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A system is subject to shocks that arrive according to a non-homogeneous pure birth pro-
cess. Whenever a shock occurs, the system enters one of the two types of failure states.
Type I failure (minor failure) is fixed by a minimal repair. Type II failure (catastrophic fail-
ure) is removed by a replacement. We consider an age replacement policy which replaces
the system whenever its age reaches T and a spare for replacement is available. The opti-
mal cost minimization age T� is derived under a cost structure. We demonstrate that this
model includes more realistic factors and is a generalization of several previous models in
the literature.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

A system is subject to shocks. Whenever a shock occurs, the system enters one of the two types of minor and major failure
states, which require minimal repair and replacement actions, respectively. These failures result in interruptions of the sys-
tem operation and repair/replacement costs. Therefore, it is important to study various maintenance policies to minimize the
operating cost and the risk of a catastrophic breakdown. The maintenance policy with both replacements and minimal
repairs was first introduced by Barlow and Hunter [1]. In the past several decades, maintenance and replacement problems
were extensively studied in the literature. A well-known maintenance policy is the classical age-replacement policy, in
which an operating system is replaced at the time of failure or at age T, whichever occurs first. The extension of such a policy
has been considered by many researchers including Bai and Yun [2], Berg et al. [3], Block et al. [4,5], Chen and Savits [6],
Chien and Sheu [7], and Chien et al. [8], Sheu [9], Sheu and Chien [10], Sheu and Griffith [11], Sheu et al. [12,13], Sheu
and Kuo [14]. Wang [15] summarized, classified, and compared a variety of maintenance policies for deteriorating systems.

Most of the past studies modeled the shocks as a non-homogeneous Poisson process (NHPP). Note that the NHPP shocks
only depend on the system’s age, but not on the number of failures. However, many practical systems deteriorate with age as
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well as the number of repairable failures. To incorporate this feature, we model the shocks as a non-homogeneous pure birth
process (NHPBP), which is defined as follows.

Definition 1. If a counting process fNðtÞ; t P 0g is a non-homogeneous continuous time Markov process with following
conditions:

(i) Nð0Þ ¼ 0,
(ii) PfNðt þ hÞ � NðtÞ ¼ 1 NðtÞ ¼ kj g ¼ rkðtÞhþ oðhÞ,

(iii) PfNðt þ hÞ � NðtÞP 2jNðtÞ ¼ kg ¼ oðhÞ,
(iv) the process has independent increments,

then the process is called a non-homogeneous pure birth process (denoted by NHPBP) with the intensity function
frkðtÞ; k ¼ 0;1;2; . . .g and mean value function KkðtÞ ¼

R t
0 rkðuÞdu: �

From the above definition, it is obviously that the NHPBP has a failure rate which depends on both the system’s age and
the number of shocks. Thus, the maintenance model with the NHPBP shocks is a generalization of the existing models and
can be applied in production, insurance, epidemiology, and load-sharing systems.

The rest of this paper is organized as follows. Section 2 describes the system we study and makes the assumptions. Sec-
tion 3 formulates the maintenance model and develops the long-term average cost function. Section 4 presents the cost min-
imization age replacement policy. Section 5 discusses the computation of the optimal policy and provides an algorithm.
Finally, Section 6 shows that many classical models are the special cases of our model.

2. The system and assumptions

In this section, we describe the system and present the assumptions.

2.1. Operation of the system

Consider a system subject to NHPBP shocks, each shock causes the system to fail in one of the two types. A type I failure
(minor) is fixed by a minimal repair and a type II failure (major) is cleared by an emergent replacement. Whenever the oper-
ating system’s age reaches T, it is replaced with an available new system. T is the decision variable of this study.

The probability of each failure type is assumed to depend on the number of type I shocks since the last replacement, de-
noted by M. Let Pk ¼ PðM > kÞ is the probability that the first k shocks of the system are all type I. The domain of Pk is
f0;1;2; . . .g and 1 ¼ P0 P P1 P P2 P . . .. Denote by fPkg the sequence of probabilities Pk0s and let pk ¼ PðM ¼ kÞ ¼
Pk�1 � Pk ¼ Pk�1ð1� Pk=Pk�1Þ with domain {1,2,3, . . .}. Therefore, the conditional probability that the kth shock results in a
type I failure (or a type II failure) is qk ¼ Pk=Pk�1 (or hk ¼ 1� qk ¼ 1� Pk=Pk�1). Furthermore, we assume that the random
variable M is independent of the shock process fNðtÞ; t P 0g.

It is assumed that a new system (spare unit) for replacement is delivered upon order, and the lead-time between ordering
and receiving the new system is a random variable. The random lead time L has cumulative distribution function (c.d.f.) GðtÞ,
probability density function (p.d.f.) gðtÞ, survival function (s.f.) GðtÞ, and finite mean EðLÞ ¼ l. This assumption is a unique
feature of our model and is particular important in the situation where the system is very expensive. This is because, except
for the first order placed at time 0, ordering it only upon failure can significantly reduce the cost of capital.

2.2. Maintenance of the system

The detailed maintenance scheme for the system can be described explicitly as follows. A new system is put in operation
and a new order has been placed at time 0. If the ordered system is received before the occurrence of a type II failure or age T,
the replacement can be made immediately whenever needed. Otherwise, the type II failure or age T replacement cannot be
made until the ordered system is received.

There are four mutually exclusive and collectively exhaustive cases for the system replacement with different costs.

� Case 1. If the ordered system arrives and no type II failure occurs before time T, then the operating system is replaced at
age T with a cost c1 (preventive replacement).
� Case 2. If the ordered system arrives after time T and no type II failure occurs before the arrival of the ordered system, then

the operating system is replaced at the order arrival instant with a cost c2 (delayed preventive replacement).
� Case 3. If the ordered system arrives before a type II failure which occurs before time T, then the failed system is replaced

with the new system at the type II failure instant at a cost c3 (corrective replacement).
� Case 4. If the ordered system arrives after a type II failure which occurs before T, then the failed system is replaced at the

order arrival instant with a cost c4 (delayed corrective replacement).
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2.3. Cost structure and additional assumptions

The cost of the ith repair at age t is a non-decreasing function of age and the number of repairs, denoted by
/ðCðtÞ; ciðtÞÞ, where CðtÞ is the age-dependent random part, ciðtÞ is the deterministic part. Hence, the expected
repair cost is aiðtÞ ¼ ECðtÞ½/ðCðtÞ; ciðtÞÞ�. Denote the c.d.f., p.d.f. and mean of CðtÞ by WtðxÞ, wtðxÞ and E½CðtÞ�,
respectively.

The replacement cost order c1 ¼ c2 < c3 6 c4 is assumed, where c3 > c2 means that the corrective replacement cost is
greater than the preventive replacement cost; and c4 P c3 means that c4 is higher due to the operation interruption affecting
the customer service negatively.

Furthermore, let ch be the cost per unit time for holding a new idle system (i.e., the spare system), and let cs be the cost per
unit system downtime.

Finally, we also make the following assumptions:

(1) The system is monitored continuously and all failures are detected immediately.
(2) Repairs and replacements are completed instantaneously.
(3) After a replacement, the system becomes new and the process starts again.

The assumption regarding the random lead time for delivering the spare unit has been made in many past studies includ-
ing Chien [16,17], Chien and Chen [18,19], Kaio and Osaki [20], Nakagawa and Osaki [21], Osaki [22], Osaki and Yamada [23],
Osaki et al. [24], Sheu and Liou [25], Thomas and Osaki [26,27].

3. Model formulation and analysis

Define the following transition probability at time t given Nð0Þ ¼ 0:
PkðtÞ ¼ PfNðtÞ ¼ kjNð0Þ ¼ 0g; k ¼ 0;1;2; . . . ; ð1Þ
which can be further computed as
PkðtÞ ¼ e�KkðtÞ
Z t

0
eKkðxk�1Þ�Kk�1ðxk�1Þrk�1ðxk�1Þ

Z xk�1

0
eKk�1ðxk�2Þ�Kk�2ðxk�2Þrk�2ðxk�2Þ � � �

Z x2

0
eK2ðx1Þ�K1ðx1Þr1ðx1Þ

�
Z x1

0
eK1ðx0Þ�K0ðx0Þr0ðx0Þdx0dx1 � � � dxk�2dxk�1; ð2Þ
for k ¼ 1;2; . . . and P0ðtÞ ¼ e�K0ðtÞ (see Sheu et al. [28] for the detailed derivation). Also note that
d
dt

PkðtÞ ¼ �rkðtÞPkðtÞ þ rk�1ðtÞPk�1: ð3Þ
If we assume that there is no planned replacement and lead time is zero (i.e., T ¼ 1 and L ¼ 0) and let Y be the time inter-
val between two successive type II failure replacements, the survival function of Y can be written as
HðtÞ ¼
X1
k¼0

PðNðtÞ ¼ k;M > kÞ ¼
X1
k¼0

PkðtÞPk: ð4Þ
It follows from (4) that the density function hðtÞ ¼ �dHðtÞ=dt is
hðtÞ ¼
X1
k¼0

PkðtÞrkðtÞpkþ1: ð5Þ
Thus, the type II failure rate at time t is rHðtÞ ¼ hðtÞ=HðtÞ.
Let Uj denote the length of successive replacement cycle j (j ¼ 1;2;3; . . .), and Vj the operational cost during Uj. Thus

fðUj;VjÞg constitutes a renewal reward process. If DðtÞ is the expected cost of operating the system over the time interval
½0; t�, then it is well known that
lim
t!1

DðtÞ
t
¼ EðV1Þ

EðU1Þ
; ð6Þ
(see, e.g., Ross [29]; p. 52)). We shall denote the right-hand side of (6) by BðTÞ. For the infinite horizon case, we want to
find optimal T� which minimize BðTÞ, the total expected long-run cost per unit time.

The following lemma is needed in deriving BðTÞ.

Lemma 1. If a type II failure does not occur in ½0; t�, let UðtÞ be the total minimal repair cost incurred over ½0; t�, then
E½UðtÞ� ¼
Z t

0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPi
1

HðyÞ
dy; ð7Þ
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where aiðyÞ ¼ ECðyÞ½/ðCðyÞ; ciðyÞÞ� is finite for all y P 0 and i P 1.
(See Appendix A for the proof).
Let Y1;Y2; . . . be the independent copies of Y (independent and identically distributed random variable sequence). Accord-

ing to the replacement scheme described in Section 2, we have
U1 ¼

T; if L 6 T < Y1;

L; if T 6 L < Y1;

Y1; if L 6 Y1 6 T;

L; if Y1 6 L;

8>>>>>><
>>>>>>:

ð8Þ
and
V1 ¼

c1 þUðTÞ þ chðT � LÞ; if L 6 T < Y1;

c2 þUðLÞ; if T 6 L < Y1;

c3 þUðY1Þ þ chðY1 � LÞ; if L 6 Y1 6 T;

c4 þUðY1Þ þ csðL� Y1Þ; if Y1 6 L:

8>>>>><
>>>>>:

ð9Þ
By (8), the expected length of a replacement cycle is given by
EðU1Þ ¼ T � HðTÞ � GðTÞ þ
R1

T t � HðtÞdGðtÞ þ
R T

0 t � GðtÞdHðtÞ þ
R1

0 t � HðtÞdGðtÞ

¼ T � HðTÞ � GðTÞ þ
R1

T tdGðtÞ þ f½t � GðtÞ � HðtÞjT0� �
R T

0 HðtÞd½tGðtÞ�g þ
R T

0 t � HðtÞdGðtÞ

¼ T � HðTÞ � GðTÞ �
R1

T tdGðtÞ þ T � GðTÞ � HðTÞ �
R T

0 HðtÞ � GðtÞdt �
R T

0 t � HðtÞdGðtÞ þ
R T

0 t � HðtÞdGðtÞ

¼ T � GðTÞ � f½t � GðtÞj1T � �
R1

T GðtÞdtg �
R T

0 ½1� HðtÞ�GðtÞdt

¼ T � GðTÞ þ T � GðTÞ þ
R1

T GðtÞdt �
R T

0 GðtÞdt þ
R T

0 HðtÞ � GðtÞdt

¼ T þ
R1

T GðtÞdt � T þ
R T

0 GðtÞdt þ
R T

0 HðtÞ � GðtÞdt

¼
R1

0 GðtÞdt þ
R T

0 HðtÞ � GðtÞdt

¼
R T

0 HðtÞ � GðtÞdt þ l:

ð10Þ
Similarly, by using the integration by parts and the double integral as in the calculation of EðU1Þ, the total expected cost in
a replacement cycle can be expressed as
EðV1Þ ¼ c1 � HðTÞ � GðTÞ þ c2 �
Z 1

T
HðtÞdGðtÞ þ c3 �

Z T

0
GðtÞdHðtÞ þ c4 �

Z 1

0
HðtÞdGðtÞ

þ
Z T

0

X1
i¼1

aiðtÞPi�1ðtÞri�1ðtÞPiGðtÞdt þ
Z 1

0

Z t

0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPidydGðtÞ þ ch �
Z T

0
HðtÞ � GðtÞdt

þ cs �
Z 1

0
GðtÞ � HðtÞdt: ð11Þ
The detailed derivation of (11) is presented in Appendix B. Introducing the notation of fðTÞ ¼ EðV1Þ to indicate that EðV1Þ
is a function of T , it follows from (6) that
BðTÞ ¼ fðTÞR T
0 HðtÞ � GðtÞdt þ l

: ð12Þ
4. Optimal policy

To determine the optimal age T� that minimizes the expected cost rate function BðTÞ, we can taking the first-order deriv-
ative of BðTÞ with respect to T and setting it to be zero. Thus, by the expected cost rate function that given in (12),
dBðTÞ=dT ¼ 0 if and only if
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ðc3 � c2ÞrHðTÞ þ
X1
i¼1

aiðTÞPi�1ðTÞri�1ðTÞPi

 !
1

HðTÞ
þ ch

" # Z T

0
HðtÞ � GðtÞdt þ l

� �

¼ c1 � HðTÞGðTÞ þ c2 �
Z 1

T
HðtÞdGðtÞ þ c3 �

Z T

0
GðtÞdHðtÞ þ c4 �

Z 1

0
HðtÞdGðtÞ þ

Z T

0

X1
i¼1

aiðtÞPi�1ðtÞri�1ðtÞPiGðtÞdt

þ
Z 1

0

Z t

0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPidydGðtÞ þ ch �
Z T

0
HðtÞ � GðtÞdt þ cs �

Z 1

0
GðtÞ � HðtÞdt; ð13Þ
or
ðc3 � c2ÞrHðTÞ þ
X1
i¼1

aiðTÞPi�1ðTÞri�1ðTÞPi

 !
1

HðTÞ
þ ch

" # Z T

0
HðtÞ � GðtÞdt þ l

� �

¼ ðc3 � c2Þ �
Z T

0
GðtÞdHðtÞ þ

Z T

0

X1
i¼1

aiðtÞPi�1ðtÞri�1ðtÞ � Pi � GðtÞdt þ ch �
Z T

0
HðtÞ � GðtÞdt þ c2 �

Z 1

0
GðtÞdHðtÞ

þ c4 �
Z 1

0
HðtÞdGðtÞ þ

Z 1

0

Z t

0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPidydGðtÞ þ cs �
Z 1

0
GðtÞ � HðtÞdt: ð14Þ
Let
eðyÞ ¼ ðc3 � c2Þ � rHðyÞ þ
X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPi

 !
1

HðyÞ
þ ch: ð15Þ
Thus, we have the following properties concerned the optimal age replacement policy.

Theorem 1. Suppose that the NHPBP has the intensity rate function friðtÞ; i ¼ 0;1;2; . . .g; riðyÞ and aiðyÞ are continuous in y;
c1 ¼ c2 < c3 6 c4; and eðyÞ is continuous and strictly increasing in y.

Let d ¼ f1=l, and # ¼ f2=
R1

0 HðtÞ � GðtÞdt þ l
� �

, where f1 and f2 are respectively given by
f1 � c2 �
Z 1

0
GðtÞdHðtÞ þ c4 �

Z 1

0
HðtÞdGðtÞ þ

Z 1

0

Z t

0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPidydGðtÞ þ cs �
Z 1

0
GðtÞ � HðtÞdt;

f2 � c3 �
Z 1

0
GðtÞdHðtÞ þ c4 �

Z 1

0
HðtÞdGðtÞ þ

Z 1

0

X1
i¼1

aiðtÞPi�1ðtÞri�1ðtÞPiGðtÞdt

þ
Z 1

0

Z t

0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPidydGðtÞ þ ch �
Z 1

0
HðtÞ � GðtÞdt þ cs �

Z 1

0
GðtÞ � HðtÞdt:
Then

(i) If eð0Þ < d and eð1Þ > #. Then there exists a finite and unique T� which minimizes BðTÞ; and
BðT�Þ ¼ eðT�Þ ¼ ðc3 � c2Þ � rHðT�Þ þ
X1
i¼1

aiðT�ÞPi�1ðT�Þri�1ðT�ÞPi

 !
1

HðT�Þ
þ ch ð16Þ
(ii) If eð1Þ 6 #. Then the optimum replacement policy is T� ¼ 1: no planned replacement.
(iii) If eð0ÞP d. Then the optimum replacement policy is T� ¼ 0: replacement is made just after the arrival of the ordered spare.

(See Appendix C for the proof).
Note that in Theorem 1, T� ¼ 1means that the optimal replacement policy is no planned replacement and T� ¼ 0 means

that the optimal replacement policy is to place replacement just after the arrival of the ordered spare.

5. Calculations

The terms ðc3 � c2Þ � rHðyÞ and
P1

i¼1aiðyÞPi�1ðyÞri�1ðyÞPi=HðyÞ in (13), (14) and (15) can be regarded as the s-expected mar-
ginal costs of replacement and repair, respectively. And eðyÞ can be regarded as the s-expected marginal cost of the age
replacement policy at age y. As in Berg and Clèroux [30], the s-expected marginal cost of this policy at age y is expressed
as a linear combination of its component costs. The optimal T�, which minimizes BðTÞ, has to satisfy the condition
BðTÞ ¼ eðTÞ; a well-known principle in economics. In practice, we can determine T� as follows: draw the functions BðTÞ
and eðTÞ on the same graph and find the intersection point of the two functions. If eðyÞ is continuous and strictly increasing,
then there exists a unique intersection point.

Here we present the algorithm that can be used to compute the optimal T� and BðT�Þ, numerically.
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Algorithm.

Input: c1; c2; c3; c4; ch; cs; fPkg; rkð�Þ;Kkð�Þ;akð�Þ;Gð�Þ
Step 1. Compute pk; PkðtÞ;HðtÞ and hðtÞ are defined by (2), (4), and (5), respectively.
Step 2. Find the unique solution T� that minimizes BðTÞ (i.e., the solution satisfies (14)).
Step 3. Compute BðT�Þ as defined by (12).
Output: T� = optimal age replacement time;
BðT�Þ = optimal expected cost rate
Stop. End.
6. Special cases and concluding remarks

Our model is a generalization of the past models in the literature. We present some special cases in this section.
Case 1. P0 ¼ 1; Pk ¼ 0 for k ¼ 1;2;3; . . .; rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . .; /ðCðyÞ; ciðyÞÞ ¼ 0. Using (12), we obtain
BðTÞ ¼ f01ðTÞR T
0 HðtÞ � GðtÞdt þ l

; ð17Þ
where
f01ðTÞ ¼ c1 � HðTÞ � GðTÞ þ c2 �
Z 1

T
HðtÞdGðtÞ þ c3 �

Z T

0
GðtÞdHðtÞ þ c4 �

Z 1

0
HðtÞdGðtÞ þ ch �

Z T

0
HðtÞ � GðtÞdt

þ cs �
Z 1

0
GðtÞ � HðtÞdt:
This expression agrees with (7) in Osaki and Yamada [23].
Case 2. P0 ¼ 1; Pk ¼ 0 for k ¼ 1;2;3; . . . ; rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . . ; /ðCðyÞ; ciðyÞÞ ¼ 0; ch ¼ 0; cs ¼ 0. It follows from

(12) that
BðTÞ ¼ f02ðTÞR T
0 HðtÞ � GðtÞdt þ l

; ð18Þ
where
f02ðTÞ ¼ c1 � HðTÞ � GðTÞ þ c2 �
Z 1

T
HðtÞdGðtÞ þ c3 �

Z T

0
GðtÞdHðtÞ þ c4 �

Z 1

0
HðtÞdGðtÞ:
(18) agrees with the results in Nakagawa and Osaki [21].
Case 3. Pk ¼ qk for k ¼ 1;2;3; . . .; rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . .; /ðCðyÞ; ciðyÞÞ ¼ C; ch ¼ 0; cs ¼ 0; GðtÞ is degenerated at 0.

This is the case considered by Clèroux et al. [31]. Here we treat C as a truncated random variable with p.d.f. wðxÞ=q for

0 6 x 6 n and q ¼
R n

0 wðxÞdx. If we use Pk ¼ qk for k ¼ 1;2;3; . . ., rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . ., aiðtÞ ¼ ECðtÞ½/ðCðtÞ;
ciðtÞÞ� ¼ EðCÞ ¼

R n
0 x �wðxÞdx

� �
=q, ch ¼ 0, cs ¼ 0 and GðtÞ ¼ 1 in (12), then we obtain the same average cost function as in

Clèroux et al. [31]:
BðTÞ ¼
c1 þ ðc3 � c2Þ þ

R n

0
x�wðxÞdx

p

� �
1� e�pKðTÞ� 	

R T
0 e�pKðtÞdt

; ð19Þ
where p ¼ 1� q and KðTÞ ¼
R T

0 rðuÞdu.
Case 4. P0 ¼ 1; Pk ¼ 0 for k ¼ 1;2;3; . . .; rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . .; /ðCðyÞ; ciðyÞÞ ¼ 0; ch ¼ 0; cs ¼ 0; GðtÞ is degener-

ated at 0. From (12), we obtain
BðTÞ ¼ c1 þ ðc3 � c2Þð1� e�KðTÞÞR T
0 e�KðtÞdt

; ð20Þ
which is the same as the result in Barlow and Hunter [1].
Case 5. Pk ¼ 1 for k ¼ 0;1;2;3; . . .; rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . .; /ðCðyÞ; ciðyÞÞ ¼ cðtÞ; ch ¼ 0; cs ¼ 0; GðtÞ is degenerated at

0. (12) is reduced to
BðTÞ ¼
c1 þ

R T
0 cðtÞ � rðtÞdt

T
; ð21Þ
which is the same as that in Boland [32].
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Case 6. Pk ¼ 1 for k ¼ 0;1;2;3; . . .; rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . .; /ðCðyÞ; ciðyÞÞ ¼ c þ cðtÞ; ch ¼ 0; cs ¼ 0; GðtÞ is degener-
ated at 0. Using (12), we have
BðTÞ ¼
c1 þ c �KðTÞ þ

R T
0 cðtÞ � rðtÞdt

T
; ð22Þ
as shown in Tilquin and Clèroux [33].
Case 7. Pk ¼ 1 for k ¼ 0;1;2;3; . . .; rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . .; /ðCðyÞ; ciðyÞÞ ¼ c; ch ¼ 0; cs ¼ 0; GðtÞ is degenerated at 0.

This is classical result
BðTÞ ¼ c1 þ c �KðTÞ
T

; ð23Þ
obtained by Barlow and Hunter [1].
Case 8. Pk ¼ 1 for k ¼ 0;1;2;3; . . .; rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . .; /ðCðyÞ; ciðyÞÞ ¼ ci; ch ¼ 0; cs ¼ 0; GðtÞ is degenerated at

0. This case becomes the model in Boland and Proschan [34] if ci ¼ aþ i � c is utilized.
Case 9. rkðtÞ ¼ rðtÞ for k ¼ 0;1;2;3; . . .. Using KðtÞ ¼

R t
0 rðuÞdu, and PkðtÞ ¼ e�KðtÞKðtÞk=k! in (2), we get
BðTÞ ¼ f8ðTÞR T
0 HðtÞ � GðtÞdt þ l

; ð23Þ
where
f8ðTÞ ¼ c1 � HðTÞ � GðTÞ þ c2 �
Z 1

T
HðtÞdGðtÞ þ c3 �

Z T

0
GðtÞdHðtÞ þ c4 �

Z 1

0
HðtÞdGðtÞ

þ
Z T

0

X1
i¼1

aiðtÞ
e�KðtÞKðtÞi�1

ði� 1Þ! rðtÞPiGðtÞdt þ
Z 1

0

Z t

0

X1
i¼1

aiðyÞ
e�KðtÞKðtÞi�1

ði� 1Þ! rðyÞPidydGðtÞ

þ ch �
Z T

0
HðtÞ � GðtÞdt þ cs �

Z 1

0
GðtÞ � HðtÞdt:
This is in agreement with the results in Sheu and Chien [10].
It has been shown from these special cases that our model is more flexible in studying the maintenance policy of systems

subject to a more general shock process and cost structure. Such a general model provides practitioners a useful tool in
designing the optimal maintenance policy. However, it is assumed that the repair and replacement times are zero in this
paper. Studying the maintenance policy for the system with non-zero repair and replacement times can be a direction of
the future research.
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Appendix A. Proof of lemma 1

Let MðtÞ be the number of type I failures over time interval ½0; tÞ, then
UðtÞ ¼
XMðtÞ
i¼1

/ðCðZiÞ; ciðZiÞÞ;
where Zi be the arrival time of ith type I failure given that no type II failure occurs in Zi. Hence,
E½UðtÞ� ¼ E
XMðtÞ
i¼1

/ðCðZiÞ; ciðZiÞÞ
" #

¼
X1
i¼1

E /ðCðZiÞ; ciðZiÞÞ � I½0;tÞðZiÞ� ¼
X1
i¼1

Z t

0
ECðyÞ½/ðCðyÞ; ciðyÞÞ� � PrðZi 2 ðy; yþ dyÞÞ

"

¼
X1
i¼1

Z t

0
aiðyÞ

PrðSi 2 dy;M > iÞ
PrðY > yÞ ¼

X1
i¼1

Z t

0
aiðyÞ �

Pi

HðyÞ
� PrðSi 2 dyÞ;

#

where Si be the arrival time of ith shock for i ¼ 1;2;3; . . ., and
I½0;tÞðZiÞ ¼
1 if Zi 2 ½0; tÞ;
0 otherwise:




But
PrfSi 6 yg ¼ PrfNðyÞP ig ¼
X1
k¼i

PkðyÞ
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and also by (3),
PrfSi 2 dyg ¼ dPrfSi 6 yg
dy

dy ¼ Pi�1ðyÞri�1ðyÞdy:
Therefore, we have
E½UðtÞ� ¼
Z t

0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞ � Pi �
1

HðyÞ
dy:
Appendix B. Derivation of (11)
EðV1Þ ¼ c1 � HðTÞ � GðTÞ þ E½UðTÞ� � HðTÞ � GðTÞ þ ch � HðTÞ �
R T

0 ðT � tÞdGðtÞ

þc2 �
R1

T HðtÞdGðtÞ þ
R1

T E½UðtÞ� � HðtÞdGðtÞ þ c3 �
R T

0 GðtÞdHðtÞ

þ
R T

0 E½UðtÞ� � GðtÞdHðtÞ þ ch �
R T

0

R y
0 ðy� tÞdGðtÞdHðyÞ þ c4 �

R1
0 HðtÞdGðtÞ

þ
R1

0

R t
0 E½UðyÞ�dHðyÞdGðtÞ þ cs �

R1
0

R t
0ðt � yÞdHðyÞdGðtÞ

¼ c1 � HðTÞ � GðTÞ þ E½UðTÞ� � HðTÞ � GðTÞ þ ch � HðTÞ �
R T

0 ðT � tÞdGðtÞ

þc2 �
R1

T HðtÞdGðtÞ þ
R1

T E½UðtÞ� � HðtÞdGðtÞ þ c3 �
R T

0 GðtÞdHðtÞ

�E½UðTÞ� � GðTÞ � HðTÞ þ
R T

0 HðtÞ � GðtÞdE½UðtÞ� þ
R T

0 E½UðtÞ� � HðtÞdGðtÞ

�ch � HðTÞ �
R T

0 ðT � tÞdGðtÞ þ ch �
R T

0 HðtÞ � GðtÞdt þ c4 �
R1

0 HðtÞdGðtÞ

�
R1

0 E½UðtÞ� � HðtÞdGðtÞ þ
R1

0

R t
0 HðyÞdE½UðyÞ�dGðtÞ þ cs �

R1
0 GðtÞ � HðtÞdt

¼ c1 � HðTÞ � GðTÞ þ c2 �
R1

T HðtÞdGðtÞ þ c3 �
R T

0 GðtÞdHðtÞ þ c4 �
R1

0 HðtÞdGðtÞ

þ
R T

0 HðtÞ � GðtÞdE½UðtÞ� þ
R1

0

R t
0 HðyÞdE½UðyÞ�dGðtÞ

þch �
R T

0 HðtÞ � GðtÞdt þ cs �
R1

0 GðtÞ � HðtÞdt

¼ c1 � HðTÞ � GðTÞ þ c2 �
R1

T HðtÞdGðtÞ þ c3 �
R T

0 GðtÞdHðtÞ þ c4 �
R1

0 HðtÞdGðtÞ

þ
R1

0

X1
i¼1

aiðtÞPi�1ðtÞri�1ðtÞPiGðtÞdt þ
R1

0

R t
0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPidydGðtÞ

þch �
R T

0 HðtÞ � GðtÞdt þ cs �
R1

0 GðtÞ � HðtÞdt:
Appendix C. Proof of Theorem 1
d
dT

BðTÞ ¼ 0
implies (14).
QðTÞ� ðc3�c2ÞrHðTÞþ
X1
i¼1

aiðTÞPi�1ðTÞri�1ðTÞPi

 !
1

HðTÞ
þch

" # Z T

0
HðtÞ �GðtÞdtþ

Z 1

0
GðtÞdt

� �
�ðc3�c2Þ �

Z T

0
GðtÞdHðtÞ

�
Z T

0

X1
i¼1

aiðtÞPi�1ðtÞri�1ðtÞPiGðtÞdt�ch �
Z T

0
HðtÞ �GðtÞdt
QðTÞ is strictly increasing because of the assumption that eðTÞ is strictly increasing.
Qð0Þ ¼ eð0Þ �
Z 1

0
GðtÞdt;

Qð1Þ ¼ eð1Þ �
Z 1

0
HðtÞ � GðtÞdt þ

Z 1

0
GðtÞdt

� �
� ðc3 � c2Þ �

Z 1

0
GðtÞdHðtÞ �

Z 1

0

X1
i¼1

aiðtÞPi�1ðtÞri�1ðtÞPiGðtÞdt

� ch �
Z 1

0
HðtÞ � GðtÞdt;

K � c2 �
Z 1

0
GðtÞdHðtÞ þ c4 �

Z 1

0
HðtÞdGðtÞ þ

Z 1

0

Z t

0

X1
i¼1

aiðyÞPi�1ðyÞri�1ðyÞPidydGðyÞ þ cs �
Z 1

0
GðtÞ � HðtÞdt:
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If eð0Þ < d and eð1Þ > #, then Qð0Þ < K and Qð1Þ > K. Thus from the strictly increasing property of QðTÞ, there exists a
unique and finite T�, 0 < T� <1 satisfying (14), which minimizes BðTÞ. If T� is the solution, then from (12) and (13),
BðT�Þ ¼ eðT�Þ.

If eð1Þ 6 #, then Qð1Þ 6 K. Thus QðTÞ < K for any finite T, which implies B0ðTÞ < 0 for any finite T. Thus T� ¼ 1, meaning
that no planned replacement is needed.

If eð0ÞP d, then Qð0ÞP K. Thus QðTÞ > K and B0ðTÞ > 0 for any T > 0, which implies that T� ¼ 0 because BðTÞ is strictly
increasing in T.
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