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A depot location has a significant effect on the transportation cost in vehicle routing problems. This study proposes a hierarchical
particle swarm optimization (PSO) including inner and outer layers to obtain the best location to establish a depot and the
corresponding optimal vehicle routes using the determined depot location.The inner layer PSO is applied to obtain optimal vehicle
routes while the outer layer PSO is to acquire the depot location. A novel particle encoding is suggested for the inner layer PSO,
the novel PSO encoding facilitates solving the customer assignment and the visiting order determination simultaneously to greatly
lower processing efforts and hence reduce the computation complexity. Meanwhile, a routing balance insertion (RBI) local search
is designed to improve the solution quality. The RBI local search moves the nearest customer from the longest route to the shortest
route to reduce the travel distance. Vehicle routing problems from an operation research library were tested and an average of 16%
total routing distance improvement between having and not having planned the optimal depot locations is obtained. A real world
case for finding the new plant location was also conducted and significantly reduced the cost by about 29%.

1. Introduction

The vehicle routing problem (VRP) is a scheduling problem
encountered in logistic arrangement, an extension of the
traveling salesman problem. As different restrictions (vehicle
capacity limits, visit time limits, goods pick-, and delivery
demands, etc.), there are also dissimilar types of VRPs, such
as capacitated VRPs (CVRPs) involving only vehicle capacity
limits, capacitated VRPs with time windows involving both
vehicle capacity and visit time limits at the same time,
VRPs with pickups and deliveries involving pickup and
delivery demands, multiple depot VRPs involving multiple
depots, and periodic VRPs involving customs with periodic
demands. This study focuses on capacitated vehicle routing
problems. In operation research, vehicle routing problems
have been confirmed to be NP-hard. Accurate optimal solu-
tions to this type of problem can be obtained with exact
algorithms [1] within a limited time only when the problem
scale is small. With problems of a larger scale, the amount

and time of calculation required make it impossible to obtain
optimal solutionswith exact algorithmswithin a limited time.
For this reason,many researchers have come upwith a variety
of heuristic and metaheuristic methods in recent years to
cope with vehicle routing problems, including the evolution
computation, memetic algorithm, genetic algorithm (GA),
local search metaheuristic, artificial bee colony algorithm,
ant colony optimization (ACO), and particle swarm opti-
mization (PSO). Prins [2] used two memetic algorithms
for heterogeneous fleet vehicle routing problems. Repoussis
et al. [3] applied a hybrid evolution strategy for the open
vehicle routing problem. Gajpal and Abad [4] proposed
a saving-based algorithm for vehicle routing problem, in
which a new route is created by merging two existing routes.
Munawar et al. suggested a cellular genetic algorithm with
local search to solve CVRP [5]. Pop et al. integrated a GA
with a local search to globalize the approach to the CVRP [6].
In [7], a local search metaheuristic including the static move
descriptor strategy for exploration and the promises concept
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for avoiding search cycling and inducing diversification was
designed for the VRP with simultaneous pick-ups and deliv-
eries. Fleszar et al. proposed an effective variable neighbor-
hood search scheme based on reversing the routing segment
and exchanging routing segments for solving the openVRP to
minimize the number of vehicles as well as the total travelled
distance [8]. Meanwhile, an adaptive variable neighborhood
search together with diversification local search methods
was utilized to investigate the homogeneous fleet VRP [9].
Artificial bee colony algorithm with a local optimization
strategy based on a scanning strategy for an open VRP was
studied by Yao et al. [10]. Szeto et al. also applied an enhanced
version of artificial bee colony for solving the CVRP [11].
Ant colony optimization is a well-known metaheuristic for
combinatorial optimization problems. An ant colony system
based algorithm was proposed by Favaretto et al. [12] to
solve VRP with multiple time window constraints. Yu et al.
recommended an improved ACO, which implements a new
ant-weight strategy to update the increasing trail pheromone
and a mutation operation to solve VRP [13]. A PSO-based
scheme with two solution encodings and the corresponding
decodings for solving CVRP was investigated by Ai and
Kachitvichyanukul [14]. In [15], a PSO-based approach in
which a variable neighborhood descent local search is per-
formed to solve the VRPwith pickup and delivery at the same
time. Meanwhile, Marinakis et al. [16] proposed a hybrid
algorithm based on PSO for solving VRP with stochastic
demand. Moreover, a VRP with fuzzy demands was solved
by applying a PSO-based approach in which a novel encoding
method was introduced [17].

Among them, PSO has the advantage of requiring less
parameters and faster convergence rates and has therefore
been adopted by many researchers to solve various problems.
Abido [18] employed PSO to solve the optimal setting of
power flow. Kang andHe [19] proposed a novel discrete parti-
cle swarm optimization algorithm for meta-task assignment
in heterogeneous computing systems and used a migration
mechanism to escape from possible local optimum. A flow
shop sequence dependent group scheduling problem was
resolved using PSO based on a ranked order value encoding
scheme [20]. Meanwhile, Chen [21] presented PSO with jus-
tification technique integrated to solve resource-constrained
project scheduling problems. Moreover, an application of
PSO to solve task-resource assignment in a heterogeneous
grid was provided by Chen and Wang [22]. Additionally,
Chen and Sandnes [23] applied constriction PSO to solve
man-day scheduling problems.

Scholars have established different restriction databases
to help solve VRP problems, but the objectives are mostly
to plan the least costly vehicle routes when the locations of
depots and customers are already known. A dynamic VRP
which considers new customer requests while the vehicle
routing is in progress was also investigated by using PSO
[24]. In some industries, 25% of the company’s total revenue
must be used to pay for materials delivery as well as shipping
costs to ship products. Restated, the transportation cost is
an extremely important consideration for many businesses.
Therefore, efficient vehicle routing is crucial. Meanwhile, site
selection has a significant impact on the fixed and changing

costs and the impact of the company’s risk and profits. Hence,
setting the operating site location is one of themost important
decisions in many companies, such as FedEx. The goal of site
selection is to allow the company to reduce the transportation
cost so as to get the most benefit. Site selection can be
any operating site selection including VRP depot location
selection. However, most studies focus on solving VRP based
on fixed depots. In logistic businesses, besides fine vehicle
route planning, good choice of depot locations is also an
important issue to reduce business costs and hence increase
profits. Restated, solving both the optimal depot location as
well as the optimal vehicle routes is necessary. Therefore,
this investigation focuses on solving these two issues by a
hierarchical PSO involving two PSO algorithms: one for the
inner layer and the other for the outer layer. The outer-
layer PSO is first applied to establish the optimal depot
location; then, the inner PSO is used to produce the optimal
vehicle routing. This optimal routing involves the customer-
to-vehicle assignment and visit order determination issues.
These two issues are commonly resolved by two separate
PSOs in most studies, hence much effort is required. There-
fore, a novel particle encoding scheme is proposed to deal
with those two issues simultaneously to greatly reduce the
processing effort. Meanwhile, a new local search strategy is
also designed and employed to improve solution quality.This
new designed local search is named routing balance insertion
(RBI) local search herein, it is inspired by the well-used
nearest neighborhood heuristic in TSP. The RBI local search
selects the nearest customer on the longest routing cluster
and inserts the selected node into the shortest routing cluster
to reduce the total travel distance. The nearest customer is
determined based on the distance between the customer and
the centroid of the shortest routing cluster.

The organization of this work is as follows. Section 2
describes the interested capacitated vehicle routing problems.
The proposed scheme, including novel particle encoding and
routing balance insertion local search, is given in Section 3.
Section 4 demonstrates the experimental results and analysis.
Finally, conclusions are made in Section 5.

2. Problem Description

The vehicle routing problem was first proposed by Dantzig
and Ramser in 1959 [25]. It was very similar to the concept
of distribution of goods by logistic businesses in reality. The
problem involved the demands of each of many customers
scattered about different places. The depot had to assign
vehicles to visit (service) all the customers and satisfy their
needs by planning the shortest total travel distance without
violating any restrictions.

In a CVRP, there are a fixed number of customers and
a depot. The locations of each customer and the depot are
known (indicated with Cartesian coordinates). Set C =

{𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
} stands for the set customers; 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
are

the customers. The depot will send out a fleet comprising
several vehicles. The vehicle fleet V = {V

1
, V
2
, . . . , V

𝑘
}, in

which 𝑘 is the number of vehicles. Each customer has a
different cargo demand and each vehicle has a carrying
capacity limitation. Each vehicle must leave from the depot
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Figure 1: Customer-to-vehicle assignment.

and return to the depot at the end. Each customer has to be
visited once and once only. The objectives and restrictions of
the CVRP are then defined as follows:

Fitness = min
𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

𝑘

∑

V=1
𝑑
𝑖𝑗
𝑋

V
𝑖𝑗
+ 𝑑
𝑛0
𝑋

V
𝑛0

𝑖 ̸= 𝑗, (1)

𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

𝑋

V
𝑖𝑗
𝑟
𝑖
≤ 𝑄V 𝑖 ̸= 𝑗, V ∈ 𝑉, (2)

𝑋

V
𝑖𝑗

=

{

{

{

1, a customer 𝑖 to 𝑗 is on the route of vehicle V,

0, otherwise.

(3)

In (1), the objective function of the VRP is defined as
to obtain the shortest total travel distance. The 𝑑

𝑖𝑗
is the

distance from the customer 𝑖 to customer 𝑗 and 𝑋V
𝑖𝑗
stands

for whether vehicle V will go from customer 𝑖 to customer 𝑗.
When 𝑋V

𝑖𝑗
= 1, it means vehicle V travels from a customer

𝑖 to 𝑗. On the other hand, when 𝑋V
𝑖𝑗
= 0, vehicle V does

not travel from customer 𝑖 to customer 𝑗. In (2), the total
demands from customers served by vehicle Vmay not exceed
the carrying capacity of vehicle V. The 𝑟

𝑖
stands for the cargo

demand of customer 𝑖 while 𝑄V is the maximum carrying
capacity defined for vehicle V. The objective is to obtain the
shortest total travel distance, but each vehicle may not violate
the maximum capacity restriction throughout the tour.

This investigation is interested in determining the optimal
depot location as well as the optimal vehicle routing. This
problem to obtain the optimal vehicle routes first needs
allocation of the 𝑛 customers to 𝑘 vehicles. Hence, there is
a surjection from customer collection C = {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
} to

vehicle collection V = {V
1
, V
2
, . . . , V

𝑘
}, that is, customer to

vehicle assignment as shown in Figure 1. Next, determination
of the optimal visit order for each vehicle is needed as
displayed in Figure 2.

To acquire optimal customer-to-vehicle assignment and
optimal visit order for each vehicle, a particle swarm opti-
mization (PSO) with a novel particle encoding scheme is pro-
posed to resolve these two issues at the same time. Restated,

with the help of the novel particle encoding scheme, the
customer assignment and the visiting order determination
can be solved concurrently.

Meanwhile, a depot has a very significant effect on the
transportation cost. Therefore, a hierarchical PSO is utilized;
the position of the depot is adjusted with the outer PSO
and then the inner PSO is applied to determine the optimal
customer assignment and optimal visit order with minimum
total vehicle routes.

3. Particle Swarm Optimization with
Proposed Designs

This study focuses on applying hierarchical PSO to obtain
optimal depot location as well as the optimal vehicle routes.
In this Section, PSO is first introduced; next, a novel particle
encoding for the inner and outer layer PSOs are presented.
To enhance the PSO performance routing balance insertion
local search is designed.

3.1. Particle SwarmOptimization (PSO). Particle swarm opti-
mization is a type of collective intelligence. It was first put
forward in 1995 by Kennedy and Eberhart [26] who were
inspired by the group behavior of biological creatures looking
for food together. In the operation of a PSO algorithm, the
position of a particle stands for the solution to the problem.
In PSO, a particle moves in the solution space and uses
two experiences as references for further motion, namely,
the optimal individual experience and the optimal group
experience. The optimal group experience indicates that the
entire group has been placed in the best position and the
optimal individual experience means each particle has been
placed in its best position. When calculating the newmoving
speed of a particle in each iteration, besides the original speed,
the positions of the optimal group experience and the optimal
individual experience are also referred to. Suppose that an
𝑁 number of particles are scattered in an 𝐿-dimensional
space. The position vector of the 𝑖th particle (𝑖 = 1, . . . , 𝑁)
is composed of 𝐿 vector components. 𝑋

𝑖
= {𝑋

𝑖1
, . . . , 𝑋

𝑖𝐿
}

indicates the position vector of particle 𝑖, in which𝑋
𝑖𝑗
stands

for the 𝑗th vector component of the 𝑖th particle. The velocity
vector of the 𝑖th particle is also composed of 𝐿 components
𝑉
𝑖
= {𝑉
𝑖1
, . . . , 𝑉

𝑖𝐿
}. The optimal individual experience of the

𝑖th particle is thus represented as 𝑃
𝑖
= {𝑃
𝑖1
, . . . , 𝑃

𝑖𝐿
}, whereas

the optimal swarm experience (𝐺best) is 𝐺 = {𝐺
1
, . . . , 𝐺

𝐿
}.

These velocity and position update rules are shown below:

𝑉

new
𝑖𝑗

= 𝑤 × 𝑉
𝑖𝑗
+ 𝑐
1
× 𝑟
1
× (𝑃
𝑖𝑗
− 𝑋
𝑖𝑗
) + 𝑐
2
× 𝑟
2

× (𝐺
𝑗
− 𝑋
𝑖𝑗
) ,

𝑋

new
𝑖𝑗
= 𝑋
𝑖𝑗
+ 𝑉

new
𝑖𝑗
.

(4)

In (4), 𝑤 is the inertia weight used to determine the
level of effect of the previous velocity on the new velocity.
In PSO algorithms, inertia weight is an important factor
that has influence on the search ranges of particles. When
𝑤 increases, the searching movement of a particle is broader
and global exploration is suitable. On the other hand, when
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Figure 2: Visit order optimization.

Table 1: Novel compound particle encoding (inner layer PSO).

Index 1 2 ⋅ ⋅ ⋅ 𝑛 𝑛 + 1 𝑛 + 2 ⋅ ⋅ ⋅ 𝑛 + 𝑘 − 1

𝑋

𝑉

𝑖
𝑋

𝑉

𝑖1
𝑋

𝑉

𝑖2
⋅ ⋅ ⋅ 𝑋

𝑉

𝑖𝑛
𝑋

𝑉

𝑖𝑛+1
𝑋

𝑉

𝑖𝑛+2
⋅ ⋅ ⋅ 𝑋

𝑉

𝑖𝑛+𝑘−1

Key Cus1 Cus2 ⋅ ⋅ ⋅ Cus
𝑛

Veh1 Veh2 ⋅ ⋅ ⋅ Veh
𝑘−1

the search space is narrower, local exploitation will be more
appropriate. Therefore, proper adjustment of 𝑤 to balance
global exploration and local exploitation is required and
important. Meanwhile, 𝑐

1
and 𝑐
2
are learning factors which

have an effect on particles’ learning of global experience and
individual experience, whereas 𝑟

1
and 𝑟
2
represent random

numbers within [0, 1].

3.2. Novel Particle Encoding for Inner Layer PSO. The par-
ticle position vector represents the solution of a studied
problem and the particle position encoding is the core
step in PSO. Before the inner layer PSO performs visit
order decision-making and fitness calculations, the position
vector (𝑋𝑉

𝑖
) has to be converted into the visit sequence of

a vehicle. Restated, each customer the vehicle is assigned
to have to be determined before an assessment can be
conducted. Hence, to facilitate finding the optimal solution
and reduce the processing effort, this work designs a novel
compound particle encoding scheme to reduce the customer-
to-vehicle assignment and visit order determination effort
for the inner layer PSO. Herein, a particle of the inner-layer
PSO includes customers and vehicles assigned, as shown in
Table 1. In Table 1, the position vector includes 𝑛 + (𝑘 −
1) components; that is, 𝑋𝑉

𝑖
= {𝑋

𝑉

𝑖1
, . . . , 𝑋

𝑉

𝑖𝑛
, . . . , 𝑋

𝑉

𝑖𝑛+𝑘−1
}.

Meanwhile, each component is associated with a key
(Key = {Cus

1
,Cus
2
, . . . ,Cus

𝑛
,Veh
1
,Veh
2
, . . . ,Veh

𝑘−1
}). For

customer-to-vehicle assignment, 𝑛 customers are to be
assigned to 𝑘 vehicles; that is, 𝑛 customers can be regarded
as being clustered into 𝑘 groups. Therefore, (𝑘 − 1) dividing
points are needed, that is the reason Veh

1
–Veh
𝑘−1

(𝑘 − 1
components) are added.

The visit sequence of each vehicle and each customer a
vehicle is assigned to are determined simultaneously by using

a random key scheme. Take six customers and three vehicles,
for example. Figure 3 shows a solution (𝑋𝑉

𝑖
) obtained with

PSO. The components of the position vector are sorted in
ascending order; then, the key values are rearranged accord-
ing to the sorted values of𝑋𝑉

𝑖
to generate a key sequence set.

This key sequence is then defined as the vehicle assignment
with the Veh

𝑗
as the dividing point. Restated, all customers

before the dividing point Veh
1
are assigned to vehicle 1, all

customers between Veh
1
and Veh

2
are assigned to vehicle 2,

and so forth. Finally, customers after Veh
𝑘−1

are assigned to
vehicle 𝑘.Moreover, the customers visit sequence for a vehicle
is then defined as the visiting order for that vehicle. The
total travel distance can then be calculated according to (1)
after the vehicle assignment and visiting order are resolved.
For example, customers 1, 2, and 5 are assigned to vehicle 2,
and the visiting order for vehicle 2 would be from customer
2 to customer 5 then customer 1, as indicated in Figure 3.
Hence, the proposed novel PSO encoding scheme in inner
layer PSO can facilitate solving the customer assignment and
the visiting order determination at the same time to greatly
lower processing effort and hence reduce the computational
complexity.

3.3. Particle Encoding for the Outer Layer PSO. The particle
encoding for the outer layer PSO solutions is conducted
by using a position vector consisting of two components
representing the 𝑋 and 𝑌 coordinates of the depot location.
The outer layer PSO solution (X𝐷 = {𝑋

𝐷

1
, 𝑋

𝐷

2
}) is shown

in Table 2. The fitness calculation is then performed by
transferring the depot coordinates (X𝐷) to the inner layer
PSO for optimal routing calculation and the resulting total
routing distance is adopted as the fitness value of the outer
layer PSO.
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Figure 3: The solution decoding process (inner layer PSO).

Table 2: Solution representation (outer layer PSO).

X𝐷 𝑋

𝐷

1
𝑋

𝐷

2

Depot location 𝑋 coordinate 𝑌 coordinate

3.4. Routing Balance Insertion Local Search. The local search
is a search tactic to generate new solutions in the neighbor-
hood of the current solution to attempt to find a solution with
better quality. A new local search is designed and conducted
to generate a new solution and is selected to be the starting
point of the algorithm when the next iteration takes place if
it is a better solution.

The new local search tactic named routing balance inser-
tion (RBI) local search is applied in the inner layer PSO,
which is inspired from the well-used nearest neighborhood
heuristic in TSP. The RBI local search moves the nearest
customer from the longest route to the shortest route to
reduce the travel distance; the nearest customer is determined
based on the distance between the customer and the centroid
of the shortest routing cluster.The operations of the designed
RBI local search are as follows.

Step 1. Select the longest routing path and the shortest
routing path. Figure 4 shows the resulting CVRP results,
Route-1 is the routing path starting from depot (𝑂) and
visiting 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 then back to 𝑂; Route-2 is
the routing path starting from 𝑂 and visiting 𝐺, 𝐻, and 𝐼
then back to the depot. Assuming the travel distances of the
corresponding vehicle routes are 𝑑1, 𝑑2, and 𝑑3, respectively.
Suppose the max{𝑑1, 𝑑2, 𝑑3} is 𝑑1 and the min{𝑑1, 𝑑2, 𝑑3} is
𝑑2.

Step 2. Calculate the centroid position of the customers
consisting of the shortest route (Route-2). The centroid
position (𝐶𝐶 = (𝑥

𝐶
, 𝑦
𝐶
)) can be yielded by

𝑥
𝐶
=

∑

𝑘

𝑖=1
𝑥

V
𝑖
+ 𝑥
𝑂

𝑘 + 1

,

𝑦
𝐶
=

∑

𝑘

𝑖=1
𝑦

V
𝑖
+ 𝑦
𝑂

𝑘 + 1

.

(5)

F

O

D
E

G

H
A

I

C

J

B

K

Route-1

Route-2

Route-3

Figure 4: Obtained CVRP results.
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longest route.

In (5), 𝑥
𝐶
and 𝑦

𝐶
are the coordinates of the centroid position

of route V (vehicle V). The 𝑥V
𝑖
and 𝑦V

𝑖
are the coordinates of

the customers assigned to the vehicle V; 𝑥
𝑂
and 𝑦

𝑂
are the

coordinates of the depot position.

Step 3. Calculate the distances from the customers assigned
to the longest route (Route-1) to the centroid. Assuming
𝑑𝐴, 𝑑𝐵, . . . and 𝑑𝐹 are the distances from customers 𝐴, 𝐵, . . .
and 𝐹 to the centroid, as displayed in Figure 5. Suppose 𝑑𝐵 is
the minimum distance, that is, customer 𝐵 is the nearest one
to the shortest route.
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Figure 6: Four possible insertion positions.

Step 4. Delete customer 𝐵 from Route-1 and insert 𝐵 into
Router-2.The travel distance of theRoute-1 decreases after the
customer 𝐵 is removed, the decreased distance is 𝑑 = 𝐴𝐵 +
𝐵𝐶 − 𝐴𝐶. Meanwhile, there are four possible positions for
inserting 𝐵 as illustrated in Figure 6. The increased distances
after inserting 𝐵 to the four possible positions are 𝑑1 =

𝑂𝐵 + 𝐵𝐺 − 𝑂𝐺, 𝑑2 = 𝐺𝐵 + 𝐵𝐻 − 𝐺𝐻, 𝑑3 = 𝐻𝐵 + 𝐵𝐼 −
𝐻𝐼, and 𝑑4 = 𝐼𝐵 + 𝐵𝑂 − 𝐼𝑂, respectively. The insertion
position is then determined by comparing 𝑑1, 𝑑2, 𝑑3, and
𝑑4. Restated, the insertion position decision is based on the
min{𝑑1, 𝑑2, 𝑑3, 𝑑4}. For example, the customer 𝐵 is being
inserted between𝐺 and𝐻 if the 𝑑2 is theminimum increased
distance as in Figure 6(b).

3.5. Optimal Depot Location Determination. The optimal
depot location is determined using the outer layer PSO. The
determined particle solution, X𝐷, is passed to the inner layer
PSO as the depot location. The inner layer PSO solves the
CVRP problem on the basis of this depot location, and the
minimum total vehicle routing distances (Fitness in (1)) are
returned to the outer PSO. This returned Fitness is then
used as the objective corresponding to X𝐷. Accordingly,
particle experience and swarm experience can be obtained.
Thereafter, the velocity in the outer layer PSO is updated;
a new position X𝐷 is generated and will be the new depot
location. After alternating evolutions of the inner layer and
outer layer PSO, an optimal depot location can be acquired.

3.6. Hierarchical PSO. The collaboration operation of the
proposed inner and outer layer PSOs is as follows.

(1) Outer layer PSO: outputs determined depot location
(X𝐷) to the inner layer PSO.

(2) Inner layer PSO: determines total travel distance
(TTD) based on X𝐷; returns the total travel distance
to the outer layer PSO.

(3) Outer layer PSO:

(i) evaluates the quality of the depot location (X𝐷),
that is, fitness(X𝐷) = TTD;

(ii) updates individual and swarm experience;
(iii) updates velocity and position vector;
(iv) outputs new depot location (X𝐷) to the inner

layer PSO.

(4) Repeats Steps 3 and 4 until termination condition is
met.

(5) Outer layer PSO: outputs the optimal depot location
and the corresponding vehicle routes.

The detailed flowchart of the proposed hierarchical PSO for
optimal CVRP depot location and optimal vehicle routes is
summarized in Figure 7.
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Figure 7: Flowchart of the proposed hierarchical PSO.

Table 3: Complexity of the VRP scheduling problem.

Customers Vehicles Solution space
𝑛 = 𝑋𝑋 − 1 𝑚 𝑚 × (𝑛/𝑚)! × 𝑚

𝑛

31 5 5 × 6! × 531 ≈ 1.67 × 1025

54 9 9 × 6! × 954 ≈ 2.19 × 1055

63 8 8 × 8! × 863 ≈ 2.53 × 1062

4. Experimental Results

To verify the performance of the method proposed in this
work to establish the optimal depot location, simulations on
a famous benchmark were conducted. The instances tested
are those designed by Augerat aiming at capacitated vehicle
routing problems. There are 9 instances selected from the
database at http://www.branchandcut.org/VRP/data; they are
A-n32-k5, A-n33-k5, A-n36-k5, A-n45-k6, A-n45-k7, A-n55-
k9, A-n60-k9, A-n62-k8, and A-n64-k9. An instance is
expressed by A-n𝑋𝑋-k𝑌, where𝑋𝑋 stands for the number of
customers plus depots and𝑌 indicates the number of vehicles.

Table 3 demonstrates the difficulty of solving the studied
CVRP problems. Assuming 𝑛 customers are serviced by
𝑚 vehicles, in average every vehicle needs to visit 𝑛/𝑚
customers. Therefore, the time required by exhaustive search

Table 4: Particle complexity on finding optimal routes.

Two PSOs Proposed PSO
Number of component 𝑛 + 𝑛 𝑛 + (𝑚 − 1)
Example
A-n32-k5 31 + 31 31 + 4

A-n54-k9 53 + 53 53 + 8

A-n64-k8 63 + 63 63 + 7

for the A-n32-k5 instance would be 1.67 × 1025 × 10−8
seconds ≈ 1.9 × 1012 days, with a solution that can be found in
0.01 𝜇sec (10−8 sec) is assumed. For another example case, the
time required by exhaustive search for the A-n64-k8 instance
would be 2.53× 1062 × 10−8 seconds≈ 3.69× 1049 days. Hence,
a PSO metaheuristic algorithm is applied in this study.

Table 4 lists the required number of component velocity
and position vectors for the inner PSO to find the optimal
routes. To solve the two issues encountered in obtaining
the CVRP optimal routes, there is one commonly used
design when applying PSO: two PSOs are dedicated to
solve corresponding issues. However, the required number
of components in either the velocity or position vector is
𝑛 + 𝑛 components in total; however, only 𝑛 + (𝑚 − 1)

components are required in the proposed novel particle
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encoding scheme. Hence, the computational complexity is
decreased dramatically for large scale problems.

In this work, the experiments were processed in two
stages. The first stage is to find out the best mechanisms
employed in the inner layer PSO, including the local search.
The second stage is to check the improvements when the
depot location is determined by using the outer layer
PSO. Restated, the resulting fitnesses after and before outer
layer PSO application are compared to observe the level of
improvement. During the test in the first stage, the customers
provided in the benchmark were divided into small, medium,
and large scales. Three instances for each scale were adopted
to run the test. The inner layer PSO parameters were 100
particles, the learning factors 𝑐

1
= 2 and 𝑐

2
= 1, and the

number of iterations was 1000. The outer layer PSO involved
8 particles, the learning factors were set to 𝑐

1
= 𝑐
2
= 2 and 100

iterations were conducted.The comparison criterion is on the
basis of deviation. The deviation (DEV) is defined in

DEV (%) =
Makespansol − BKS

BKS
× 100%, (6)

where BKS is the best known solution provided in the
benchmark,Makespansol is the shortest total routing distance
obtained by the proposed method. The best deviation from
10 trials was selected for comparison. Moreover, the average
deviation (Avg. Dev) is also defined as in

Avg. Dev (%) =
∑

𝑛

𝑖=1
DEV
𝑖

𝑛

,
(7)

where 𝑛 is the trial runs for a specific test problem instance;
10 trial runs were conducted in this work, that is, 𝑛 = 10.

The testing environment of the experiment included the
Windows 7 SP1 operating system running on an Intel Core i7
CPU 4770 3.40GHz CPU with 4GB RAM. C# was applied to
implement the method proposed in this study.

4.1. Inner-Layer PSO: Local Searches. To test the efficiency
of different local searches, interchange (LS

1
), RBI (LS

2
),

combining interchange, and RBI (LS
3
) were tested. The

results are as shown in Figure 8. It indicates that either swap
or RBI local search is able to improve the efficiency. The
proposed RBI local search (Avg. Dev. = 18%) outperforms
swap local search (Avg. Dev. = 20%) and without the local
search (Avg. Dev. = 28%). Moreover, both swap and RBI
involved in the algorithm are able to further enhance the
performance (Avg. Dev. = 14%). Therefore, the inner layer
PSO involving swap local search and RBI local search was
included while searching for the optimal depot location by
the outer layer PSO.

4.2. Outer Layer PSO. In this section, the experimental
results with and without applying the outer layer PSO
to find the optimal depot location are compared. The
depot locations provided in the benchmark were used as
the default depot locations, the fitness (Fit) based on (1)
was calculated. Figure 9 shows the inner layer PSO and
outer layer PSO evolution curves for the A-32-k5 instance.
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Figure 8: Simulation results of applying local searches.

Figures 10(a) and 10(b) display the resulting vehicle routes
before and after applying outer layer PSO, respectively. The
fitness of using the default depot is 784, but the fitness of
using a determined depot by the proposed outer layer PSO
is 660. Restated, the determined depot would greatly reduce
the vehicle routing cost.

Table 5 displays the experimental results of using default
depot location (without adjustment of the depot location,
i.e., before the outer layer PSO was applied) and determined
depot location (with adjustment of the depot location after
outer layer PSO application). Ten trials were conducted; the
minimum fitness (Min. Fit) and average fitness (Avg. Fit)
are provided. Meanwhile, the improvement was calculated
according to

Imp(%) =
Fitness

𝑤/𝑜
− Fitnessdepot

Fitness
𝑤/𝑜

× 100%, (8)

where Fitness
𝑤/𝑜

is the fitness without the depot location
adjustment and the Fitnessdepot is the fitness with the
depot location adjustment. Restated, the Imp represents the
percentage of the reduced fitness (total routing distance
decreased). According to the experimental results, up to
18% average minimum Imp (Min. Imp) and 16% averaged
Imp (Avg. Imp) of trial runs were acquired. Therefore, the
proposed scheme in this work is able to additionally allow
companies to determine the optimal depot or plant site
setting.

Finally, a real world case was implemented.The real world
case includes 15 cooperation factories and a new assembly
plant is planned to set up to produce commodities. The
location of this assembly plant needs to be determined to
reduce the costs. The requirement is that the assembly plant
needs to send out 3 trucks to carry all needed parts from
all cooperation factories and back to the assembly plant for
further processes. The vehicle routing based on the original
plant location is displayed in Figure 11(a), the vehicle routing
on the basis of the determined new plant location using
the proposed scheme is illustrated in Figure 11(b). The travel
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Figure 9: PSO evolution example for instance A-32-k5: (a) inner layer PSO and (b) outer layer PSO.

(a) (b)

Figure 10: Resulting vehicle routes example for case A-32-k5: (a) without depot determination and (b) with depot determination by outer
layer PSO.

Table 5: Improvement of the proposed scheme.

Instance Default Determined depot Improvement
Min. Fit Min. Fit Avg. Fit Min. Imp Avg. Imp

A-n32-k5 784 660 660 19% 19%
A-n33-k5 661 627 632 5% 5%
A-n36-k5 799 685 696 17% 15%
A-n45-k6 944 842 931 4% 1%
A-n45-k7 1146 829 864 38% 33%
A-n55-k9 1073 1063 1078 1% 0%
A-n60-k9 1408 1096 1118 28% 26%
A-n62-k8 1315 1187 1098 19% 18%
A-n64-k9 1177 1140 1081 33% 30%
Average 18% 16%
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(a) (b)

Figure 11: Vehicle routes based on: (a) original plant location and (b) determined new plant location by the proposed PSO scheme.

distances of the original plant vehicle routes and new plant
vehicle routes are about 52.2 Km and 37.1 Km, respectively.

5. Conclusions

This study proposes a hierarchical PSO consisting of an inner
layer PSO and an outer layer PSO to obtain the optimal depot
location and the corresponding vehicle routing to minimize
the total routing distance. The inner layer PSO is used to
find the optimal vehicle routing while the outer layer is used
to determine the optimal depot location. In the inner layer
PSO, a new designed routing balance insertion (RBI) local
search is suggested to improve solution quality. The RBI
local search moves the nearest customer from the longest
route to the shortest route to reduce the travel distance; the
nearest customer selection is based on the distance between
a customer and the centroid of the shortest routing cluster.
The experimental results with and without local search
schemes are demonstrated in Figure 8, in which the average
deviation can be lowered (Avg. Dev = 14%) while applying
local searches. Meanwhile, a novel particle encoding scheme
is designed to handle customer-to-vehicle assignment and
customer visiting order issues simultaneously to greatly
lower processing efforts and hence reduce the computational
complexity as indicated in Table 4.

The experimental results indicate that the total vehi-
cle routing distance of the tested instances is significantly
reduced, up to an average improvement of 16%. In the A-n45-
k7 instance, the minimum and average fitnesses of ten trials
can be improved up to 38% and 33%, respectively. Therefore,
the location of a depot can indeed affect vehicle routing costs,
which can be greatly lowered by the proposed hierarchical
PSOwith the novel encoding scheme and the RBI local search
in this study. Restated, the suggested PSO is able to effectively
establish the optimal location to set up a depot thus increas-
ing profits. According to the real-world case simulation as
indicated in Figure 11, the new plant location is able to signif-
icantly reduce the cost ((52.2 − 37.1)/52.2) × 100% ≅ 29%.

However, to further enhance the performance, local search
heuristics such as insertion, exchange and other local
searches can be integrated into the proposed scheme. Mean-
while, different metaheuristic algorithms such as genetic
algorithmand ant colony optimization can be utilized to solve
this studied problem in the future.
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