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a b s t r a c t

Much attention is currently focused on one of the newest breast examination techniques, breast MRI.
Contrast-enhanced breast MRIs acquired by contrast injection have been shown to be very sensitive in
the detection of breast cancer, but are also time-consuming and cause waste of medical resources. This
paper therefore proposes the use of spectral signature detection technology, the Kalman filter-based
linear mixing method (KFLM), which can successfully present the results as high-contrast images and
eywords:
ontrast enhancement
reast MRI
reast cancer screening
alman filter

classify breast MRIs into major tissues from four bands of breast MRIs. A series of experiments using
phantom and real MRIs was conducted and the results compared with those of the commonly used
c-means (CM) method and dynamic contrast-enhanced (DCE) breast MRIs for performance evaluation.
After comparison with the CM algorithm and DCE breast MRIs, the experimental results showed that
the high-contrast images generated by the spectral signature detection technology, the KFLM, were of
inear spectral mixture model
issue classification

superior quality.

. Introduction

Breast MRI involves the use of magnetic resonance imaging
MRI) to look specifically at the breast; it is a non-invasive procedure
hat doctors can use to determine what the inside of the breast looks
ike without having to perform surgery or flatten the breast (as in a

ammogram). Each examination produces hundreds of images of
he breast, cross-sectional in all three directions (side-to-side, top-
o-bottom, and front-to-back), which are then read by a radiologist.
o radioactivity is involved, and the technique is believed to pose
o health hazards in general. The hope is that such non-invasive
tudies will contribute to our progress in learning how to predict
he behavior of tumors and in selecting proper treatments [1].

The recent interest in MRI of the breast follows reports that
alignant (or cancerous) lesions become brighter following a con-

rast agent injection. Contrast-enhanced breast magnetic resonance

maging has been shown to have a high sensitivity in the detec-
ion of breast cancer, particularly invasive breast cancers [2], and
he accuracy is significantly higher than that of conventional imag-
ng techniques (mammography and ultrasound) in the screening of
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E-mail addresses: pcchung@ee.ncku.edu.tw, scyang@ncut.edu.tw (P.-C. Chung).

895-6111/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.
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© 2008 Elsevier Ltd. All rights reserved.

high-risk women [3]. When performing MRI, three parameters, T1,
T2, and PD, are usually applied to generate a multi-spectral image
sequence that converts tissue variation into contrast in the images.
For contrast enhancement, the breast is imaged several times in
different sequences after the injection of a paramagnetic contrast
agent, a so-called contrast injection. The screening is based on the
hypothesis that after the injection of the agent, abnormalities are
enhanced more than normal tissues due to their increased vascu-
larity, vascular permeability and interstitial space [4]. Besides the
discomfort of injection, the complexity of the contrast injection pro-
cedure is time-consuming and causes waste of medical resources.

Based on these considerations, this paper proposes an MRI
classification and detection technology based on spectral feature
correlation among breast MRI sequences, called the Kalman filter-
based linear mixing method (KFLM) [5,6], for classifying breast
MRIs into four high-contrast tissue-separated images. The KFLM
applies the Kalman filter on the linear spectral mixture model of
breast MRIs based on the assumption that breast MRIs contains
multiple object signatures (i.e., fatty tissue, glandular tissue, tumor

mass and muscle) with their complete knowledge; each MRI pixel
is then regarded as a model construed by linear mixing of these
object signatures [7–9]. The Kalman filter can reflect abrupt changes
in signature abundance via an auxiliary equation called the abun-
dance state equation (ASE), which traces, estimates and updates

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:pcchung@ee.ncku.edu.tw
mailto:scyang@ncut.edu.tw
dx.doi.org/10.1016/j.compmedimag.2008.12.001
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Fig. 1. Computer-simulated phantoms of the four bands.

Table 1
Average gray level values and variances used for the four bands of the computer-simulated phantoms in Fig. 1.

MRI band BK Tissue

Fatty Glandular Tumor Muscle

Average Variance Average Variance Average Variance Average Variance
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and 1 3D Flash 3 125 101–138 87
and 2 T1 3 72 66–78 116
and 3 T2 3 65 40–78 151
and 4 PD 3 45 31–54 141

he signature abundance recursively; it then estimates each of these
ubstances by employing the abundance fractions of the substances
s a base for classification. As a result, the gray scale of each pixel on
he gray-scale image generated after the experiment represents the
ubstance abundance fraction calculated using mixed-pixel classi-
cation.

One advantage of the Kalman filter-based linear mixing method
ver traditional classification techniques is the use of mixed-pixel
lassification, in which a linear spectral mixture model is used to
escribe the mixture of substances present in a pixel, rather than
ure-pixel classification. Compared with mixed-pixel classification,
ure-pixel classification can only achieve a binary decision to gen-
rate the binary (black and white) figure.

In order to validate our proposed system, computer-simulated
hantoms were first used for quantitative analysis and evaluation

f efficiency in a comparison of the KFLM approach and the CM
ethod. Phantoms and real breast MRIs taken before and after

ontrast injection with four different parameters are also used to
valuate the feasibility of this technique in medical and clinical
pplications.

Fig. 2. Spectra distribution of the four computer-simulated phant
71–92 72 67–78 38 14–47
110–126 128 119–135 54 50–64
140–206 78 50–85 15 9–18
130–152 136 124–151 29 26–40

The organization of this paper is as follows. In Section 2, the
classification of an MR image sequence as a linear mixing prob-
lem is formulated. The KFLM approach is described in Section 3,
and the modified version of the CM method implemented in this
study is discussed briefly in Section 4. Section 5 details a set of
experiments conducted to evaluate the performance of the KFLM
in MR classification, and also includes a comparison of the results
of contrast-injected breast MRIs and those produced by the CM
method. Concluding remarks are presented in Section 6.

2. Linear spectral mixture model

A breast MRI can be regarded as a three-dimensional image
where the third dimension is a spectral dimension specified by
TR/TE parameters, in which each pixel is actually a column vector

and can be modeled by linear mixing. It is assumed that there are
p spectrally distinct substances {m1, m2, . . ., mp} contained in the
image, where r(x,y) describes the image pixel vector represented by
a l×1 column vector and l is the number of spectral bands at posi-
tion (x,y). Let M be a l×p signature matrix denoted by [d1d2. . .dp],

oms shown in Fig. 1. (a) 3D Flash, (b) T1, (c) T2, and (d) PD.



S.-C. Yang et al. / Computerized Medical Imaging and Graphics 33 (2009) 187–196 189

F
t
a
7

w
t
�
a
n
l

r

w
o

3

E

˛

w
c
r
p
f
v
c

E

w
n

ı

t
a

r

w
k
n
w

E

Fig. 4. Receiver operating characteristic (ROC) curves of the KFLM in computer-
simulated phantoms (SNR = 5 dB, 15 dB, 25 dB and 35 dB). (a) RD vs. RF, (b) RD vs.
a%, and (c) RF vs. a%.
ig. 3. Correct Classification Rats (Rc) curves of tumor classification in the KFLM for
he cases of SNR = 5 dB, 15 dB, 25 dB and 35 dB, where the cutoff threshold value of
% was chosen to be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%,
0%, 75%, 80%, 85%, 90%, 95% and 100%.

here dj is a l×1 column vector representing the spectral signa-
ure of the jth substance mj in pixel vector r. It also assumed that
(x,y) is a p×1 column vector associated with M, which is defined
s ˛ = (˛1˛2. . .˛p)T, where ˛j represents the value of dj, the jth sig-
ature in pixel vector r. Lastly, r can be described as follows by the

inear mixing model:

(x, y) =M˛(x, y)+ n(x, y) (1)

here n is a l×1 column vector and is generated as additive noise
r measurement error.

. Kalman filter-based linear mixing method

The complete KFLM is composed of the linear mixing model of
q. (1) and the abundance equation of the Kalman filter, as follows:

(k + 1) = ˚(k + 1, k)˛(k)+ u(k) (2)

here k replaces the position (x,y) in Eq. (1), representing the dis-
rete instant of time at which the pixel is processed. Vector �(k)
epresents the value of abundance at time k, �(k + 1,k) is a known
×p state transition matrix that describes the change in abundance

rom time k to k + 1, and, u(k) is a zero-mean p×1 abundance noise
ector independent of �(k), generated by the white process with a
ovariance matrix given by

[u(k)u(m)T] = Q = �2
2ıkmIp×p (3)

here �2
2 is the variance of the abundance noise vector, ıkm is Kro-

ecker’s notation, given by

km =
{

1, k = m
0, k /= m

and matrix Ip×p is a p×p identity matrix. Based on the discrete-
ime Kalman filtering notation at discrete time k, Eq. (1) is modified
s

(k) =M(k)˛(k)+ n(k) (4)

here vector r(k) is the observed pixel at time k, and M(k) is a

nown signature matrix at time k. The zero-mean measurement
oise in Eq. (1) is represented as n(k), which is generated by the
hite process with a covariance matrix given by

[n(k)n(m)T] = R = �2
1I l×lıkm (5)
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Table 2
Correct Classification Rats (Rc) of the CM method and the KFLM for four target substances (a% of the KFLM is optimized).

SNR = 5 dB SNR = 15 dB SNR = 25 dB SNR = 35 dB

Fatty CM 0.77137 0.91939 0.92063 0.93819
KFLM 0.79547 (a% = 40%) 0.96335 (a% = 35%) 0.99873 (a% = 20%) 0.99676 (a% = 25%)

Glandular CM 0.83247 0.90969 0.92735 0.93612
KFLM 0.88155 (a% = 45%) 0.97646 (a% = 25%) 0.99858 (a% = 10%) 0.99091 (a% = 5%)

Muscle CM 0.70090 0.78894 0.80671 0.83538
KFLM 0.81370 (a% = 95%) 0.82916 (a% = 60%) 0.85880 (a% = 40%) 0.87636 (a% = 30%)

T 372
465 (a

s
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p
m
w
a
a
a
k
d
m
R

F
(
(

umor CM 0.77339 0.83
KFLM 0.85399 (a% = 60%) 0.91

The purpose of the KFLM is to obtain the minimum mean-
quared estimation of abundance state �(k) with observed data r(k).
sing knowledge of the predicted �(k), we can classify and detect
ixel r(k). Assuming �˛(k + 1|k) is the minimum mean-squared esti-
ation of �(k + 1) obtained from the previously observed value r(j),
ith j from 1 to k, then �˛(k|k) and �˛(k|k − 1) can be deduced by

nalogy. We further define P(k|k) as the error covariance matrix
t time k from the previously observed r(j), with j from 1 to k,

nd P(k + 1|k) as the prediction error covariance matrix at time
+ 1. Then, the KFLM is computed recursively to obtain the abun-
ance vector of each pixel as the result of the classification. For
ore details on the implementation of the Kalman filter, refer to

ef. [6].

ig. 5. Four bands of real breast MRIs. (a) Three-dimensional fast low-angle shot (3D Fl
b) sagittal image from fat-saturated T1-weighted turbo spin-echo (TR/TE = 832/20
TR/TE = 3000/105 ms, flip angle = 90◦ , matrix = 512×154), and (d) proton density fat-satu
0.87645 0.92931
% = 45%) 0.96473 (a% = 35%) 0.96691 (a% = 35%)

4. c-Means (CM) methods

In order to evaluate the performance of the KFLM approach,
the widely used CM method [10] (also known as K-means in Ref.
[11]) is used for comparative analysis. The reason for selecting the
CM method for comparative purposes is twofold: first, it allows
us to generate background signatures in an unsupervised man-
ner for classification; second, it is basically a spatial-based pattern

classification technique. As opposed to the KFLM approach, which
only classifies objects of interest, the CM method classifies all MR
image pixel vectors, including background pixel vectors, into pat-
tern classes. In order to make a fair comparison, the CM method
used here includes in its clustering procedure the same knowledge

ash) gradient echo sequence (TR/TE = 12/5 ms, flip angle = 25◦ , matrix = 512×179),
ms, flip angle = 90◦ , matrix = 512×152), (c) T2-weighted fat-saturated image
rated image (TR/TE = 3000/15 ms, flip angle = 90◦ , matrix = 512×154).
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ple vector to the class whose mean is the shortest distance from
ig. 6. (a) Four major tissues verified by experienced radiologists in real breast MRIs;
adiologists; (e) the result of the intersection of (b)–(d).

f objects of interest that is required by the KFLM approach. The CM
ethod implemented in this paper for experiments is a modified

ersion of the commonly used CM method, which is also referred
o as ISODATA in Refs. [10,11].

Let the spectral signatures of p objects of interest be denoted
y {di}pi=1, where di is the spectral signature of the ith object. The
mplementation of the CM method is described in detail below.
.1. CM method

1) Determine the number of pattern classes, c≥p, and let {�i}ci=1
be their corresponding class means.
) the contours of the four major tissues as delineated by three different experienced

(2) Initialization:
Let k = 0 and the p class means not be fixed at �(0)

i
= di. All

class means �(0)
i

, i > p are selected. {di}pi=1 must be in a different
class.

(3) At the kth iteration, compute the distance of each sample pixel
vector from all class means, �(k)

i
for 1≤ i≤ c and assign the sam-
the sample vector.
(4) For each class i with p≤ i≤ c, recompute the class mean by

averaging the sample vectors in the class, denoted by �̂(k)
i . Let

k← k + 1, �(k)
i
= di, 1≤ i≤p and �(k)

i
← �̂(k)

i for p≤ i≤ c.
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ig. 7. Real breast MRIs acquired by contrast injection: (a)–(c) are 3D Flash contras
contrast agent, respectively; (d)–(f) are dynamic contrast-enhanced breast MRIs w
dministration of the contrast agent, respectively, from the image taken before con

5) If any class mean changes in the set {�(k)
i
}c
i=p

, go to step 3.

It should be noted that knowledge of {di}pi=1 is required a priori.
herefore, the first p class means are fixed during iteration; how-

ver, the class means, {�(k)
i
}c
i=p

, are regenerated at each iteration
y the CM method in a supervised manner using the minimum
istance as a criterion. These generated class means are consid-
red to be signatures of unknown signal sources, which are not
rovided by prior knowledge and may include background signa-
ures.

. Experimental results

This section describes a series of experiments based on
omputer-simulated phantoms and real breast MRIs. Use of
omputer-simulated phantoms allows us to carry out quantitative
esearch and error analysis on the FKLM, while real breast MRIs are
sed to evaluate the effectiveness and practicality of the KFLM in
edical clinical diagnosis.

.1. Computer-simulated phantoms evaluation

In this section, we utilize a series of computer-simulated
hantoms for quantitative analysis, efficiency evaluation and per-
ormance comparison between the KFLM approach and the CM

ethod. The number of classes in the CM method is set at 5, rep-
esenting the five classes of major tissues, which are fatty tissue,
landular tissue, tumor, muscle and background, in breast MRI. The
hantoms generated by the computer in four difference bands are

hown in Fig. 1, at 419×419 in size. The four semicircles repre-
ent four areas of breast tissue, which from left to right are nipple,
atty tissue, glandular tissue and tumor, while the semi-ellipse in
he rightmost represents an area of muscle. For a better reflection
f the characteristics of real breast MRIs, the gray level values in
anced images obtained 1 min, 3 min and 5 min after intravenous administration of
btraction, the subtracted image obtained 1 min, 3 min and 5 min after intravenous

gent injection.

the tissue area in each band of the computer-simulated phantoms
correspond to the average and variance of each tissue area in real
breast MRIs, which were verified by three experienced radiologists,
as shown in Fig. 6(e).

Table 1 tabulates the names of the parameters used in the MRI
pulse sequence and the average gray level values and variance for
the tissues in each band. Due to the fact that noise may be caused by
the magnetic field of static, radio frequency and gradient or other
factors during acquisition of the MRI, zero-mean Gaussian noise
was added to the phantom images in Fig. 1 so as to achieve different
levels of signal-to-noise ratio (SNR), ranging from 5 dB to 35 dB.
These phantoms with different levels of signal-to-noise ratio also
serve to illustrate the proposed KFLM technique and demonstrate
its advantages.

5.1.1. Abundance percentage thresholding method
In the application of the KFLM approach to these simulated

images, the signature matrix M is assigned four objects of inter-
est, which are fatty tissue, glandular tissue, tumor and muscle, as
shown in Fig. 2. As mentioned above, the images generated by the
KFLM have gray level values that are in proportion to the detected
abundance fraction of M. On the other hand, the CM method is a
classical class-labeling process in which each data sample vector is
assigned to only one class. Therefore, images generated by the CM
method are classification images, rather than gray-scale images as
are generated by the KFLM approach. To carry out the quantita-
tive study and compare the results with those of the CM method,
we converted the abundance fractional images generated by the
KFLM to binary images; thus, we adopted the method proposed in
Ref. [12], which uses the abundance fraction percentage as the cut-

off threshold value for such a conversion. We first normalized the
abundance fraction of the image with the range of [0,1]. More specif-
ically, let r be the pixel vector of the image and ˆ̨ 1(r), ˆ̨ 2(r), · · ·, ˆ̨ p(r)
be the estimated abundance fractions of ˛1, ˛2, . . ., ˛p in r; then the
normalized abundance fraction, ˜̨j(r), of each estimated abundance
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Fig. 8. High-contrast images acquired by the proposed KFLM m

raction ˆ̨ j(r) can be obtained by

j(r) = ˆ̨ j(r)−minr ˆ̨ j(r)

maxr ˆ̨ j(r)−minr ˆ̨ j(r)
(6)

Assume that a% is the cutoff abundance fraction threshold value;
.e., if the normalized abundance fraction of the pixel vector is
reater than or equal to a%, then the pixel will be detected as a
esired object pixel and set to “1”; otherwise, it will be set to “0”,
eaning it is not detected as a desired object pixel. In the sequel,

he use of this cutoff threshold value to threshold a fractional abun-
ance image will be referred to as the a% thresholding method. Fig. 3
hows the Correct Classification Rats (Rc) curves of tumor classifi-
ation in the KFLM for the case of SNR = 5 dB, 15 dB, 25 dB and 35 dB,
here the cutoff threshold value of a% was chosen to be 5%, 10%,

5%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%,
5%, 90%, 95% and 100% and the Correct Classification Rats (Rc) was
s defined in Eq. (11). From Fig. 3, it can be seen that the system
as an optimal Rc when a% = 35% for both SNR = 25 dB and 35 dB,
% = 45% for SNR = 15 dB, and a% = 60% for SNR = 5 dB.

.1.2. Receiver operating characteristic (ROC) curve analysis
Using the abovementioned a% thresholding method, we were

ble to calculate the number of detected pixels in the generated
ractional abundance image. This subsection further utilizes the
OC curve for analysis based on the gradually increasing a%. First,

et {di}pi=1 be a set of objects of interest for classification; then, we
efine N(di) as the total number of pixels specified by the ith object

ignature di, ND(di) as the number of pixels specified by the i-th
bject signature di and actually detected as the di, and NF(di) as the
umber of false alarm pixels that are not specified by the object
ignature di but are detected as di. Using the definitions of N(di),
D(di) and NF(di), we further define the detection rate RD(di) and
: (a) fatty tissue, (b) glandular tissue, (c) tumor, and (d) muscle.

the false alarm rate RF(di) for a particular object signature di by

RD(di) =
ND(di)
N(di)

(7)

RF(di) =
NF(di)

N − N(di)
(8)

and the mean detection rate RD and mean false alarm rate RF for all
object signatures by

RD =
∑p

i=1
RD(di)p(di) (9)

RF =
∑p

i=1
RF(di)p(di) (10)

where N is the total number of pixels in the image and p(di) =
N(di)/

∑p
i=1N(di). Note that the mean detection rate RD as defined

by Eq. (9) is the average of the detection rates for all detected
objects; similarly, the mean false alarm rate RF as defined by Eq.
(10) is the average of the false alarm rates for all detected objects.
According to Eqs. (7)–(10), each fixed a% can generate a pair of RD
and RF. Furthermore, increasing a% from 0% to 100% gradually can
generate a set of pairs (RD, RF). In this experiment, we adopted the
method proposed in Refs. [13,14] of plotting the ROC curves of (RD,
RF), (RD, a%) and (RF, a%). Fig. 4(a)–(c) shows the ROC curves of
(RD, RF), (RD, a%) and (RF, a%), respectively, for SNR = 5 dB, 15 dB,
25 dB and 35 dB. The 2D curves of (RD, RF) in Fig. 4(a) provide the
mean detection rate vs. the mean false alarm rate of the classifier.
As seen in Fig. 4(a), the performance of the KFLM is excellent when

SNR = 25 dB and 35 dB, and degrades when SNR is decreased. More-
over, the ROC curves of (RD, a%) and (RF, a%) in Fig. 4(b) and (c)
indicate how the threshold a% affects the efficiency of the classifier.
Fig. 4(b) shows the efficiency of the KFLM with four different SNRs:
similarly, the RD began to drop gradually from a% = 20%, then rapidly
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Fig. 9. Four major tissue classification results using the traditional m

etween 30% and 70%, and finally closed to zero after 80%. Fig. 4(c)
lso exhibits results that were similar but more distinct among the
our different SNRs, and clearly indicates that when SNR = 25 dB
nd 35 dB, the RF of the KFLM drops rapidly between a% = 0% and
0%, and reaches zero around a% = 40%; the RF of the KFLM with
NR = 5 dB also drops rapidly from a% = 15–55% and reaches zero
round a% = 60%. When the SNR is 15 dB, the RF of the KFLM curves
re approximately between the curves of 5 dB and 25 dB. From
ig. 4(b) and (c), we can see that a good compromise of a% for
NR = 25 dB and 35 dB between RD and RF is around 25%, 35% for
NR = 15 dB, and 45% for SNR = 5 dB.

To compare the classification performance of the KFLM with that
f the CM method, we further define the Correct Classification Rats
Rc) for a particular object signature as follows:

c = ND(di)+ NN(di)
N

(11)

here NN(di) represents the number of pixels that are not specified
y the ith object signature di and classified into non-object pixels
ccurately. Table 2 tabulates the calculated Rc of the KFLM and the
M method with different objects and SNRs, from which we can
ee that the KFLM performs better than the CM method with an
ppropriate choice of a%, especially for high-noise images, which
onforms to the characteristics of breast MRIs.

.2. Real MRI experiments

In the following experiments, real breast MRIs acquired from

atients with abnormal pathologies were used for performance
valuation. MRIs were performed on a 1.5-T Magnetum Vision
lus system (Siemens, Erlangen, Germany). One sagittal section
f the images is shown in Fig. 5(a)–(d), with the four different
ands corresponding to the parameters given in Table 1, in which
, CM: (a) fatty tissue, (b) glandular tissue, (c) tumor, and (d) muscle.

band 1 is the dynamic contrast-enhanced (DCE) three-dimensional
fast low-angle shot (3D Flash) gradient echo sequence acquired
with TR/TE (repetition time/echo time) = 12/5 ms, band 2 is the T1-
weighted spin-echo image acquired with TR/TE = 832/20 ms, band
3 is the fat-saturated T2-weighted spin-echo image acquired with
TR/TE = 3000/105 ms, and band 4 is the PD-weighted spectral image
acquired with TR/TE = 3000/15 ms. The slice thickness of all MRIs
was 3 mm. In many breast MRI applications, fatty tissue, glan-
dular tissue, tumor and muscle are the tissues of major interest,
and knowledge of these tissues can generally be obtained directly
from the images. In our experiments, the spectral signatures of
the four major interest tissues required for the KFLM approach
were extracted directly from breast MRIs and verified by experi-
enced radiologists, the results of which are shown in Fig. 6(a), and
Fig. 6(b)–(d) shows the contours of the four major tissues delin-
eated by three different experienced radiologists. Fig. 6(e) is the
result of the intersection of Fig. 6(b)–(d), which was used for sam-
pling the average gray level values and the variance of the tissues in
each band for the computer-simulated phantoms in previous sub-
section, and is also used as the ground truth for tissue classification
evaluation.

It is worth to be noted that dynamic contrast-enhanced MR
imaging has emerged as a very promising modality for the detection
and diagnosis of breast cancer. While conventional mammography
and breast ultrasonography demonstrate morphologic changes in
breast tumor, DCE MR imaging depict malignant findings by show-
ing the pathologic vascularization of the breast cancer. However,
the enhancement patterns of gadolinium-enhanced benign and

malignant lesions have been reported to overlap in several series,
the specificity and tissue characterization of MR imaging contin-
ues to be problematic. Limitations of breast MR imaging include
low specificity (varied from 37% to 97%) and relative low sensitiv-
ity in the detection of ductal carcinoma in situ (DCIS). The main
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uscle.

dvantage of DCE MR imaging is its high sensitivity (range from
4% to 99%) for invasive breast cancer. Since dynamic contrast
nhancement is routine imaging sequence on breast MR examina-
ion, the DCE breast MRIs were conducted for comparison with the
mages generated by proposed method. Fig. 7(a)–(c) shows dynamic
ontrast-enhanced breast MRIs imaged at different lengths of time
fter traditional contrast injection, and Fig. 7(d)–(f) shows dynamic
ontrast-enhanced breast MRIs with subtraction, acquired by sub-
raction of the images before and after the injection of contrast

aterial. Fig. 8(a)–(d) shows the high-contrast images resulting
rom using the proposed KFLM approach in Fig. 5(a)–(d). It can be
een that the object tissues in the images generated by the KFLM
re of greater contrast and accuracy than those imaged by contrast
njection. Moreover, glandular tissue and tumor tissue are success-
ully demarcated in Fig. 8(c) but not in Fig. 7(a)–(f).

Fig. 9(a)–(d) shows the results of applying the traditional CM
ethod on the images shown in Fig. 5(a)–(d), in which fatty tissue,

landular tissue, tumor and muscle are shown in (a), (b), (c) and
d), respectively. As we can see, the CM method does not perform
s well as does the KFLM method due to the fact that it is a pure-
ixel and spatial analysis-based pattern classification technique. In
ddition, Fig. 10(a)–(d) shows the results of applying the proposed
FLM method on the images in Fig. 5(a)–(d) using the best cut-
ff threshold: fatty tissue, glandular tissue, tumor and muscle are
hown in (a), (b), (c) and (d), respectively. Comparing Figs. 9 and 10
ith Fig. 6(e), we find that the object area classified by the pro-
osed KFLM approach is more accurate than that identified by the
raditional CM method. These results coincide with the results of
he evaluation using computer-simulated phantoms.

. Conclusion
This paper proposed a spectral signature detection technology
ased on spectral analysis for the generation of contrast enhance-
ent images and classification of the major tissues in breast MRI,

alled the Kalman filter-based linear mixing method. It is assumed
hat breast MRIs contain multiple object signatures (i.e., fatty tis-
th the best cutoff threshold: (a) fatty tissue, (b) glandular tissue, (c) tumor, and (d)

sue, glandular tissue, tumor mass, and muscle) with their complete
knowledge and each pixel in the image is then regarded as a model
construed by linear mixing of those object signatures. In classical
spatial-based pattern classification, the data must be classified into
a number of pattern classes, and algorithms based on shape and
feature analysis are unreliable due to the changeability of the soft
tissues. The KFLM approach proposed by this paper remedies these
flaws by utilizing an abundance state equation in the linear mixture
model, so that the change in the signature abundance from pixel to
pixel can be detected. Finally, using the KFLM approach the par-
ticular object signature can be extracted from the linear mixture
model.

The experimental results indicate the promising possibilities
of this proposed approach. Compared with the commonly used
spatial-based pattern classification method, CM, and dynamic
contrast-enhanced breast MRIs, the KFLM approach has been
proven to be of better quality, able to correctly classify breast MRIs
into four high-contrast tissue-separated images. We anticipate that
these high-contrast images will assist radiologists and improve
accuracy in breast tumor screening.
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