與相位邊限(0.18µm)	63
3.23	摺疊疊接組態之迴轉率(0.18µm)	63
3.24	摺疊疊接組態之輸出擺幅(0.18µm)	64
3.25	摺疊疊接組態之輸入共模範圍(0.18µm)	64
3.26	摺疊疊接組態之波德圖與相位邊限(0.35µm)	67
3.27	摺疊疊接組態之迴轉率(0.35µm)	67
3.28	摺疊疊接組態之輸出擺幅(0.35µm)	68
3.29	摺疊疊接組態之輸入共模範圍(0.35µm)	68
3.30	軌對軌輸入組態之波德圖與相位邊限(0.18μm)	72
3.31	軌對軌輸入組態之迴轉率(0.18μm)	72
	$\begin{array}{c} 2.1\\ 2.2\\ 2.3\\ 2.4\\ 2.5\\ 2.6\\ 2.7\\ 2.8\\ 3.1\\ 3.2\\ 3.3\\ 3.4\\ 3.5\\ 3.6\\ 3.7\\ 3.8\\ 3.9\\ 3.10\\ 3.11\\ 3.12\\ 3.13\\ 3.14\\ 3.15\\ 3.16\\ 3.17\\ 3.18\\ 3.19\\ 3.20\\ 3.21\\ 3.22\\ 3.23\\ 3.24\\ 3.25\\ 3.26\\ 3.27\\ 3.28\\ 3.29\\ 3.30\\ 3.31\\ \end{array}$	2.1 典型雨級 CMOS 運算放大器架構

啚	3.32	軌對軌組態之輸出擺幅(0.18μm)	73
啚	3.33	軌對軌輸入組態之輸入共模範圍(0.18µm)	73
啚	3.34	軌對軌輸入組態之波德圖與相位邊限(0.35μm)	76
啚	3.35	軌對軌輸入組態之迴轉率(0.35µm)	76
啚	3.36	軌對軌組態之輸出擺幅(0.35μm)	77
啚	3.37	軌對軌輸入組態之輸入共模範圍(0.35µm)	77
啚	4.1	最佳化後的兩級組態之波德圖與相位邊限(0.18µm)	80
啚	4.2	最佳化後的兩級組態之迴轉率(0.18µm)	80
啚	4.3	最佳化後的兩級組態之輸出擺幅(0.18μm)	81
啚	4.4	最佳化後的兩級組態組態之輸入共模範圍(0.18µm)	81
啚	4.5	最佳化後的兩級組態之波德圖與相位邊限(0.35µm)	82
啚	4.6	最佳化後的兩級組態之迴轉率(0.35µm)	82
啚	4.7	最佳化後的兩級組態之輸出擺幅(0.35µm)	83
啚	4.8	最佳化後的兩級組態組態之輸入共模範圍(0.35µm)	83
啚	4.9	最佳化後的疊接組態之波德圖與相位邊限(0.18µm)	85
啚	4.10	最佳化後的疊接組態之迴轉率(0.18µm)	85
啚	4.11	最佳化後的疊接組態之輸出擺幅(0.18µm)	86
啚	4.12	最佳化後的疊接組態組態之輸入共模範圍(0.18µm)	86
啚	4.13	最佳化後的疊接組態之波德圖與相位邊限(0.35µm)	87
啚	4.14	最佳化後的疊接組態之迴轉率(0.35µm)	87
啚	4.15	最佳化後的疊接組態之輸出擺幅(0.35µm)	88
啚	4.16	最佳化後的疊接組態組態之輸入共模範圍(0.35µm)	88
啚	4.17	最佳化後的摺疊疊接組態之波德圖與相位邊限(0.18µm)	90
啚	4.18	最佳化後的摺疊疊接組態之迴轉率(0.18µm)	90
啚	4.19	最佳化後的摺疊疊接組態之輸出擺幅(0.18µm)	91
啚	4.20	最佳化後的摺疊疊接組態組態之輸入共模範圍(0.18µm)	91
啚	4.21	最佳化後的摺疊疊接組態之波德圖與相位邊限(0.35µm)	92
啚	4.22	最佳化後的摺疊疊接組態之迴轉率(0.35µm)	92
啚	4.23	最佳化後的摺疊疊接組態之輸出擺幅(0.35µm)	93
啚	4.24	最佳化後的摺疊疊接組態組態之輸入共模範圍(0.35µm)	93
啚	4.25	最佳化後的軌對軌輸入組態之波德圖與相位邊限(0.18µm)	95
啚	4.26	最佳化後的軌對軌輸入組態之迴轉率(0.18µm)	95
啚	4.27	最佳化後的軌對軌輸入組態之輸出擺幅(0.18μm)	96
啚	4.28	最佳化後的軌對軌輸入組態組態之輸入共模範圍(0.18µm)	96
啚	4.29	最佳化後的軌對軌輸入組態之波德圖與相位邊限(0.35µm)	97
啚	4.30	最佳化後的軌對軌輸入組態之迴轉率(0.35µm)	97
啚	4.31	最佳化後的軌對軌輸入組態之輸出擺幅(0.35µm)	98
啚	4.32	最佳化後的軌對軌輸入組態組態之輸入共模範圍(0.35µm)	98

表目錄

表 2.1	不同運算放大器組態間的效能比較	31
表 3.1	不同尺寸的 NMOS 電晶體所各自擁有的最高本質增益	36
表 3.2	運算放大器規格之一	38
表 3.3	M1 與 M2 的操作點分析結果	39
表 3.4	修正後的 M1 與 M2 的尺寸與操作點分析	40
表 3.5	M5 與 M6 的尺寸與操作點分析結果	41
表 3.6	差動對 M3、M4 的尺寸與操作點分析結果	41
表 3.7	M8 與 M7 的尺寸與操作點分析結果	43
表 3.8	組成兩級組態後的操作點分析結果	43
表 3.9	兩級組態初始設計的效能模擬結果(0.18μm)	47
表 3.10	兩級組態進行電晶體獨立的操作點分析(0.35μm)	47
表 3.11	合成兩級組態後的操作點分析(0.35µm)	48
表 3.12	兩級組態的效能模擬結果(0.35μm)	51
表 3.13	運算放大器規格之二	52
表 3.14	疊接組態進行電晶體獨立操作點分析的結果(0.18μm)	52
表 3.15	合成疊接組態後操作點分析結果(0.18μm)	53
表 3.16	疊接組態之初始設計效能模擬結果(0.18µm)	56
表 3.17	疊接組態進行電晶體獨立操作點分析的結果(0.35μm)	56
表 3.18	合成疊接組態後的操作點分析結果(0.35µm)	57
表 3.19	疊接組態之初始設計效能模擬結果(0.35µm)	60
表 3.20	運算放大器規格之三	60
表 3.21	摺疊疊接組態進行電晶體獨立操作點分析的結果(0.18µm)	61
表 3.22	合成摺疊疊接組態後的操作點分析結果(0.18µm)	62
表 3.23	摺疊疊接組態之初始設計效能模擬結果(0.18µm)	65
表 3.24	摺疊疊接組態進行電晶體獨立操作點分析的結果(0.35µm)	65
表 3.25	合成摺疊疊接組態後的操作點分析結果(0.35µm)	66
表 3.26	摺疊疊接組態之初始設計效能模擬結果(0.35µm)	69
表 3.27	運算放大器規格之四	69
表 3.28	軌對軌輸入組態進行電晶體獨立操作點分析的結果(0.18μm)	70
表 3.29	合成軌對軌輸入組態後的操作點分析結果(0.18µm)	71
表 3.30	軌對軌輸入組態之初始設計效能模擬結果(0.18μm)	74
表 3.31	軌對軌輸入組態進行電晶體獨立操作點分析的結果(0.35µm)	74
表 3.32	合成軌對軌輸入組態後的操作點分析結果(0.35µm)	75
表 3.33	軌對軌輸入組態之初始設計效能模擬結果(0.35μm)	78
表 4.1	兩級組態最佳化後的元件尺寸與偏壓電流	79
表 4.2	最佳化後的兩級組態之效能模擬結果	84
表 4.3	疊接組態最佳化後的元件尺寸與偏壓電流	84
表 4.4	最佳化後的疊接組態之效能模擬結果	89

表 4.5	摺疊疊接組態最佳化後的元件尺寸與偏壓電流	89
表 4.6	最佳化後的摺疊疊接組態之效能模擬結果	94
表 4.7	軌對軌輸入組態最佳化後的元件尺寸與偏壓電流	94
表 4.8	最佳化後的軌對軌輸入組態之效能模擬結果	99

第一章 緒論

1.1 前言

自然界的訊號大多是以類比的形式存在,而類比信號相較於數位 信號而言較不易處理與運用,因此,在各種特殊應用上,會利用類比 雷路先將類比信號做前置處理,之後再轉換成數位信號的形式進行運 算與控制。運算放大器(Operational Amplifier, OPA)是類比電路中最為 關鍵的元件,其應用非常的廣泛,如信號放大、信號取樣、類比數位 轉換(Analog-to-Digital Converter, ADC)、濾波......等等,這些電路的效 能好壞往往都取決於運算放大器的特性參數,如共模拒斥比(Common Mode Rejection Ratio, CMRR)、頻寬(Bandwidth)、開迴路增益(Open-loop Gain)、相位邊限(Phase Margin, PM)、偏移電壓(Offset Voltage)、迴轉率 (Slew Rate, SR)、輸入共模範圍(Input Common Mode Range, ICMR)、輸 出擺幅(Output Swing)......等。運算放大器由原本的離散式元件組裝到 今日的積體化,其性能被大大的提升,而隨著積體電路製程技術的蓬 勃發展,電路效能也不斷的在突破,但由於類比電路中各項參數之間 始終維持著互相限制的關係,使得類比電路的設計變得複雜而且困 難。因此,許多的設計法則以及自動化設計工具軟體亦被發展出來, 但時至今日,類比電路的設計仍然需要仰賴設計者的經驗輔助才得以 快速完成,而不同的設計者便會發展出不同的設計方法,但彼此之間 必定有相容之處。

1

1.2 研究動機

運算放大器是最常被使用的主動元件之一,它已廣泛的被應用於 目前各項非常熱門的領域如生醫電子(Bio-Medical Electronic)、通訊 (Communication)、電源管理(Power-Management)等。運算放大器通常決 定了一個系統的效能,也因為它是如此的重要,所以對於運算放大器 的研究始終持續不斷[1]-[9]。對類比電路設計而言,運算放大器的設計 是必需學習的,因為它是類比電路中最重要的基石。但是類比電路需 多次驗證,設計較為複雜且需考慮的因素較多,其設計過程是一種利 用疊代法則來尋求解答的最佳化,這對於電路設計的初學者而言是非 常耗時與較難學習的。

文獻[10]-[12]提出一個基於手算分析(Hand Calculation)並利用電路 規格來推導電晶體尺寸的設計方法。由於使用的近似公式不夠精確, 模擬與手算分析的結果會有很大的誤差,因此電路規格通常無法符 合,但此法仍提供了非常重要的設計流程。文獻[13]-[14]提出一個利用 gm與ID的比值關係,來推算出電晶體尺寸的方法,通稱為gm/ID法。此 法利用模擬工具來建立所需的設計參數表,因此有較好的準確性而且 快速,是目前非常受歡迎的設計方法。

本研究旨在提出一種新的運算放大器設計方法,可以應用於多種 電路架構,此方法提供簡易快速且無複雜之計算過程,並保有設計者 對參數變動的敏感度;在本研究中將以案例實作過程來說明所提出之 新的運算放大器設計方法,並輔助以模擬結果來驗證設計結果,證明 本研究的運算放大器設計方法為有效而實用的。

2

第二章 運算放大器結構

運算放大器有許多不同的電路結構,這些電路都各自擁有其特 性,理想上,一個運算放大器應具備無窮大之電壓增益與輸入阻抗, 但實際運算放大器電路特性僅能趨近於這些數值,在本章中將探討運 算放大器常見的幾種架構,並個別分析其電路特性,最後針對各項效 能參數進行比較,瞭解不同架構之應用範疇與設計需求。

2.1 兩級組態

2.1.1 電路架構

圖 2.1 典型兩級 CMOS 運算放大器架構

兩級運算放大器之電路如圖 2.1 所示。這個簡單且優雅的電路已經 成為一個經典的電路,並應用在多種 VLSI(Very Large Scale Integrated Circuits)系統設計之中。電路由兩個增益級組成,第一級由差動對 M3-M4 以及它們的電流鏡負載 M1-M2 組成。這個差動放大器擁有一 個足夠的增益範圍,並把差動信號轉換成單端信號,同時也提供一個 合理的共模拒斥比。

差動對是由 M5、M6、M7 所組成的電流鏡的兩個輸出電晶體之一 的 M6 作為偏壓。電流鏡由參考電流 I_{REF} 饋入, I_{REF} 通常是藉著把一個 精密電阻接到正電源電壓 V_{DD}; 如果積體電路中另有更精密的正參考電 壓,則接到這個參考電壓。

第二個增益級由共源極(Common Source)電晶體 M8 以及他的負載 M7 所構成。第二級通常提供一個大的輸出擺幅,此外,它也參與運算 放大器的頻率補償(Frequency Compensation)處理,為了要保證運算放 大器在不同負回授量之下能穩定操作,開迴路增益必須對頻率以均勻 的-20dB/十倍速率下降。因而必須在相當低的頻率加入一個極點(Pole) 並將之安排為頻率響應的主極點(Dominant Pole)。

2.1.2 偏移電壓

在輸入級中元件不可避免的不匹配會造成輸入偏移電壓的上升。 因為元件不匹配為隨機的形式,所產生的偏移電壓為隨機偏移電壓 (Random Offset)。而另一種形式的輸入偏移電壓,稱之為系統偏移電壓 (Systematic Offset),它是出現在所有的元件都完美對稱的時候,這個可 預測的系統偏移電壓可以經由小心的設計將它降到最低。

為了瞭解系統性偏移電壓是如何在圖 2.1 中發生的,將兩輸入端接 地,若輸入級能完美的平衡,則在 M1 的汲極電壓將會等於 M2 的汲極 電壓,而這個電壓亦是 M8 的閘極電壓,換句話說,一個等於 V_{GS2} 的 電壓加到 M8 的閘—源極之間,因此,M8 的汲極電流 I₈將會和 M2 的

4

汲極電流 IBIAS/2 有關,且關係式為:

$$I_{8} = \frac{(W/L)_{8}}{(W/L)_{2}} (I_{BIAS}/2)$$
(2.1)

為了在輸出點不會有偏移電壓的出現,這個電流必須剛好等於 M7 所 負荷的電流 I₇,它會和尾電流源電晶體 M6 有關:

$$I_7 = \frac{\left(W/L\right)_7}{\left(W/L\right)_6} I_{BIAS}$$
(2.2)

這使得 I8=I7的條件可以由(2.1)及(2.2)兩式求得:

$$\frac{(W/L)_8}{(W/L)_2} = 2\frac{(W/L)_7}{(W/L)_6}$$
(2.3)

如果這個條件不能吻合,系統偏移電壓就會產生

2.1.3 輸入共模範圍與輸出擺幅

參考圖 2.1 並考慮當兩個輸入端短路在一起並接到電壓 V_{ICM} 時, V_{ICM} 的最高值必須夠大以使 M3—M4 維持在飽和區。因此 V_{ICM} 的最高值至 多只能比 M3 的汲極電壓(V_{DD}-V_{GS1}=V_{DD}-V_{TH1}-V_{OV1})高一個 V_{TH3}, 因此:

ersity

$$V_{ICM} \le V_{DD} - V_{TH1} - V_{OV1} + V_{TH3}$$
(2.4)

V_{ICM}的最低值應確保 M6 留在飽和區操作,即跨過 M6 的電壓 V_{DS6} 不應低於 V_{OV6}。相同的, M6 的汲極電壓不能超過 V_{SS}+V_{OV6}, 因此 V_{ICM} 的下限為:

$$V_{ICM} \ge V_{SS} + V_{OV6} + V_{TH3} + V_{OV3}$$
(2.5)

合併(2.4)與(2.5)式可得輸入共模範圍為:

$$V_{SS} + V_{OV6} + V_{TH3} + V_{OV3} \le V_{ICM} \le V_{DD} - V_{TH1} - V_{OV1} + V_{TH3}$$
(2.6)

11

過驅電壓降低了輸入共模範圍,因而由 V_{ICM} 的觀點來看, V_{OV} 應儘可能的選擇較小的值。

運算放大器的輸出信號擺幅所容許範圍的下限是由維持 M7 操作 在飽和區的條件所決定的,而上限是由維持 M8 操作在飽和區的條件 所決定,因此:

$$V_{\rm ss} + V_{\rm OV8} \le V_{\rm out} \le V_{\rm DD} - V_{\rm OV7} \tag{2.7}$$

由上式可再次觀察到為了獲得寬廣的輸出電壓擺幅範圍,M7和M8的 過驅電壓應儘可能的小,然而這個要求會砥觸提高單增益頻寬 f_T的需 求。運算放大器的一個重要需求便是要能使其輸出端直接接回負輸入 端以形成一個單增益放大器,對這樣的連接方式,V_{out}容許範圍與V_{ICM} 的容許範圍必須有實質的交疊。

2.1.4 電壓增益

圖 2.2 兩級運算放大器之小信號等效電路

為了決定電壓增益與頻率響應,考慮圖 2.2 的小信號等效電路模型,其中兩個增益級都以轉導放大器為模型,輸入阻抗實質上等於無窮大。第一級的轉導 G_{m1}等於 M3 與 M4 的轉導:

$$G_{m1} = g_{m3} = g_{m4} \tag{2.8}$$

因為 M3 與 M4 操作在相同的偏壓電流 $I_{BIAS}/2$ 與相同的過驅電壓 V_{OV1} = V_{OV2} ,故可寫成:

$$G_{m1} = \frac{2(I_{BIAS} / 2)}{V_{OV3}} = \frac{I_{BIAS}}{V_{OV3}}$$
(2.9)

電阻 R1 代表第一級的輸出電阻,所以:

$$R_1 = r_{o2} // r_{o4} \tag{2.10}$$

其中

$$r_{o2} = \frac{V_{A2}}{I_{BIAS} / 2} \tag{2.11}$$

及

$$r_{o4} = \frac{V_{A4}}{I_{BIAS} / 2} \tag{2.12}$$

所以第一級的增益為:

$$A_{1} = -G_{m1}R_{1} = -g_{m1}(r_{o2} //r_{o4}) = -\frac{\frac{2}{V_{OV3}}}{\left(\frac{1}{V_{A2}} + \frac{1}{V_{A4}}\right)}$$
(2.13)

由上式可觀察到把差動對電晶體 M3 及 M4 操作在較低的過驅電壓,以 及選擇較長的通道長度以提高爾利電壓 V_A(Early Voltage)[12]都可以提 高增益 A₁的絕對值,但這兩種作法都會使放大器的頻率響應劣化。

第二級的轉導 G_{m2} 為: O_{m1} Version

$$G_{m2} = g_{m8} = \frac{2I_{D8}}{V_{OV8}}$$
(2.14)

電阻 R2 代表第二級的輸出阻抗,因此:

$$R_2 = r_{o7} // r_{o8} \tag{2.15}$$

其中

$$r_{o7} = \frac{V_{A7}}{I_{D7}} \tag{2.16}$$

及

$$r_{o8} = \frac{V_{A8}}{I_{D8}} = \frac{V_{A8}}{I_{D7}}$$
(2.17)

第二級的電壓增益可如下求得:

$$A_{2} = -G_{m2}R_{2} = -g_{m8}(r_{o7} // r_{o8}) = -\frac{\frac{2}{V_{OV8}}}{\left(\frac{1}{V_{A7}} + \frac{1}{V_{A8}}\right)}$$
(2.18)

同樣的從上式也可以觀察到若要提高 A2 的絕對值, M8 必須操作在低 過驅電壓, M8 及 M7 的通道長度必須加長, 然而,這兩種做法都會減 少放大器的頻寬,這需要讓設計者做一個重要的取捨。整體的直流電 壓增益為 A1A2 的乘積:

$$A_{V} = A_{1}A_{2} = -G_{m1}R_{1}G_{m2}R_{2} = g_{m3}g_{m8}(r_{o2} // r_{o4})(r_{o7} // r_{o8})$$
(2.19)

最後,運算放大器的輸出阻抗為第二級的輸出阻抗:

$$R_o = r_{o7} // r_{o8} \tag{2.20}$$

因此 R_o可以很大,然而,因為晶片上的電路很少有推動大負載的場合, 大的開路輸出阻抗通常不是問題。

2.1.5 頻率響應與相位邊限

參考圖 2.2 的等效電路,電容 C₁為第一級輸出節點與地之間的總 電容,電容 C₂代表運算放大器輸出節點與地之間的總電容,其中包括 放大器負責推動的負載電容 C_L,通常 C_L 遠大於電晶體內部的寄生電 容,所以 C₂ 遠大於 C₁。整個電路有兩個極點與一個右半平面(Right Half-Plane, RHP)上的零點,其近似式可表示為:

$$f_{p1} \cong \frac{1}{2\pi R_1 R_2 G_{m1} C_C}$$
(2.21)

$$\cong \frac{G_{m2}}{2\pi C_2} \tag{2.22}$$

$$fz \cong \frac{G_{m2}}{2\pi C_C} \tag{2.23}$$

 f_{p2}

$$f_T = \frac{G_{m1}}{2\pi C_C} \tag{2.24}$$

 $f_T = G_{m1}/2\pi C_C$ 必須低於 f_{p2} 及 f_z ,因此在設計上必須滿足下列兩個條件:

$$\frac{G_{m1}}{C_{c}} < \frac{G_{m2}}{C_{2}}$$
(2.25)

$$G_{m1} < G_{m2} \tag{2.26}$$

CMOS 兩級運算放大器的其中一種頻率補償方法稱為米勒補償,它是 一種極點分離的做法,利用米勒倍乘效應來提供一個頻率為 *f*_{p1} 的主極 點並把次極點移到 *f*_T之上以增加相位邊限,相位邊限可如下式求得:

$$PM = +180^{\circ} - \tan^{-1} \left[A_V(0) \right] - \tan^{-1} \left(\frac{f_T}{|f_{p2}|} \right) - \tan^{-1} \left(\frac{f_T}{|f_z|} \right)$$
(2.27)

血竹科

其中 PM 為相位邊限, Av 為直流增益。相位邊限的大小會顯著的影響 閉迴路增益,因此在設計上通常要求在所需規格內求取最小的相位安 全邊限。

圖 2.3 加上一個與 C_c 串聯的電阻 R_c 後的等效電路

對於因零點而造成額外相位差的問題有一個簡單的解決方法,如圖 2.3 所示,將米勒補償電容 C_C 串接一個電阻 R_C,這樣可將零點移到 左半平面(Left Half-Plane)上,加入 R_C後的零點位置可如下式求得:

$$f_{z} = \frac{1}{2\pi C_{c} \left(\frac{1}{G_{m2}} - R_{c}\right)}$$
(2.28)

由上式可知,若選擇 $R_c = 1/G_{m2}$,零點將會被移到無窮大,另一個更好的選擇是讓 $R_c > 1/G_{m2}$,這樣會把零點移到左半平面上,變成增加相位安全邊限。

2.1.6 迴轉率

考慮示於圖 2.4 的單增益隨耦器,輸入為 1V 的步階信號。由於放 大器的動態特性,在時間為零的瞬間,輸出並不會改變。因此,在輸 入加入之後,整個步階信號會以差動信號的形式出現在兩個輸入端之 間,這樣大的信號必然會超過關閉差動對某一邊電晶體所需的電壓, 而把全部的偏壓電流集中到另一邊的電晶體。以圖 2.1 為例,將大信號 加至 M3 的閘極, M4 則與輸出端連接形成單增益形式,此時 M4 將會 被關閉,M3 則會傳導全部的電流 I_{BIAS},因此 M2 會從 C_C提取電流 I_{BIAS}, 輸出電壓將以 I_{BIAS}/C_C 的斜率值上升:

$$V_{out}(t) = \frac{I_{BIAS}}{C_C} t$$
(2.29)

因此迴轉率 SR 為:

$$SR = \frac{I_{BIAS}}{C_C} \tag{2.30}$$

單增益頻率 f_T 與迴轉率SR之間有一個重要的關係,合併(2.24)、(2.30) 兩式並由 $G_{m1}=g_{m3}=I_{BIAS}/V_{OV3}$ 可得如下這個關係式:

$$SR = 2\pi f_T V_{OV3} \tag{2.31}$$

因此,對於某一給定的 f_T,迴轉率由第一級操作的過驅電壓所決定, 把 M3 與 M4 操作在較大的 Vov可得到較高的迴轉率。就一給定的偏壓 電流 I_{BIAS} 而言,若 M3 與 M4 為 p 通道元件,則可以得到較大的 Vov 值,這是在 CMOS 運算放大器的第一級中選用 p 通道元件的一個重要 原因,而還有一個原因是因為這樣可以在第二級使用 n 通道元件,因 為 n 通道元件比起相當尺寸的 p 通道元件有較大的轉導,G_{m2} 會比較 高,可以得到較高的次極點頻率以及相對較高的 f_T。

2.2 疊接組態

2.2.1 電路架構

疊接運算放大器的電路圖如圖 2.5 所示,輸出由單端取出,M7 與
M8 做為差動對且偏壓於一個 I_{BIAS}/2 的電流,M9 與 M10 組成偏壓電路
提供 I_{BIAS} 的偏壓電流,M5 與 M6 為疊接電晶體且其閘極接到一個固定
的直流電壓 V_{BIAS},為了使疊接組態在並聯後的結果仍可以得到高輸出
阻抗,其負載的輸出阻抗也必須擁有同樣等級的大小才行,所以負載
使用疊接電流鏡,由電晶體 M1—M4 組成。C_L為輸出節點的總對地電
容,它包括電晶體內部的寄生電容與下一級的負載電容,在此與兩級
電路不同的是,疊接組態的頻率補償是利用負載電容來達成,所以 C_L

還包括了補償電容。產生 V_{BIAS} 的電路在此雖未畫出,但 V_{BIAS} 的選定對 設計而言是非常重要的。

2.2.2 偏移電壓

以圖 2.5 的單級疊接運算放大器來說,其系統偏移電壓的產生是由 於上半部的 PMOS 電晶體與下半部的 NMOS 電晶體阻抗不匹配所產 生。流經 M2、M4、M6、M8 的電流 I_{BIAS}/2 在每個電晶體都會產生壓 降,而每個電晶體的壓降即是其汲—源極電壓,由於每個電晶體的尺 寸不同,所產生的內部電阻也不同,因此,當 I_{BIAS}/2 的電流流經每個 電晶體時就會造成不同的壓降。當輸出節點以上的 PMOS 電晶體總壓 降 V_{P tot}與輸出節點以下的 NMOS 電晶體總壓降 V_{N tot}不平衡時,輸出 端就會產生一個偏移電壓:

$$V_{offset} = V_{P \text{ tot}} - V_{N \text{ tot}}$$
(2.32)

若要消除這個偏移電壓,且當 VDD=-VSS,則在設計時就必須滿足下式:

niversity

$$V_{SD2} + V_{SD4} = V_{DS6} + V_{DS8} + V_{DS10}$$
(2.33)

2.2.3 輸入共模範圍與輸出擺幅

將兩輸入端短路並接到一個固定電壓 V_{ICM}, V_{ICM}的最高值是讓 M3

與 M4 的過驅電壓能在小於汲—源極電壓的狀況下維持在飽和區工作,故此值只能比 M7 與 M8 的汲極電壓高一個臨界電壓,所以 V_{ICM}的上限為:

$$V_{ICM \max} \le V_{D8} + V_{TH8}$$
 (2.34)

亦可寫成:

$$V_{ICM \max} \ge V_{DD} - V_{OV2} - V_{TH2} - V_{OV4} - V_{TH4} - V_{OV6} + V_{TH8}$$
(2.35)

V_{ICM} 的最低值是要能夠使 M10 維持在飽和區工作,與兩級電路的相同,所以 V_{ICM} 的下限為:

$$V_{ICM \min} = V_{SS} + V_{OV10} + V_{OV8} + V_{TH8}$$
(2.36)

結合(2.35)、(2.36)兩式可得輸入共模範圍:

$$V_{SS} + V_{OV10} + V_{OV8} + V_{TH8} \le V_{ICM} \le V_{DD} - V_{OV2} - V_{TH2} - V_{OV4} - V_{TH4} - V_{OV6}$$
(2.37)

Vout的最大值須使 M2 與 M4 維持在飽和區,由於 M2 與 M4 的閘 極與汲極電壓相同,當源一汲極電壓 V_{SD}與臨界電壓 V_{TH}相等時,電晶 體將會操作在飽和區邊緣,故 Vout 的上限為:

$$V_{out\,\max} = V_{DD} - V_{TH\,2} - V_{TH\,4} \tag{2.38}$$

此值比 V_{DD} 低兩個臨界電壓,這是疊接電路較不理想的地方,不過另一邊就較為理想。V_{out}的最低值須維持 M6、M8、M10 維持在飽和區操作,故 V_{out}的下限為:

$$V_{out\min} = V_{SS} + V_{OV10} + V_{OV8} + V_{OV6}$$
(2.39)

此值至少需比 Vss 大三個過驅電壓。疊接運算放大器在次微米製程下較 無發揮空間,原因是疊接組態本身的輸入共模範圍與輸出擺幅已被受 限,加上供應電壓日漸降低,所以在先進製程中疊接組態的應用將會 備受考驗。

2.2.4 電壓增益

疊接運算放大器的轉導 Gm等於差動對電晶體個別的 gm:

$$G_m = g_{m7} = g_{m8} = \frac{I_{BIAS}}{V_{OV8}}$$
(2.40)

輸出阻抗 R_o為疊接放大器輸出阻抗與疊接電流鏡輸出阻抗的並聯,所以:

$$R_o = g_{m6} r_{o6} r_{o8} // g_{m4} r_{o4} r_{o2}$$
(2.41)

結合(2.40)與(2.41)兩式可以得到電壓增益:

$$A_{\rm V} = g_{m8} \left(g_{m6} r_{o6} r_{o8} / / g_{m4} r_{o4} r_{o2} \right) \tag{2.42}$$

疊接組態的高輸出阻抗特性經常被用來提升電壓增益。

2.2.5 頻率響應

疊接運算放大器的小信號等效電路如圖 2.6 所示。由於疊接組態具
有屏蔽米勒電容效應[12]的特性,所以其頻率響應較兩級組態佳,參考
圖 2.6 可寫出其輸入與輸出之關係式為:

$$\frac{v_{out}}{v_{in}} = \frac{G_m R_o}{1 + SC_L R_o}$$
(2.43)

其主極點為:

$$f_p = \frac{1}{2\pi C_L R_o} \tag{2.44}$$

而單增益頻率 fr為:

$$f_T = G_m R_o f_p = \frac{G_m}{2\pi C_L} \tag{2.45}$$

從設計的觀點, C_L的值應該要使 f=f_T時由非主極點產生的額外相位小 到能滿足相位邊限的需求。若 C_L太小而無法達到這個要求, 可將之加 大。增加負載電容在不同的電路架構中會引起不同的效應。在兩級電 路中, 若增加 C_L, 次極點的頻率下降, 相位邊限會減少。而在此電路 中剛好相反, C_L增加時f_T下降, 而相位安全邊限會增加, 原因是因為 在疊接組態中 C_L並不會使極點分離, 而增加 C_L 會單純的將單增益頻率 f_T的位置往靠近原點的地方移動, 使頻寬減少, 因此會增加相位安全邊 限。

2.2.6 迴轉率

參考圖 2.5 的電路,當輸入端加入一個大的差動信號時,M7 或 M8 其中之一會關閉,假設 M8 被關閉,則 M6 亦會被關閉,此時 M7 會導通所有的偏壓電流 I_{BIAS}。因為電流鏡的作用,M2 與 M4 的路徑亦 會流過相同的電流,此電流將會流到輸出端,因此,輸出端的信號將 會以一線性斜率上升,此斜率即為疊接組態的迴轉率:

$$SR = \frac{I_{BIAS}}{C_L} \tag{2.46}$$

結合(2.40)、(2.45)與(2.46)可得 SR 與 f_T的關係如下:

$$SR = 2\pi f_T V_{OV8} \tag{2.47}$$

與兩級之關係式相同。

2.3 摺疊疊接組態

2.3.1 電路架構

圖 2.7 摺疊疊接運算放大器的電路架構

圖 2.7 所示為 CMOS 摺疊疊接運算放大器的結構。在此,M3 及 M4 構成輸入差動對,M7 及 M8 為疊接電晶體,且其閘極被接到一個 固定的直流電壓 V_{BIAS2},因此等於信號接地。輸入差動對是以一定電流 源 I_{BIAS}做偏壓,因此電晶體 M3 與 M4 的偏壓電流分別為 I_{BIAS}/2。由 M7 與 M8 各自汲極上的節點方程式可分別求出其偏壓電流為 (I_B- $I_{BIAS}/2$)。令 I_B 等於 I_{BIAS} 可使所有電晶體接操作在 $I_{BIAS}/2$ 的偏壓電流之下,然而,通常 I_B 的值會大於 I_{BIAS} 。

假若完全實現因疊接結構所帶來的高輸出阻抗的優點,那麼電流 鏡負載的輸出電阻也必須作得一樣高才行,這就是在圖 2.7 的電路中使 用疊接電流鏡 M9—M12 的原因。電路輸出端的 C_L 代表的是輸出節點 的總電容,它包括電晶體內部的寄生電容與實際的負載電容以及為了 作頻率補償特地加上的額外電容,這裡與兩級架構不同的是,兩級架 構需要加上一個另外的補償電容 C_C,但在此電路中是用負載電容來作 頻率補償。

電晶體 M1 與 M2 是用來提供固定偏壓電流 I_B 的, M5 與 M6 則是 用來提供定電流 I_{BIAS}來偏壓差動對。電路中用來產生偏壓電壓 V_{BIAS1}、 V_{BIAS2} 的電路並未畫出,儘管如此,如何選擇這些偏壓電壓是非常重要 的,所以必須瞭解此電路的輸入共模範圍與輸出擺幅。

2.3.2 偏移電壓

" University of

摺疊疊接運算放大器與疊接運算放大器之產生系統偏移電壓的原因相同,皆是由於輸出端上下兩部分的電晶體的汲—源極電壓的總和 不平衡所產生,參考圖 2.7,當 V_{DD}=-V_{SS},要消除此偏移電壓必須滿 足下式:

$$V_{SD2} + V_{SD8} = V_{DS10} + V_{DS12} \tag{2.48}$$

2.3.3 輸入共模範圍與輸出擺幅

為了求輸入共模範圍,將兩個輸入端短路在一起並接到電壓 V_{ICM}。V_{ICM}的最高值的限制是使 M3 及 M4 永遠維持在飽和區,因此 V_{ICM} max 最高只能比 M3 與 M4 的汲極電壓高一個 V_{TH3}。而這兩個電晶 體的汲極電壓是由 V_{BIAS2} 決定並需容許跨過 M1 與 M2 的電壓至少等於 他們的過驅電壓。假設 M1 與 M2 確實操作在飽和區的邊緣,V_{ICM} max 將為:

$$V_{ICM \max} = V_{DD} - |V_{OV1}| + V_{TH3}$$
(2.49)

此值可以大過 V_{DD},比起雙級電路這是一個重大的改進。V_{BIAS1}之值必 須適當的選擇以產生所需的 I_B,同時也要讓 M1 與 M2 操作在較小的 V_{OV}值。V_{ICM}的最小值與兩級電路的相同,即:

$$V_{ICM \min} = V_{SS} + V_{OV6} + V_{OV3} + V_{TH3}$$
(2.50)

結合(2.49)與(2.50)兩式可得輸入共模範圍:

$$V_{SS} + V_{OV6} + V_{OV3} + V_{TH3} \le V_{ICM} \le V_{DD} - |V_{OV1}| + V_{TH3}$$
(2.51)

Vout 容許範圍的上限由維持 M2 及 M8 在飽和區的條件決定,其中 M2 只要有過驅電壓 Vov2 跨在源——汲極之上就可以操作在飽和區。因此
若我們選擇 V_{BIAS2} 值使 M2 操作在飽和區邊緣就可以得到 V_{out} 正擺幅的 最大值,此 V_{BIAS} 值為:

$$V_{BIAS2} = V_{DD} - |V_{OV2}| - V_{SG8}$$
(2.52)

Vout 的上限將為:

$$V_{out\,\max} = V_{DD} - |V_{OV2}| - |V_{OV8}| \tag{2.53}$$

此值比 V_{DD} 低兩個過驅電壓。然而再另一邊的狀況就沒這麼好了,因為 M10 的閘極電壓為 V_{SS}+V_{GS11}+V_{GS9},當 M10 達到飽和區邊緣,即當 V_{out} 降到比 M10 的閘極電壓低一個 V_{TH6}時,可得 V_{out} 的最低值:

$$V_{out\,\min} = V_{SS} + V_{OV11} + V_{OV9} + V_{TH6}$$
(2.54)

注意此值比 V_{ss} 高兩個過驅電壓加上一個臨界電壓,這是使用疊接電流鏡的一個缺點。

2.3.4 電壓增益

摺疊疊接運算放大器其實就是一個具有一個無窮大的輸入電阻、 一個轉導 *G_m與一個輸出阻抗 R_o*的轉導放大器,*G_m等於差*動對電晶體 個別的 *g_m*:

$$G_m = g_{m3} = g_{m4} = \frac{I_{BIAS}}{V_{OV3}}$$
(2.55)

輸出阻抗 R_o為疊接放大器輸出阻抗與疊接電流鏡輸出阻抗的並聯,因此:

$$R_{o} = \left[g_{m8}r_{o8}\left(r_{o2} //r_{o4}\right)\right] //g_{m10}r_{o10}r_{o12}$$
(2.56)

結合(2.55)與(2.56)兩式可以得到電壓增益:

$$A_{V} = g_{m3} \left\{ \left[g_{m8} r_{o8} (r_{o2} // r_{o4}) \right] // g_{m10} r_{o10} r_{o12} \right\}$$
(2.57)

因為摺疊疊接運算放大器是一個轉導放大器,它又被稱為運算轉導放大器(Operational Transconductance Amplifier, OTA),它高達 gmr_o²的輸出阻抗能使單一級的放大器實現相當高的電壓增益。

iversity

2.3.5 頻率響應

疊接組態擁有屏蔽(Shielding Property)輸入元件的特性[10],使其輸 出端電壓免於變化,因此,摺疊疊接運算放大器的頻率響應極佳。它 在輸入端、疊接電晶體連接處(即 M7 與 M8 的源極)以及在輸出端都有 極點,通常前兩個極點的頻率很高。當加入很大的負載電容 CL 時,輸 出端的極點會變成主極點,由圖 2.7 可得到與疊接運算放大器相同的關 係式,所以其主極點與單頻率增益分別可以(2.44)與(2.45)式表示。

2.3.6 迴轉率

考慮圖 2.7,當大信號被加入輸入端使得差動對電晶體 M4 截止 時,另一個電晶體 M3 會導通全部的偏壓電流 I_{BIAS} ,此時 M7 的電流將 為 $(I_B - I_{BIAS})$,而 M8 的電流將為 I_B 。電流鏡將會看到輸入電流 $(I_B - I_{BIAS})$ 流過 M9 與 M11,因此在 M10 的汲極電流將為 $(I_B - I_{BIAS})$,這使得在輸 出節點流進 C_L 的電流將為 $I_8 - I_{10} = I_B - (I_B - I_{BIAS}) = I_{BIAS}$ 。因此輸出電壓 V_{out} 將會呈線性斜坡上升,斜率為 I_{BIAS}/C_L ,即為其迴轉率。摺疊疊接組 態與疊接組態之迴轉率相等,可參考(2.46)式。在設計時選擇 $I_B > I_{BIAS}$ 的原因是要避免把電流鏡 M7、M9、M11 完全關閉,如果電流鏡被關 閉則電路會無法正常工作,通常 I_B 會設計為 110%~120%的 I_{BIAS} 。結合 (2.55)、(2.45)與(2.46)三式可得出 SR 與 f_T 的關係如下:

$$SR = 2\pi f_T V_{OV3}$$

(2.58)

與兩級電路的關係式相同,然而此關係式只在 IB>IBIAS 時成立。

2.4 軌對軌輸入組態

2.4.1 電路架構

摺疊疊接組態的輸入共模範圍的上限雖然超過 V_{DD},但下限卻遠大 於 V_{SS}。如果把輸入差動對改用 PMOS 電晶體,則上下限的情況會倒換 過來。所以,如果把一個 NMOS 差動對與另一個 PMOS 差動對並聯起 來,如圖 2.8 所示,會使輸入級的共模範圍在上下限都能超過電源電 壓,這就是軌對軌輸入操作的電路架構。為了使電路看起來簡單,上 圖並未畫出兩差動對輸入端的並聯連結與提供固定電壓 V_{BIAS1~4} 的電 路,其中負載電容 C_L亦未畫出。兩輸入差動對的正輸入端與負輸入端 分別被接在一起,電晶體 M6 與 M7 是差動對 M3 與 M4 的疊接電晶體, 而 M8 與 M9 是 M11 與 M12 的疊接電晶體。輸出電壓 V_{out} 由疊接電晶 體的汲極直接以單端的方式取出。軌對軌輸入操作可使摺疊疊接組態 的輸入共模範圍擴展到正負電源,此架構已被用到許多商用的運算放 大器之上。

2.4.2 偏移電壓

對於各種不同架構的運算放大器來說,其系統偏移電壓的產生原 因大致上都相同,可以直接由觀察其輸出端路徑而得出結果。軌對軌 輸入架構的系統偏移電壓亦是受輸出端路徑的 PMOS 與 NMOS 電晶體 所影響,其上半部的 PMOS 電晶體 M1、M2、M6、M7 與下半部的 NMOS 電晶體 M8、M9、M13、M14,若是能經由電性設計使其在各自的汲— 源極電壓的總和取得平衡,即可消除在輸出端所產生的系統偏移電 壓,因此,其關係式為:

$$V_{SD2} + V_{SD7} = V_{DS9} + V_{DS13}$$

(2.59)

2.4.3 輸入共模範圍與輸出擺幅

軌對軌輸入架構的輸入共模範圍的上限發生在 NMOS 差動對工作 而 PMOS 差動對被關閉時,此時的輸入共模範圍上限為:

rsity

$$V_{ICM \max} = V_{DD} - V_{OV2} + V_{TH3}$$
(2.60)

此值將可高過 VDD,而共模輸入範圍的下限發生在 PMOS 差動對工作

而 NMOS 差動對關閉時,因此輸入共模範圍的下限為:

$$V_{ICM \min} = V_{SS} + V_{OV14} - V_{TH12}$$
(2.61)

此值將可低過 Vss。

輸出端的電壓擺幅的上限由維持 M2 與 M7 在飽和區工作的條件決 定, M2 與 M7 的閘極皆是外接固定電壓,所以當其汲—源極電壓等於 過驅電壓時,電晶體將操作在飽和區邊緣,故可得到輸出擺幅的上限 為:

$$V_{out\,\max} = V_{DD} - V_{OV2} - V_{OV7} \tag{2.62}$$

由於是上下對稱的電路結構,所以輸出擺幅下限亦是由維持電晶體 M9 與 M14 在飽和區操作的條件決定,所以可得到:

$$V_{out\,\min} = V_{SS} + V_{OV14} + V_{OV9}$$
(2.63)

2.4.4 電壓增益

若設計兩組差動對之過驅電壓相等,當兩組差動對同時操作時, 輸出端將會被饋入兩倍的電流,此時電路轉導為:

$$G_m = g_{m4} = g_{m12} = \frac{I_{BIAS}}{V_{OV4}} = \frac{I_{BIAS}}{V_{OV12}}$$
(2.64)

輸出阻抗 R_o為疊接放大器輸出阻抗與疊接電流鏡輸出阻抗的並聯,因此:

$$R_{o} = \left[g_{m6}r_{o6}(r_{o2} / / r_{o4})\right] / \left[g_{m8}r_{o8}(r_{o11} / / r_{o13})\right]$$
(2.65)

結合(2.65)與(2.66)兩式可得電壓增益為:

$$A_{V} = g_{m4} \{ [g_{m6}r_{o6}(r_{o2} //r_{o4}] // [g_{m8}r_{o8}(r_{o11} //r_{o13})] \}$$
(2.66)

然而,這是假設兩組差動對同時操作,這只發生在一定的 V_{ICM}範圍之內,此範圍是由 NMOS 差動對共模輸入範圍的下限與 PMOS 差動 對共模輸入範圍的上限決定,超出這個範圍,兩組差動對只有其中之 一能夠工作,此時輸出端的電流會減半而使轉導 G_m減半,電壓增益就 會降為(2.66)式的一半。

Iniversity of

2.4.5 頻率響應

軌對軌輸入摺疊疊接組態的小信號等效電路可參考圖 2.6。其頻率 響應關係式與疊接組態、摺疊疊接組態相同,只是其輸出阻抗與輸出 端對地電容各有不同而已,所以其支被性極點與單頻率增益亦分別與 (2.44)、(2.45)式同。但是此情況的前提是兩組差動對同時工作,否則其 頻率響應亦會改變。

2.4.6 迴轉率

考慮圖 2.8 之電路,當一個大信號加入輸入端時,電晶體 M4 與 M11、M12 將被關閉,此時 M3 將會導通全部的偏壓電流 I_{BIAS},而 M6 與 M8 則會流入一個(I_B-I_{BIAS})的電流,M7 則會流入一個 IB 的電流。 由於電流鏡 M8 與 M9 的關係,M9 的汲極電流將會等於(I_B-I_{BIAS}),所 以輸出端將會被饋入一個 I_{BIAS} 的電流,因此輸出電壓將會以一固定斜 率 I_{BIAS}/C_L 呈線性上升,此斜率即為迴轉率,與上述之疊接組態,摺疊 疊接組態相同。結合 (2.45)、(2.46)與(2.65)三式求出迴轉率與單增益頻 率之關係式,可得出相同的結果。

2.5 比較

在本章中我們對於運算放大器的討論引進了四個基本組態,分別 是兩級組態、疊接組態、摺疊疊接組態與軌對軌輸入組態。表 2.1 整理 出了每個運算放大器的重要參數,比較與了解這些電路的特性以對應 其應用是非常重要的。

	Gain	Output Swing	Speed	P _d	Noise
Two-Stage	Highest	Highest	Low	Medium	Low
Cascode	High	Low	Highest	Low	Low
Folded-Cascode	Medium	Medium	High	High	Medium
Rail-toRail	Medium	Medium	Medium	High	High

表 2.1 不同運算放大器組態間的效能比較

第三章 設計方法論

3.1 設計方法與流程 (Design Approaches and Flow)

3.1.1 設計流程

運算放大器的設計步驟大略可以分成兩個部份,首先,經由不同 的設計方法來產生一個描述電路中所有主動元件與被動元件連接情形 的電路圖,其中包含電晶體尺寸與被動元件的數值等等,在這個階段 所得出的結果可稱之為初始設計(Initial Design),而初始設計必須與規 格需求有一定程度的謀合。第二個部份就是針對所給定的規格,將初 始設計做最佳化,使每一項效能參數都能滿足規格的需求,這個部份 通常都是進行電晶體的尺寸微調工作,經過最佳化的調整後才算完成 了整個設計,圖 3.1 即描述了這個概念。

圖 3.1 規格需求與初始設計之關係圖

那要如何產生一個與規格需求相近的初始設計呢?以一個單一 MOS 電晶體來說,本質增益(Intrisic Gain)與單增益頻率(Unit-Gain Frequency)這兩者之間存在著互相限制的關係,因此,若是要設計一個 高增益的運算放大器,則其頻寬就會相對的降低,反之亦然。對運算 放大器而言,最重要的效能參數即是增益與頻寬,所以必須依照其規 格需求來做取捨,而過驅電壓對增益與頻寬皆有很大的影響,考慮 3.1 與 3.2 式[12]:

$$A_{0} = \frac{2V'_{A}L}{V_{OV}}$$
(3.1)

$$T_T \cong \frac{1.5\mu_n V_{OV}}{2\pi L^2} \tag{3.2}$$

其中 A₀為本質增益、V_A為製程參數、L為電晶體通道長度、f_T為單增 益頻率、μ_n為載子移動率;由上式可看出,當過驅電壓 V_{ov}低的時候, 增益會上升,頻寬會下降,而當過驅電壓高的時候則相反,這個部份 在後續會有更詳細的討論。本論文的研究重點就是藉由過驅電壓來設 定電路的特性,並快速的產生一個與規格需求相近的初始設計,進而 創造出一個新的設計方法。

本文所提之方法可以概述如下:首先,在多數的設計中,當每個 電晶體都操作在飽和區時,電路通常能夠正常工作,也就是說當電晶 體全部操作在飽和區時,就能夠擁有一定程度的基礎效能。為了將電 晶體設計在飽和區操作,本文針對所提出的方法做了一項定義:任何 電路之中的任一個 MOS 電晶體被單獨取出後,其原先所流過的電流,

32

可藉由加入汲、閘、源極三個端點電壓以及調整電晶體尺寸來產生同樣的電流。

圖 3.2 為一個典型的差動放大器電路,當電路平衡的時候,I_{BIAS}平 均分配在 M1-M3 與 M2-M4 兩條路徑,故其電流皆為 I_{BIAS}/2,其中, M2 的電晶體尺寸為(W/L)₂,三個端點電壓分別為 V_{D2}、V_{G2}與 V_{S2},若 將 M2 電晶體單獨取出,並在其三端點都加上欲設計的電壓值 V_D、V_G 與 V_S如圖 3.3 所示。若此三端點電壓滿足飽和區操作的條件,且將尺 寸調整為(W/L)就可以得到與原先電路中相同的電流 I_{BIAS}/2,當 M2 的 電流等於 I_{BIAS}/2 時,即使將尺寸已被調整為(W/L)的 M2 放回原電路中, 也不會改變已設計好的三端點電壓的值,因為尺寸已經被適當的調整 以負荷 I_{BIAS}/2 的電流,此時三端點電壓依然是 V_D、V_G與 V_S。本文將會 以此法來設計電晶體進入飽和區操作,並實作四種不同的電路架構。

圖 3.2 典型的主動負載差動放大器

圖 3.3 單獨取出 M1 並加上三個端點電壓

圖 3.4 為本論文所提出之設計流程,首先,必須先訂定所有的需求 與邊界條件,然後針對這些規格來選擇要使用的電路架構,對大多數 的情況而言,電路架構在整個設計的過程中都不會改變,但有時必須 調整所選擇的電路架構以獲得某些特性,在必要時甚至要創造新的電 路架構。接著要選擇偏壓電流(Bias Current)、電晶體通道長度(Length) 與過驅電壓,這三項參數的選擇將會決定初使設計的電路特性,在接 下來的三個小節 3.1.2~3.1.4 我們將詳細探討這三項參數對電路的影響。

3.1.2 偏壓電流的決定

偏壓電流的大小與迴轉率、頻寬成正比,選擇較大的偏壓電流對 於電路來說就能夠有較大的驅動力與速度,但是相對的功率消耗也會 增加。因此,必須依照規格的需求來決定偏壓電流的大小,通常有兩 種方法可以幫助設計者來估計這個值。第一種方法就是利用偏壓電流 與迴轉率的公式來估算,由式(2.30)與(2.46)可知,多數的運算放大器電 路架構其迴轉率都與偏壓電流和輸出端的負載電容有關(兩級架構是與 補償電容有關),因此我們可就規格中迴轉率的需求與負載來估算出偏 壓電流大約的值。第二種方法則是以功率消耗和供應電壓的邊限條件 來求出可容許的最大偏壓電流的值。因為偏壓電流是直流電流,所以 可藉由規格需求中所訂定的功率消耗上限與供應電壓來求出此值,然 後就以此值來做為設計參數。不管使用何種方法,若是初始設計無法 完全滿足規格,則偏壓電流仍然會被適當的調整。

3.1.3 通道長度與本質增益

電晶體的通道長度會影響到臨界電壓與本質增益的大小。我們利 用 12 個不同尺寸的 NMOS 電晶體進行本質增益的模擬,表 3.1 整理出 12 個不同尺寸的 NMOS 電晶體所各自擁有的最高本質增益值。本質增 益[12]的定義為單一個 MOS 電晶體的轉導 gm 與輸出阻抗 ro 的乘積,它 所代表的意思就是單一個電晶體直流增益的極限值。因此,若是需要 高增益,則必須選擇高本質增益的電晶體,由表 3.1 可知,本質增益與 通道長度L成正比,且幾乎與電晶體的寬度W無關,這間接說明了本 質增益與汲極電流 Io 無關,因此,通道長度較長的電晶體其本質增益 會較高。我們可藉由規格的需求來選擇適當的電晶體長度,一般來說, 所選擇的電晶體,其擁有的最高本質增益必須大於電路所需要的直流 增益。

	Size(W/L)	Intrinsic Gain	-
	4μ/0.5μ	219	
	8μ/0.5μ	224	
1-1	12μ/0.5μ	225	
15	8μ/1μ	333	TN
1000	16μ/1μ	333	125.1
LEV	24µ/1µ	333	1-4000
	12μ/1.5μ	431	
	24µ/1.5µ	431	
	36µ/1.5µ	431	
Z	16μ/2μ	519	
2	32µ/2µ	519	J.or
Q	48µ/2µ	519	101

表 3.	1	不同尺	寸的	NMOS	雷	品體所名	- 白	擁	有的	最:	高太	質	矰	厶
$-\infty$		11111						176.	/ H J	- A AL I	WJ		- H	

3.1.4 過驅電壓與電流調校

我們利用 12 個不同尺寸的電晶體來模擬本質增益與過驅電壓的關 係,以觀察過驅電壓對電路設計的影響,模擬結果如圖 3.5 所示。我們 可以看出,不同尺寸的電晶體的本質增益大小雖然不一樣,但是其最 高值幾乎都發生在同一個過驅電壓的區間範圍內,這就說明了當過驅 電壓設定在這個範圍時,電晶體會得到較大的本質增益,並且電路的 直流增益也會因此提升。因此,過驅電壓的選擇將會決定電路在直流 增益與頻寬上的特性,因為這兩者是互相限制的。一般來說,若需要 高增益,則過驅電壓必須要適當的低,通常為 0.1~0.3V 之間,若頻寬 的需求較高,則過驅電壓亦要適當的提高。對於 NMOS 與 PMOS 來說, 由於 PMOS 的載子移動率(Mobility)較低,所以 PMOS 的過驅電壓通常 會選擇一個稍大於 NMOS 過驅電壓的值,以降低電晶體尺寸。

決定了過驅電壓之後也就決定了電路的初始特性,接著就可以進 行直流分析來推算電路中各節點的電壓,考慮操作在飽和區的條件如 (3.1)式所示:

$$V_{DS} \ge \left(V_{GS} - V_{TH}\right) \tag{3.3}$$

其中(V_{GS}-V_{TH})即為過驅電壓,利用上式即可推算出電晶體操作在飽和 區時的各端點電壓,然後對每個電晶體個別加上這些電壓並藉由 HSpice 進行操作點分析來比對汲極電流的值,這個步驟即為電流調 校。經過反覆的調整尺寸,當汲極電流完全相等於原電路的電流時, 則推算出的節點電壓將成立,此時就可以得到電晶體的尺寸。如此反 覆的使用同樣的方法,將每個電晶體的尺寸都找出來後,初始設計就 完成了,接著針對各項效能參數作模擬量測,然後進行最佳化的尺寸 微調,使初始設計能完全符合規格的需求。

3.2 丙級組態之設計

以下將分別以四種不同的電路架構來實現四個不同的規格需求, 並使用 0.18μm 與 0.35μm 兩種製程來模擬。兩級組態的電路架構如圖 2.1 所示,規格需求如表 3.1 所示,首先,電源供應上限為 3V,故使用 V_{DD}與 V_{SS} 分別為+1.5V、-1.5V,偏壓電流可藉由(2.30)式來決定,計 算出的結果為 22μA,取 30μA。考慮到需同時满足增益以及頻寬的需 求,電晶體通道長度與過驅電壓設為 1μm 與 0.2V,接下來即可對電路 進行直流分析以獲取各節點電壓。

Specification	Requirement
Supply Voltage	3V
DC Gain	$\geq 80 \text{ dB}$
Phase Margin	$\geq 60^{\circ}$
Gain-Bandwidth	$\geq 10 \text{MHz}$
Common Mode Rejection Ratio	$\geq 80 \text{ dB}$
Slew Rate	$\geq 20 V/\mu s$
Input Common Mode Range	$\geq 2V$
Output Swing	$\geq 2V$
Loading	\geq 5pF
Power dissipation	$\leq 1 \mathrm{mW}$

表 3.2 運算放大器規格之一

首先,針對 M1 與 M2 進行設計,M1、M2 為一個尺寸匹配的 PMOS 電流鏡負載,而 PMOS 在 0.18µm 製程下,當通道長度為 1µm 且不考 慮本體效應時,臨界電壓的典型值約為 0.46V。因此,根據電晶體必須 操作在飽和區的原則,考慮 3.3 式可得出 M1、M2 的源-閘極電壓為 V_{SGI} = $V_{THP}+V_{OV} = 0.46V+0.2V=0.66V$,故 M1、M2 的閘極、汲極電壓 V_{GI} = $V_{DI}=V_{G2} = V_{D2}=0.84V$,接著利用 HSpice 來進行模擬,將所得到的 三端點電壓都加在一個 PMOS 電晶體上,操作點分析的結果如表 3.2 所示,Netlist 檔的範例如下:

Netlist:

M1 VD VG VS VB PCH W=8µ L=1µ M=1 VD VD GND 0.84 VG VG GND 0.84 VS VS GND 1.5 VB VB GND 1.5 .op

	WII 兴	1112 的保行 脑力 机
	Device	M1&M2
2	Tech.	TSMC 0.18µm
	Size	8μ/1μ
	Region	Saturation
_	I_D	11.7454µ
_	V_{GS}	-660.0000m
_	V_{DS}	-660.0000m
_	V_{BS}	0
_	V_{TH}	-458.4255m
_	V_{OV}	-201.5745 m
_	g_m	98.2040µ
	g_{ds}	560.7221n

長 3.3 M1 與 M2 的操作點分析結果

Netlist 範例中的電晶體通道寬度 W=8µ 是隨機決定的,此值可為 任意值,而以這個電晶體尺寸所得出的電流可以當作一個基準值,然 後依照汲極電流與電晶體通道寬度的比值關係來進行調整。由表 3.2 可以得知電晶體操作在飽和區,汲極電流 I_D為 11.7454μA,而就預設 的偏壓電流而言,M1、M2 電晶體流過的電流為 I_{BIAS} /2=15μA,故需 調整尺寸以負荷 15μA 的電流,尺寸的調整可利用下列的關係式來計算 出適當的電晶體通道寬度 W(Width):

$$\frac{W_1}{W_2} = \frac{I_{D1}}{I_{D2}}$$
(3.4)

其中 I_{D1} 為基準值電流 11.7454μA, I_{D2} 則為電晶體的預設汲極電流 15μA,於是可得電晶體通道寬度 W=8μ×(15μ÷11.745μ)=10.2μ,再將 此值代入 Netlist 檔做修正,然後再進行一次操作點分析即可得到非常 接近預設電流的值 15.0051μA,如表 3.3 所示。當調整後的尺寸所產生 的電流完全相等於預設值時,則原先所計算出的端點電壓亦會相等。

Device	M1&M2
Tech.	TSMC 0.18µm
Size	10.2µ/1µ
Region	Saturation
I_D	15.0051µ
V_{GS}	-660.0000m
V_{DS}	-660.0000m
V_{BS}	0
V_{TH}	-458.6379m
V_{OV}	-201.3621m
g_m	125.5656µ
g_{ds}	716.9955n

表 3.4 修正後的 M1 與 M2 的尺寸與操作點分析

接著進行 NMOS 電晶體 M5 與 M6 的設計, M5 與 M6 是尺寸匹配的電流源電路, NMOS 的臨界電壓典型值為 0.48V, 運用同樣的方式即

40

可得出 M5 的開極、汲極電壓 $V_{G5} = V_{D5} = -0.82V$, M6 的汲極電壓由於 會受到第一級電路的影響,所以會與 M5 的汲極電壓不相等,加上通 道長度調變效應的影響,M5、M6 的汲極電流會產生一差值,這個差 值電流會使參考電流無法完美的被複製,因此,偏壓電流將會出現些 微的偏移量,這個偏移量可經由適當的調整 M6 電晶體的尺寸來獲得 抵補。得到了 M5 的開極、汲極電壓之後,可利用同樣的方式與預設 電流進行比對然後獲得其尺寸;在進一步確認 M6 的汲極電壓之前, M5 與 M6 是互相匹配的,所以可預設 $V_{D5} = V_{D6} = -0.82V$ 且他們的尺 寸相同,其操作點分析如表 3.4 所示。

差動對電晶體 M3、M4 因為受到本體效應的影響,其臨界電壓值 將會產生變動,故無法套用 NMOS 的典型值來計算出源極電壓,所以 先以 $V_{D5}=V_{D6}=-0.82V$ 作為參考值,之後再進行修正。差動對的三個 端點 電壓分別為 $V_{D3}=V_{D4}=0.84V$ 、 $V_{G3}=V_{G4}=0V$ 、 $V_{S3}=V_{S4}=-$ 0.82V,進行電流比對與操作點分析的結果如表 3.5 所示。圖中可以看 出差動對 M3、M4 的臨界電壓 $V_{TH3}=0.65V$,對過驅電壓為 0.2V 而言, 閘-源極電壓 V_{GS3} 應為 0.85V,由於只與參考值相差 0.03V,所以將不 再進行修正。

Device	M5&M6
Tech.	TSMC 0.18µm
Size	3.3µ/1µ
Region	Saturation
I_D	30.2852µ
V_{GS}	680.0000m
V_{DS}	680.0000m
V_{BS}	0
V_{TH}	483.5568m
V_{OV}	196.4432m
g_m	250.3559µ
g_{ds}	1.3236µ

表 3.5 M5 與 M6 的尺寸與操作點分析結果

14	
Device	M3&M4
Tech.	TSMC 0.18µm
Size	2.1µ/1µ
Region	Saturation
I_D	15.0181µ
V_{GS}	820.0000m
V_{DS}	1.6600
V_{BS}	-680.0000m
V _{TH}	651.8614m
V_{OV}	168.1386m
<i>g</i> _m	138.5811µ
	118 7827n

表 3.6 差動對 M3、M4 的尺寸與操作點分析結果

University

到目前為止,第一級的部分已經完成,現在要進行第二級的共源 極組態的設計,第二級電路的設計著重在相位邊限與頻寬的需求,通 常必須加入補償電路來增加相位邊限,兩級運算放大器典型的補償型 式為米勒補償(Miller Compensation),加入米勒補償電路後的輸出端與 輸入端的等效對地總電阻與電容將會分別決定主極點與次極點的位 置,並產生一個 RHP 零點(Right Half-Plane Zero)。極點的產生是因為 負載電容通常遠大於寄生電容而第一級的輸出阻抗通常很大,對於一 個具有兩個極點與一個 RHP 零點的運算放大器模型而言,一般相位邊 限為 60°被認為是最佳值,其值可以(2.26)式求得,假設直流增益 A_V很大,當零點等於 10 倍的 GB,次極點等於 2.2 倍的 GB 時,可得到 60°的相位邊限,要得到 10 倍 GB 的零點可套用以下的關係式:

$$g_{m8} \ge 10g_{m4}$$
 (3.6)

其中 gm4 與 gm8 分別為電晶體 M4 與 M8 的轉導值,由於已經知道電晶 體 M4 的轉導為 gm4=138µ,故 M8 的轉導 gm8=1.38m。令輸出偏移電 壓(Offset Voltage)為理想的 0V,即可求出轉導為 1.38m 的電晶體尺寸 與汲極電流 I_{D8},而電晶體 M7 的汲極電流 I_{D7}必須等於 I_{D8},則預設的 偏移電壓才會為理想的 0V,M8 與 M7 電晶體的尺寸與操作點分析結 果如表 3.6、3.7 所示。最後,利用這些個別模擬出來的尺寸代入圖 2.1 進行模擬,表 3.7 為完整電路模擬時的操作點分析,可以看出組合成完 整電路後,所有電晶體皆如預期的操作在飽和區,且原先設計的節點 電壓與汲極電流皆很相近。

"H University of

Device	M8	M7
Tech.	TSMC (0.18µm
Size	110µ/1µ	17.3µ/1µ
Region	Saturation	Saturation
I_D	167.4579µ	167.8379µ
V_{GS}	-660.0000m	680.0000m
T 7		
V_{DS}	-1.5	1.5
$\frac{V_{DS}}{V_{BS}}$	<u>-1.5</u> 0	$\frac{1.5}{0}$
$ \frac{V_{DS}}{V_{BS}} \frac{V_{TH}}{V_{TH}} $	-1.5 0 -458.4443m	1.5 0 483.0890m
$ \frac{V_{DS}}{V_{BS}} \frac{V_{TH}}{V_{OV}} $	-1.5 0 -458.4443m -201.5557m	1.5 0 483.0890m 196.9110m
	-1.5 0 -458.4443m -201.5557m 1.3898m	1.5 0 483.0890m 196.9110m 137.33μ

表 3.7 M8 與 M7 的尺寸與操作點分析結果

Device	M1&M2	M3&M4	M5	M6	M7
Tech.		TS	SMC 0.18µm		
Size	10.2µ/1µ	2.1µ/1µ	3.3µ/1µ	3.3µ/1µ	17.3μ/1μ
Region	Saturation	Saturation	Saturation	Saturation	Saturation
I_D	15.0042µ	15.0008µ	30.0000µ	30.0016µ	166.7643µ
V_{GS}	-659.9928m	819.8982m	678.8640m	678.8640m	678.8640m
V_{DS}	-659.9928m	1.6599	678.8640m	680.1018m	1.6084
V_{BS}	0	-680.1018m	0	0	0
V_{TH}	-458.6379m	651.8835m	483.5570m	483.5567m	483.0640m
V_{OV}	-201.3549m	168.0147m	196.6328m	196.6331m	195.8000m
g_m	125.5616µ	138.4968µ	249.1591µ	249.1719µ	1.3694m
g_{ds}	716.9622n	448.4621n	1.3142µ	1.3116µ	4.4219µ
Device	M8	X	1:1		
Device Tech.	M8 TSMC 0.18µm	盐益	科社		
Device Tech. Size	M8 TSMC 0.18μm 110μ/1μ	勤益	科技	>	
Device Tech. Size Region	M8 TSMC 0.18µm 110µ/1µ Saturation	勤益	科技	*	
Device Tech. Size Region I _D	M8 TSMC 0.18μm 110μ/1μ Saturation 166.7886μ	勤益	科技	2	
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline \end{tabular}$	M8 TSMC 0.18μm 110μ/1μ Saturation 166.7886μ 659.9928m	勤益	科技	X Line	
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline \end{tabular}$	M8 TSMC 0.18μm 110μ/1μ Saturation 166.7886μ 659.9928m 1.3916	勤益	科技	and the	
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline \end{tabular}$	M8 TSMC 0.18μm 110μ/1μ Saturation 166.7886μ 659.9928m 1.3916 0	勤益	科技	-Life	
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline \end{tabular}$	M8 TSMC 0.18μm 110μ/1μ Saturation 166.7886μ 659.9928m 1.3916 0 458.4693m	勤益勤	科技	-475- -475-	
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline \end{tabular}$	M8 TSMC 0.18μm 110μ/1μ Saturation 166.7886μ 659.9928m 1.3916 0 458.4693m 201.5235m	勤益	科技	X LAN	
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline g_m \end{tabular}$	M8 TSMC 0.18μm 110μ/1μ Saturation 166.7886μ 659.9928m 1.3916 0 458.4693m 201.5235m 1.3860m	勤益勤	科技	A 操 Kb	
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline g_m \\ \hline g_{ds} \\ \hline \end{tabular}$	M8 TSMC 0.18μm 110μ/1μ Saturation 166.7886μ 659.9928m 1.3916 0 458.4693m 201.5235m 1.3860m 4.4219u	勤益 勤勤	科技	ology the way	

表 3.8 組成兩級組態後的操作點分析結果

在進行各項效能模擬之前,必須先對兩級電路做頻率補償,如先 前 2.1 節所提,兩級架構通常使用米勒補償,考慮(2.25)、(2.28)與(3.6) 三式,可得出 C_c=0.22C_L=1.1pF、R_c=1/g_{m8}=1/1.3898m=0.7KΩ,取 1.1pF 與 0.4KΩ 來進行各項效能模擬。各項效能參數的模擬結果如圖 3.6~3.9 所示,並將結果整理於表 3.9。以上是以 0.18µm 製程來設計與 模擬,我們依照此法並使用 0.35µm 製程再對表 3.2 之規格重新設計一 次,以証明此法並不限於單一製程使用。

圖 3.7 兩級組態之迴轉率(0.18μm)

圖 3.9 兩級組態之輸入共模範圍(0.18μm)

Specification	Initial Design
Technology	TSMC 0.18µm
Supply Voltage	±1.5V
DC Gain	84dB
Phase Margin	51°
Gain-Bandwidth	16MHz
Common Mode Rejection Ratio	89dB
Slew Rate	24V/ μs
Input Common Mode Range	$-0.5 \sim +1.5$
Output Swing	±1.4V
Loading	5pF
Power dissipation	0.68mW

表 3.9 雨級組態初始設計的效能模擬結果(0.18µm)

以下為使用 TSMC 0.35μm 製程設計的模擬結果:

北上

Device	M1&M2	M3&M4	M5	M6	M7
Tech.		TS	MC 0.35µm		
Size	10.6μ/1μ	3.9µ/1µ	6.7µ/1µ	6.7µ/1µ	37.3µ/1µ
Region	Saturation	Saturation	Saturation	Saturation	Saturation
I_D	15.0111µ	14.8182µ	30.2048µ	29.9230µ	170.7208µ
V_{GS}	-950.0000m	900.0000m	770.0000m	770.0000m	770.0000m
V_{DS}	-950.0000m	1.4500	770.0000m	600.0000m	1.5
V_{BS}	0	-600.0000m	0	0	0
V_{TH}	-752.8433m	715.8837m	565.2282m	565.6026m	564.1522m
V_{OV}	-197.1567m	184.1163m	204.7718m	204.3974m	205.8478m
g_m	125.3652µ	135.4969µ	256.0620µ	254.2334µ	1.4274m
ρ_{dc}	1 43621	645 3016n	1 55250	1 80841	7 273711
8 <i>us</i>	1.1502µ	015.50101	1.5525µ	1.000+μ	1.2757μ
Device	M8	010.001011	1.5525µ	1.000-μ	1.2151μ
Device Tech.	M8 TSMC 0.35µm	010.00101	1.5525μ	1.000+μ	τ.2737μ
Device Tech. Size	M8 TSMC 0.35μm 156μ/0.8μ	010.00101	1.5525μ	1.000+μ	<u></u>
Device Tech. Size Region	M8 TSMC 0.35μm 156μ/0.8μ Saturation	010.00101	1.5525µ	1.000+μ	<i>Γ.2.</i> 757μ
Device Tech. Size Region I_D	M8 TSMC 0.35μm 156μ/0.8μ Saturation 170.7528μ	010.00100	1.5525µ	1.000+μ	1.2757μ
$\frac{Sas}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{GS}}$	M8 TSMC 0.35μm 156μ/0.8μ Saturation 170.7528μ -950.0000m	010.00101	1.5525µ	1.000+μ	<i>Γ.2.</i> 757μ
$\frac{Sas}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{DS}}$	M8 TSMC 0.35μm 156μ/0.8μ Saturation 170.7528μ -950.0000m -1.5	010.00100	1.5525µ	1.000+μ	1.2151μ
$\frac{Sas}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{DS}}$ $\frac{V_{BS}}{V_{BS}}$	M8 TSMC 0.35μm 156μ/0.8μ Saturation 170.7528μ -950.0000m -1.5 0	010.00100	1.5525µ	1.000τμ	
$\begin{array}{c} Sus\\ \hline Device\\ \hline Tech.\\ \hline Size\\ \hline Region\\ \hline I_D\\ \hline V_{GS}\\ \hline V_{DS}\\ \hline V_{BS}\\ \hline V_{TH}\end{array}$	M8 TSMC 0.35μm 156μ/0.8μ Saturation 170.7528μ -950.0000m -1.5 0 -738.0332m	010.00100	1.5525µ	1.000τμ	,.2,5,μ
$\begin{array}{c} {}_{\mathcal{S}as} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \end{array}$	M8 TSMC 0.35μm 156μ/0.8μ Saturation 170.7528μ -950.0000m -1.5 0 -738.0332m -211.9668m	010.50100	1.5525µ	1.000τμ	1.2151μ
$\frac{Bus}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{DS}}$ $\frac{V_{BS}}{V_{TH}}$ $\frac{V_{OV}}{g_m}$	M8 TSMC 0.35μm 156μ/0.8μ Saturation 170.7528μ -950.0000m -1.5 0 -738.0332m -211.9668m 1.3556m	012.2010	1.0020µ	1.000τμ	π.2151μ

表 3.10 雨級組態進行電晶體獨立的操作點分析(0.35µm)

益科科

表 3.10 中, M5 與 M6 選擇不同尺寸的原因是為了要抵補 M6 較低 的汲—源極電壓, 如此,與 M5 所產生的電流差量就可以減少。而 M6 的汲—源極電壓較低的原因是為了要設計差動對 M3 與 M4 的過驅電壓 為 0.2V。下表為組合成兩級電路後的操作點分析結果。

Device	M1&M2	M3&M4	M5	M6	M7
Tech.		TS	MC 0.35µm		
Size	10.6μ/1μ	3.9µ/1µ	6.7µ/1µ	6.7µ/1µ	37.3µ/1µ
Region	Saturation	Saturation	Saturation	Saturation	Saturation
I_D	14.8602µ 🥒	14.8602µ	30.0000µ	29.7204µ	169.4364µ
V_{GS}	-948.8059m	900.2464m	769.2026m	769.2026m	769.2026m
V_{DS}	-948.8059m	1.4514	769.2026m	599.7536m	1.4793
V_{BS}	0	-599.7536m	0	0	0
V_{TH}	-752.8511m	715.8233m	565.2296m	565.6029m	564.2012m
V_{OV}	-195.9548m	184.4231m	203.9730m	203.4490m	205.0014m
g_m	124.6687µ	135.6922µ	255.2132µ	253.3944µ	1.4221m
	1 1050	616 0000	1 - 1 - 0	1 - 0.00	
g_{ds}	1.4256μ	646.3093µ	1.5458µ	1.7988µ	7.2510µ
<i>g</i> _{ds} Device	1.4256µ М8	646.3093µ	1.5458μ	1.7988μ	7.2510µ
<i>g</i> _{ds} Device Tech.	1.4256μ M8 TSMC 0.35μm	646.3093µ	1.5458μ	1.7988μ	7.2510µ
gds Device Tech. Size	1.4256μ M8 TSMC 0.35μm 105/1μ	646.3093μ	1.5458μ	1.7988μ	7.2510μ
gdsDeviceTech.SizeRegion	1.4256μ M8 TSMC 0.35μm 105/1μ Saturation	646.3093μ	1.5458μ	1.7988μ	7.2510μ
gdsDeviceTech.SizeRegionID	1.4256μ M8 TSMC 0.35μm 105/1μ Saturation 169.4365μ	646.3093μ	1.5458μ	1.7988μ	7.2510μ
$\frac{g_{ds}}{\text{Device}}$ $\frac{\text{Tech.}}{\text{Size}}$ $\frac{\text{Region}}{I_D}$ $\frac{I_D}{V_{GS}}$	1.4256μ M8 TSMC 0.35μm 105/1μ Saturation 169.4365μ -948.8059m	646.3093µ	1.5458μ	1.7988μ	7.2510μ
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	1.4256μ M8 TSMC 0.35μm 105/1μ Saturation 169.4365μ -948.8059m -1.5207	646.3093µ	1.5458μ	1.7988µ	7.2510μ
$\begin{array}{c} g_{ds} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \end{array}$	1.4256μ M8 TSMC 0.35μm 105/1μ Saturation 169.4365μ -948.8059m -1.5207 0	646.3093µ	Versity of	1.7988μ	7.2510μ
$\begin{array}{c} g_{ds} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \end{array}$	1.4256μ M8 TSMC 0.35μm 105/1μ Saturation 169.4365μ -948.8059m -1.5207 0 -737.8671m	646.3093µ	versity of	1.7988μ	7.2510μ
$\begin{array}{c} g_{ds} \\ \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline \end{array}$	1.4256μ M8 TSMC 0.35μm 105/1μ Saturation 169.4365μ -948.8059m -1.5207 0 -737.8671m -210.9388m	646.3093µ	Versity of	1.7988μ	7.2510μ
$\begin{array}{c} g_{ds} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline Region \\ I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline g_m \\ \hline \end{array}$	1.4256μ M8 TSMC 0.35μm 105/1μ Saturation 169.4365μ -948.8059m -1.5207 0 -737.8671m -210.9388m 1.3503m	646.3093µ	versity of	1.7988μ	7.2510μ

表 3.11 合成兩級組態後的操作點分析(0.35µm)

接下來要設計補償電路以進行效能模擬,由(2.25)、(2.28)與(3.6)三式, 可得出 $C_C=0.22C_L=1.1$ pF、 $R_C=1/g_{m8}=1/2.4951$ m=0.4007KQ,取1.1pF 與 0.4KQ。各項效能模擬如圖 3.10~3.13 所示,並整理其結果於表 3.12。

圖 3.13 兩級組態之輸入共模範圍(0.35µm)

Specification	Initial Design
Technology	TSMC 0.35µm
Supply Voltage	±1.5V
DC Gain	72dB
Phase Margin	58°
Gain-Bandwidth	17MHz
Common Mode Rejection Ratio	81dB
Slew Rate	24V/ μs
Input Common Mode Range	$-0.5 \sim +1.5$
Output Swing	±1.4V
Loading	5pF
Power dissipation	0.69mW

表 3.12 雨級組態的效能模擬結果(0.35µm)

如所預期的,初始設計具有一定的基礎效能,最後即是針對尺寸 及參數進行微調使電路能夠符合規格需求。電路的最佳化是一項複雜 的工作,本文將於第四章再進行詳細討論,以下的 3.3 至 3.5 節將以此 設計方法來完成其餘三種不同電路組態的設計,但由於設計過程中需 頻繁的運用模擬工具,且有許多步驟與本節的重複性極高,故在以下 的四個小節中將省略掉部分的模擬結果以減少篇幅,只呈現各個電路 的初始設計結果來佐證。

3.3 疊接組態之設計

疊接組態之電路架構如圖 2.5 所示,規格需求列於表 3.13。首先, 電源供應上限為 3V,故使用 V_{DD}與 V_{SS}分別為+1.5V、-1.5V。偏壓 電流可參考(2.46)式來估算,故可得到 I_{BIAS}=100µA。電晶體通道長度 與過驅電壓選擇 1µm 與 0.2V。接著開始計算電路中每個節點的電壓, 並執行每個電晶體獨立的操作點分析並將結果記錄於表 3.14。

Specification	Requirement
Supply Voltage	3V
DC Gain	\geq 60 dB
Gain-Bandwidth	$\geq 20 \mathrm{MHz}$
Common Mode Rejection Ratio	$\geq 80 \text{ dB}$
Slew Rate	$\geq 20 V/\mu s$
Input Common Mode Range	$\geq 0.5 \mathrm{V}$
Output Swing	$\geq 1V$
Loading	$\geq 5 \mathrm{pF}$
Power dissipation	$\leq 1 \text{mW}$

表 3.13 運算放大器規格之二

表 3.14 疊接組態進行電晶體獨立操作點分析的結果(0.18µm)

Device	M1&M2	M3&M4	M5&M6	M7&M8
Tech.		TSMC 0	.18µm	
Size	34µ/1µ	37.9µ/1µ	6.2μ/1μ	5µ/1µ
Region	Saturation	Saturation	Saturation	Saturation
I_D	50.0514µ	50.0395µ	50.1295µ	49.5125μ
V_{GS}	-660.0000m	-840.0000m	970.0000m	850.0000m
V_{DS}	-660.0000m	-840.0000m	200.0000m	650.0000m
V_{BS}	0	0	-1.3000	650.0000m
V_{TH}	-458.6379m	-645.6866m	773.9048 m	644.2327m
V_{OV}	-201.3621m	-194.3134m	196.0952m	205.7673m
g_m	418.8394µ	430.0839µ	359.5040µ	391.1145µ
8ds	2.3916µ	2.1213µ	83.1767µ	2.3055µ
Device	M9&M10			
Device Tech.	M9&M10 TSMC 0.18µm			
Device Tech. Size	M9&M10 TSMC 0.18μm 10.6μ/1μ			
Device Tech. Size Region	M9&M10 TSMC 0.18μm 10.6μ/1μ Saturation			
Device Tech. Size Region I_D	M9&M10 TSMC 0.18μm 10.6μ/1μ Saturation 100.1929μ			
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M9&M10 TSMC 0.18μm 10.6μ/1μ Saturation 100.1929μ 680.0000m			
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M9&M10 TSMC 0.18μm 10.6μ/1μ Saturation 100.1929μ 680.0000m 680.0000m			
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M9&M10 TSMC 0.18μm 10.6μ/1μ Saturation 100.1929μ 680.0000m 680.0000m 0			
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M9&M10 TSMC 0.18μm 10.6μ/1μ Saturation 100.1929μ 680.0000m 680.0000m 0 483.2779m			
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline \end{tabular}$	M9&M10 TSMC 0.18μm 10.6μ/1μ Saturation 100.1929μ 680.0000m 680.0000m 0 483.2779m 196.7221m			
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M9&M10 TSMC 0.18μm 10.6μ/1μ Saturation 100.1929μ 680.0000m 680.0000m 0 483.2779m 196.7221m 825.2106μ			

接著,將得出的尺寸套入疊接組態的電路中,然後進行整體電路的操 作點分析,其結果彙整於表 3.15 所示。

Device	M1&M2	M3&M4	M5&M6	M7&M8
Tech.		TSMC 0.	18µm	
Size	34µ/1µ	37.9µ/1µ	6.2µ/1µ	5µ/1µ
Region	Saturation	Saturation	Saturation	Saturation
I_D	49.9327µ	49.9327µ	49.9327µ	49.9327µ
V_{GS}	-659.7179m	-839.6782m	969.5161m	850.8712m
V_{DS}	-659.7179m	-839.6782m	200.1200m	651.3551m
V_{BS}	0	-659.7179m	-1.3005	-649.1288m
V_{TH}	-458.6380m	-645.6155m	773.9938m	644.0420m
V_{OV}	-201.0799m	170.2295m	195.5223m	206.8292m
g_m	418.3271µ	429.6157µ	359.3672µ	392.7203µ
g_{ds}	2.3873µ	2.1180µ	82.2843µ	2.3192µ
Device	M9&M10			and the second sec
Tech.	TSMC 0.18µm		11	· \
Size	10.6µ/1µ			
Region		- HLY		
0	Saturation	う勤益		
$\frac{v}{I_D}$	Saturation 100.0000µ	」 勤益		>
$\frac{I_D}{V_{GS}}$	Saturation 100.0000μ 679.7673m	人 勤益 NEUT		Ab.
$ \frac{I_D}{V_{GS}} \frac{V_{DS}}{V_{DS}} $	Saturation 100.0000µ 679.7673m 679.7673m	勤益 NCUT	F7)	Abor
$ \frac{I_D}{V_{GS}} \frac{V_{DS}}{V_{BS}} $	Saturation 100.0000μ 679.7673m 679.7673m 0	勤益 NEUT	5)	Abor
$ \frac{I_D}{V_{GS}} \frac{V_{DS}}{V_{BS}} \frac{V_{BS}}{V_{TH}} $	Saturation 100.000μ 679.7673m 679.7673m 0 483.2780m	う NCUT		About
$ \frac{I_D}{V_{GS}} \frac{V_{DS}}{V_{BS}} \frac{V_{TH}}{V_{OV}} $	Saturation 100.000μ 679.7673m 679.7673m 0 483.2780m 196.4893m	勤益 NCUT	Colinole Colinole	Abor
	Saturation 100.000μ 679.7673m 679.7673m 0 483.2780m 196.4893m 824.4100μ	勤益 NCUT	in of Teories	About

表 3.15 合成疊接組態後操作點分析結果(0.18μm)

最後,以此初始設計進行各項規格的模擬,其模擬結果之波德圖 與相位邊限呈現於圖 3.14、迴轉率呈現於圖 3.15、輸出擺幅呈現於圖 3.16、輸入共模範圍呈現於圖 3.17,並將設計結果彙整紀錄於表 3.16。

圖 3.15 疊接組態之迴轉率(0.18μm)

圖 3.16 以反向放大器架構來模擬疊接組態之輸出擺幅,電阻比為 1:10 (0.18µm)

圖 3.17 疊接組態之輸入共模範圍(0.18μm)

Specification	Initial Design
Tech.	TSMC 0.18µm
Supply Voltage	±1.5V
DC Gain	60 dB
Gain-Bandwidth	12MHz
Common Mode Rejection Ratio	100 dB
Slew Rate	19V/ µs
Input Common Mode Range	$-0.5V \sim +0.6V$
Output Swing	$-0.7V \sim +1.3V$
Loading	5pF
Power dissipation	0.6mW

表 3.16 疊接組態之初始設計效能模擬結果(0.18µm)

接下來,要以 0.35um 製程技術來進行模擬,由於 0.35um 製程技術之臨界電壓較高,而電源電壓仍為 3V,故將過驅電壓調整為 0.16V~0.18V,表 3.17 為使用 TSMC 0.35µm 製程技術進行電晶體獨立操作點分析設計的模擬結果彙整,合成疊接組態後的操作點分析結果 呈現於表 3.18。

最後,以此初始設計進行各項規格的模擬,其模擬結果分別顯示 於圖 3.18~3.21,並彙整紀錄於表 3.19。

Fi University of

Device	M1&M2	M3&M4	M5&M6	M7&M8
Tech.		TSMC 0.	.35µm	
Size	39.4µ/1µ	40.2µ/1µ	15.2μ/1μ	17.5µ/1µ
Region	Saturation	Saturation	Saturation	Saturation
I_D	50.0651µ	50.0130µ	50.1686µ	50.0614µ
V_{GS}	-930.000m	-1.0900	940.0000m	890.0000m
V_{DS}	-930.0000m	-1.0900	200.0000m	170.0000m
V_{BS}	0	930.0000m	-780.0000m	-610.0000m
V_{TH}	-746.1110m	-906.2766m	766.9724m	728.9178m
V_{OV}	-183.8890m	-183.7234m	173.0276m	161.0822m
g_m	440.5317µ	447.8817µ	457.2781µ	470.1491µ
g_{ds}	5.2360µ	4.8188µ	45.2666µ	73.8640µ

表 3.17 疊接組態進行電晶體獨立操作點分析的結果(0.35µm)

Device	M9	M10
Tech.	TSMC	0.35µm
Size	29.7µ/1µ	29.9µ/1µ
Region	Saturation	Saturation
I_D	100.2733µ	100.1908µ
V_{GS}	740.0000m	740.0000m
V_{DS}	740.0000m	610.0000m
V_{BS}	0	0
V_{TH}	566.9320m	567.2043m
V_{OV}	173.0680m	172.7957m
g_m	977.7182µ	978.8764µ
g_{ds}	5.5658µ	6.0694µ
	12 5	
1xh	面村	+ ++
3211		75

表 3.18 合成疊接組態後的操作點分析結果(0.35µm)

Device	M1&M2	M3&M4	M5&M6	M7&M8
Tech.	LEN	TSMC 0.	.35µm	124
Size	39.4µ/1µ	40.2µ/1µ	15.2µ/1µ	17.5μ/1μ
Region	Saturation	Saturation	Saturation	Saturation
I_D	49.9600µ	49.9600µ	49.9600µ	49.9600µ
V_{GS}	-929.7639m	-1.0898	939.6312m	889.8029m
V_{DS}	-929.7639m	-1.0898	200.0192m	2 170.1717m
V_{BS}	0	929.7639m	-780.3688m	-610.1971m
V _{TH}	-746.1128m	-906.2432m	767.0537m	728.9631m
V_{OV}	-183.6511m	-183.5568m	172.5775m	160.8398m
g_m	440.0104µ	447.6223µ	456.5954µ	470.0491µ
g_{ds}	5.2281µ	4.8154µ	44.8174µ	73.2306µ
Device	M9	M10		
Device Tech.	M9 TSMC	M10 0.35µm		
Device Tech. Size	M9 TSMC 29.7μ/1μ	M10 0.35μm 29.9μ/1μ		
Device Tech. Size Region	M9 TSMC 29.7µ/1µ Saturation	M10 0.35μm 29.9μ/1μ Saturation		
Device Tech. Size Region I_D	M9 TSMC 29.7μ/1μ Saturation 100.0000μ	M10 0.35μm 29.9μ/1μ Saturation 99.9200μ		
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline \end{tabular}$	M9 TSMC 29.7μ/1μ Saturation 100.0000μ 739.7215m	M10 0.35μm 29.9μ/1μ Saturation 99.9200μ 739.7215m		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M9 <u>TSMC</u> 29.7μ/1μ Saturation 100.0000μ 739.7215m 739.7215m	M10 0.35μm 29.9μ/1μ Saturation 99.9200μ 739.7215m 610.1971m		
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline \end{tabular}$	M9 TSMC 29.7μ/1μ Saturation 100.0000μ 739.7215m 739.7215m 0	<u>M10</u> 0.35μm 29.9μ/1μ Saturation 99.9200μ 739.7215m 610.1971m 0		
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M9 TSMC 29.7μ/1μ Saturation 100.0000μ 739.7215m 739.7215m 0 566.9326m	M10 0.35μm 29.9μ/1μ Saturation 99.9200μ 739.7215m 610.1971m 0 567.2038m		
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M9 TSMC 29.7μ/1μ Saturation 100.0000μ 739.7215m 739.7215m 0 566.9326m 172.7889m	M10 0.35μm 29.9μ/1μ Saturation 99.9200μ 739.7215m 610.1971m 0 567.2038m 172.5177m		
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline g_m \\ \hline \end{tabular}$	M9 TSMC 29.7μ/1μ Saturation 100.0000μ 739.7215m 739.7215m 0 566.9326m 172.7889m 976.3181μ	M10 0.35μm 29.9μ/1μ Saturation 99.9200μ 739.7215m 610.1971m 0 567.2038m 172.5177m 977.4909μ		

圖 3.19 疊接組態之迴轉率(0.35μm)

圖 3.21 疊接組態之輸入共模範圍(0.35µm)

Specification	Initial Design
Tech.	TSMC 0.35µm
Supply Voltage	±1.5V
DC Gain	39 dB
Gain-Bandwidth	13MHz
Common Mode Rejection Ratio	78 dB
Slew Rate	14V/ μs
Input Common Mode Range	$-0.5V \sim 0V$
Output Swing	-0.6V~ $+0.8V$
Loading	5pF
Power dissipation	0.6mW

表 3.19 **叠**接組態之初始設計效能模擬結果(0.35µm)

3.4 摺疊疊接組態之設計

摺疊疊接組態之電路架構如圖 2.7 所示,規格需求列於表 3.20。電源供應依然使用其上限的 3V,V_{DD}與 V_{SS}分別為+1.5V、-1.5V。偏壓 電流亦可參考(2.46)式來估算,可得 I_{BIAS}=100μA,I_B則設定為 110μA。 電晶體通道長度與過驅電壓選擇 1μm 與 0.2V。各電晶體的獨立操作點 分析結果如表 3.21 所示。

Ti University of

Specification	Requirement
Supply Voltage	3V
DC Gain	$\geq 60 \text{ dB}$
Gain-Bandwidth	$\geq 20 \mathrm{MHz}$
Common Mode Rejection Ratio	$\geq 80 \text{ dB}$
Slew Rate	≥ 20 V/ μs
Input Common Mode Range	$\geq 2V$
Output Swing	$\geq 1V$
Loading	\geq 5pF
Power dissipation	$\leq 2mW$

表 3.20 運算放大器規格之三

Device	M1&M2	M3&M4	M5	M6
Tech.		TSMC 0.1	8µm	
Size	77.7µ/1µ	4.9µ/1µ	10.6µ/1µ	10.6µ/1µ
Region	Saturation	Saturation	Saturation	Saturation
I_D	110.0564µ	50.6153µ	100.1929µ	100.0610µ
V_{GS}	-660.0000m	850.0000m	680.0000m	680.0000m
V_{DS}	-250.0000m	2.1000	680.0000m	650.0000m
V_{BS}	0	-650.0000m	0	0
V_{TH}	-458.7324m	643.8419m	483.2779m	483.2849m
V_{OV}	-201.2676m	206.1581m	196.7221m	196.7151m
g_m	901.7299µ	394.9932µ	825.2106µ	824.1635µ
g_{ds}	38.0525µ	1.2954µ	4.2927μ	4.5129µ
Device	M7&M8	M9&M10	M11&M12	
Tech.	X	TSMC 0.18µm	th	
Size	39.3µ/1µ	7.3µ/1µ	7μ/1μ	
Region	Saturation	Saturation	Saturation	
I_D	59.9834µ	60.0755µ	60.4250µ	
V_{GS}	-740.0000m	830.0000m	670.0000m	
V_{DS}	-1.2500	830.0000m	670.0000m	
V_{BS}	250.0000m	-670.0000m	0	
V_{TH}	-534.9691m	648.2171m	483.3388m	
V_{OV}	205.0309m	181.7829m	186.6612m	
g_m	491.7871µ	524.1627µ	519.1489µ	5
8ds	2.2154µ	2.2399µ	2.6547µ	
ر بر جد جد جد				11 14 xh 1- ++

表 3.21 摺疊疊接組態進行電晶體獨立操作點分析的結果(0.18µm)

接著將得出的尺寸套入摺疊疊接組態的電路中,然後進行整體電路的操作點分析,其結果彙整紀錄如表 3.22 所示。

Device	M1&M2	M3&M4	M5	M6
Tech.		TSMC 0.1	8µm	
Size	77.7µ/1µ	4.9µ/1µ	10.6µ/1µ	10.6µ/1µ
Region	Saturation	Saturation	Saturation	Saturation
I_D	110.0536µ	49.9378µ	100.0µ	99.8756µ
V_{GS}	-660.0000m	848.5942m	679.7673m	679.7673m
V_{DS}	-249.9261m	2.0987	679.7673m	651.4058m
V_{BS}	0	-651.4058m	0	0
V _{TH}	-458.7324m	644.1489m	483.7800m	483.2845m
V_{OV}	-201.2676m	204.4453m	195.9873m	196.4828m
<i>g</i> _m	901.6754µ	392.4289µ	824.4100µ	823.4232µ
g_{ds}	38.1019µ	1.2850µ	4.2865µ	4.4933µ
Device	M7&M8	M9&M10	M11&M12	
Device Tech.	M7&M8	M9&M10 TSMC 0.18μm	M11&M12	_
Device Tech. Size	M7&M8 39.3µ/1µ	M9&M10 TSMC 0.18μm 7.3μ/1μ	M11&M12 7μ/1μ	_
Device Tech. Size Region	M7&M8 39.3µ/1µ Saturation	M9&M10 TSMC 0.18μm 7.3μ/1μ Saturation	M11&M12 7µ/1µ Saturation	
Device Tech. Size Region I _D	M7&M8 39.3μ/1μ Saturation 60.0330μ	M9&M10 TSMC 0.18μm 7.3μ/1μ Saturation 60.0330μ	M11&M12 7μ/1μ Saturation 60.0330μ	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M7&M8 39.3μ/1μ Saturation 60.0330μ -740.0739m	M9&M10 TSMC 0.18μm 7.3μ/1μ Saturation 60.0330μ 829.7548m	M11&M12 7μ/1μ Saturation 60.0330μ 669.2474m	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M7&M8 39.3µ/1µ Saturation 60.0330µ -740.0739m -1.2511	M9&M10 TSMC 0.18μm 7.3μ/1μ Saturation 60.0330μ 829.7548m 829.7548m	M11&M12 7μ/1μ Saturation 60.0330μ 669.2474m 669.2474m	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M7&M8 39.3μ/1μ Saturation 60.0330μ -740.0739m -1.2511 249.9261m	M9&M10 TSMC 0.18μm 7.3μ/1μ Saturation 60.0330μ 829.7548m 829.7548m -669.2474m	M11&M12 7μ/1μ Saturation 60.0330μ 669.2474m 669.2474m 0	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M7&M8 39.3μ/1μ Saturation 60.0330μ -740.0739m -1.2511 249.9261m -534.9475m	M9&M10 TSMC 0.18μm 7.3μ/1μ Saturation 60.0330μ 829.7548m 829.7548m -669.2474m 648.0541m	M11&M12 7μ/1μ Saturation 60.0330μ 669.2474m 669.2474m 0 483.3390m	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M7&M8 39.3μ/1μ Saturation 60.0330μ -740.0739m -1.2511 249.9261m -534.9475m 205.1264m	M9&M10 TSMC 0.18μm 7.3μ/1μ Saturation 60.0330μ 829.7548m 829.7548m -669.2474m 648.0541m 181.7007m	M11&M12 7μ/1μ Saturation 60.0330μ 669.2474m 669.2474m 0 483.3390m 185.9084m	
$\begin{array}{c} \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline g_m \end{array}$	M7&M8 39.3μ/1μ Saturation 60.0330μ -740.0739m -1.2511 249.9261m -534.9475m 205.1264m 491.9990μ	M9&M10 TSMC 0.18μm 7.3μ/1μ Saturation 60.0330μ 829.7548m 829.7548m -669.2474m 648.0541m 181.7007m 523.9798μ	M11&M12 7μ/1μ Saturation 60.0330μ 669.2474m 669.2474m 0 483.3390m 185.9084m 517.4087μ	

表 3.22 合成摺疊疊接組態後的操作點分析結果(0.18µm)

最後,以此基於 0.18 um 製程技術之初始設計進行摺疊疊接組態各 項規格的模擬,其模擬結果之波德圖與相位邊限呈現於圖 3.22、摺疊 疊接組態之迴轉率呈現於圖 3.23、以反向放大器架構來模擬摺疊疊接 組態之輸出擺幅呈現於圖 3.24、摺疊疊接組態之輸入共模範圍呈現於 圖 3.25;並將摺疊疊接組態之初始設計效能模擬結果彙整紀錄於表 3.23。

圖 3.23 摺疊疊接組態之迴轉率(0.18μm)

圖 3.25 摺疊疊接組態之輸入共模範圍(0.18µm)

Specification	Initial Design
Tech.	TSMC 0.18µm
Supply Voltage	±1.5V
DC Gain	69dB
Gain-Bandwidth	12MHz
Common Mode Rejection Ratio	113dB
Slew Rate	17V/ µs
Input Common Mode Range	$-0.5V \sim +1.2V$
Output Swing	±1.2V
Loading	5pF
Power dissipation	0.96mW

表 3.23 摺疊疊接組態之初始設計效能模擬結果(0.18µm)

以下為使用 TSMC 0.35µm 製程技術設計的模擬結果:

×

Device	M1&M2	M3&M4	M5	M6
Tech.	TSMC 0.35µm			
Size	80.6µ/1µ	10.4µ/1µ	22.4µ/1µ	22.6μ/1μ
Region	Saturation	Saturation	Saturation	Saturation
I_D	110.1202µ	49.7827µ	99.9337µ	99.7499µ
V_{GS}	-950.0000m	920.0000m	770.0000m	770.0000m
V_{DS}	-250.0000m	2.1700	770.0000m	580.0000m
V_{BS}	0	-580.0000m	0	0
V_{TH}	-748.6310m	715.9118m	568.4365m	568.8126m
V_{OV}	-201.3690m	204.0882m	201.5635m	201.1874m
g_m	855.5525µ	413.8917µ	858.2231µ	858.6004µ
Q _{ds}	80.5540u	2.0766u	5.1712u	6.1642u
ous				0.120.120
Device	M7&M8	, M9&M10	M11&M1	2
Device Tech.	M7&M8	M9&M10 TSMC 0.35µm	M11&M1	2
Device Tech. Size	M7&M8 43.1μ/1μ	M9&M10 TSMC 0.35μm 13.6μ/1μ	M11&M1 13.4µ/1µ	2
Device Tech. Size Region	M7&M8 43.1µ/1µ Saturation	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation	M11&M1 13.4µ/1µ Saturation	2
Device Tech. Size Region I_D	M7&M8 43.1μ/1μ Saturation 60.1091μ	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.0969μ	M11&M1 13.4µ/1µ Saturation 60.0291µ	2 <u>1</u>
$\begin{array}{c} \text{Bas} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \end{array}$	M7&M8 43.1μ/1μ Saturation 60.1091μ -990.0000m	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.0969μ 960.0000m	M11&M1 13.4µ/1µ Saturation 60.0291µ 770.0000r	2 <u>1</u> 1 n
$\begin{array}{c} \text{Bas} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \end{array}$	M7&M8 43.1μ/1μ Saturation 60.1091μ -990.0000m -1.0200	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.0969μ 960.0000m 960.0000m	M11&M1 13.4µ/1µ Saturation 60.0291µ 770.0000r 770.0000r	2 <u>n</u> <u>u</u> <u>n</u> <u>n</u>
$\begin{array}{c} \text{Bas} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline \end{array}$	M7&M8 43.1μ/1μ Saturation 60.1091μ -990.0000m -1.0200 250.0000m	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.0969μ 960.0000m 960.0000m -770.0000m	M11&M1 13.4µ/1µ Saturation 60.0291µ 770.0000r 770.0000r 0	2 <u>n</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u>
$\begin{array}{c} \text{Bas} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \end{array}$	M7&M8 43.1μ/1μ Saturation 60.1091μ -990.0000m -1.0200 250.0000m -794.9055m	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.0969μ 960.0000m 960.0000m -770.0000m 762.7597m	M11&M1 13.4µ/1µ Saturation 60.0291µ 770.0000r 770.0000r 0 568.2159r	2 <u>n</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u>
$\begin{array}{c} \text{Bas} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \end{array}$	M7&M8 43.1μ/1μ Saturation 60.1091μ -990.0000m -1.0200 250.0000m -794.9055m -195.0945m	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.0969μ 960.0000m 960.0000m -770.0000m 762.7597m 197.2403m	M11&M1 13.4µ/1µ Saturation 60.0291µ 770.0000r 770.0000r 0 568.2159r 201.7841r	2 <u>n</u> 1 1 <u>n</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u>
$\begin{array}{c} \text{Bas} \\ \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline g_m \end{array}$	M7&M8 43.1μ/1μ Saturation 60.1091μ -990.0000m -1.0200 250.0000m -794.9055m -195.0945m 509.1352μ	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.0969μ 960.0000m 960.0000m -770.0000m 762.7597m 197.2403m 518.7955μ	M11&M1 13.4µ/1µ Saturation 60.0291µ 770.0000r 770.0000r 0 568.2159r 201.7841r 515.4649	2 <u>n</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u> <u>n</u>

表 3.24 摺疊疊接組態進行電晶體獨立操作點分析的結果(0.35µm)

Device	M1&M2	M3&M4	M5	M6
Tech.		TSMC 0.3	35µm	
Size	80.6µ/1µ	10.4µ/1µ	22.4µ/1µ	22.6µ/1µ
Region	Saturation	Saturation	Saturation	Saturation
I_D	110.1085µ	49.9071µ	100.0000µ	99.8143µ
V_{GS}	-950.0000m	920.2424m	770.0768m	770.0768m
V_{DS}	-249.8547m	2.1704	770.0768m	579.7576m
V_{BS}	0	-579.7576m	0	0
V_{TH}	-748.6321m	715.8542m	568.4364m	568.8132m
V_{OV}	-201.3679m	204.3882m	201.6404m	201.2636m
g_m	855.3298µ	414.3909µ	858.5016µ	858.8661µ
8ds	80.7463µ	2.0797µ	5.1733µ	6.1697µ
Device	M7&M8	M9&M10	M11&M12	
Device Tech.	M7&M8	M9&M10 TSMC 0.35µm	M11&M12	
Device Tech. Size	M7&M8	M9&M10 TSMC 0.35μm 13.6μ/1μ	M11&M12	_
Device Tech. Size Region	M7&M8 43.1µ/1µ Saturation	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation	M11&M12 13.4μ/1μ Saturation	
Device Tech. Size Region I_D	M7&M8 43.1µ/1µ Saturation 60.1945µ	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.1945μ	M11&M12 13.4μ/1μ Saturation 60.1945μ	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M7&M8 43.1μ/1μ Saturation 60.1945μ -990.1453m	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.1945μ 960.2578m	M11&M12 13.4µ/1µ Saturation 60.1945µ 770.3193m	
$\begin{tabular}{c} \hline Device \\ \hline Tech. \\ \hline Size \\ \hline Region \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline \end{tabular}$	M7&M8 43.1µ/1µ Saturation 60.1945µ -990.1453m -1.0196	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.1945μ 960.2578m 960.2578m	M11&M12 13.4μ/1μ Saturation 60.1945μ 770.3193m 770.3193m	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M7&M8 43.1μ/1μ Saturation 60.1945μ -990.1453m -1.0196 249.8547m	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.1945μ 960.2578m 960.2578m -770.3193m	M11&M12 13.4μ/1μ Saturation 60.1945μ 770.3193m 770.3193m 0	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M7&M8 43.1μ/1μ Saturation 60.1945μ -990.1453m -1.0196 249.8547m -794.8816m	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.1945μ 960.2578m 960.2578m -770.3193m 762.8299m	M11&M12 13.4µ/1µ Saturation 60.1945µ 770.3193m 770.3193m 0 568.2153m	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	M7&M8 43.1μ/1μ Saturation 60.1945μ -990.1453m -1.0196 249.8547m -794.8816m -195.2637m	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.1945μ 960.2578m 960.2578m -770.3193m 762.8299m 197.1701m	M11&M12 13.4µ/1µ Saturation 60.1945µ 770.3193m 770.3193m 0 568.2153m 202.1040m	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M7&M8 43.1μ/1μ Saturation 60.1945μ -990.1453m -1.0196 249.8547m -794.8816m -195.2637m 509.5238μ	M9&M10 TSMC 0.35μm 13.6μ/1μ Saturation 60.1945μ 960.2578m 960.2578m -770.3193m 762.8299m 197.1701m 519.2065μ	M11&M12 13.4µ/1µ Saturation 60.1945µ 770.3193m 770.3193m 0 568.2153m 202.1040m 516.1587µ	

表 3.25 合成摺疊疊接組態後的操作點分析結果(0.35µm)

最後,以此基於 TSMC 0.35 um 製程技術之初始設計進行摺疊疊接 組態各項規格的模擬,其模擬結果之波德圖與相位邊限呈現於圖 3.26、摺疊疊接組態之迴轉率呈現於圖 3.27、以反向放大器架構來模擬 摺疊疊接組態之輸出擺幅呈現於圖 3.28、摺疊疊接組態之輸入共模範 圍呈現於圖 3.29;並將基於 TSMC 0.35 um 製程技術之摺疊疊接組態之 初始設計效能模擬結果彙整紀錄於表 3.26。

圖 3.27 摺疊疊接組態之迴轉率(0.35μm)

圖 3.29 摺疊疊接組態之輸入共模範圍(0.35µm)

Specification	Initial Design
Tech.	TSMC 0.35µm
Supply Voltage	±1.5V
DC Gain	54dB
Gain-Bandwidth	11MHz
Common Mode Rejection Ratio	95dB
Slew Rate	17V/ µs
Input Common Mode Range	$-0.4V \sim +1.1V$
Output Swing	±1.2V
Loading	5pF
Power dissipation	0.96mW

表 3.26 摺疊疊接組態之初始設計效能模擬結果(0.35µm)

軌對軌輸入組態之設計 3.5

軌對軌輸入組態運算放大器之電路架構如圖 2.8 所示,規格需求列 於表 3.27。電源供應依然使用其上限的 3V, VDD 與 VSS 分別為+1.5V、 -1.5V。偏壓電流可參考(2.46)式來估算,可得 IBIAS=100µA, IB 則設定 為110μA。電晶體通道長度與過驅電壓選擇1μm與0.2V。各電晶體的 7 University of Teo 獨立操作點分析結果如表 3.28 所示。

Specification	Require
Supply Voltage	3V
DC Gain	$\geq 60 \text{ dB}$
Gain-Bandwidth	$\geq 20 \text{MHz}$
Common Mode Rejection Ratio	$\geq 30 \text{ dB}$
Slew Rate	$\geq 20 \mathrm{V}/\mathrm{\mu s}$
Input Common Mode Range	$\geq \pm 1.5 V$
Output Swing	$\geq \pm 1V$
Loading	\geq 5pF
Power dissipation	$\leq 2mW$

表 3.27 運算放大器規格之四

Device	M1&M2	M3&M4	M5	M6&M7	
Tech.	TSMC 0.18μm				
Size	77.7µ/1µ	5.3µ/1µ	10.6µ/1µ	42.7µ/1µ	
Region	Saturation	Saturation	Saturation	Saturation	
I_D	110.1266µ	50.0516µ	100.1031µ	59.9927µ	
V_{GS}	-660.0000m	840.5842m	680.0000m	-728.1250m	
V_{DS}	-251.8750m	2.0887	659.4158m	-1.8417	
V_{BS}	0	-659.4158m	0	251.8750	
V_{TH}	-458.7319m	645.8192m	483.2827m	-535.3672m	
V_{OV}	-201.2681m	194.1808m	196.7173m	-192.7578m	
g_m	903.0844µ	409.2304µ	824.5019µ	514.1164µ	
g_{ds}	36.8289µ	1.3276µ	4.4396µ	2.1587µ	
Device	M8&M9	M10	M11&12	M13&M14	
Tech.	X	TSMC 0	.18µm		
Size	6.2µ/1µ	67.9µ/1µ	36.2µ/1µ	12.3µ/1µ	
Region	Saturation	Saturation	Saturation	Saturation	
I_D	59.9934µ	99.9712µ	49.9856µ	109.9831µ	
V_{GS}	751.1980m	-660.0000m	-839.8276m	680.0000m	
V_{DS}	657.6109	-660.1724m	-2.0910	248.8020m	
V_{BS}	-248.8020m	0	660.1724	0	
V_{TH}	550.0691m	-458.6379m	-645.3742m	483.3772m	
V_{OV}	201.1289m	-201.3621m	194.4534m	196.6228m	
g_m	484.4176µ	836.5758µ	424.2840µ	864.1844μ	
g_{ds}	2.7041µ	4.7762µ	1.7897µ	66.8801µ	
	12		- Color	/	

表 3.28 軌對軌輸入組態進行電晶體獨立操作點分析的結果(0.18μm)

以此基於TSMC 0.18um 製程技術之獨立操作點分析的結果進行合成軌對軌輸入組態後的操作點分析結果,並將結果彙整紀錄於表 3.29

Device	M1&M2	M3&M4	M5	M6&M7
Tech.		TSMC 0).18µm	
Size	77.7µ/1µ	5.3μ/1μ	10.6µ/1µ	42.7µ/1µ
Region	Saturation	Saturation	Saturation	Saturation
I_D	110.0564µ	49.7620µ	100.1057µ	59.9425µ
V_{GS}	-660.0000m	840.0000m	680.0000m	-730.0000m
V_{DS}	-250.0000m	2.0900	660.0000m	-1.2500
V_{BS}	0	-660.0000m	0	250.0000
V_{TH}	-458.7324m	645.9458m	483.2826m	-534.9691m
V_{OV}	-201.2676m	194.0542m	196.7174m	-195.0309m
g_m	901.7299µ	408.0599µ	824.5226µ	511.9473µ
g_{ds}	38.0525µ	1.3231µ	4.4352µ	2.2674µ
Device	M8&M9	M10	M11&12	M13&M14
Tech.	1 %	TSMC 0).18μm	
Tech. Size	6.2µ/1µ	TSMC 0 67.9μ/1μ).18μm 36.2μ/1μ	12.3µ/1µ
Tech. Size Region	6.2μ/1μ Saturation	TSMC 0 67.9μ/1μ Saturation	0.18µm 36.2µ/1µ Saturation	12.3μ/1μ Saturation
Tech. Size Region I _D	6.2μ/1μ Saturation 60.4664μ	TSMC 0 67.9μ/1μ Saturation 99.9703μ	0.18µm 36.2µ/1µ Saturation 50.0763µ	12.3µ/1µ Saturation 110.0624µ
Tech.SizeRegion I_D V_{GS}	6.2μ/1μ Saturation 60.4664μ 750.0000m	TSMC 0 67.9μ/1μ Saturation 99.9703μ -660.0000m	0.18µm 36.2µ/1µ Saturation 50.0763µ -840.0000m	12.3μ/1μ Saturation 110.0624μ 680.0000m
Tech.SizeRegion I_D V_{GS} V_{DS}	6.2μ/1μ Saturation 60.4664μ 750.0000m 1.2500	TSMC 0 67.9μ/1μ Saturation 99.9703μ -660.0000m -660.0000m	0.18µm 36.2µ/1µ Saturation 50.0763µ -840.0000m -2.0900	12.3μ/1μ Saturation 110.0624μ 680.0000m 250.0000m
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	6.2μ/1μ Saturation 60.4664μ 750.0000m 1.2500 -250.0000m	TSMC 0 67.9μ/1μ Saturation 99.9703μ -660.0000m -660.0000m 0	0.18µm 36.2µ/1µ Saturation 50.0763µ -840.0000m -2.0900 660.0000	12.3μ/1μ Saturation 110.0624μ 680.0000m 250.0000m 0
Tech.SizeRegion I_D V_{GS} V_{DS} V_{BS} V_{TH}	6.2μ/1μ Saturation 60.4664μ 750.0000m 1.2500 -250.0000m 550.2268m	TSMC 0 67.9μ/1μ Saturation 99.9703μ -660.0000m -660.0000m 0 -458.6379m	0.18µm 36.2µ/1µ Saturation 50.0763µ -840.0000m -2.0900 660.0000 -645.3310m	12.3μ/1μ Saturation 110.0624μ 680.0000m 250.0000m 0 483.3769m
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	6.2μ/1μ Saturation 60.4664μ 750.0000m 1.2500 -250.0000m 550.2268m 199.7732m	TSMC 0 67.9μ/1μ Saturation 99.9703μ -660.0000m -660.0000m 0 -458.6379m -201.3621m	0.18µm 36.2µ/1µ Saturation 50.0763µ -840.0000m -2.0900 660.0000 -645.3310m 194.6690m	12.3μ/1μ Saturation 110.0624μ 680.0000m 250.0000m 0 483.3769m 196.6231m
Tech.SizeRegion I_D V_{GS} V_{DS} V_{BS} V_{TH} V_{OV} g_m	6.2μ/1μ Saturation 60.4664μ 750.0000m 1.2500 -250.0000m 550.2268m 199.7732m 489.2454μ	TSMC 0 67.9μ/1μ Saturation 99.9703μ -660.0000m -660.0000m 0 -458.6379m -201.3621m 836.5697μ	0.18µm 36.2µ/1µ Saturation 50.0763µ -840.0000m -2.0900 660.0000 -645.3310m 194.6690m 424.6787µ	12.3μ/1μ Saturation 110.0624μ 680.0000m 250.0000m 0 483.3769m 196.6231m 865.7130μ
Tech.SizeRegion I_D V_{GS} V_{DS} V_{DS} V_{BS} V_{TH} V_{OV} g_m g_{ds}	6.2μ/1μ Saturation 60.4664μ 750.0000m 1.2500 -250.0000m 550.2268m 199.7732m 489.2454μ 1.7222μ	TSMC 0 67.9μ/1μ Saturation 99.9703μ -660.0000m -660.0000m 0 -458.6379m -201.3621m 836.5697μ 4.7769μ	0.18µm 36.2µ/1µ Saturation 50.0763µ -840.0000m -2.0900 660.0000 -645.3310m 194.6690m 424.6787µ 1.7918µ	12.3μ/1μ Saturation 110.0624μ 680.0000m 250.0000m 0 483.3769m 196.6231m 865.7130μ 65.5185μ

表 3.29 合成軌對軌輸入組態後的操作點分析結果(0.18µm)

最後,以此基於 TSMC 0.18um 製程技術之初始設計進行軌對軌輸 入組態運算放大器各項規格的模擬,其模擬結果之波德圖與相位邊限 呈現於圖 3.30、摺疊疊接組態之迴轉率呈現於圖 3.31、以反向放大器 架構來模擬軌對軌輸入組態之輸出擺幅呈現於圖 3.32、軌對軌輸入組 態之輸入共模範圍呈現於圖 3.33;並將基於 TSMC 0.35 um 製程技術之 軌對軌輸入組態之初始設計效能模擬結果彙整紀錄於表 3.30。

圖 3.31 軌對軌輸入組態之迴轉率(0.18μm)

圖 3.33 軌對軌輸入組態之輸入共模範圍(0.18μm)

Specification	Initial Design
Tech.	TSMC 0.18µm
Supply Voltage	±1.5V
DC Gain	60dB
Gain-Bandwidth	12MHz
Common Mode Rejection Ratio	42dB
Slew Rate	15V/ μs
Input Common Mode Range	±2.2V
Output Swing	±1.2V
Loading	5pF
Power dissipation	0.96mW

表 3.30 軌對軌輸入組態之初始設計效能模擬結果(0.18µm)

以下為使用 TSMC 0.35µm 製程技術設計軌對軌輸入組態的模擬結果:

11

A 3.31	邦的邦拥八部	恐些们电明脸。	周上亦下而力	引的福木(0.55µm)
Device	M1&M2	M3&M4	M5	M6&M7
Tech.		TSM	C 0.35µm	
Size	80.6µ/1µ	10.5µ/1µ	22.7µ/1µ	>38.9µ/1µ
Region	Saturation	Saturation	Saturation	Saturation
I_D	110.1202µ	50.2576µ	100.1852µ	59.9535µ
V_{GS}	-950.0000m	920.0000m	770.0000m	-1.0000
V_{DS}	-250.0000m	2.1700	580.0000m	-1.2500
V_{BS}	0	-580.0000m	0	250.0000m
V_{TH}	-748.6310m	715.9480m	568.7851m	-793.7683m
V_{OV}	-201.3690m	204.0520m	201.2149m	-206.2317m
g_m	855.5525μ	417.9017µ	862.2200µ	486.9726μ
01	80 55400	2 09690	6 <u>1860</u> u	5 256511
8 as	00.55+0μ	2.0707μ	0.1000μ	5.2505µ
Device	M8&M9	M10	M11&12	M13&M14
Device Tech.	M8&M9	M10 TSM	M11&12 C 0.35μm	M13&M14
Device Tech. Size	M8&M9 12.9μ/1μ	<u>M10</u> <u>TSM</u> <u>69.1μ/1μ</u>	M11&12 C 0.35μm 32.8μ/1μ	0.2505μ M13&M14 26.1μ/1μ
Device Tech. Size Region	12.9μ/1μ Saturation	M10 69.1μ/1μ Saturation	0.1000μ M11&12 C 0.35μm 32.8μ/1μ Saturation	0.2505μ M13&M14 26.1μ/1μ Saturation
Device Tech. Size Region I_D	M8&M9 12.9μ/1μ Saturation 59.9495μ	M10 TSM 69.1μ/1μ Saturation 100.0629μ	M11&12 C 0.35μm 32.8μ/1μ Saturation 50.0745μ	<u>M13&M14</u> 26.1μ/1μ Saturation 110.2963μ
$\frac{Sas}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{GS}}$	M8&M9 12.9μ/1μ Saturation 59.9495μ 840.0000m	M10 TSM0 69.1μ/1μ Saturation 100.0629μ -950.0000m	M11&12 C 0.35μm 32.8μ/1μ Saturation 50.0745μ -1.0300	3.2505μ M13&M14 26.1μ/1μ Saturation 110.2963μ 770.0000m
$\frac{Sas}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{DS}}$	00.3340μ M8&M9 12.9μ/1μ Saturation 59.9495μ 840.0000m 1.2500	M10 TSM 69.1μ/1μ Saturation 100.0629μ -950.0000m -470.0000m	0.1000µ M11&12 C 0.35µm 32.8µ/1µ Saturation 50.0745µ -1.0300 -2.2800	3.2505μ M13&M14 26.1μ/1μ Saturation 110.2963μ 770.0000m 250.0000m
$\frac{Sas}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{DS}}$ $\frac{V_{BS}}{V_{BS}}$	M8&M9 12.9μ/1μ Saturation 59.9495μ 840.0000m 1.2500 -250.0000m	M10 TSM0 69.1μ/1μ Saturation 100.0629μ -950.0000m -470.0000m 0	M11&12 C 0.35μm 32.8μ/1μ Saturation 50.0745μ -1.0300 -2.2800 470.0000m	M13&M14 26.1μ/1μ Saturation 110.2963μ 770.0000m 250.0000m 0
$\begin{array}{c} Sas\\ \hline Device\\ \hline Tech.\\ \hline Size\\ \hline Region\\ \hline I_D\\ \hline V_{GS}\\ \hline V_{DS}\\ \hline V_{BS}\\ \hline V_{TH}\\ \end{array}$	M8&M9 12.9μ/1μ Saturation 59.9495μ 840.0000m 1.2500 -250.0000m 636.8413m	M10 TSM0 69.1μ/1μ Saturation 100.0629μ -950.0000m -470.0000m 0 -747.3145m	0.1000µ M11&12 C 0.35µm 32.8µ/1µ Saturation 50.0745µ -1.0300 -2.2800 470.0000m -826.7344m	3.2505μ M13&M14 26.1μ/1μ Saturation 110.2963μ 770.0000m 250.0000m 0 568.7354m
$\frac{Sas}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{DS}}$ $\frac{V_{BS}}{V_{TH}}$ $\frac{V_{OV}}{V_{OV}}$	M8&M9 12.9μ/1μ Saturation 59.9495μ 840.0000m 1.2500 -250.0000m 636.8413m 203.1587m	M10 TSM0 69.1μ/1μ Saturation 100.0629μ -950.0000m -470.0000m 0 -747.3145m -200.6855m	M11&12 C 0.35μm 32.8μ/1μ Saturation 50.0745μ -1.0300 -2.2800 470.0000m -826.7344m 203.2656m	M13&M14 26.1μ/1μ Saturation 110.2963μ 770.0000m 250.0000m 0 568.7354m 201.2646m
$\frac{8as}{Device}$ $\frac{Tech.}{Size}$ $\frac{Region}{I_D}$ $\frac{V_{GS}}{V_{DS}}$ $\frac{V_{BS}}{V_{TH}}$ $\frac{V_{OV}}{g_m}$	M8&M9 12.9μ/1μ Saturation 59.9495μ 840.0000m 1.2500 -250.0000m 636.8413m 203.1587m 506.5855μ	M10 TSM0 69.1μ/1μ Saturation 100.0629μ -950.0000m -470.0000m 0 -747.3145m -200.6855m 816.0155μ	M11&12 C 0.35μm 32.8μ/1μ Saturation 50.0745μ -1.0300 -2.2800 470.0000m -826.7344m 203.2656m 413.0808μ	3.2505μ M13&M14 26.1μ/1μ Saturation 110.2963μ 770.0000m 250.0000m 0 568.7354m 201.2646m 922.9107μ

表 3.31 軌對軌輸入組態進行電晶體獨立操作點分析的結果(0.35µm)

Device	M1&M2	M3&M4	M5	M6&M7	
Tech.	TSMC 0.35μm				
Size	80.6µ/1µ	10.5µ/1µ	22.7µ/1µ	38.9µ/1µ	
Region	Saturation	Saturation	Saturation	Saturation	
I_D	110.2895µ	50.0934µ	100.1871µ	60.1894µ	
V_{GS}	-950.0000m	919.6908m	770.0000m	-997.8592	
V_{DS}	-252.1408m	2.1676	580.3092m	-1.5425	
V_{BS}	0	-580.3092 m	0	252.1408m	
V _{TH}	-748.6140m	716.0258m	568.7844m	-792.0043m	
V_{OV}	-201.3860m	203.6650m	201.2156m	-206.2317m	
<i>g</i> _m	858.7732µ	417.2395µ	862.2338µ	489.9297µ	
g_{ds}	77.7831µ	2.0919µ	6.1833µ	4.8981µ	
Device	M8&M9	M10	M11&12	M13&M14	
Device Tech.	M8&M9	M10 TSMC	M11&12 C 0.35μm	M13&M14	
Device Tech. Size	M8&M9 12.9μ/1μ	M10 TSMC 69.1μ/1μ	M11&12 2 0.35μm 32.8μ/1μ	M13&M14 26.1µ/1µ	
Device Tech. Size Region	M8&M9 12.9µ/1µ Saturation	M10 TSMC 69.1µ/1µ Saturation	M11&12 2 0.35μm 32.8μ/1μ Saturation	M13&M14 26.1µ/1µ Saturation	
Device Tech. Size Region I_D	M8&M9 12.9μ/1μ Saturation 60.1894μ	M10 TSMC 69.1μ/1μ Saturation 100.0644μ	M11&12 2 0.35μm 32.8μ/1μ Saturation 50.0328μ	M13&M14 26.1µ/1µ Saturation 110.2069µ	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M8&M9 12.9μ/1μ Saturation 60.1894μ 841.6204m	M10 TSMC 69.1μ/1μ Saturation 100.0644μ -950.0000m	M11&12 2 0.35μm 32.8μ/1μ Saturation 50.0328μ -1.0299	M13&M14 26.1μ/1μ Saturation 110.2069μ 770.0000m	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M8&M9 12.9μ/1μ Saturation 60.1894μ 841.6204m 956.9920m	M10 TSMC 69.1μ/1μ Saturation 100.0644μ -950.0000m -470.0999m	M11&12 2 0.35µm 32.8µ/1µ Saturation 50.0328µ -1.0299 -2.2818	M13&M14 26.1µ/1µ Saturation 110.2069µ 770.0000m 248.0752m	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M8&M9 12.9μ/1μ Saturation 60.1894μ 841.6204m 956.9920m -248.3796 m	M10 TSMC 69.1µ/1µ Saturation 100.0644µ -950.0000m -470.0999m 0	M11&12 2 0.35μm 32.8μ/1μ Saturation 50.0328μ -1.0299 -2.2818 470.0999m	M13&M14 26.1μ/1μ Saturation 110.2069μ 770.0000m 248.0752m 0	
$\begin{array}{c} \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \end{array}$	M8&M9 12.9μ/1μ Saturation 60.1894μ 841.6204m 956.9920m -248.3796 m 637.0681m	M10 TSMC 69.1μ/1μ Saturation 100.0644μ -950.0000m -470.0999m 0 -747.3137m	M11&12 2 0.35µm 32.8µ/1µ Saturation 50.0328µ -1.0299 -2.2818 470.0999m -826.7384m	M13&M14 26.1μ/1μ Saturation 110.2069μ 770.0000m 248.0752m 0 568.7398m	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	M8&M9 12.9μ/1μ Saturation 60.1894μ 841.6204m 956.9920m -248.3796 m 637.0681m 204.5523m	M10 TSMC 69.1μ/1μ Saturation 100.0644μ -950.0000m -470.0999m 0 -747.3137m -202.6863m	M11&12 2 0.35μm 32.8μ/1μ Saturation 50.0328μ -1.0299 -2.2818 470.0999m -826.7384m 203.1616m	M13&M14 26.1µ/1µ Saturation 110.2069µ 770.0000m 248.0752m 0 568.7398m 201.2602m	
$\begin{array}{c} \hline \text{Device} \\ \hline \text{Tech.} \\ \hline \text{Size} \\ \hline \text{Region} \\ \hline I_D \\ \hline V_{GS} \\ \hline V_{DS} \\ \hline V_{DS} \\ \hline V_{BS} \\ \hline V_{TH} \\ \hline V_{OV} \\ \hline g_m \end{array}$	M8&M9 12.9μ/1μ Saturation 60.1894μ 841.6204m 956.9920m -248.3796 m 637.0681m 204.5523m 506.7121μ	M10 TSMC 69.1μ/1μ Saturation 100.0644μ -950.0000m -470.0999m 0 -747.3137m -202.6863m 816.0280μ	M11&12 2 0.35μm 32.8μ/1μ Saturation 50.0328μ -1.0299 -2.2818 470.0999m -826.7384m 203.1616m 412.9015μ	M13&M14 26.1μ/1μ Saturation 110.2069μ 770.0000m 248.0752m 0 568.7398m 201.2602m 921.2029μ	

表 3.32 合成軌對軌輸入組態後的操作點分析結果(0.35µm)

最後,以此基於 TSMC 0.35um 製程技術之初始設計進行軌對軌輸 入組態運算放大器各項規格的模擬,其模擬結果之波德圖與相位邊限 呈現於圖 3.34、摺疊疊接組態之迴轉率呈現於圖 3.35、以反向放大器 架構來模擬軌對軌輸入組態之輸出擺幅呈現於圖 3.36、軌對軌輸入組 態之輸入共模範圍呈現於圖 3.37;並將基於 TSMC 0.35 um 製程技術之 軌對軌輸入組態之初始設計效能模擬結果彙整紀錄於表 3.33。

圖 3.35 軌對軌輸入組態之迴轉率(0.35µm)

圖 3.37 軌對軌輸入組態之輸入共模範圍(0.35µm)

Specification	Initial Design
Tech.	TSMC 0.35µm
Supply Voltage	±1.5V
DC Gain	53dB
Gain-Bandwidth	12MHz
Common Mode Rejection Ratio	33dB
Slew Rate	11V/ μs
Input Common Mode Range	±2.3V
Output Swing	±1.2V
Loading	5pF
Power dissipation	0.96mW

表 3.33 軌對軌輸入組態之初始設計效能模擬結果(0.35µm)

3.6 討論

本章我們使用本文所提的設計方法來設計四種不同組態的運算放 大器,分別為:兩級組態、疊接組態、摺疊疊接組態與軌對軌輸入組 態共四種運算放大器;並分別以TSMC 0.18um 與 0.35um 兩種製程技 術去設計。由初始設計的效能模擬可以看出,本文所提出的設計方法 確實能夠適用於這四種架構,而且也可應用於不同的製程技術。比較 四種組態的電晶體獨立操作點分析與合成完整組態後的操作點分析可 知,合成完整組態之後,各項參數都產生了一個微小的差值,這個差 值是來自於汲極電流或是端點電壓的差量所造成的,其中,如軌對軌 輸入組態,其許多的電晶體都是以開極外接偏壓的方式連接,此種連 接方式在電流產生差量時,汲—源極電壓會被迫變動而促使通道長度 發生調變來補償電流的差量,因此,此種組態之汲—源極電壓的差量 變化較大,故對於這類的電路結構,在使用此方法設計時,需選擇較

第四章 電路最佳化

4.1 兩級組態之最佳化

比較上一章之表 3.1 與 3.8 可以看出在此例中 I_{BIAS} 必須調小以使 SR 與 GBW 減少並且連帶會使功率消耗降低,除此之外,還須調整的部分 還有 PM(Phase Margin), PM 可藉由縮小第二級電晶體的通道長度來降 低增益使其增加,亦可以調整補償電容與電阻。接著比較表 3.1 與 3.11 可知,在 0.35µm 製程下,電壓增益較低,故需增加增益級之通道長度 來提升輸出阻抗。另外還須減少偏壓電流以降低功率消耗、頻寬及迴 轉率。兩級組態在 0.18µm 與 0.35µm 製程下,經過微調後的元件尺寸 與偏壓電流整理於表 4.1 中,其各項效能參數的模擬結果示於圖 4.1~4.8 並整理於表 4.2。

Device	0.18µm.	0.35µm
M1&M2	8.8µm/1µm	55.2µm/4µm
M3&M4	1.7µm/1µm	17µm/4µm
M5&M6	2.7µm/1µm	8.9µm/1µm
M7	55.7µm/0.6µm	156µm/1µm
M8	9µm/0.6µm	48µm/1µm
C_C	1.1pF	1.8pF
R_C	$0.8 \mathrm{K}\Omega$	$0.8 \mathrm{K}\Omega$
IBIAS	26µA	40µA

表 4.1 兩級組態最佳化後的元件尺寸與偏壓電流

圖 4.2 最佳化後的兩級組態之迴轉率(0.18µm)

圖 4.4 最佳化後的兩級組態組態之輸入共模範圍(0.18µm)

圖 4.6 最佳化後的兩級組態之迴轉率(0.35µm)

圖 4.8 最佳化後的兩級組態組態之輸入共模範圍(0.35µm)

Specification	Require	0.18µm	0.35µm
Supply Voltage	3V	±1.5V	±1.5V
DC Gain	$\geq 80 \text{ dB}$	80dB	81dB
Phase Margin	$\geq 60^{\circ}$	60°	60°
Gain-Bandwidth	$\geq 10 \text{MHz}$	14MHz	12MHz
CMRR	$\geq 80 \text{ dB}$	88dB	89dB
Slew Rate	$\geq 20 V/\mu s$	21V/ μs	21V/ μs
ICMR	$\geq 2V$	$-0.5V \sim +1.7V$	$-0.5V \sim +1.5V$
Output Swing	$\geq 2V$	$\pm 1.4V$	±1.4V
Loading	\geq 5pF	5pF	5pF
Power dissipation	$\leq 1 \mathrm{mW}$	0.6mW	0.9mW

表 4.2 最佳化後的兩級組態之效能模擬結果

4.2 疊接組態之最佳化

比較表 3.12 與 3.15、3.18, 在 0.18µm 製程的部份須調整的有 GBW 和 SR,因此將 I_{BIAS} 調高並將電晶體的尺寸增大,如此會降低過驅電壓 使轉導上升進而提升 GBW。而在 0.35µm 製程的部分我們要調整的有 增益、GBW、CMRR 和 SR,同樣的,我們增加 I_{BIAS}和電晶體尺寸來 激勵這些效能。疊接組態在 0.18µm 與 0.35µm 製程下,經過微調後的 元件尺寸與偏壓電流整理於表 4.3 中,其各項效能參數的模擬結果示於 圖 4.9~4.16 並整理於表 4.4。

Device	0.18µm.	0.35µm
M1&M2	51µm/0.5µm	78.8µm/1µm
M3&M4	56.8µm/0.5µm	80.4µm/1µm
M5&M6	9.3µm/0.5µm	30.4µm/1µm
M7&M8	7.5µm/0.5µm	35µm/1µm
M9&M10	15.9µm/0.5µm	59.8µm/1µm
I _{BIAS}	120µA	120µA

表 4.3 叠接組態最佳化後的元件尺寸與偏壓電流

圖 4.10 最佳化後的疊接組態之迴轉率(0.18µm)

圖 4.12 最佳化後的疊接組態組態之輸入共模範圍(0.18µm)

圖 4.14 最佳化後的疊接組態之迴轉率(0.35µm)

圖 4.16 最佳化後的疊接組態組態之輸入共模範圍(0.35µm)

Specification	Require	0.18µm	0.35µm
Supply Voltage	3V	±1.5V	±1.5V
DC Gain	$\geq 60 \mathrm{dB}$	75dB	62dB
Gain-Bandwidth	$\geq 20 \text{MHz}$	22MHz	21MHz
CMRR	$\geq 80 \text{ dB}$	114dB	102dB
Slew Rate	$\geq 20 V/\mu s$	23V/ µs	22V/ µs
ICMR	$\geq 0.5 V$	$-0.7V \sim +0.6V$	$-0.6V \sim 0V$
Output Swing	$\geq 1V$	$-0.7V \sim +1.3V$	$-0.7V \sim +1V$
Loading	\geq 5pF	5pF	5pF
Power dissipation	$\leq 1 \mathrm{mW}$	0.72mW	0.72mW

表 4.4 最佳化後的疊接組態之效能模擬結果

4.3 摺疊疊接組態之最佳化

比較表 3.19、3.22 與 3.25,於 0.18µm 製程下所設計的電路,需調整的部份有 GBW 與 SR,因此將提升其偏壓電流以符合規格。而以 0.35µm 製程所設計的電路,需調整的部分除了 GBW 與 SR 之外,還需 小幅的調高增益,因此,針對 0.35µm 製程所設計的電路,將同時提升 偏壓電流與電晶體尺寸。摺疊疊接組態在 0.18µm 與 0.35µm 製程下, 經過微調後的元件尺寸與偏壓電流整理於表 4.5 中,其各項效能參數的 模擬結果示於圖 4.17~4.24 並整理於表 4.6。

Device	0.18µm.	0.35µm
M1&M2	140µm/1µm	193µm/1.5µm
M3&M4	8.6µm/1µm	32µm/1.5µm
M5&M6	19µm/1µm	54µm/1.5µm
M7&M8	70.7µm/1µm	103µm/1.5µm
M9&M10	13µm/1µm	33µm/1.5µm
M11&M12	12.6µm/1µm	32µm/1.5µm
I_B	200µA	190µA
I _{BIAS}	180µA	200μΑ

表 4.5 摺疊疊接組態最佳化後的元件尺寸與偏壓電流

圖 4.18 最佳化後的摺疊疊接組態之迴轉率(0.18µm)

圖 4.20 最佳化後的摺疊疊接組態組態之輸入共模範圍(0.18µm)

圖 4.22 最佳化後的摺疊疊接組態之迴轉率(0.35µm)

圖 4.24 最佳化後的摺疊疊接組態組態之輸入共模範圍(0.35µm)

Specification	Require	0.18µm	0.35µm
Supply Voltage	3V	±1.5V	±1.5V
DC Gain	$\geq 60 \text{ dB}$	68dB	60dB
Gain-Bandwidth	$\geq 20 \text{MHz}$	20MHz	22MHz
CMRR	$\geq 80 \text{ dB}$	112dB	102dB
Slew Rate	$\geq 20 V/\mu s$	27V/ μs	33V/ μs
ICMR	$\geq 2V$	$-0.5V \sim +2V$	$-0.4V \sim +2V$
Output Swing	$\geq 1V$	±1.2V	±1.2V
Loading	$\geq 5 \mathrm{pF}$	5pF	5pF
Power dissipation	$\leq 2mW$	1.74mW	1.74mW

表 4.6 最佳化後的摺疊疊接組態之效能模擬結果

4.4 軌對軌輸入組態

比較表 3.26、3.29 與 3.32,於 0.18µm 製程下所設計的電路,需調整的部份有 GBW 和 SR,因此將提升其偏壓電流以符合規格。而以 0.35µm 製程所設計的電路,需調整的部分除了 GBW 與 SR 之外,還需 小幅的調高增益與 CMRR,因此將同時提升偏壓電流與電晶體尺寸, 並對兩組差動對進行微調。軌對軌輸入組態在 0.18µm 與 0.35µm 製程 下,經過微調後的元件尺寸與偏壓電流整理於表 4.7 中,其各項效能參 數的模擬結果示於圖 4.25~4.32 並整理於表 4.8。

Device	0.18µm.	0.35µm
M1&M2	155.4µm/1µm	161.2µm/1µm
M3&M4	7µm/1µm	42µm/1µm
M5	21.2µm/1µm	45.4µm/1µm
M6&M7	85.4µm/1µm	124µm/2µm
M8&M9	12.4µm/1µm	73µm/2µm
M10	135.8µm/1µm	138.2µm/1µm
M11&M12	86µm/1µm	131.2µm/1µm
M13&M14	24.6µm/1µm	52.2µm/1µm
I_B	220µA	220µA
I _{BIAS}	200µA	200µA

表 4.7 軌對軌輸入組態最佳化後的元件尺寸與偏壓電流

圖 4.26 最佳化後的軌對軌輸入組態之迴轉率(0.18µm)

圖 4.28 最佳化後的軌對軌輸入組態組態之輸入共模範圍(0.18µm)

圖 4.30 最佳化後的軌對軌輸入組態之迴轉率(0.35µm)

圖 4.32 最佳化後的軌對軌輸入組態組態之輸入共模範圍(0.35µm)

Specification	Require	0.18µm	0.35µm
Supply Voltage	3V	±1.5V	±1.5V
DC Gain	$\geq 60 \text{ dB}$	60dB	60dB
Gain-Bandwidth	$\geq 20 \text{MHz}$	20MHz	30MHz
CMRR	\geq 30 dB	39dB	37dB
Slew Rate	$\geq 20 V/\mu s$	33V/ µs	30V/ µs
ICMR	$\geq \pm 1.5V$	$-2.2V \sim +2.2V$	$-2.2V \sim +2.2V$
Output Swing	$\geq \pm 1V$	±1.2V	$-1.2V \sim +1.1V$
Loading	\geq 5pF	5pF	5pF
Power dissipation	$\leq 2mW$	1.92mW	1.92mW

表 4.8 最佳化後的軌對軌輸入組態之效能模擬結果

在本章中我們對前一章所設計的初始電路進行最後的最佳化處 理,以達到原訂規格需求。最佳化是一項繁複而且耗時的工作,因此 本文在此謹以完成規格需求為主要目標,並不追求於低成本或是低電 壓等高效能的設計。

第五章 結論

本研究基於過驅電壓計算電路中每個電晶體的端點電壓的方式來 設計其偏壓點,並利用 HSpice 針對這些偏壓點來進行偏壓電流的比對 以求得電晶體尺寸。利用此方法,我們成功了設計出四種不同電路架 構的運算放大器,分別為:兩級組態、疊接組態、摺疊疊接組態與軌 對軌輸入組態共四種運算放大器;並且由模擬結果顯示,此法在 TSMC 0.18μm 與 0.35μm 兩種製程下都可達到規格需求。相較於傳統的方法, 本研究大大的減少了設計運算放大器所需花費的時間,並且不需經過 複雜的計算即可得出一個接近規格的初始設計;此外,本研究所提出 之方法可應用於多種電路架構與製程技術,並且不會使設計者喪失對 於參數變動的敏感度。以下列舉本研究的主要貢獻:

1. 大幅減少了設計時間

2. 初始設計的規格完成度高

4. 可應用於多種製程技術 5. 保有設計 + ····

經由實驗結果證實,本文提出之基於過驅電壓與電流調校之運算 放大器設計方法論為實用而有效的。

本研究下個階段的努力目標,即是研究頻寬、迴轉率與偏壓電流、 過驅電壓之關係,以求獲得精準的關係式。若能以此關係式來準確的 決定偏壓電流與過驅電壓,就能使本設計方法更趨於完美。

參考文獻

- T. Stockstad, H. Yoshizawa, "A 0.9-V 0.5-μA Rail-to-Rail CMOS Operational Amplifier," *IEEE Journal of Solid-State Circuits*, Vol. 37, Issue 3, pp.286 – 292, Mar. 2002.
- [2] J.M. Redouté, and M.Steyaert, "Improved EMI Filtering Current Mirror Structure Requiring Reduced Capacitance," *Electronics Letters*, Vol. 42, pp. 560-561, May. 2006.
- [3] B.J. Maundy, A.R. Sarkar, S.J. Gift, "A New Design Topology for Low-Voltage CMOS Current Feedback Amplifiers," *IEEE Transactions Circuits and Systems II: Express Briefs*, Vol. 53, Issue 1, pp. 34-38, Jan. 2006
- [4] L.H.C. Ferreira, T.C. Pimenta, R.L. Moreno, "An Ultra-Low-Voltage Ultra-Low-Power CMOS Miller OTA with Rail-to-Rail Input/Output Swing," *IEEE Transactions on Circuits and Systems II: Express Briefs*, Vol. 54, Issue 10, pp.843 847, Oct. 2007.
- [5] X. L. Zhang and P. K. Chan, "An Untrimmed CMOS Amplifier with High CMRR and Low Offset for Sensor Applications," *IEEE Asia Pacific Conference on Circuits and Systems (APCCAS 2008)*, pp. 802 – 805, Dec. 2008.
- [6] J.M. Redouté, and M.Steyaert, "Active Load for Differential Amplifier with High Output Impedance and Reduced Supply Voltage," *Electronics Letters*, Vol. 44, pp. 67-68, Jan. 2008.
- [7] H.H. Nguyen, Q.H. Duong, H.B. Le, "Low-Power 42 dB-Linear Single-Stage Digitally-Controlled Variable Gain Amplifier," *Electronics Letters*, Vol. 44, pp.

780-782, Jun. 2008.

- [8] J. Ramirez-Angulo, S. Balasubramanian, "Low Voltage Differential Input Stage With Improved CMRR and True Rail-to-Rail Common Mode Input Range," *IEEE Transactions Circuits and Systems II: Express Briefs*, Vol. 55, Issue 12, pp. 1229-1233, Dec. 2008
- [9] M. Chae, J. Kim, W. Liu, "Fully-Differential Self-Biased Bio-Potential Amplifier," *Electronics Letters*, Vol. 44, Issue 24, pp. 1390-1391, Nov. 2008.
- [10] B. Razavi, "Design of Analog CMOS Integrated Circuits," chap. 3-9, McGraw-Hill, 2001.
- [11] P.E. Allen, D.R. Holberg, "CMOS Analog Circuit Design," 2nd Edition, chap. 6, Oxford University, 2003.
- [12] A.S. Sedra, and K.C. Smith, "Microelectronic Circuits," 5th Edition, Oxford University, 2003.
- [13] F. Silveira, D. Flandre, P.G.A, Jespers, "A (g_m/I_D) Based Methodology for The Design of CMOS Analog Circuit and Its Application to The Synthesis of A Silicon-on-Insulator Micro-Power OTA, " *IEEE Journal of Solid-State Circuits*, Vol. 31, Issue 9, pp.1314 – 1319, Mar. 1996.
- [14] A. Ayed, H. Ghariani, M. Samet, "Design and Optimization of CMOS OTA with (g_m/I_D) Methodology Using EKV Model for RF Frequency Synthesizer Application," *IEEE International Conference on Electronics Circuits and Systems*, pp.1–5, Dec. 2005.

作者簡歷

	姓名	林俊宏(Chun-Hung Lin)	
	通訊地址	台中縣太平市中山路一段 215 巷 35 號工程館 545 室	
	學歷	國立勤益科技大學 電子工程系碩士	
	研究室	混合模積體電路實驗室(Mixed Mode IC Lab.)	
	指導教授	謝韶徽(Shao-Hui Shieh) 博士	
碩士論文題目	基於過驅電壓與電流調校之運算放大器設計方法論(Operational Amplifier Design Methodology Based on the Overdrive-Voltage and Current Regulation)		
發表論文	 S.H. Shieh, C.H. Lin, "Design of High CMRR Operational Amplifier," 2009 Conference on Innovative Application of System Prototyping and Circuit Design, pp. 167~170, Taoyuan, Taiwan, Oct., 2009. Shao-Hui Shieh, Chung-Hung Lin, "Operational Amplifier Design Methodology Based on the Relation of Overdrive-Voltage and Transconductance," 2010 The 4th Conference on Integrated Opto-Mechatronic Technology and Intellectual Property Rights, pp.171-179, Taipei, Taiwan, May 2010. S.H. Shieh, Y.C. Hung, C.H. Lin, "High-Gain High-CMRR Pre-Amplifier for Biomedical Systems," 2010 The 5th Intelligent Living Technology Conference, pp. 801-804, Taichung, Taiwan, June, 2010. (Excellent Paper) 		
晶片下線	 丙級運算放大器(T18-98C-167e) 可應用於生醫系統之高增益高共模拒斥比前置放大器 (T18-99A-196e) 		
參加競賽	 1. 2009 年 2. 2010 年 	·全國大專院校積體電路設計競賽 ·全國大專院校積體電路設計競賽	