國立勤益科技大學九十七學年度研究所碩士班招生筆試試題卷

所別: 電子工程研究所 **組別:**電子組

科目:電子學

准考證號碼:□□□□□□□□(考生自填)

考生注意事項:

一、考試時間100分鐘。

_ \

試題一: ⟨15分⟩

We wish to analyze the circuit of Fig.1 to determine the voltages at all nodes and the currents through all branches. What is the forced β that this transistor is operating? Assume that the transistor β is specified to be *at least* 50.

Fig. 1

試題二: 〈 15 分 〉

A common-emitter amplifier that can be represented by the equivalent circuit of Fig. 2 has $C_{\pi}=10\,pF$, $C_{\mu}=0.5\,pF$, $C_{L}=2\,pF$, $g_{m}=20mA/V$, $\beta=100$, $r_{x}=200\Omega$, $R'_{L}=5k\Omega$, and $R_{sig}=1k\Omega$. Find the midband gain A_{M} , and an estimate of the 3-dB frequency f_{H} using the Miller equivalence.

Fig. 2

試題三: ⟨20 分⟩

The differential amplifier circuit of Fig. 3 utilizes a resistor connected to the negative power supply to establish the bias current I.

- (a) For $v_{B1} = v_d/2$ and $v_{B2} = -v_d/2$, where v_d is a small signal with zero average, find the magnitude of the differential gain, $|v_o/v_d|$.
- (b) For $v_{B1} = v_{B2} = v_{CM}$, find the magnitude of the common mode gain, $|v_o/v_{CM}|$.
- (c) Calculate the CMRR.
- (d) If $v_{B1} = 0.1\sin 2\pi \times 60t + 0.005\sin 2\pi \times 1000t$ volts,

 $v_{\rm B2} = 0.1 \sin 2\pi \times 60t - 0.005 \sin 2\pi \times 1000t \quad \text{volts, find} \quad v_o \,. \label{eq:vb2}$

Fig. 3

試題四: ⟨15分⟩

Consider a differential amplifier with linear gain control in Fig.4.

- (a) Derive the formula of the overall gain $v_0/(v_2-v_1)$.
- (b) Let $R_1 = R_3 = 10 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$, specify suitable value for R_G such that gain can be varied from 1 V/V to 50 V/V.

試題五:〈15分〉

For the 741-type op amp the maximum current that the first stage can supply is 19.5 μA and the compensation capacitor C is 30 pF. The op amp with $\pm 15 V$ supplies is configured as a non-inverting amplifier with a gain of 10 V/V.

- (a) Find the slew rate.
- (b) If the ac input amplitude is V_{im} =0.5V, what is its full-power bandwidth?

試題六: 〈 20 分 〉

Figure 6 shows an enhancement MOSFET amplifier. The transistors has $V_t = 1.5 \text{V}$, $K = 0.125 \text{ mA/V}^2$, and the Early voltage $V_A = 64 \text{V}$. Determine (a) its small-signal voltage gain and (b) its input resistance R_{in} . (Here $C = \infty$, and $i_D = K(v_{GS} - V_t)^2$)

