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Horizontal platform system (HPS) produces a nonlinear behavior from precision machinery systems. This mechanical system is
implemented mainly in offshore areas or earthquake engineering. However, elucidating or controlling this non-linear behavior
of mechanical systems is extremely difficult and time consuming. Therefore, in addition to developing an electronic circuit to
implement HPS, this work designs a slidingmode control (SMC) for synchronizing the state trajectories of two horizontal platform
systems, subsequently allowing us to easily understand the HPS, perform more detailed analysis, and achieve further control.
Experimental results demonstrate the feasibility of implementing the HPS by the proposed electronic circuit system. Comparing
the proposed electronic circuitry designs and the HPS of computer simulation reveals that the results of the non-linear dynamic
behavior correlate well with each other. Finally, based on use of the control technology, master-slave chaos synchronization with
sliding mode control is achieved by wireless sensors.

1. Introduction

Chaos phenomenon is a complex dynamic behavior, owing
to related characteristics such as sensitivity under initial
conditions and a broad Fourier power spectrum. Chaotic
systems have received considerable attention in recent years,
especially with respect to the importance of the chaotic
system in controlling the chaos phenomenon. Ott et al.
developed a scheme to control chaotic systems for the first
time in 1989, referred to as the O.G.Y method [1]. Recently,
many control technologies were also used to implement two
identical chaotic systems to achieve synchronization, such
as adaptive control, feedback control, sliding mode control
and fuzzy sliding mode control [2]. However, elucidating or
controlling the non-linear behavior of mechanical systems
is extremely difficult, necessitating the use of electronic
components to replace mechanical systems produced by
nonlinear behavior [3, 4].

Ge et al. [5] conducted linear feedback for HPS of a
master-slave system in 2003. Following numerical verifica-
tion, the initial value of the two different chaotic systems

could be synchronized by the state errors of feedback con-
trolling. Wu et al. [6] examined the feasibility of using robust
control design to inhibit the chaos phenomenon.

Using electronic components is an efficient and cost-
saving approach to replace a mechanical system. In addition
to developing an electronic circuit to implement HPS, this
work designs a slidingmode control (SMC) for synchronizing
the state trajectories of two horizontal platform systems. A
switching surface, in that stability of the error dynamics in a
sliding mode is guaranteed, is first proposed. Based on this
switching surface, an SMC is derived not only to guarantee
the sliding motion but also to avoid chattering, even when
the system is undergoing uncertainties and external distur-
bances.

2. Electronic Circuit Implementation of HPS

Figure 1 describes the non-linear structure ofHPS [7].Within
this system, the penetration of mass center can be rotated
around the horizontal axis. An accelerometer is placed on
the left side of the platform. When the platform goes off
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Figure 1: Horizontal platform system.

the horizon, the platform drives the accelerometer via an
output signal to maintain balance. The dynamic equation of
HPS is described as follows [7]:

𝐴�̈� (𝑡) + 𝐷�̇� (𝑡) + 𝑟𝑔 sin𝑥 (𝑡)

−
3𝑔

𝑅
(𝐵 − 𝐶) cos𝑥 (𝑡) ⋅ sin𝑥 (𝑡) = 𝐹 cos𝜔𝑡,

(1)

where 𝐴, 𝐵 and 𝐶 denote the moment of inertia with the
rotating axis in this platform; 𝐷 represents the damping
coefficient; 𝑅 is radius of the earth; 𝑟 denotes the accelerom-
eter of proportionality constant; 𝑔 denotes the gravitational
constant; 𝑥 represents the rotation of a platform relative to
the angle of the earth; 𝐹 cos𝜔𝑡 denotes the harmonic torque;
𝑥
1
(𝑡) = 𝑥(𝑡) and 𝑥

2
(𝑡) = �̇�(𝑡) are state variables in the system.

The system is simplified by rewriting the system parameters
as 𝑎 = 𝐷, 𝑟𝑔 = 𝑏, 𝑙 = (3𝑔/𝑅)(𝐵 − 𝐶), and 𝐹 = ℎ. Based on
the above parameters, the state equation of HPS is rewritten
as follows:

�̇�
1
= 𝑥
2
,

�̇�
2
= − 𝑎𝑥

2
− 𝑏 sin𝑥

1
+ 𝑙 cos𝑥

1
⋅ sin𝑥

1
+ ℎ cos𝜔𝑡.

(2)

Parameter values of the system are 𝑎 = 4/3, 𝑏 = 3.776,
𝑙 = 4.6 × 10

−6, ℎ = 34/3, and 𝜔 = 1.8; the initial value
set is (𝑥

1
(0), 𝑥
2
(0)) = (1, −1). Figure 2 shows the results of

time response of system (2) based on numerical simulation.
According to Figure 2, the HPS has two state responses
that are, very complex and irregular; in addition, the phase
plane displays a strange attractor. Given the difficulty in
implementing the mechanical system, this work designs
a simple OP circuit to implement the HPS, as shown in
Figure 3. Figure 4 illustrates the hardware system. Figure 5
displays the complex time responses of the hardware system
for HPS.

3. Chaos Synchronization Controller Design

Owing to that some external disturbances occur in an actual
system, this work considers the two factors that lack ability
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Figure 2: Numerical time responses of the HPS: (a) 𝑥
1
and (b) 𝑥

2
.

and simplify the calculation. The HPS equation of master-
slave is described as follows [8, 9].

Master system:

�̇�
𝑚1
= 𝑥
𝑚2
,

�̇�
𝑚2
= − 𝑎𝑥

𝑚2
− 𝑏 sin𝑥

𝑚1
+ 𝑙 cos𝑥

𝑚1
⋅ sin𝑥

𝑚1
+ ℎ cos𝜔𝑡.

(3)

Slave system:

�̇�
𝑠1
= 𝑥
𝑠2
,

�̇�
𝑠2
= − 𝑎𝑥

𝑠2
− 𝑏 sin𝑥

𝑠1
+ 𝑙 cos𝑥

𝑠1
⋅ sin𝑥

𝑠1

+ ℎ cos𝜔𝑡 + 𝑢 + Δ𝜉 + 𝑑 (𝑡) .

(4)

The system parameters are 𝑎 = 4/3; 𝑏 = 3.776, 𝑙 =

4.6 × 10
−6; ℎ = 34/3; 𝜔 = 1.8; 𝑑(𝑡) = 0.1 cos(𝑡); Δ𝜉 =

0.1 sin(𝑡); 𝑢 denotes an input of the controller; Δ𝜉 denotes
an uncertainty parameter of the system; and 𝑑(𝑡) denotes
the external disturbance. Synchronization objectives are as
follows:

lim
𝑡→∞

𝑥𝑠 (𝑡) − 𝑥𝑚 (𝑡)
 = 0. (5)

Equations (3) and (4) are used to define the errors of the
master-slave system:

𝑒
1
= 𝑥
𝑠1
− 𝑥
𝑚1
,

𝑒
2
= 𝑥
𝑠2
− 𝑥
𝑚2
.

(6)
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Figure 3: Electronic circuit design of HPS.

Figure 4: Hardware System of HPS.

Based on (6), the errors dynamic equation can be obtained as
follows:

̇𝑒
1
= �̇�
𝑠1
− �̇�
𝑚1
= 𝑥
𝑠2
− 𝑥
𝑚2
= 𝑒
2
,

̇𝑒
2
= �̇�
𝑠2
− �̇�
𝑚2

= − 𝑎 (𝑥
𝑠2
) − 𝑏 sin (𝑥

𝑠1
) + 𝑙 cos (𝑥

𝑠1
) ⋅ sin (𝑥

𝑠1
)

+ ℎ cos𝜔𝑡 + Δ𝜉 + 𝑑 (𝑡) + 𝑢

− [−𝑎 (𝑥
𝑚2
) − 𝑏 sin (𝑥

𝑚1
)

+ 𝑙 cos (𝑥
𝑚1
) ⋅ sin (𝑥

𝑚1
) + ℎ cos𝜔𝑡]

= − 𝑎 (𝑒
2
) − 𝑏 [sin (𝑥

𝑠1
) − sin (𝑥

𝑚1
)]

+ 𝑙 [cos (𝑥
𝑠1
) ⋅ sin (𝑥

𝑠1
)

− cos (𝑥
𝑚1
) ⋅ sin (𝑥

𝑚1
)]

+ Δ𝜉 + 𝑑 (𝑡) + 𝑢 (𝑡) .

(7)

Controller input (𝑢) is assumed to be the following equation:

𝑢 = 𝑢eq + 𝑢sw. (8)

The sliding surface is defined as follows:

𝑠 = 𝑐
1
𝑒
1
+ 𝑒
2
. (9)

When the closed-loop system under the sliding surface is ̇𝑠 =

0

̇𝑠 = 𝑐
1
̇𝑒
1
+ ̇𝑒
2

⇒ 𝑐
1
𝑒
2
− 𝑎 (𝑒

2
) − 𝑏 [sin (𝑥

𝑠1
) − sin (𝑥

𝑚1
)]

+ 𝑙 [cos (𝑥
𝑠1
) ⋅ sin (𝑥

𝑠1
) − cos (𝑥

𝑚1
) ⋅ sin (𝑥

𝑚1
)]

+ Δ𝜉 + 𝑑 (𝑡) + 𝑢eq = 0.

(10)
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(a) (b)

Figure 5: Chaotic dynamics of HPS in oscilloscope: (a) time response of 𝑥
1
; (b) time response of 𝑥

2
.
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Figure 6: Experiment configuration.

(a)

(b)

Figure 7: Uncontrolled time response of master-slave HPS in
oscilloscope: (a) 𝑥

𝑚1
, 𝑥
𝑠1
; (b) 𝑥

𝑚2
, 𝑥
𝑠2
.

The equivalent control (𝑢eq) is obtained as follows:

𝑢eq = − 𝑐
1
𝑒
2
+ 𝑎 (𝑒

2
) + 𝑏 [sin (𝑥

𝑠1
) − sin (𝑥

𝑚1
)]

− 𝑙 [cos (𝑥
𝑠1
) ⋅ sin (𝑥

𝑠1
) − cos (𝑥

𝑚1
) ⋅ sin (𝑥

𝑚1
)]

− Δ𝜉 − 𝑑 (𝑡) .

(11)

(a)

(b)

(c)

Figure 8: Time synchronization of hardware implementation of
chaos synchronization in oscilloscope: (a) state response of 𝑥

𝑚1
, 𝑥
𝑠1

(b) state response of 𝑥
𝑚2
, 𝑥
𝑠2
and (c) state errors of 𝑒

1
, 𝑒
2
.

Owing to that the uncertainty parameter (Δ𝜉) and external
disturbances (𝑑(𝑡)) cannot be known, the real system con-
troller can achieve the following:

𝑢eq = − 𝑐
1
𝑒
2
+ 𝑎 (𝑒

2
) + 𝑏 [sin (𝑥

𝑠1
) − sin (𝑥

𝑚1
)]

− 𝑙 [cos (𝑥
𝑠1
) ⋅ sin (𝑥

𝑠1
) − cos (𝑥

𝑚1
) ⋅ sin (𝑥

𝑚1
)] .

(12)

The law of approaching control is designed as follows:

𝑢sw = −𝑊 ⋅ sign (𝑠) . (13)
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Figure 9: Circuit design of the sliding mode controller.

The sign(⋅) function is defined as follows:

sign (𝑠) =
{{

{{

{

1, 𝑠 > 0,

0, 𝑠 = 0,

−1, 𝑠 < 0.

(14)

The synchronization controller ofHPS is described as follows:

𝑢 = 𝑢eq + 𝑢sw

= −𝑐
1
𝑒
2
+ 𝑎 (𝑒

2
) + 𝑏 [sin (𝑥

𝑠1
) − sin (𝑥

𝑚1
)]

− 𝑙 [cos (𝑥
𝑠1
) ⋅ sin (𝑥

𝑠1
) − cos (𝑥

𝑚1
) ⋅ sin (𝑥

𝑚1
)]

− 𝑊 ⋅ sign (𝑠) .

(15)

Remark. The controllers in (15) demonstrate discontinuous
control laws and the phenomenon of chattering will appear.
In order to eliminate the chattering, the controller ismodified
as

𝑢 = −𝑐
1
𝑒
2
+ 𝑎 (𝑒

2
) + 𝑏 [sin (𝑥

𝑠1
) − sin (𝑥

𝑚1
)]

− 𝑙 [cos (𝑥
𝑠1
) ⋅ sin (𝑥

𝑠1
) − cos (𝑥

𝑚1
) ⋅ sin (𝑥

𝑚1
)]

− 𝑊 ⋅
𝑠

|𝑠| + 𝛿
,

(16)

where 𝛿 is a sufficiently small design constant. In this paper,
the constant 𝛿 is selected as 0.05. Therefore, the controllers
can be implemented in real physical systems.
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Proof of Stability. Lyapunov function 𝑉(𝑡) is described as
follows:

𝑉 (𝑡) =
1

2
𝑠
2
. (17)

By substituting (15) into (17), the first derivative can be
obtained as follows:
�̇� = 𝑠 ̇𝑠 = 𝑠 [𝑐

1
𝑒
2
+ ̇𝑒
2
]

= 𝑠 {𝑐
1
𝑒
2
− 𝑎 (𝑒

2
) − 𝑏 [sin (𝑥

𝑠1
) − sin (𝑥

𝑚1
)]

+ 𝑙 [cos (𝑥
𝑠1
) sin (𝑥

𝑠1
) − cos (𝑥

𝑚1
) sin (𝑥

𝑚1
)]

+Δ𝜉 + 𝑑 (𝑡) + 𝑢eq −𝑊 ⋅ sign (𝑠)}

= 𝑠 [Δ𝜉 + 𝑑 (𝑡) − 𝑊 ⋅ sign (𝑠)]

= 𝑠 [Δ𝜉 + 𝑑 (𝑡)] − 𝑊 ⋅ |𝑠| .

(18)

If Δ𝜉 and 𝑑(𝑡) are bounded, and |Δ𝜉| ≤ 𝛾, |𝑑(𝑡)| ≤ 𝛿

�̇� ≤ 𝑠 [Δ𝜉 + 𝑑 (𝑡)] − 𝑊 ⋅ |𝑠|

≤ |𝑠| ⋅ [
Δ𝜉

 + |𝑑 (𝑡)|] − 𝑊 ⋅ |𝑠|

≤ |𝑠| ⋅ (𝛾 + 𝛿 −𝑊) .

(19)

If𝑊 > (𝛾+𝛿), �̇� < 0 can guarantee the stability of the system.

4. Experiment Results

Equations (3), (4), and (19) are used to perform the chaos
synchronization of HPS and evaluate hardware implemen-
tation. The wireless sensor devices are used to send and
receive the master and slave chaotic HPS signals. Experiment
configuration is shown in Figure 6. The values 𝑐

1
= 10

and 𝑊 = 10 are used in controller implementation. First
the master-slave system is inconsistent before adding the
sliding mode controller in Figure 7. Additionally, two tracks
of the system achieve synchronization after the control is
active. Figure 8 shows time synchronization of hardware
implementation. Given the inability of hardware to accurately
specify time for adding to a controller, the middle point of
time axis is used as the standard. Figure 9 shows the circuit
design of the sliding mode controller.

5. Conclusions

This study elucidates the chaos behavior of HPS by an
electronic circuit, which is divided into master-slave chaos
systems. Given different initial values in the master-slave sys-
tem, themaster-slave chaosHPS can achieve synchronization
through the action of the controller. Because the system and
controller production process often contain a wide variety
of external disturbances in part, a portion of the controller
design must become robust to interference. Therefore, in
terms of choosing the part of controller, this study uses
a sliding mode control, thus ensuring that the master-
slave HPS under the controller achieves synchronization by
analogical sensors.
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