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a b s t r a c t

The aim of this work is to present an optimization methodology for the installation capacity of a stand-
alone hybrid generation system, taking into consideration the cost and reliability. Firstly, on the basis of
derived steady state models of a wind generator (WG), a photovoltaic array (PV), a battery and an inver-
ter, the hybrid generation system is modeled for the purpose of capacity optimization. Secondly, the
power system is analyzed for determining both the system structure and the operation control strategy.
Thirdly, according to hourly weather database of wind speed, temperature and solar irradiation, annual
power generation capacity is estimated for the system match design in order that an annual power load
demand can be met.

The capacity determination of a hybrid generation system becomes complicated as a result of the
uncertainty in the renewable energy together with load demand and the nonlinearity of system compo-
nents. Aimed at the power system reliability and the cost minimization, the capacity of a hybrid gener-
ation system is optimized by application of an adaptive genetic algorithm (AGA) to individual power
generation units. A total cost investigation is made under various conditions, such as wind generator
power curves, battery discharge depth and the loss of load probability (LOLP). At the end of this work,
the capacity of a hybrid generation system is optimized at two installation sites, namely the offshore
Orchid Island and Wuchi in Taiwan. The optimization scheme is validated to optimize power capacities
of a photovoltaic array, a battery and a wind turbine generator with a relative computational simplicity.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The demand for renewable energy sources continues to grow in
such a rapid pace that solar/wind hybrid generation systems have
received plenty of attention due to the advantages of reliability and
low cost [1–5]. However, a single photovoltaic system or wind
power generation system is very unlikely to provide a stable elec-
tricity supply due to low energy density and high randomness. For
this sake, an energy storage device is introduced into a power sys-
tem as an auxiliary unit to improve the electricity supply quality at
an elevated cost [6–9]. It becomes an immediate concern to find a
ll rights reserved.
solution to the capacity optimization of a hybrid generation system
while keeping the cost down [10–13]. The key is to find an appro-
priate approach to reach a matched system such that wind/solar
energy sources can be used to the greatest extent.

A number of research tasks had been done in dealing with the
design and the sizing of hybrid systems [14–17]. In [14], based
on energy generation simulation for various numbers of PVs and
batteries, using suitable models for the system devices, a sizing
method of stand-alone PV systems has been presented. The selec-
tion of the numbers of PVs and batteries ensures that reliability
indices such as the loss of load hours (LOLH), the lost energy and
the system cost are satisfied. Similarly in [15], a Markov chain
model is used for the solar radiation. The numbers of PVs and bat-
teries are selected according to the intended System Performance
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Fig. 1. PV module (a) equivalent circuit and (b) simplified version.
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Level (SPL) requirement, which is defined as the number of days
that the load cannot be met and expressed in terms of probability.
In [16], the generation capacity is determined to best match the
power demand by minimizing the difference between generation
and load over a 24-h period based on the available hourly average
data of wind speed, irradiation and the power demand. The itera-
tive procedure is adopted for selecting the wind turbine size and
the number of PV panels needed for a stand-alone system to meet
a specific load. An alternative methodology for the optimal sizing
of stand-alone PV/WG systems has been proposed in [17]. The pur-
pose is to suggest the optimal number and type of units, among a
list of commercially available system devices, to ensure that the
20-year round total system cost is minimized subject to the con-
straint that the load energy requirements are completely covered.
A simple genetic algorithm is then used to minimize the cost
function.

A disadvantage that all the aforementioned works have in com-
mon is that the system design characteristics, such as the wind
generator power curve, the installation height of wind turbine
and the state of charge (SOC) of a battery, are not taken into
account, when a hybrid generation system is designed. Both the
power production and installation cost are found highly affected
by such characteristics. A point worthy of mention is that the con-
sumer power demand is estimated as an hourly average over a 24 h
period, that is, it does not truly reflect the variation of practical
power requirement over 8760 h a year. An objective function is
optimized by means of either a linear programming technique or
a simple genetic algorithm, giving rise to a local optimal solution
and a higher computational load.

Accordingly, this work presents an alternative to previous
methodologies for the capacity optimization of a wind/solar stand
alone hybrid generation system. As the first step, the system is con-
figured and an appropriate operation strategy must be determined,
and then the installation capacity is optimized in consideration of
annual power demand, wind speed, temperature and solar irradia-
tion in a field. The quantities required to be optimized in a gener-
ation system include the capacities of photovoltaic array, battery
and the capacity as well as the types of wind power generators.
The total capital cost is treated as an optimization objective, while
other quantities are as constrained conditions, namely, decision
variables, system operation process and power supply reliability.
The capacity optimization of a hybrid generation system turns
highly complicated, in the course of the objective function minimi-
zation, due to the uncertainty in the renewable energy together
with load demand and the nonlinearity of system components.
For this sake, underlain by an adaptive genetic algorithm (AGA)
proposed by the author [18], individual power capacity is opti-
mized in an entire system. The minimization of the cost (objective)
function is implemented employing the AGA approach. It has been
shown to be highly applicable to cases of large nonlinear systems,
where locating the global optimum is a difficult task. Due to the
improved adaptability, AGA exhibits the ability to attain the global
optimum with relative computational simplicity. Thus, given the
number of existent nonlinearities in various structures of a hybrid
generation system, AGA appears to be a useful approach.
2. Hybrid generation system modeling

2.1. Photovoltaic system

Consisting of a large number of jointly connected solar cells, a
PV module is a building block in a photovoltaic system of any kind.
There have been a number of solar cell models developed, among
which the one diode electrical equivalent circuit, as shown in
Fig. 1a, is the most commonly used one for a cell, or module, based
analysis. It is composed of a diode, a series resistance and a parallel
resistance and a current source that generates the photo-current, a
function of the incident solar cell radiation and temperature [19–
21]. The diode represents the p–n junction of a solar cell, and the
temperature dependence of the diode saturation current and con-
stant diode ideality factor are taken into account in the model.
Modeled as a series resistance Rs, a voltage loss on the way to
the external contacts is observed at practical solar cells. Further-
more leakage currents are described by a parallel resistance Rsh.
However, the rather low series resistance and the rather high par-
allel resistance [21] can be respectively approximated as short cir-
cuit and open circuit, leading to a simplified version of the solar
cell model as illustrated in Fig. 1b.

In a PV module, the current and the voltage equations are
respectively expressed as

IpvðtÞ ¼ Isc 1� C1 exp
Vmp

C2Voc

� �
� 1

� �� �
þ EttðtÞ

Est

� �
½aðTaðtÞ

þ 0:002EttðtÞ þ 1Þ� � Imp ð1Þ

and

VpvðtÞ ¼ Vmp 1þ 0:0539 log
EttðtÞ

Est

� �� �
þ bðTaðtÞ þ 0:02EttðtÞÞ ð2Þ

C1 ¼ 1� Imp
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� �
exp

�Vmp

C2Voc

� �
ð3Þ

C2 ¼
Vmp

Voc
� 1

ln 1� Imp

Isc

� 	 ð4Þ

The power equation is expressed as

PpvðtÞ ¼ VpvðtÞIpvðtÞ ð5Þ

where Isc represents the short circuit current at 25 �C and 1 kW/m2,
Voc the open circuit voltage at 25 �C and 1 kW/m2, Imp the maximum
power current, Vmp the maximum power voltage, Est a solar radia-
tion reference (1 kW/m2), Ett(t) the solar radiation at any time in-
stant t, Ta (t) the ambient temperature at any time instant t, a the
short circuit current temperature coefficient, and b the open circuit
voltage temperature coefficient.

A GEPVp-200W PV module is adopted in this work with param-
eters tabulated in Table 1. The power capacity of such PV module



Table 1
Specifications of a GEPVp-200 W PV module.

Typical performance characteristics

Peak power (Wp) Watts 200
Max. power Voltage (Vmp) Volts 26.3
Max. power current (Imp) Amps 7.6
Open circuit voltage (Voc) Volts 32.9
Short circuit current (Isc) Amps 8.1
Short circuit temp. coefficient mA/�C 5.6
Open circuit voltage coefficient V/�C �0.12
Max. power temp. coefficient %/�C �0.5
Max. series fuse Amps 15
Normal operating cell temperature �C 45
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can be evaluated according to the solar irradiation and the ambient
temperature at an installation site.

The accuracy of the electricity model is validated using PV man-
ufacture datasheets. PV manufactures generally only provide
experimental data with reference to standard test condition (STC)
and the nominal conditions. In order to validate the I–V and P–V
output characteristics of PV electricity model at the so-called
STC, the cell temperature is fixed at 25�, the solar irradiance is gi-
ven by 1 kW/m2, and the operating voltage increases from 0 V to
20 V at 0.1 V steps. Compared with the characteristic curves pro-
vided by manufacture, it is validated that the model has a good
degree of match with the experimental data of PV manufacture
datasheets in the standard test conditions.

2.2. Wind generator

Given a wind speed, the output power of a wind generator (WG)
is found according to a power-speed curve at the installation site.
With a hub height of 64.7 m, an output frequency of 60 Hz and
an output voltage of 690 V, four types of generators, Enercon
E40, Dewind D4-48, Nordex N43 and Vestas V42 as shown in
Fig. 2, all rated at 600 KW, are chosen as the candidates for the best
capacity optimization.

As a rule, the wind speed information available to the public is
measured at the height of an anemometer, rather than at the
Fig. 2. WG power-speed curves (a) Enercon E40, (b) D
installation height. Hence, the reference wind speed at a reference
height must be converted into that of interest by

m1 ¼ m2
h1

h2

� �c

ð6Þ

where v1 symbolizes the wind speed at the installation height h1, v2

the wind speed at reference height h2, and c the power-law expo-
nent (1/7 for open land).

For the purpose of power analysis, a set of power-speed data is
fitted into an 8th-order polynomial Pwg(v), expressed as

PwgðmÞ ¼
0 ðm < mciÞ
P0wgðmÞ ðmci 6 m 6 mco

0 ðm > mcoÞ
Þ

8><
>: ð7Þ

where vci denotes the cut-in wind speed, vco the cut-out wind speed,
and P0wgðvÞ an 8th-order polynomial for a WG power-speed curve
fitting.

The output power and speed data of a wind generator according
the power-speed curve provided by manufacture are fitted into a
polynomial function. The accuracy of the fitted power-speed curve
can be validated by comparing the function values with the power-
speed curve. The wind speed information available to the public is
measured at the height of an anemometer, rather than at the
installation height. Hence, the reference wind speed at a reference
height must be converted into that of interest.

2.3. Battery

In a Kinetic model [22], a battery is modeled as a voltage source
EB, dependent on the state of charge, in series with an internal
resistor Ro, as illustrated in Fig. 3, which symbolizes the charge
resistance Rch in a charge state, while symbolizes the discharge
resistance Rdch in a discharge state.

Accordingly, the terminal voltage VB of the battery is given as

VB ¼ EB � IBRo ð8Þ

where IB represents the output current.
ewind D4-48, (c) Nordex N43 and (d) Vestas V42.



Fig. 3. Equivalent circuit of battery.
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Adopted in this work, a CSB-manufactured valve regulated
lead-acid battery TPL121500 has two fitted curves for the terminal
voltages in the charge and discharge state respectively, which are
expressed in function of state of charge as

VBch ¼ 12þ 0:888
SOCðtÞ
SOCmax

ð9Þ

VBdch ¼ 11:556þ 0:744
SOCðtÞ
SOCmax

ð10Þ

where SOC(t) signifies the state of charge at any time instant t, and
SOCmax the maximum value of SOC.

The temperature dependence of VB is given by

VB ¼ VB0½1:0� 0:001ðT � 25Þ� ð11Þ

where VB0 represents the terminal voltage of a battery at 25 �C, and
T the ambient temperature.

The amount of charge QB(t + 1) released/supplied by a battery at
a given time instant is related to QB(t) at the previous instant by

Q Bðt þ 1Þ ¼ QBðtÞð1� DsÞ þ KðVBIB � R0I2
BÞ ð12Þ

where Ds and K denote self-discharge rate and charge/discharge
efficiency of a battery, respectively. As a function of the battery
charge current, 0:9 6 K 6 1 in a charge state, while 0:65 6 K
6 0:85 in a discharge state.

A battery is not permitted to go beyond its ratings in either a
charge or a discharge state. In case the terminal current IB >

IBdchmax in a discharge state, set IB ¼ IBdchmax, and the maximum
amount of discharge is then equal to IBdchmax Dt; while IB ¼ IBchmax

provided that IB > IBchmax in a charge state, and the maximum
amount of charge is IBchmax Dt. where IBchmaxðtÞ and IBdchmaxðtÞ repre-
sent the maximum charge and discharge currents, respectively.

The battery is modeled in a simple Kinetic model. The internal
resistance is an essential specification in datasheet, which stands
for electrolyte, connection resistances and charge transfer resis-
tance. The terminal voltage depending on the state of charge are
approximately fitted using curve fitting technique from character-
istic curves provided by battery manufactures. The battery model
is east to implemented and validated according to the manufacture
datasheets.

2.4. Inverter

In a hybrid generation system, a high conversion efficiency in-
verter is found critical, in particular in a light load condition. The
input power Pinv_in applied to an inverter is related to the output
power Pinv_out by

Pinv out ¼ Pinv in � ginv ð13Þ

where ginv represents the efficiency of an inverter.
The input DC current is given as

Iinv ¼
Iac � Vac

Vdc � ginv
ð14Þ
where Iinv denotes the input current of an inverter, Iac the AC side
load current, Va the AC side voltage, and Vdc the DC side voltage.

3. Optimum capacity determination using AGA

Proven more efficient than conventional algorithms, genetic
algorithms are developed as a random search approach to locate
the global optimum. However, in consideration of distinct nature
of search problems, a simple GA is not expected to find the global
optimum as intended [23]. In an effort to handle a local conver-
gence problem, an AGA, a prior work of author [18], is adopted
to search all the power units across the entire system, that is, wind
power generators, photovoltaic arrays and batteries, for the capac-
ity optimums thereof.

3.1. Hybrid generation system structure and operation control
strategy

Composed of photovoltaic arrays, wind generators, batteries,
inverters, and a diesel generator, the considered stand-alone
hybrid generation system, as configured in Fig. 4, is dealt with
for capacity optimization in this work. As a auxiliary power source,
the diesel generator is operated to delivers power to load in bad
weather conditions that disables the hybrid generation system.

The optimized capacity is found not merely related to the selec-
tions of power units, but also related to the operation control strat-
egy employed. Detailed in Fig. 5 is an operation control strategy,
according to which an intended amount of electricity is provided
at any time by the first use of renewable energy sources with a
quality assured electricity supply.

The loss of load probability (LOLP), as suggested in [24], is
adopted as a measure of a system reliability, defined as

LOLP ¼ LOLH
T

ð15Þ

where T represents a one-year period (8760 h), LOLH the loss of load
hour over T, defined as

LOLH ¼
XT

t¼1

ZðtÞ ð16Þ

where

ZðtÞ ¼
1 When the generator starts
0 When the generator stops

�
ð17Þ

A zero LOLP indicates a 100% reliability, stating that a hybrid
generation system can fully fulfill the load demand all the time,
while an LOLP of 1 indicates a poor reliability, that is, the load de-
mand is unlikely to be met any time.
Fig. 4. Hybrid generation system structure.



Fig. 5. Operation control strategy for the proposed hybrid generation system.
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The value of LOLP, ranging between 0 and 1 in most cases, is
determined by a tradeoff between the installation cost and the sys-
tem reliability. When the total power capacity of the renewable en-
ergy sources and the battery are found not able to meet the load
demand, the diesel generator is activated and gets the battery
charged. In this case, an elevated value of LOLP by 1 represents
the amount of time that the diesel generator operates.

In this presented strategy, there are three operation modes for
AC side current as follows.

(1) In case the renewable energy sources can meet the load
demand, an excessive amount of electricity is delivered to
the battery, that is
Iac ¼ Iinv � ginv � ðVdc=VacÞ ð18Þ
Iinv ¼ Ire � IBch ð19Þ

where IBch denotes the charge current through the battery,
formulated as
IBch ¼min½Ire � Iinv ; IBchmax� ð20Þ
(2) In case the load demand can be fulfilled only when both the
renewable energy sources and the battery are activated,
then the battery is discharged at a discharging current IBdch

as given in Eq. (23). Respective current are related as
Iac ¼ Iinv � ginv � ðVdc=VacÞ ð21Þ
Iinv ¼ Ire þ IBdch ð22Þ
IBdch ¼min½IBdchmax; Iinv � Ire� ð23Þ
(3) In case a combination of the renewable energy sources and
the battery is unlikely to meet the load demand, the diesel
generator is then activated and simultaneously charges the
battery as well. Respective current are related by
Iac ¼ I0inv þ Idies1 ð24Þ

where
I0inv ¼ Ire � ginv � ðVdc=VacÞ ð25Þ
Idies1 ¼ min½Idiesmax; Iac � I0inv � ð26Þ
IBch ¼min ½Idiesmax � Idies1; IBchmax� ð27Þ
Idies ¼ Idies1 þ IBch ð28Þ

where Idies and Idiesmax denote the output current and the
rated output current of the diesel generator, respectively.
3.2. Decision variables

In a hybrid generation system, the decision variables refer to the
capacities (numbers) of respective system components. In this
work, it is represented as a vector

X ¼ ½Xw;Xs;Xb� ð29Þ

where Xw represents the number of wind generators, Xs the number
of parallel connected photovoltaic arrays, and Xb the number of bat-
teries wired in parallel.

The installation capacity of a hybrid generation system is opti-
mized according to the decision variables as well as the operation
control strategy chosen.
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3.3. Objective function

An objective function is defined as a function of the decision
variables selected. In the first place, the cost must go down in a hy-
brid generation system design scheme, that is, a minimum number
of wind generators, photovoltaic arrays and batteries are employed
while meeting the power load demand. Hence, the objective func-
tion in this work is defined as the total installation cost

C ¼ Pw � Xw þ Ps � Xs þ Pb � Xb ð30Þ

where Pw, Ps and Pb represent the unit prices of a wind generator, a
photovoltaic array and a battery, respectively.

3.4. Constraint conditions

Constraint conditions refer to the ranges of decision variables
being considered according to the nature of a generation system.
The constraints imposed on the stand-alone hybrid generation sys-
tem include decision variables, supply and demand balance in
power system operation and system reliability, which are detailed
respectively as follows. They are categorized into three classes.

(1) On the decision variables

As part of a power system, the battery current must satisfy

the condition
SOCminðtÞ 6 Xb � IB 6 SOCmaxðtÞ ð31Þ
(2) On the system operation
An adequate level of AC current must be supplied by the hy-

brid generation system to the load, that is
Iac ¼ Iload ð32Þ

where Iload denotes the load current.

(3) On the system reliability

The operation control strategy adopted in this work makes

the first use of renewable energy sources while ensuring a
reliable power system operation. The LOLP is defined as a
measure of system reliability with an upper bound
LOLP ðXw; Xs; XbÞ 6 r ð33Þ

where r represents the maximum value of LOLP accepted.
3.5. Adaptive genetic algorithm

The detailed crossover and mutation operations of the AGA used
in this paper are summarized as follows [18]:

(1) Crossover operation

Crossover used here is single-point method. Setting two ran-
domly selected chromosomes at i generation as Xi

k ¼ ½xi
k1; x

i
k2; x

i
k3�

and Xi
l ¼ ½xi

l1; x
i
l2; x

i
l3�, the genetic values at the crossover point of

these two chromosomes are xi
kj and xi

lj respectively. Two new chro-
mosomes would be created after the crossover operation. The ge-
netic values before and after crossover point remain the same,
while the genetic value of the crossover point is

xi0
kj ¼ rcxi

kj þ ð1� rcÞxi
lj

xi0
lj ¼ rcxi

lj þ ð1� rcÞxi
kj

ð34Þ

where rc is the randomly generated constant between 0 and 1.
Crossover operation is the major technique to generate new indi-
vidual in genetic algorithm, and the crossover rate would generally
pick the larger value. However if the crossover rate is picked too
large, it might damage the good pattern of the population; if the va-
lue is too small, then the speed to generate the new individual is too
slow. Furthermore, the less diversity of the population is the major
cause for the instability and premature of GA. One should take mea-
sures before the diversity of population is getting poor. Therefore
this paper puts forward the adaptive method which took the diver-
sity of the population as the controlled variable and also adjusted
the individual crossover rate based on the fitness value of itself.
The adaptive crossover rate of an individual is defined as

pc ¼
kc

ðfmax�favg Þ=favg
þ pc1 e�

c
sc
ðfc�favg Þ fc P favg

kc
ðfmax�favg Þ=favg

þ pc1 fc < favg

8<
: ð35Þ

where

sc ¼
fmax � favg

‘nðpc1=pc2Þ

fmax is the maximal fitness value of the present population. favg is
the average fitness value of the present population. fc is the larger
fitness value of the two individual who would intersect; kc, pc1

and pc2 are the crossover coefficients, pc1 > pc2 and they are the con-
stants between 0 and 1, c the crossover amplitude coefficient.

In Eq. (35), the denominator ðfmax � favgÞ=favg of the first term at
the right side of the equation is an index to represent the diversity
of the population during the computation process of genetic algo-
rithm, which is called dispersion degree. Therefore the adaptive
quantity which would vary with dispersion degree is added to
the first term. The smaller dispersion degree represents that the
individuals’ fitness values within the population are moving for-
ward in harmony or the population has converged to a local opti-
mal solution, then the first term would rise to increase the
crossover rate. On the contrary, the larger dispersion degree repre-
sents that the population is scattered in the solution space, the
value of the first term drops and then the crossover rate decreases.
The second adaptive quantity which would vary with the fitness is
added to the second term at the right side in Eq. (35). The individ-
ual would be assigned a larger crossover rate pc1 when its fitness is
worse than average (i.e. fc < favg). If the fitness of the individual is
better than average (i.e. fc P favg), this individual would be as-
signed a smaller crossover rate which is exponentially decreased
with the fitness beyond the average. In Eq. (35) we can observe
that the crossover rate becomes smaller when the fitness value ap-
proaches the maximal fitness. When the fitness is equal to the
maximal fitness, the crossover rate is pc2 rather than 0. The individ-
ual with the maximal fitness is uncertain of the global optimal
solution. By using the adaptive crossover rate in Eq. (35), the fine
individuals also have the chance to undergo the crossover opera-
tion, so that they would not get stuck at a local optimum.

(2) Mutation operation

Mutation used here is non-uniform method. Set the mutation
operation individual as Xi

k ¼ ½xi
k1; xi

k2; xi
k3�; after the mutation oper-

ation, the genetic value of the individual which is not mutated re-
mains the same, while the gene xi0

kj
on the mutated one is

xi0

kj
¼

xi
kj
þ dði; xjmax � xi

kj
Þ rm P 0:5

xi
kj
� dði; xi

kj
� xjminÞ rm < 0:5

8<
: ð36Þ

where rm is a random number between 0 and 1. d(i, y) represents a
random number within the range of [0,y], which is varying with
evaluation generation. The expression of d(i, y) is

dði; yÞ ¼ y 1� r 1� i
Gð Þb

� �
ð37Þ

where r is a random number between 0 and 1. i is the present evo-
lution generation. G is the set maximal evolution generation. b is the
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coefficient that determines the dependency of stochastic distur-
bance on evolution generation i, which is generally determined by
the experience, one would pick b = 2 in this research. Mutation rate
has an important effect on the parametric optimization. If it is too
large, the optimization procedure would not converge; if it is too
small, then the GA might lead to prematurity. In the same way,
the variation of diversity of the population is also the major cause
for prematurity of GA. One should take measures before the diver-
sity of population is getting poor. Therefore this paper puts forward
the adaptive method which took the diversity of the population as
the controlled variable and also adjusted the individual mutation
rate based on the fitness value of itself. The adaptive mutation rate
of an individual is defined as

pm ¼
km

ðfmax�favg Þ=favg
þ pm1 e�

m
sm
ðfm�favg Þ fm P favg

km
ðfmax�favg Þ=favg

þ pm1 fm < favg

8<
: ð38Þ

where

sm ¼
fmax � favg

‘nðpm1=pm2Þ

fm is the fitness value of the individual that would undergo muta-
tion operation. km, pm1 and pm2 are the mutation coefficients. pm1

and pm2 are the constants between 0 and 1, and pm1 > pm2. m is
the mutation amplitude coefficient.

As cited above, the adaptive quantity which would vary with
dispersion degree is added to the first term at the right side in
Eq. (38). The second adaptive quantity which would vary with
the fitness is added to the second term. The individual would be as-
signed a larger mutation rate pm1 when its fitness is worse than
average (i.e. fm < favg). If the fitness of the individual is better than
average (i.e. fm P favg), this individual would be assigned a smaller
mutation rate which is exponentially decreased with the fitness
beyond the average. In Eq. (38) we can observe that the mutation
rate becomes smaller when the fitness value approaches the max-
imal fitness. When the fitness is equal to the maximal fitness, the
mutation rate is pm2 rather than 0. The individual with the maxi-
mal fitness is uncertain of the global optimal solution. By using
the adaptive mutation rate in Eq. (38), the fine individuals also
have the chance to undergo the mutation operation, so that they
would not get stuck at a local optimum.
4. Simulation results and discussions

Applying the proposed methodology in the real engineering
optimization design, the procedures are briefly outlined as follows:
Fig. 6. Load power demand distribution during year 2011.
(1) Collect the weather database hourly
Fig. 7.
over ye
� wind speed,
� solar irradiation, and
� ambient temperature.
(2) Collect the load database hourly

� load power demand on an hourly basis.
(3) Input the wind generator data

� power-speed curve,
� installation height, and
� cost.
(4) Input the photovoltaic array data

� short circuit current, open circuit voltage, the maximum

power current, the maximum power voltage, the short
circuit current temperature coefficient, the open circuit
voltage temperature coefficient, and

� cost.

(5) Input the battery data

� terminal voltages – state of charge curve in the charge state,
� terminal voltages – state of charge curve in the discharge

state,
Hourly (a) solar irradiance, (b) wind speed and (c) temperature distributions
ar 2011 in Wuchi.



Fig. 8. Hourly (a) solar irradiance, (b) wind speed and (c) temperature distributions
over year 2011 in the Orchid Island.

Table 2
Initial i

Equi

Cost

Fig. 9. Convergence curve of the adaptive genetic algorithm.

Fig. 10. Energy supply/demand distribution during year 2011.
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� internal resistor, self-discharge rate, charge/discharge
efficiency, and

� cost.

(6) Input diesel engine data

� diesel engine cost, and
� fuel cost.
As such, the evaluation of weather effect on the power genera-
tion performance is truly affected by the number of days that
weather observations are taken. Accordingly, a full year of weather
variation and the power load demand observation is taken into ac-
count while the power capacity is optimized with a higher compu-
tational load.

The proposed methodology may equally well be applied to any
other consumer and all potential types of wind generator, photo-
voltaic array and battery storage, in order to estimate the optimum
nstallation cost.

pment 600 kW wind generator 10 kW PV array

(K$) 1200 34
hybrid system capacity that guarantees long-term energy auton-
omy. The characteristics of components are commercially available
based on the technique datasheet provided from manufactures.
4.1. Example Analysis

As a design example, a load demand distribution over one full
year 2011 requested by a machinery plant is presented in Fig. 6.
Wuchi at Latitude 24

�
1501000N and Longitude 120

�
3105700E in the

Taiwan and the offshore Orchid Island at Latitude 22
�
0102400N

and Longitude 121
�
3302600E are chosen as two installation sites

for an investigation into the weather effect on the optimization
design.

Demonstrated in Figs. 7 and 8 are the hourly solar irradiance,
wind speed and temperature detected in the full year 2011 at
Wuchi and the Orchid Island, respectively. The annually average
solar irradiances are 3.52 and 3.2 kW/m2, wind speeds are 4.79
and 7.215 m/s, and temperatures are 22.52 and 21.86 �C in Wuchi
and the Orchid Island, respectively.

Tabulated in Table 2 are the respective initial installation prices
of power units.

The fitness function in an AGA is defined as the total initial
installation cost, namely a minimized objective function as ex-
pressed in Eq. (30). A succession of constraints imposed on the
900AH battery bank 608 kW diesel generator

10 79



Table 3
Optimization results with four WG models Enercon E40, Dewind D4-48, Nordex N43 and Vestas V42 (LOLP = 0.05, discharge depth = 30%).

Site Wuchi Orchid Island

WG type Enercon E40 Dewind D4-48 Nordex N43 Vestas V42 Enercon E40 Dewind D4-48 Nordex N43 Vestas V42

Wind generator 5 14 12 20 16 5 9 6
PV array 701 377 525 292 31 172 163 145
Battery bank 546 563 403 522 457 490 265 830
Total installation cost (K$) 35373 35327 36359 39227 24903 16827 19071 20509
Fuel cost (K$) 1.85 2.95 3.88 1.66 11.63 7.75 9.97 14.58

Table 4
Optimization results affected by the value of LOLP (WG model Dewind D4-48, discharge depth = 30%).

Site Wuchi Orchid Island

LOLP constraint 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
Wind generator 14 7 16 14 5 7 7 5
PV array 377 464 131 233 172 134 36 63
Battery bank 563 499 432 218 490 130 124 144
Total installation cost (K$) 35327 29245 28053 26981 16827 14335 10943 9661
Fuel cost (K$) 2.95 21.78 64.60 79.74 7.75 38.03 113.15 120.57
CO2 emission (ton) 5.74 42.33 125.55 154.97 15.07 73.9 219.9 234.24

Table 5
Optimization results affected by the discharge depth (WG model Dewind D4-48, discharge depth = 50%).

Site Wuchi Orchid Island

LOLP constraint 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
Wind generator 8 3 2 2 6 3 3 4
PV array 489 482 383 397 121 122 114 62
Battery bank 329 279 347 199 369 299 151 49
Total installation cost (K$) 29595 22857 18971 17967 15083 10817 9065 7477
Fuel cost (K$) 20.49 57.04 105.77 136.97 23.63 79.56 131.80 166.31
CO2 emission (ton) 39.82 110.84 205.55 266.17 45.92 154.6 256.13 323.2
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system reliability is LOLP = 0.05, 0.1, 0.15 and 0.2, namely 438, 879,
1314 and 1752 h of load loss over 8760 h a year. The effect of LOLP
on the installation cost can be seen through optimization. Exhib-
ited in Fig. 9 is a plot of fitness (cost) against generation through
an AGA convergence process at a specific case, from which it is
seen that all the maximum and minimum fitness of individuals
among an entire population converge toward a minimum value,
i.e. the optimization solution that is wanted. Energy supply/de-
mand distribution during the full year is shown in Fig. 10.
4.2. Effect analysis of WG power curves and installation sites

Tabulated in Table 3 are the optimization results with WGs in
various models installed in Wuchi and the Orchid Island under
the constraint LOLP = 0.5 at a battery discharge depth of 30%. The
Dewind D4-48 is the one reaching the minimum total installation
cost. This is due to the fact that, Dewind D4-48 is the one with the
lowest cut-in and rated wind speeds compared with the other
three as can be seen from the power curves in Fig. 2, meaning that
it is of the highest generation efficiency for a given wind speed.

As tabulated in Table 2, the installation cost is on the order of
20 K$/KW for a wind turbine generator, while it is 3.4 K$/KW for
a photovoltaic array. In Figs. 7 and 8, a point worthy of mention
is that there is more abundant solar energy but less wind source
in Wuchi than there is in the Orchid Island. Hence, as tabulated
in Table 3, when meeting identical power load demand at two
installation sites, it requires a larger number of photovoltaic arrays
to offset a shortage of wind power in Wuchi. In a brief conclusion,
the installation cost is found higher in Wuchi than in the Orchid Is-
land for identical load demand.
4.3. Effect analysis of LOLP and battery discharge depth

Tabulated in Table 4 are the LOLP results by use of Dewind D4-
48 WGs at a discharge depth of 30%. It is noted that the total instal-
lation cost decreases with LOLP and loss of load hour (LOLH), but
increases with the system reliability. In other words, LOLH is a
key factor to consider in determination of an acceptable LOLP.

With the same WGs as those in Table 4, optimization results are
tabulated in Table 5 with a discharge depth up to 50%. An elevated
discharge depth is found to save the initial installation cost as in-
tended, but may lead to a shortened life cycle of a battery, that
is, an increased maintenance cost in the long run.

A tremendous use of fossil fuels is known to be the major cause
of CO2 emission, a key issue to deal with in the global warming
fact. According to a technical report [25], a MAN B&W 10K60MC
diesel generator produces 590 g/KWh of CO2, through which the
total amount of CO2 emission can be evaluated. As tabulated in
Tables 4 and 5, while a higher capacity of renewable energy
sources is found to increase the installation cost, it reduces the
amount of CO2 emission and become more environmentally
friendly as a whole.
5. Conclusions

In this work, a methodology is presented to optimize the instal-
lation capacity of a stand-alone hybrid generation system. Accord-
ingly, given a system configuration as well as an operation control
strategy, a capacity optimization model is built in consideration of
system reliability and cost. Subsequently, a full year of electricity
generation contributed by wind generators and photovoltaic arrays
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is estimated according to a long term weather database collecting
the wind speed, temperature, solar irradiation, and so forth, all on
an hourly basis. On top of that, an adaptive genetic algorithm is ap-
plied to a system match design for the solutions of capacity optimi-
zations among individual system components. In the end, the
optimization results are made at two distinct installation sites with
this proposed methodology for comparison purpose.

Highly affected by seasons, a power load demand distribution
demonstrates a significant influence on the capacity optimization
result. For instance, the amount of electricity consumed in sum-
mertime is expected to be higher than the rest of a year. A neither
stable nor uniform distribution of a renewable energy sources over
an installation site will give rise to an elevated cost. The capacity
and the discharge depth of a battery play a role in the dispatch
of entire generation system. Hence, a more efficient use of renew-
able energy sources can be achieved in case a battery with high dis-
charge depth is available. Since the cost of wind power generation
is lower than that of solar power, the total installation cost can be
reduced in windy areas, while meeting the power load demand.
Optimization results are also related to specified LOLH, a quantity
determined by a tradeoff between the electricity reliability and the
system cost according to clients’ demand.
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