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Abstract: It is known that flickers and interharmonics have an inherent relationship, and the magnitude of a voltage can
fluctuate as the signal contains interharmonics. In particular, flicker or modulation will occur when the interharmonic is
close to a harmonic (or fundamental) frequency. Current spectrum separation approaches can detect harmonics and
main interharmonics effectively, but they may not be applicable for the situation of adjacent interharmonics from either
divergence effect, sensitive spectral leakage or other drawbacks. For this reason, this study develops a strategy of
maximum energy retrieving (MER) method to distinguish and identify those interharmonics which are adjacent to
fundamental or harmonics in power systems. Based on the appropriate selection of sampling window length using
discrete Fourier transform (DFT), neighbouring dispersed energy can be collected to retrieve its original amplitude
value. The frequency component can be thus determined simultaneously when the total collected energy reaches the
maximum. The MER implementation can be converged within only several iteration loops where parallel DFT
computation is required before the convergent process. The numerical example is used to verify the effectiveness of
the proposed approach in term of reliability and accuracy.

1 Introduction analysis. The initial parameters’ setting, however, discourages their
With increasing growth of power electronics system and periodical
time-varying loads used in industry, it has caused the distortion of
the ideal electric sine wave, producing a number of harmonics/
interharmonics. Consequently, the quality of the electric power may
be seriously deteriorated, and the apparatus connected to the electric
net may be badly acted [1, 2]. Impacts of interharmonics are similar
to those of harmonics such as filter overloading, light flicker,
thermal effects, malfunctioning of remote control system, saturation
of current transformers, subsynchronous oscillatoions, acoustic
disturbance, overload of passive parallel filter, low-frequency
oscillation in a mechanical system, voltage fluctuations, interference
with control and protection signals, erroneous firing of thyristor
apparatus, etc. These phenomenons may appear even under a low
amplitude [3–7]. The interharmonic fluctuating magnitude is
essentially a source of voltage flicker. If the magnitude is
sufficiently large and the fluctuation frequency is located in a range
of perceptible human eyes, a light flicker will occur. Currently,
flicker monitoring/mitigation technique still needs improvement to
handle interharmonic problems. The designing and evaluation of
mitigation measures to reduce the flicker impact of interharmonics
is therefore an indispensable task [8, 9].

Discrete Fourier transform (DFT) is the most popular tool to
analyse harmonics. In fact, if the width of sampling window is not
properly chosen, some negative aspects such as spectral leakage or
picker fence effects will arise. For this reason, in the past many
related approaches have been reported in the literature [10–15].
However, when the system fundamental frequency varies or
harmonics/interharmonics are present in the measured waveforms,
these approaches may suffer from low accuracy and less
computational efficiency. Some studies are addressed to modify the
FFT using windows and interpolations that can reduce the leakage,
but it is unable to detect interharmonics near harmonics due to low
spectrum resolution [16–18]. Therefore, the classical Hanning
window is often recommended to replace the rectangular window
[19]. Another techniques using time-domain or frequency-domain
offer either computational efficiency or good solution accuracy.
Nevertheless, their limits do not suggest as a definitive algorithms
[20, 21]. Artificial neural networks are also applied in signal
further applications [22, 23]. An algorithm that uses adjustable
sampling frequency and correspondingly an adjustable window size
was reported [24]. Its theory is based on the decimation and
interpolation techniques on both harmonic and polyharmonic
signals. Unfortunately, the mechanism would be collapsed when the
size of the rectangular window is close to a multiple of the signal
period. An exact calculation of harmonics/interharmonics using
adaptive window width was also proposed [25]. The window width
calculation uses an iterative optimisation procedure to search for the
most suitable solution. For generic signal waveforms of unknown
frequency, its iteration loop requires a larger initial value to avoid
deceptively strong correlation. As a result, significantly longer
computational time cannot be ignored in this case.

An efficient algorithm using the combination of Prony-based
method and the downsampling technique for harmonics and
interharmonics detection was proposed [26]. The selection of
downsampling coefficient (alpha) and estimation order (K ),
however, relies on the measured signal considerably. The solution
accuracy may be thus affected due to lack of an effectively
convergent mechanism. The proposed sliding-window ESPRIT
algorithm allows for accurate frequency estimation of
interharmonic components [27]. It requires specifying the number
of frequency components. This limitation sometimes leads to
spurious components, line splitting and occasional failure.
Although this disadvantage was overcome by the proposed Exact
Model Order ESPRIT Technique using the RD plot, more
computational time required may pose a difficulty delivered into a
practical application [28]. Recently, a new method to separate and
analyse harmonics and interharmonics based on the basis of single
channel blind source separation was proposed. The orthogonal
vector in its proposed model lacks an effectively convergent
mechanism so that its implementation may not be convinced in
reality [29]. Also, only distant interharmonics and harmonics such
as 40, 50, 80, 175, 250 Hz can be separated successfully. Another
proposed approach related to spectrum separation for detecting
harmonics and main interharmonics was also reported [30].
Although this method can identify interharmonic component when
the frequency difference between the harmonic and interharmonic
is <5 Hz, the proposed model may collapse due to very sensitive
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to spectral leakage. Another interesting method known as
interpolated DFT was applied successfully in the parameters
estimation of signals by reducing spectral leakage [31, 32]. One
successful case study is for the estimation of frequency and
amplitude using rectangular and Hanning windows in the periodic
signals [31]. Moreover, it was widely used in the analysis of the
exponential signal. However, this interpolation algorithm relies on
the effective bits of the A/D conversion, on the position of the
frequency component of the signal and on the mutual component
interspacing along the frequency axis [32]. The interpolated DFT
techniques were known as being focused on only some specific
topics so that currently it is unsuitable to work out the problem of
adjacent interharmonics.

IEEE Interharmonic Task Force has adopted IEC standard for
interharmonic definition, measurement and limitation, it has two
major limitations: (i) Interharmonic frequencies may not be found
accurately under this standard due to the central frequency of
interharmonics group defined as the group frequency. (ii) Those
interharmonics close to fundamental or harmonics may not be
detected properly [33]. Actually, many studies focused on
interharmonic sources, impacts, measurement, limit values and
mitigation can be found in the recent literature [34–46]. The
research should be carried on in finding accurate interharmonic
magnitude and frequency for adjacent harmonics/interharmonics [47].
2 Mathematical background on group-harmonic
concept using DFT

The principle of Fourier analysis is to reconstruct a non-sinusoidal
periodical waveform by a series sinusoidal component. Harmonic
is defined as the component whose frequency is a multiple of
Fig. 1 Relation between harmonic frequency and dispersed energy

a Small frequency deviation
b Big frequency deviation
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fundamental. For a distorted waveform is(t), if it is a continuous
periodical signal and it satisfies Dirichlet condition, we can
represent it as

is(t) =
∑1

n=−1
in e

j2pft (1)

where in = 1/T
�T
0 is(t) e

−j2pft dt, and T(= 1/f ) is the period. i0 is the
dc component.

The signal must be converted into a discrete form to be
implemented in computer or microprocessor for Fourier analysis.
DFT is then introduced as

is[n] =
∑N−1

k=0

Is[k]W
kn
N (2)

where

Is[k] =
1

N

∑N−1

n=0

is[n]W
−kn
N , and WN = exp(j2p/N ).

Assume is[n] is periodic with the period T. The Fourier fundamental
angular frequency (Δω) can be defined as

Dv = 2p

T
(3)

The waveform is sampled using p(p > 1) periods, and Δω can be
represented as

Dv = 2p

pT
= v0

p
(4)

where ω0 = 2π/T.
Therefore, Fourier fundamental frequency (Δf) can be written as

Df = 1

pT
= 1

pNsTs
= 1

NTs
= fs

N
(5)

where Ns =D N/p and Ts =D 1/ fs. Note that the signal is sampled N
points by sampling rate fs, and the Fourier fundamental period is
defined as the sampling time Tf = N · (1/fs).

According to the Parseval relation, the power of the waveform, P,
can be expressed in its discrete form [48, 49] as

P = 1

N

∑N−1

n=0

is[n]
2 =

∑N−1

k=0

Is[k]
2 (6)

The power at the frequency fk can be expressed as [48]

P[ fk ] = Is[k]
2 + Is[N − k]2 = 2Is[k]

2 (7)

where k = 0, 1, 2,…,N/2 − 1.
Accordingly, the amplitude of mth harmonic at fk is obtained as

Am[ fk ] =
������
P[ fk ]

√
=

��
2

√
Is[k] (8)

where m = 1, 2,…,M.
The power of the mth harmonic at fk will disperse over around the

fk if the sampling window is not synchronised with the fundamental.
Based on the grouping concept, all spilled power around the adjacent
harmonics/interharmonics can be restored into a ‘group power’
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Fig. 2 Flowchart of the proposed MER algorithm

Fig. 3 Waveform of s(t)
(P∗
m[ fk ]) between fk−Δk and fk+Δk [45].

P∗
m[ fk ] =

∑+t

Dk=−t

Pm[ fk+Dk ] =
∑+t

Dk=−t

(Am[ fk+Dk ])
2 (9)

where t denotes the group bandwidth.
The true harmonic amplitude can be calculated as

A∗
m[ fk ] =

��������
P∗
m[ fk ]

√
(10)
3 Proposed algorithm

Based on the empirical observation, the relation between harmonic
frequency and dispersed energy can be induced and defined.
Consider the following cases based on DFT analysis. Case 1:
Fig. 1a reveals that the second larger magnitude (Am[ fk+1]) at fk+1
94
is located at the right-hand side of the dominant frequency at fk,
where Am[ fk] > Am[ fk+1]. Generally, fk may be wrongly interpreted
as the dominant harmonic frequency. Actually, it is found that the
true frequency known as an interharmonic should be equal to fk
plus the ‘frequency deviation’ (Δfk) [40]. It is confirmed that
higher Am[ fk+1] will introduce more amounts of deviation (Δfk)
from fk. Similarly, Case 2 shows another situation in Fig. 1b that
the second larger amplitude (Am[ fk]) at fk is located at the left-hand
side of the dominant frequency at fk+1, where Am[ fk] < Am[ fk+1]. In
this case, fk+1 may be wrongly interpreted as the dominant
harmonic frequency. In fact, the true interharmonic frequency in
this case should be equal to fk plus the ‘frequency deviation’ (Δfk).
Higher Am[ fk+1] will also introduce more amounts of deviation
(Δfk) from fk.

If the length (N) of the sampled window for DFT is chosen
correctly, no dispersed energy will exist and the spectrum can be
thus achieved accurately. In Fig. 1a, it is noticed that the second
stronger amplitude at fk+1 is found to be located at the right-hand
side of the dominant component (fk), i.e., Am[ fk] > Am[ fk+1], in
case of using overlong truncated-window length. On the contrary,
in Fig. 1b the second stronger amplitude at fk is located at the left
side of the dominant component (fk+1), i.e., Am[ fk] < Am[ fk+1], the
truncated-window length is insufficient for DFT analysis. From the
basic theory, the window size should be appropriately selected to
identify accurate interharmonics. The proposed MER approach is
to collect all dispersed energy and thus determine a correct
window length [36].

The flowchart of the proposed scheme is presented in Fig. 2, and it
is illustrated as follows.

(i) The waveform s(t) is sampled using fs = 1 kHz, N = 210, i.e.,
Δf = 5 Hz. t is set as 1.
(ii) Perform parallel DFT computation with N = 190–210

simultaneously.
(iii) Select N = 200 for initial process, and determine the number

(m) of major harmonics/interharmonics.
(iv) If Am[ fk+1] > Am[ fk−1], N =N − 1. Otherwise, go to the next

step.
(v) If Am[ fk+1] < Am[ fk−1], N = N+ 1. Otherwise, go to the next

step.
(vi) Check if P∗

m[ fk ] reaches the maximum point. If yes, the
sampled number (N ) is updated. Δf ′( = fs/N) and P∗

m[ fk ] can be
thus obtained. Accordingly, the true A∗

m[ fk ]( =
��������
P∗
m[ fk ]

√
) and fk(=

kΔf ′ ) can be found. Then, go to Step (8). Otherwise, go to the
next step.
(vii) Repeat Steps (4)–(6) until the interharmonic is regained.
(viii) m =m − 1.
(ix) Check if m = 0. If yes, the iteration procedure stops, and all

harmonics/interharmonics are found. Otherwise, go back to Step (3).

When the collected ‘group power’ (P∗
m[ fk ]) from the proposed

MER model reaches the maximum point during the convergent
process, the actual adjacent interharmonic and similar frequency
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Fig. 4 Spectrum analysis of s(t) using different windows

a No added window
b Hanning window
c Four-Term Blackman–Harris window
d Flat top window

Fig. 5 Fundamental frequency tracking curves at 50 Hz

a Amplitude tracking
b Frequency tracking
spectrum can be separated and identified accurately. At the time, the
spectral leakage can be reduced to a satisfactory low level. For this
purpose, multiple general-purpose microprocessors can allow DFT
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to be performed simultaneously and independently, whose results
are combined afterwards, upon completion.
4 Performance results

In Fig. 3, the waveform s(t) that contains both harmonics and
interharmonics is considered for test. This numerical example is
cited from IEEE Interharmonic Task Force [34]. In addition to
non-periodic characteristics in s(t), the interharmonics are very
close to some harmonics. However, please note that in this case
fi1 = 104 Hz and fi4 = 147 Hz deviate from the second harmonic
(100 Hz) and third harmonic (150 Hz), respectively.

s(t) = a1 sin(2p · f1 · t)+ ai1 sin(2p · fi1 · t)
+ ai2 sin(2p · fi2 · t)+ ai3 sin(2p · fi3 · t)
+ ai4 sin(2p · fi4 · t)+ a2 sin(2p · f2 · t) (11)

where a1 = 1.0 and a2 = 0.5 are the amplitudes of the fundamental
and 5th harmonic, respectively, and their respective frequencies
are f1 = 50 Hz and f2 = 250 Hz. The amplitudes of interharmonics
are ai1 = 0.3, ai2 = 0.4, ai3 = 0.2, ai4 = 0.2, and their respective
frequencies are fi1 = 104 Hz, fi2 = 117 Hz, fi3 = 134 Hz, fi4 = 147 Hz.

4.1 Spectrum analysis using DFT with window functions

Fig. 4a indicates the spectrum of s(t) using DFT directly. The
analysis results using Hanning window, Four-Term Blackman–
Harris window, and Flat Top window are shown in Figs. 4b–d,
respectively. It finds that Hanning and Four-Term Blackman–
Harris windows can somehow improve the spectrum analysis
slightly. However, spectrum result is even worse using Flat Top
window. Clearly, none of spectrum analysis as above can carry out
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Fig. 6 Interharmonic tracking curves at 104 Hz

a Amplitude tracking
b Frequency tracking

Table 2 Parameters’ values against iterative loop at 104 Hz

N m = 2, k = 21

Pm[ fk−1] Pm[ fk] Pm[ fk+1] P∗
m [ fk ] A∗

m[ fk ] fk

200 0.01 0.068 0.0089 0.087 0.294 105
201 0.0045 0.077 0.0084 0.090 0.299 104.48
202 0.0016 0.083 0.0067 0.091 0.302a 103.96*
203 0.0014 0.083 0.0057 0.090 0.3 103.45
204 0.0028 0.077 0.0072 0.087 0.295 102.94
205 0.0049 0.069 0.012 0.086 0.293 102.44
206 0.0068 0.057 0.019 0.083 0.288 101.94
207 0.0077 0.044 0.028 0.080 0.282 101.45
208 0.0071 0.03 0.039 0.076 0.276 100.96
209 0.0051 0.017 0.053 0.075 0.274 100.48

adenotes the solution achieved

Fig. 7 Interharmonic tracking curves at 117 Hz

a Amplitude tracking curve
b Frequency tracking curve

Table 1 Parameters’ values against iterative loop at 50 Hz

N m = 1, k = 10

Pm[ fk−1] Pm[ fk] Pm[ fk+1] P∗
m [ fk ] A∗

m[ fk ] fk

200 0.00046 1 0.00054 1.001 1.0a 50a

199 0.004 0.98 0.0028 0.987 0.993 50.25
198 0.014 0.96 0.008 0.982 0.991 50.51
197 0.032 0.92 0.015 0.967 0.983 50.76
196 0.06 0.86 0.022 0.942 0.97 51.02
195 0.1 0.78 0.027 0.907 0.952 51.28
194 0.16 0.69 0.03 0.88 0.938 51.55
193 0.22 0.61 0.033 0.863 0.93 51.81
192 0.29 0.52 0.032 0.842 0.92 52.08
191 0.38 0.43 0.029 0.839 0.916 52.36

adenotes the solution achieved
adjacent interharmonics measurement accurately. As can be seen, all
interharmonic frequencies are unable to be distinguished, and also
the spectral leakage still spreads seriously.
4.2 Spectrum analysis using MER model

In this section, the performance results using the proposed MER
model are presented to demonstrate how the model identifies the
interharmonics that are close to fundamental or harmonics. There
are six cases, i.e., 50, 104, 117, 134, 147, and 250 Hz evaluated
and discussed, respectively. The ‘group power’ (P∗

m[ fk ]) in (9) is
primarily used to evaluate the performance process.
96
4.2.1 Case 1: 50 Hz fundamental frequency tracking: From
Fig. 5a, it is seen that the amplitude of 50 Hz fundamental frequency
is found as 1.0 when the retrieved amplitude reaches the maximum
point at the first iteration loop. Consequently, the detected frequency
is determined as 50 Hz, shown in Fig. 6b. The model’s parameter
values against iterative loop are listed in Table 1.
4.2.2 Case 2: 104 Hz interharmonic tracking: In Fig. 6a,
initially the amplitude of 104 Hz interharmonic is found as 0.294.
The retrieved amplitude soon reaches the maximum point at the
third iteration loop where the amplitude value is 0.30. As a result,
the detected frequency is determined as 103.96 Hz, shown in
IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 2, pp. 92–99
& The Institution of Engineering and Technology 2016



Fig. 8 Interharmonic tracking curves at 134 Hz

a Amplitude tracking curve
b Frequency tracking curve

Table 3 Parameters’ values against iterative loop at 117 Hz

N m = 3, k = 23

Pm[ fk−1] Pm[ fk] Pm[ fk+1] P∗
m[ fk ] A∗

m[ fk ] fk

200 0.0089 0.097 0.035 0.141 0.375 115
199 0.0074 0.13 0.016 0.153 0.391 115.57
198 0.0047 0.15 0.0046 0.159 0.399 116.16
197 0.0024 0.16 0.00026 0.163 0.4a 116.75a

196 0.0031 0.15 0.0006 0.154 0.392 117.3
195 0.01 0.14 0.0026 0.153 0.391 117.9
194 0.026 0.11 0.0041 0.140 0.374 118.5
193 0.052 0.076 0.0041 0.132 0.363 119.17
192 0.084 0.046 0.003 0.133 0.365 119.79
191 0.12 0.023 0.0015 0.145 0.38 120.41

adenotes the solution achieved

Table 4 Parameters’ values against iterative loop at 134 Hz

N m = 4, k = 27

Pm[ fk−1] Pm[ fk] Pm[ fk+1] P∗
m [ fk ] A∗

m [ fk ] fk

200 0.0014 0.039 0.0014 0.042 0.204 135
201 0.00081 0.052 0.00031 0.053 0.207a 134.32a

202 0.0013 0.04 0.00042 0.042 0.204 133.66
203 0.0017 0.034 0.0029 0.039 0.196 133
204 0.0014 0.025 0.0082 0.035 0.186 132.35
205 0.00097 0.016 0.015 0.032 0.179 131.71
206 0.0013 0.0091 0.023 0.033 0.183 131.07
207 0.0026 0.0046 0.03 0.037 0.193 130.43
208 0.0045 0.0023 0.035 0.042 0.204 129.8
209 0.0064 0.0019 0.037 0.045 0.21 129.19

adenotes the solution achieved

Fig. 9 Interharmonic tracking curves at 147 Hz

a Amplitude tracking curve
b Frequency tracking curve
Fig. 6b. The model’s parameter values against iterative loop are
listed in Table 2.

4.2.3 Case 3: 117 Hz interharmonic tracking: From Fig. 7a,
the amplitude of 117 Hz interharmonic is found as 0.38 at the first
stage. The retrieved amplitude approaches the maximum point at
the fourth iteration loop where the amplitude value is 0.40.
Accordingly, the detected frequency is determined as 116.8 Hz,
shown in Fig. 7b. The model’s parameter values against iterative
loop are listed in Table 3.

4.2.4 Case 4: 134 Hz interharmonic tracking: From Fig. 8a,
the amplitude of 134 Hz interharmonic is obtained as 0.20 at the
first stage. The retrieved amplitude approaches the maximum point
IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 2, pp. 92–99
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at the second iteration loop where the amplitude value is 0.21.
Therefore, the detected frequency is determined as 134.3 Hz,
shown in Fig. 8b. The model’s parameter values against iterative
loop are listed in Table 4.

4.2.5 Case 5: 147 Hz interharmonic tracking: In Fig. 9a,
initially the amplitude of 147 Hz interharmonic is found as 0.18.
The retrieved amplitude reaches to the maximum point at the
fourth iteration loop where the amplitude value is 0.20.
Consequently, the detected frequency is determined as 147.2 Hz,
shown in Fig. 9b. The model’s parameter values against iterative
loop are listed in Table 5.

4.2.6 Case 6: 250 Hz harmonic tracking: From Fig. 10a, the
amplitude of 250 Hz harmonic frequency is found as 0.5 where
97



Table 5 Parameters’ values against iterative loop at 147 Hz

N m = 5, k = 29

Pm[ fk−1] Pm[ fk] Pm[ fk+1] P∗
m[ fk ] A∗

m[ fk ] fk

200 0.0014 0.016 0.015 0.0324 0.18 145
199 0.0025 0.025 0.0069 0.0344 0.185 145.7
198 0.0031 0.033 0.0021 0.0382 0.195 146.6
197 0.0028 0.038 0.00068 0.0415 0.204a 147.2a

196 0.0029 0.037 0.0014 0.0413 0.203 147.96
195 0.0053 0.031 0.0025 0.0388 0.197 148.72
194 0.011 0.021 0.003 0.035 0.187 149.48
193 0.02 0.012 0.0025 0.0345 0.186 150.26
192 0.03 0.0049 0.0016 0.0365 0.19 151.04
191 0.038 0.0015 0.00082 0.040 0.2 151.83

adenotes the solution achieved

Fig. 10 Harmonic tracking curves at 250 Hz

a Amplitude tracking curve
b Frequency tracking curve

Table 6 Parameters’ values against iterative loop at 250 Hz

N m = 6, k = 50

Pm[ fk−1] Pm[ fk] Pm[ fk+1] P∗
m [ fk ] A∗

m [ fk ] fk

200 4.9 × 10−5 0.25 4 × 10−5 0.25 0.5a 250a

201 0.007 0.2 0.024 0.23 0.48 248.76
202 0.0099 0.097 0.11 0.22 0.47 247.52
203 0.004 0.022 0.2 0.23 0.48 246.31
204 0.00014 0.00013 0.24 0.24 0.49 245.1
205 0.0011 0.0054 0.19 0.20 0.45 243.90
206 0.0024 0.0083 0.092 0.1 0.32 242.72
207 0.0015 0.0037 0.021 0.03 0.17 241.55
208 0.00019 0.00018 0.00017 5.4 × 10−4 0.02 240.38
209 0.0008 0.0019 0.0069 9.6 × 10−3 0.1 239.23

adenotes the solution achieved

Fig. 11 Spectrum of s(t) using MER
the retrieved amplitude reaches the maximum point at the first
iteration loop. Therefore, the detected frequency is determined as
250 Hz, shown in Fig. 10b. The model’s parameter values against
iterative loop are listed in Table 6.
Table 7 Result comparison between DFT and MER

Real valu

Methods f1 = 50 (Hz)

a1 = 1.0

fi1 = 104 (Hz)

ai1 = 0.3

fi2 = 117 (Hz

ai2 = 0.4

DFT f1 = 50 (Hz)
a1 = 1.0

fi1 = 105
ai1 = 0.29

fi2 = 115
ai2 = 0.38

MER f1 = 50 (Hz)
a1 = 1.0

fi1 = 104
ai1 = 0.30

fi2 = 116.8
ai2 = 0.40
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In conclusion of above results (Tables 1 to 6), the spectrum of s(t)
using MER is shown in Fig. 11. Obviously, each interharmonic is
distinguished and identified accurately without spectrum leakage.
It is clear that the proposed model presents better performance
than traditional DFT or windowed DFT. However, the spectrum
analysis using MER has no difference with DFT in fundamental
and harmonic components, e.g., 50 and 250 Hz, because both of
them can achieve an accurate measurement in this case. The
comparison of result between DFT and MER is summed up in
Table 7.
4.3 Discussion for selection of group bandwidth (t)

Spectrum analysis using DFT may cause spectral leakage if the
waveform contains interharmonics. In such a situation, the power
of the harmonic at fk may disperse over a frequency band.
Normally, the larger group bandwidth (t) may restore all leakages
and thus regain the actual amplitude/frequency. However, with a
large bandwidth the ‘group power’ may cover some harmonic
contents at distant frequencies. For this reason, the group
bandwidth (t) should be chosen as large as possible but small
enough to avoid the overlap between two neighbouring harmonic
es

) fi3 = 134 (Hz)

ai3 = 0.2

fi4 = 147 (Hz)

ai4 = 0.2

f2 = 250 (Hz)

a2 = 0.5

fi3 = 135
ai3 = 0.20

fi4 = 145
ai4 = 0.18

f2 = 250 (Hz)
a2 = 0.5

fi3 = 134.3
ai3 = 0.21

fi4 = 147.2
ai4 = 0.20

f2 = 250 (Hz)
a2 = 0.5

IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 2, pp. 92–99
& The Institution of Engineering and Technology 2016



groups. In this study, interharmonics are very close to fundamental
or harmonics, so that t is chosen as 1 with Δf = 5 Hz to exclude
possible dispersed power interaction between each other.
5 Conclusions

A number of related algorithms focused on the impact or
measurement of harmonics/interharmonics in power systems have
been reported in the literature. However, it is still unsolved for the
identification of those interharmonics close to harmonics or
fundamental. In the proposed scheme, both amplitude and
frequency of interharmonics can be obtained accurately by
collecting the maximum energy dispersed from spectrum leakage,
where only several iteration loops are required. Δf = 5 Hz
recommended by IEC is selected for the trade-off between the
sampling time and measurement accuracy, and therefore the
sampling time (=200 ms) is quite reasonable. From the
performance results, it can be seen that the proposed MER method
is superior to the traditional DFT. For industrial applications, no
extended memory is needed in general computers or
microprocessors. Accordingly, it can be easily applied to
DFT-based instruments due to its simple mathematics basis of DFT.
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