國立勤益技術學院九十四學年度研究所碩士班招生筆試試題卷

所別:精密機械與製造科技研究所

組別:甲、乙

身分別:一般生

科目:工程數學

准考證號碼:				

(考生自填)

考生注意事項:

- 一、考試時間100分鐘
- 二、應考人可攜帶不具儲存程式功能之計算機
- 三、無論是否使用計算機,作答時均須詳列解答過程。
- 四、請依照題目順序在答案卷作答。
- 五、共兩頁
- 1. [15%] Consider the driven mechanical oscillator governed by the differential equation

$$m\ddot{x} + c\dot{x} + kx = F(t)$$

where m = 0.4kg, c = 5N - s/m, k = 1400N/m, and let F(t) is a periodic excitation force

$$F(t) = \begin{cases} 2 & 0 < t < \pi \\ -2 & \pi < t < 2\pi \end{cases} F(t + 2\pi) = F(t)$$

Find the steady-state oscillation?

- 2.[15%] (a) Draw a labeled sketch of the graph of the function f(t), where H(t) is a Heaviside function (unit step function).
 - (b) Find the Laplace transform of f(t)? $f(t) = H(t \pi)cos(t)$
 - 3. [10%] Solve y(t) in the equation

$$y = t - 9 \int_0^t y(\tau)(t - \tau) d\tau$$

4.[15%] The one dimensional heat equation subject to the given conditions

$$u(0,t) = 0 \qquad u(L,t) = 0$$

$$u(x,t) = \begin{cases} \pi/2 & 0 < x < L/2 \\ 0 & L/2 < x < L \end{cases}$$

(a) Write out the differential equation (b) Solve the temperature function u(x,t)?

< 共兩頁,第一頁 >

5.[10%] Solve the differential equation

$$\frac{d^2u}{dx^2} + \pi^2u - 1 = 0 \quad 0 < x < 1$$

with boundary conditions

$$u(0) = 0 \quad u(1) = 0$$

6.[10%] Determine a formula for the k - th power of the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 7 & -1 \\ 6 & 2 \end{array} \right]$$

7.[15%] Find the general solution to the differential equation

$$\frac{dy}{dx} = \frac{2x + y}{2y - x}$$

8.[10%] Find the directional derivative of $W=x^2y+2xy^2-z^3$ at (1,2,3) in the direction ${\bf d}=1\hat{i}-2\hat{j}+2\hat{k}$