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The choice of packaging type is important to the process of researching and developing an integrated
circuit (IC). Indeed, for an IC chip designer, the importance can be compared to an architect’s choice of
construction design. Since there are considerable variations in characteristics and in the types of products
available, collecting information about packaging technologies and products can be difficult and time-
consuming. Therefore, finding the means to provide packaging information to designers quickly and
efficiently is necessary and important, as this will not only help designers accurately decide on design
methods for an IC, but also significantly reduce processing risks. In this study, existing product informa-
tion, such as the dimensions, characteristics and design and application criteria, of a product was
analyzed. One of the biggest issues when data from multi-dimensional measurements are represented
as a feature vector is that the feature space of the raw data often has very large dimensions. This study
explores the use of rough set attribute reduction (RSAR) to reduce attributes of the IC package family
dataset, and artificial neural networks, to construct an efficient IC package type classifier model. The
experimental results show that the features produced by RSAR improve on generalization accuracy:
the training and testing set classification accuracy rates were 96.9% and 98.2%, respectively.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The rate of change in methods of communication and entertain-
ment has increased in recent years, and in order to deal with this
advancement in technology, data mining (DM) technology has
been utilized to play a major role in solving classification problems
for the semiconductor industry. Several machine learning algo-
rithms have been applied to DM, and neural networks (NNs) have
been discovered to be one of the most effective techniques for clas-
sification and regression. The advantage of NNs is that they offer a
powerful yet general framework for representing nonlinear map-
pings from several input variables to several output variables,
where the form of the mapping is governed by a number of adjust-
able parameters [7]. However, NNs involve long training times and
are therefore more suitable for applications where long training
times are acceptable. In other words, neural networks are able to
process a large amount of data, but entail the drawback of longer
training time and slower convergence speed. To overcome this dis-
advantage, we focus on feature selection and how it plays an
important role in the classification problem. Feature selection is
frequently used as a preprocessing step to machine learning, and
has been a fertile field of research and development since the
ll rights reserved.
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1970s. A feature selection process can be used to remove terms
in the training dataset that are statistically uncorrelated with the
class labels, thus improving both efficiency and accuracy
[2,11,15,19]. A discernibility-based method, known as rough set
theory (RST) [32], has been introduced to deal effectively with fea-
tures that are redundant or worse. RST can be used for classifica-
tion, to discover structural relationships within imprecise or
noisy data. Most existing rough set-based feature selection ap-
proaches, such as rough set attribute reduction (RSAR) [37], rely
on the information gathered from the lower approximation of a
set, to minimize data. However, unlike other dimensionality reduc-
tion methods, RSAR is able to preserve the original meaning of the
features after reduction. Furthermore, unlike statistical correla-
tion–reduction approaches, RSAR requires no human input or
domain knowledge other than the given datasets. The use of RSAR
has already been widely researched and applied in areas such as
machine learning, knowledge acquisition, decision analysis,
knowledge discovery, and pattern recognition [30]. But RSAR has
not yet been applied to the field of IC packaging operation manage-
ment. Consequently, the benefits of using RSAR in this area have
been to date untested.

In recent years, cellular phones, PDAs and other portable de-
vices have grown rapidly in popularity, mostly due to the compact,
thin, and light features that have become key requirements for
design. As packaging sizes continue to decrease, the level of
integration of semiconductor devices continues to increase in
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complexity and number of components. Today, IC assemblers have
also become more suited to developing the new packaging. Crow-
ley [9] has pointed out that these IC Design Houses depend on
innovative packaging developments to offer competitive packaging
solutions for demanding applications. IC Design Houses now need
to think about the final design even in the planning stages of chip
design, to determine the feasibility of the final form. This highlights
the importance of selecting the best packaging method during the
IC design stage [35].

Until recently, no research has been dedicated to IC packaging
classification in the packaging industry. In this study, we con-
structed an efficient classification system through the analysis of
existing product information, such as dimensions, characteristics,
design of application criteria. However, the volume of this data
was extremely large, and impracticable to contend with, without
using adequate computational tools such as RSAR. In addition,
RSAR and NNs can be linked together to provide better results
and faster performance than are achievable using the classical neu-
ral network approach alone. In this study, we employed a hybrid
system of RSAR and neural networks to improve classification
accuracy for large IC package type databases. Our study therefore,
makes the following contributions:

(1) We demonstrate that RSAR is an effective preprocessing
technique for reducing the number of features before using
data to train a neural network in selecting the best IC pack-
age type problem. We then compare the performance of the
neural networks, with and without rough set preprocessing,
and demonstrate that through the removal of noisy or mis-
leading features, we can increase classifier accuracy by using
feature selection.

(2) Since the design process must be focused not only on the IC
level but also on the substrate, and subsequent PCB levels,
we found that the IC package type classification model can
be used to assist an IC designer in understanding the packag-
ing design process and its key considerations, as well as
focusing on their packaging options and shortening the over-
all IC design process.

2. Literature review

2.1. Data mining applications for classification problems

Applying the data mining approach to industrial management
problems is likely to be a real challenge for industry in the years
to come. IC package product classification, an important problem
in machine learning, may be viewed as a supervised learning pro-
cess. Some commonly used DM techniques are: statistical meth-
ods, decision trees (DTs), artificial neural networks (ANNs), rough
sets (RS), Bayesian classifiers (BC), case-based reasoning (CBR)
and support vector machines (SVM). In recent years, ANNs have
been widely applied and have proven to be effective in performing
complex functions in manufacturing management fields. Chen
et al. [5] have proposed a hybrid ANN-based approach to pattern
recognition for control charts. Acciani et al. [1] have pointed out
that ANNs can be structured to perform classification in semicon-
ductor manufacturing problems, to approximate equations [17],
to classify mean shifts from multivariate v2 chart signals [3], to
cluster analysis in industrial market segmentation [21], to model
the test performance for small signal modeling RF/microwave ac-
tive devices [23], and to predict values [4,38]. There are many dif-
ferent types of NNs and neural network algorithms, with the most
popular being backpropagation neural networks (BPNN). BPNNs
use gradient descent to iteratively learn a set of weights for pre-
dicting the class label of tuples, converging to a local minimum
within training error with respect to network weights [12]. How-
ever, Li and Wong [25] point out that BPNNs have two obvious
shortcomings: firstly, they require a long time to be trained within
a large database, and secondly, they lack explanation facilities for
their knowledge. Building a BPNN model is complicated by the
presence of many training factors, which may include hidden neu-
rons, training tolerance, initial weight distribution and function
gradient [13]. The time required to train a satisfactory BPNN model
increases dramatically with the number of features, and a large
number of features also degrades the accuracy of a prediction
[40]. Thangavel et al. [39] applied the feature selection algorithm
to construct an efficient BPNN classifier model; their research
showed that the BPNN approach creates a model based on a train-
ing dataset. During the training process, the weights and biases of
the network are iteratively adjusted to minimize the network per-
formance function. The statistical performance function used for
feed-forward networks is known as the mean square error (MSE)
[38].

2.2. Feature selection methods

Feature selection and feature extraction are used to improve the
efficiency of learning algorithms by dimensionality reduction or by
finding an optimal subset of features. Feature extraction is a
dimension reduction technique in which a transformation is ap-
plied to the vector of all input data followed by the selection of
the best subset of transformed features. Feature extraction algo-
rithms include principal component analysis (PCA) based algo-
rithms, linear discriminant analysis (LDA) and nonlinear
transformation [10]. PCA algorithms are aimed at finding a sub-
space whose basis vectors correspond to the maximum-variance
directions inside the original space. Feature selection algorithms,
on the other hand, are a process used for finding the optimal subset
of features that satisfy a certain criterion. Cios et al. [8] and Kittler
[18] pointed out in their research that one of the fundamental
steps in classifier design is the reduction of pattern dimensions
by feature selection. Feature selection should diminish the cardi-
nality of the feature subset and ensure that classification accuracy
does not decrease significantly [24,26]. In other words, feature
selection is often isolated as a separate step when processing pat-
tern sets. Its aim is to remove unexpected noise data from the ori-
ginal attributes. Its function is like Kwak’s [22] mutual information
based on Parzen Window, Miyamoto’s [27] fisher criterion and
Kononenko’s [20] relief. Noisy and irrelevant features usually con-
tain little discriminant information. Dash and Liu [11] provides a
detailed survey and overview of the existing methods for feature
selection.

Thangavel et al. [39] have discussed feature selection methods
in terms of three main approaches: (1) the filter approach; (2)
the wrapper approach; and (3) the embedded approach. The filter
approach is independent of the selection features used by the
induction algorithm as it relies only on the characteristics of the
features themselves. The filter approach is known to be the fastest
of the three, but has some blind areas and performance inductions
which have not been considered. The wrapper approach, on the
other hand, assesses the subsets of variables according to their rel-
evance to a given predictor. The feature selection is then ‘‘wrapped
around” an induction algorithm so that the bias of the operators
that defined the search and that of the induction algorithm, can
interact mutually. This method conducts the search for a good sub-
set by using the embedded approach, to perform variable selection
as part of its learning procedure, usually specific to a given learning
mechanism. Zhong et al. [41] propose that the optimal feature sub-
sets be obtained by using the wrapper approach; however, this
lacks ease and convenience of use because of its spatial and tempo-
ral complexity.
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As a filter model, the RSAR approach is one of the best effective
attribute reduction methods that can preserve the meaning of the
attributes [31]. It provides a filter-based tool by which knowledge
may be extracted from a domain in a concise way; retaining the
information content while reducing the amount of knowledge in-
volved. Moreover, the main limitation of RSAR in the literature is
the restrictive requirement that all data be discrete. RSAR is also
a formal methodology that can be employed to reduce the dimen-
sionality of datasets as a preprocessing step in training a learning
system from the data. Pawlak [33] pointed out that RSAR not only
deals with the classification analysis of data tables to extract deci-
sion rules, but can also be used as a tool to mine data dependencies
and reduce the number of attributes included in a data search.

RSAR selects the most information-rich features in a dataset by
using simple set operations, not by transforming the data, nor by
removing the information needed for the classification task at
hand. This means that it is highly efficient and is suitable as a pre-
processor for use with much more complex techniques [37]. Li
et al. [26] pointed out that RSAR makes the assumption that the
data is time-independent and exists in immutable clusters in data-
sets, but this unfortunately is not the case in real time. Moreover,
the reduced attributes are regarded as a significant omission. The
advantages of RSAR extend to the runtime of the system; the RSAR
learning system becomes more compact and responsive by requir-
ing fewer observations per sample. The cost of obtaining physically
measured data decreases, since fewer measurable items need to be
maintained, while the overall robustness of the system increases
since, with fewer measurable items, the chances of instrumenta-
tion malfunction leading to spurious readings are reduced dramat-
ically [6]. Polkowski et al. [36] and Peters et al. [34] also point out
that the study of various forms of rough neurons is addressed in a
growing number of papers on neural networks that are based on
rough sets. The use of RSAR can result in smaller subset sizes and
therefore be highly efficient in terms of computational effort. Since
it is based on simple set operations, it becomes suitable as a pre-
processor for techniques that are more complex [29]. After elimi-
nating the noise input and compressing the remaining feature set
based on RSAR as the input dataset for a neural network model,
the input vector of a neural network classifier becomes much smal-
ler. Therefore, the optimal feature subset can be used to construct a
good BPNN classifier to increase accuracy and to save on computa-
tion time.

Neural networks based on RSAR are an important technique to
apply to IC package product classification problems. In this re-
search, our objective was to employ RSAR to find a reduced data
set (reduct) with a minimal number of attributes, to then reduce
the network’s input vectors to scale down the size of the whole
architecture of the network, and finally, to construct a BPNN neural
network for the classification of IC package types. There are usually
several subsets of attributes. Those that are minimal are called ‘‘re-
ducts”. A reduct is a minimal attribute subset of the original data
that has the same discernibility power as all of the attributes in
the rough set framework. A more detailed definition of ‘‘reduct”
can be found in [26].
3. Data: IC package family dataset

The evolution of IC package technology can be divided into four
stages. The first stage consisted of PTH package technologies such
as DIP, SIP, ZIP, S-DIP, SK-DIP and PGA. Surface Mount Technology
(SMT) then emerged, consisting of QFP (Quad Flat Package), TSOP,
FPG, LCC, PLCC and QFN. During the second stage of development,
decreasing package volume and increasing I/O were the key aims,
but the SMT IC packages were all of the lead-frame type, which is
limited by the number of I/O counts. The SMT packages also used
gold wire to connect the chip’s pad to the carrier, which in turn be-
longed to the peripheral package type. By the third stage, package
technology began to implement the Area Array method, forming
package technology such as BGA, Flip Chip and CSP (Chip Scale
Package). The use of the Area Array method and the introduction
of an organic substrate carrier considerably increased the I/O pin
number, meeting the demands of high velocity, high power and
super-thin type requirements. The fourth generation packaging
types are bare die form factors like Flip Chip, WLCSP, DCA, and
the Area Arrayed Flip Chip package type, which are becoming
mainstream in new applications of peripheral technologies.

In this study, the IC Package Product Type Database (ICPPTD)
was collected from an IC packaging company located in central Tai-
wan [14]. The IC package product types (ICPPT) were divided into
several package body families according to their exterior and func-
tion, such as Land Grid Array (LGA) and Flip Chip Ball Grid Array
(FCBGA). These families could also be classified according to reli-
ability conditions and different manufacturing processes as well
as by their exterior and function. This study first analyzes the infor-
mation used by ICPPT to classify all kinds of package forms and
their characteristic attributes, including the development of prod-
ucts, electrical properties, design of products, development of the
manufacturing process, reliability of products and other relevant
information used in the IC package industry. The study then sum-
marizes the five IC package product families, which are the TFBGA,
LGA, PBGA, FCBGA and QFP Package Families. Each IC family, or
package body, has its own applicable IC design scope. In total, there
is one category member and thirteen characteristic attributes:
Package Size Range, Package Height (mm), Ball Pitch (mm), Lead
Count (max.), Wafer Size (in.), Stacked Die Quantity, Substrate
Layer, Frequency (GHz) max., MCM, Speed (Gbps) max., Power
(W) max., Reliability (Level) and Reliability (IR: �C). The LGA pack-
age family for example, was constructed using at most two chip
stacks of the SLGA package body; at the same time, the wafer sizes
that could be used were 8 in. and 12 in.; the total height of the
package bodies were 1.2 mm and 1.4 mm, respectively. The size
of the package body ranged from 5 � 5 mm2 to 19 � 19 mm2, the
pitches of the I/O side were 0.5 mm, 0.65 mm, 0.8 mm and
1.0 mm; the highest frequency in electrical property (frequency
maximum) was 5 GHz, the fastest transmission speed (transfer
speed) was 10 Gbps, the maximum power was 4 W; the reliability
condition was Level 3, re-flow temperature was 260 �C, and sub-
strates were either 2 or 4 layers. This study used a total of 2496
data objects, where the number of objects used of the TFBGA Pack-
age Family, LGA Package Family, PBGA Package Family, FCBGA
Package Family and QFP Package Family were: 632, 424, 352, 816
and 272, respectively. The characteristics of every classification
and the data objects are shown in Table 1.
4. Experimental design, setup and results

4.1. Experimental design

In this study, the entire experiment consisted of three steps (see
Fig. 1), data preprocessing, used Excel; the second step was to se-
lect of the best attribute (feature selection) based on RSAR and
the construction of an IC Package Product Type Classifier using
BPNN, also known as ICPPTC.
4.2. Experimental setup

The ICPPTD for each connection has 13 attributes plus one class
label, and the dataset size of the 2496 objects processed is divided
into five product types, comparing the proposed method
RSAR_BPNN with the PCA_BPNN method, with FC_BPNN and with



Table 1
IC package families and the complete specification scope of their attributes.

Variable of package family IC package family

TFBGA LGA PBGA FCBGA QFP
‘‘A” ‘‘B” ‘‘C” ‘‘D” ‘‘E”

Attributes
Package size (cm2) 5 � 5–19 � 19 5 � 5–19 � 19 21 � 21–40 � 40 17 � 17–50 � 50 32 � 32
Package height (mm) 0.8–1.6 0.5–1.4 0.5–3.75 0.5–3.75 1.0–3.75
Lead pitch (mm) 0.5–1.0 0.5–1.0 1.0–1.27 1.0–1.27 0.5–0.65
Lead count (max.) 500 500 1156 1156–1521 80–256
Wafer size (in.) 8/12 8/12 8/12 8/12 8/12
Stacked die quantity 1/2/3/4/5/6 1/2/4 1/2/3 1/2/3/4/5/6 1/2/3
MCM Yes/No Yes/No Yes/No Yes/No Yes/No
Substrate layer 2/4 2/4 2/4 2/4/6/8 NA
Frequency (GHz) (max.) 2.4–10 2.4–10 2.4–10 2.4–10 2.4–10
Speed (Gbps) (max.) 0.4–10 0.4–10 0.4–10 0.4–10 0.4–10
Power (W) (max.) 2–10 2–10 4–6 4–8 2–5
Reliability level 2–3 2–3 2–3 2–3 2–3
IR temp. (�C) 245/260 245/260 245/260 245/260 245/260

No. of attributes 13 13 13 13 12
No. of objects 632 424 352 816 272
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Fig. 1. Experiment outline for IC Package Product Type Classifier (ICPPTC).
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RSAR. The classification of ICPPTD relative to training and testing of
all the experimental methods was found to be 70–30% and 80–20%,
respectively. However, before ICPPTD can be reduced, the nominal
attributes’ data must be preprocessed. This preprocessing is done
during the RSAR feature selection stage using ROSETTA, a toolkit
that implements rough set methodology. Experiments were de-
signed and then run to reduce the ICPPTD dataset. We then used
these reduced datasets (PCA, FC and RSAR) to build a BPNN neural
network for ICPPTD classification. The BPNN neural network is a
static, feed-forward, neuromorphic system, by which weight val-
ues can be determined through supervised learning.

4.2.1. Data preprocessing
Data preprocessing involves encoding nominal attributes and

setting the dataset into a format that is suitable for the classifica-
tion task. Before training, it is often useful to encode the condition
variables so that they always fall within a specified code. The dis-
crete-valued attributes are then preprocessed with transformation
encoding, with one discrete-valued coding scheme applied to each
of the condition variables. For example, in Table 1, the classes
‘‘5 � 5,” ‘‘17 � 17,” ‘‘19 � 19,” ‘‘21 � 21,” ‘‘32 � 32,” ‘‘40 � 40” and
‘‘50 � 50” were encoded as ‘‘1”, ‘‘2”, ‘‘3”, ‘‘4”, ‘‘5”, ‘‘6” and ‘‘7”,
respectively.

4.2.2. RSAR-based feature selection for ICPPTD
Lower and upper approximations, and reducts, play important

roles in rule induction, where a rough set is a formal approxima-
tion of a crisp set in terms of a pair of sets that give the lower
and upper approximations of the original set. Lower approximation
is a description of the domain objects that are known with cer-
tainty to belong to the subset of interest, whereas the upper
approximation is a description of the objects that might belong
to the subset.
The study of rough set classification involves computing the
reduct sets, but in order to create the reducts, which are subset
vectors of attributes, classification rules are generated into
minimal subsets. The rough set theory-based application
ROSETTA [28] and Johnson’s reduction algorithm [16], were both
used for this purpose. Suppose that the IC package product type
dataset is I ¼ ðU;AÞ denotes an approximation space, where
U ¼ fx1; x2; . . . ; xng denotes the set of objects representing the
universe and A ¼ fa1; a2; . . . ; amg denotes the set of attributes
(conditionals) such that a : U ! Va, a 2 A, where the value set
(Va) is the set of values for a. When an RST decision table is de-
noted as T ¼ ðU;A;C;DÞ, the attributes in A are further classified
into two disjoint subsets of C and D, called the condition and
decision attributes, respectively: A ¼ C [ D;C \ D ¼ ;.

For an arbitrary set X # U and attribute set R, a set of samples
that satisfy R is denoted by ½x�R. Two approximations are then
defined: the R-lower approximation of X (denoted by RX) and the
R-upper approximation of X (denoted by �RX). The boundary set is
defined as follows:

RX ¼ fxj½x�R # Xg ð1Þ

�RX ¼ fxj½x�R \ X – ;g ð2Þ

R-boundary region of X ¼ �RX � RX ð3Þ

RST uses classification accuracy and coverage to measure
the degree of sufficiency and necessity, respectively. According to
the notations above, classification accuracy and coverage is defined
as:

aRðDÞ ¼
j½x�R \ Dj
j½x�Rj

ð4Þ
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bRðDÞ ¼
j½x�R \ Dj
jDj ð5Þ

where aRðDÞ denotes a classification accuracy of R with respect to
classification of D and bRðDÞ denotes a coverage of R to D .

One of the most important aspects of RST is its indiscernibility
relation. The R-indiscernibility relation is denoted by INDðRÞ, which
is an equivalence relation, and is defined as:

INDIðRÞ ¼ fðx; x0Þ 2 U2j8a 2 R; aðxÞ ¼ aðx0Þg ð6Þ

where aðxÞ denotes the value of attribute a of object x. If
ðx; x0Þ 2 INDIðRÞ, then objects x and x0 are indistinguishable from
each other by attributes of R.

The concept of the indiscernibility relation proves that a reduc-
tion in the space of attributes is possible, so the idea is to keep only
those attributes that preserve the indiscernibility relation. Since
attribute reduction techniques eliminate superfluous attributes
and create a minimal sufficient subset of attributes of considered
knowledge, attribute dependency is considered an important fac-
tor in attribute reduction. A reduct is a minimal set of attributes
R # A such that,

INDIðRÞ ¼ INDIðAÞ ð7Þ

The problem of finding the minimal reduct of attributes which
can describe all of the concepts of the given dataset is an NP-hard
problem. However, algorithms to reduce computational intensity
have been proposed. Using a discernibility matrix to store the dif-
ferences between attribute values for each pair of data samples, the
need to search through an entire training set to detect redundant
attributes can be eliminated. Experiments were then executed
using the rough set theory-based application ROSETTA [28], using
Johnson’s reduction algorithm [16], which invokes a variation of
a simple greedy algorithm to compute a single reduct. This algo-
rithm has a natural bias toward finding a single prime deduction
of minimal length, and the reduct R was found by executing the fol-
lowing algorithm:

1. Let R ¼ ;.
2. Maximizes

P
wðAÞ, where wðAÞ denotes weighted A. The sum is

taken over all sets A, where A contains k. Currently, ties are
resolved arbitrarily.

3. R R [ k.
4. Remove all sets A that contain k .
5. If A ¼ ;; output R. Otherwise, go back to step 2.

An example of a decision system is shown in Table 2, where the
data set I consists of four objects, with attributes each representing
a brand of car. The set of attributes is given by
A ¼ ffa1; a2; a3g; fa1; a4g; fa2; a4g; fa1; a3gg. To find the reduct
for our example, the Johnson’s reduction algorithm is employed.
The reduction process is shown below.

1. Let R ¼ ;.
2. Find the attribute k ¼ a1.
3. Add the attribute k to R, R ¼ fa1g.
4. Remove all sets containing k ¼ a1 from A, A ¼ fa2; a4g.
5. A – ;, go to step 2.
6. Find the attribute k ¼ a2.
Table 2
An example dataset.

U a1 a2 a3 a4

X1 1 1 1 0
X2 1 0 0 1
X3 0 1 0 1
X4 1 0 1 0
7. Add the attribute k to R, R ¼ fa1; a2g
8. Remove all sets containing k ¼ a2 from A.
9. A ¼ ;, therefore the minimal reduct is R ¼ fa1; a2g

Finding reducts is a method of finding dependencies in the data.
The algorithm yielded one reduct that consisted of significant
attributes.

ROSETTA is a toolkit application that allows for the analysis of
tabular data using rough set methodology. It is a Windows applica-
tion with a GUI front-end and computational kernel. The ICPPTD
dataset was loaded in ROSETTA from an external data source via
open database connectivity (ODBC). Using ROSETTA, the entire
experimental feature selection process, from data completion to
data classification, can be carried out. Once the data is loaded into
ROSETTA, it is divided into a training set and a testing set. This step
randomly partitions the messages in the ICPPTD into two distinct
datasets. The format of the split training and testing sets is identi-
cal. The 70–30% and 80–20% partition datasets are divided into
standard training and test subsets. On each partition of both data-
sets, feature selection and classifier design are performed on the
training subset, and classification accuracy is evaluated on the test
subset. A random set of 1748 (70–30% partition) and 1996 (80–20%
partition) objects from the ICPPTD were chosen for the initial train-
ing set, and the remaining 748 and 500 objects were used for the
testing set. These objects were used during training and for valida-
tion during testing. In the case of the RSAR experiment, we em-
ployed the above minimal reduct attribute sub-dataset as the
input vector to the BPNN network.

4.2.3. IC Package Product Type Classifier (ICPPTC)
In this step, ICPPTC training can be made more efficient if cer-

tain preprocessing steps are performed on the network targets.
The reduced dataset was preprocessed with transformation encod-
ing; one binary coding scheme was applied to each target (nominal
variables). For example, in Table 1, the product type classes of ‘‘A,”
‘‘B,” ‘‘C,” ‘‘D” and ‘‘E” were encoded as (1, �1, �1), (1, 1, �1),
(�1, 1, �1), (1, �1, 1) and (�1, �1, 1), respectively. The BPNN neu-
ral network was applied for classification use, reduced by RSAR and
the training and testing sets. In the training stage, the training set
was randomly selected from the overall dataset (R) and the
remaining samples were used for testing. Next, we created the
feed-forward neural network. The network was formed with two
layers of neurons: one hidden layer and one output layer of feed-
forward BPNN. Initially, we embedded nine neurons in the hidden
layer with ‘‘tansigmoid” transfer functions and three neurons in
the output layer with ‘‘satlins” transfer functions. The training
stopped when the performance function dropped below the set
goals which were associated with the earlier stopping techniques
(trainlm algorithm) to improve generalization. In this technique
the available data was divided by the training set into two subsets.
For example, in the case of an 80–20% training–testing partition,
the first subset is the training set (70%), used for computing the
gradient and updating the network weights and biases, and the
second subset is the validation set (10%). The error of the validation
set was monitored during the training process; normally it will de-
crease during the initial phase of training, along with training set
error. At this point, some modification of the default training
parameters can be done.

� net.trainParam.lr = 0.3
� net.trainParam.mu = 0.01
� net.trainParam.mu_dec = 0.1
� net.trainParam.mu_inc = 15
� net.trainParam.mc = 0.9
� net.trainParam.epochs = 2000
� net.trainParam.goal = 0.00001



Table 3
Dimensionality-reduced results of ICPPD based feature selection techniques.

Dimensionality PCA explain variance (%) Reduced subset

FC method RSAR method

3 89 {v10, v9, v11} {v1, v2, v8}
4 92 {v10, v9, v11, v2} {v1, v2, v8, v9}
5 93 {v10, v9, v11, v2, v8} {v1, v2, v3, v8, v9}
6 94 {v10, v9, v11, v2, v8, v1} {v1, v2, v3, v7, v8, v9}
7 94.5 {v10, v9, v11, v2, v8, v1, v7} {v1, v2, v3, v6, v7, v8, v9}
8 95 {v10, v9, v11, v2, v8, v1, v7, v4} {v1, v2, v3, v5, v6, v7, v8, v9}
9 97 {v10, v9, v11, v2, v8, v1, v7, v4, v3} {v1, v2, v3, v5, v6, v7, v8, v9, v10}

10 98 {v10, v9, v11, v2, v8, v1, v7, v4, v3, v6} –
11 99 {v10, v9, v11, v2, v8, v1, v7, v4, v3, v6, v5} –
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The ICPPTC simulation was performed using MATLAB� soft-
ware. The system configuration of the computer used for training
both models was as follows: operating system Windows XP; pro-
cessor, Intel Core 2 Duo T7500; total physical memory was
1.5 GB. Meanwhile, classification knowledge was applied to the
training and the testing set to see if it could classify them both cor-
rectly. We also wanted to observe its accuracy and coverage. How-
ever, these package family subsets contained objects with a
different number of inputs and targets; therefore the various bin-
ning numbers of the subset were merged into the training set
and the testing set. Finally, a well-trained ICPPTC provided a con-
struct with two relatively consistent training and testing Root
Mean Squared Errors (RMSEs).
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Fig. 2. Classification accuracy with the training rates of (a) 80–2

Table 4
Average classification accuracy and standard deviation of the feature selection techniques

Dimensionality 80–20% partition

PCA_BPNN FC_BPNN RSAR_BPNN RS

3 0.8622 ± 0.1055 0.8280 ± 0.0337 0.8052 ± 0.0318 0.
4 0.8768 ± 0.0641 0.8548 ± 0.1233 0.9256 ± 0.0079 0.
5 0.8812 ± 0.0638 0.9060 ± 0.0645 0.9428 ± 0.0399 0.
6 0.8924 ± 0.0633 0.8828 ± 0.1606 0.9496 ± 0.0463 0.
7 0.9352 ± 0.0437 0.8876 ± 0.1445 0.9500 ± 0.0277 0.
8 0.9548 ± 0.0128 0.9052 ± 0.0664 0.9716 ± 0.0053 0.
9 0.9544 ± 0.0143 0.8940 ± 0.1189 0.9672 ± 0.0111 0.

10 0.9581 ± 0.0213 0.9644 ± 0.0097 – –
11 0.9352 ± 0.0391 0.9476 ± 0.0393 – –

The classification accuracies of bold values are above 90%.
4.3. Results of experiments

Four types of base classifiers were used in this study:
PCA_BPNN, FC_BPNN, RSAR_BNN and RSAR. The classification per-
formance was evaluated by using the reduced dataset with 70–30%
training–testing partition and 80–20% training–testing partition,
while the average classification accuracy (over 10 independent
runs of the experiments) of the test data was preferred. Firstly,
the results of RSAR were compared systematically to those ob-
tained via the use of PCA and FC, as summarized in Table 3. Next,
the classification performance of classifier BPNN using these re-
duced datasets was evaluated, based on the early stopping strat-
egy. Using this technique, the available data was divided into
3 4 5 6 7 8 9 10 11
0.6

0.75

0.8

0.85

0.9

0.95
0.97

1

number of features

cl
as

si
fi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

PCA_BPNN
FC_BPNN
RSAR_BPNN
RSAR

0% training-test partition, (b) 70–30% training-test partition.

for two proportions of training samples.

70–30% partition

AR PCA_BPNN FC_BPNN RSAR_BPNN RSAR

8016 0.8792 ± 0.0389 0.8226 ± 0.0177 0.7786 ± 0.0148 0.7864
9516 0.9152 ± 0.0500 0.8912 ± 0.0610 0.9194 ± 0.0537 0.9399
9459 0.9158 ± 0.0084 0.9206 ± 0.0052 0.9264 ± 0.0541 0.9439
9198 0.9318 ± 0.0057 0.9272 ± 0.0501 0.9524 ± 0.0042 0.9332
8898 0.9492 ± 0.0158 0.9324 ± 0.0427 0.9588 ± 0.0081 0.8705
6473 0.9624 ± 0.0101 0.9568 ± 0.0075 0.9688 ± 0.0085 0.6235
6513 0.9642 ± 0.0049 0.9528 ± 0.0206 0.9605 ± 0.0091 0.6275

0.9636 ± 0.0067 0.9632 ± 0.0061 – –
0.9584 ± 0.0055 0.9612 ± 0.0065 – –



Table 5
Experimental results of ICPPTC for reduced set based on RSAR.

Class A B C D E Accuracy

Trial Train set Test set Train set Test set Train set Test set Train set Test set Train set Test set Train_80% (1996) Test_20% (500)

1 508 124 333 91 284 68 658 158 213 59 0.96707 0.97
2 513 119 339 85 276 76 658 158 210 62 0.96796 0.972
3 504 128 344 80 292 60 649 167 207 65 0.96885 0.974
4 512 120 358 66 281 71 631 185 214 58 0.96484 0.972
5 499 133 345 79 275 77 659 157 218 54 0.96929 0.966
6 510 122 336 88 279 73 658 158 213 59 0.96885 0.97
7 487 145 339 85 273 79 680 136 217 55 0.97018 0.974
8 513 119 322 102 279 73 660 156 222 50 0.97063 0.974
9 500 132 346 78 275 77 661 155 214 58 0.96996 0.982

10 508 124 335 89 273 79 652 164 228 44 0.96929 0.962

Max. 513 145 358 102 292 79 680 185 228 65 0.97063 0.982
Min. 487 119 322 66 273 60 631 136 207 44 0.96484 0.966
Avg. 505.4 126.6 339.7 84.3 278.7 73.3 656.6 159.4 215.6 56.4 0.96869 0.9716

Avg. of Accuracy 0.93750 0.94307 0.90892 0.91358 1.00 1.00 1.00 1.00 1.00 1.00 0.96869 0.9716

Avg. of Coverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The maximum, minimum and average classification accuracies for training and testing results have been shown in bold.

Table 6
Experimental results of ICPPTC for complete dataset (without feature selection).

Class A B C D E Accuracy

Trial Train set Test set Train set Test set Train set Test set Train set Test set Train Set Test set Train_80% (1996) Test_20% (500)

1 498 134 342 82 285 67 649 167 222 50 0.94023 0.92992
2 504 128 335 89 282 70 661 155 214 58 0.95263 0.95984
3 496 136 327 97 286 66 660 156 227 45 0.9321 0.90112
4 497 135 354 70 285 67 647 169 213 59 0.94585 0.93490
5 514 118 338 86 280 72 650 166 214 58 0.92131 0.90260
6 503 129 349 75 278 74 654 162 212 60 0.90581 0.91052
7 503 129 336 88 275 77 653 163 229 43 0.90148 0.89839
8 501 131 340 84 278 74 665 151 212 60 0.95176 0.91218
9 523 109 349 75 274 78 637 179 213 59 0.93283 0.92581

10 501 131 329 95 276 76 669 147 221 51 0.91897 0.90175

Max. 523 136 354 97 286 78 669 179 229 60 0.95263 0.95984
Min. 496 109 327 70 274 66 637 147 212 43 0.90148 0.89839
Avg. 504 128 339.9 84.1 279.9 72.1 654.5 161.5 217.7 54.3 0.9303 0.91770

Avg. of accuracy 0.94174 0.92152 0.91150 0.90454 1.00 1.00 1.00 1.00 1.00 1 0.9303 0.91770
Avg. of coverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bold values are significant.

Table 7
Nineth trial classification results of reduced set based on RSAR.

Package family A B C D E No. of. Obj Accuracy Coverage

Summary of experimental results (training data)
A 473 27 0 0 0 500 0.946000 1
B 31 313 0 2 0 346 0.904624 1
C 0 0 275 0 0 275 1 1
D 0 0 0 661 0 661 1 1
E 0 0 0 0 214 214 1 1
True positive rate 0.946 0.9017 1.00 1.00 1.00 0.9696994 1

Total number of tested objects: 1996
Total accuracy: 0.969439
Total coverage: 1.00

Summary of experimental results (testing data)
A 129 3 0 0 0 132 0.977273 1
B 5 72 0 1 0 78 0.923077 1
C 0 0 77 0 0 77 1 1
D 0 0 0 155 0 155 1 1
E 0 0 0 0 58 58 1 1
True positive rate 0.9773 0.923 1.00 1.00 1.00 0.982 1

Total number of tested objects: 500
Total accuracy: 0.982
Total coverage: 1.00
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three subsets. The first subset was the training set, used for com-
puting the gradient and updating the network weights and biases.
The second subset was the validation set—its error was monitored
during the training process. When the validation error increases
after a specified number of iterations, the training is stopped,
and the weights and biases at the minimum of the validation error
are returned. Table 4 shows the average classification accuracy and
standard deviation of the test data and dimensionality of features
for the classifiers RSAR_BPNN, PCA_BPNN, FC_BPNN and RSAR,
respectively. It is noted that the performance of the RSAR-based
(RSAR and RSAR_BPNN) method dramatically increases with the
removal of features. When comparing the average accuracies of
these classifiers for dimensionality 8 and 9, the RSAR_BPNN classi-
fiers are found to provide the highest accuracy. Comparisons of the
RSAR-based methods and the corresponding hybrid methods are
Fig. 3. Comparison of the classification results of th

Table 8
SPSS printout of mean and descriptive statistics for classification accuracy of samples.

Statistical descriptive Complete ICPTD dataset

Statistic Std. e

Training accuracy
Mean 0.93029548 0.005
95% Confidence interval for mean

Lower bound 0.91734725
Upper bound 0.94324371

5% Trimmed mean 0.93065595
Median 0.93246096
Variance 0.000
Std. deviation 0.01810038
Minimum 0.901475
Maximum 0.952628
Range 0.051152
Interquartile range 0.031645
Skewness �0.351 0.687
Kurtosis �1.083 1.334

Testing accuracy
Mean 0.91770412 0.006
95% Confidence interval for mean

Lower bound 0.90359958
Upper bound 0.93180867

5% Trimmed mean 0.91643609
Median 0.91135020
Variance 0.000
Std. deviation 0.019716795
Minimum 0.898394
Maximum 0.959839
Range 0.061446
Interquartile range 0.029569
Skewness 1.131 0.687
Kurtosis 0.861 1.334
shown in Fig. 2. This study has shown that the performance of
RSAR_BPNN method is improved, and that in general, RSAR_BPNN
benefits more than BPNN when combines with the PCA and FC
methods.

The results from the previous experiment were then used to ob-
tain a measure of the performance of the generated classifiers. Ten
classification trial results for the complete ICPPTD dataset (without
feature selection) and reduct sets based on RSAR were used: their
corresponding accuracies are shown in Tables 5 and 6. In Table 5,
the total coverage is 100%, and the average classification accuracies
of the training set and the testing set are 96.869% and 97.16%,
respectively. The minimum classification accuracy of the testing
set is the 5th trial (96.66%) and the maximum classification
accuracy of the testing set is the 9th trial (98.2%). Table 6, however,
shows that although the total coverage is 100%, the average
e 10 trials of RSAR and the complete dataset.

Reduct set based on RSAR

rror Statistic Std. error

723843 0.96866934 0.000535691

0.96745752
0.96988115
0.96877318
0.96906987
0.000
0.001694004
0.964842
0.970628
0.005785
0.002114
�1.367 0.687

2.100 1.334

234998 0.97068273 0.003493437

0.96278003
0.97858543
0.97054886
0.97188755
0.000
0.011047219
0.955823
0.987952
0.032129
0.019076
�0.010 0.687
�0.930 1.334
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classification accuracies of the training set and the testing set are
as low as 93.03% and 91.77%, respectively, and that the minimum
and maximum classification accuracies of the testing set in the
7th trial are 90.148% and 89.839%, respectively. These results are
shown in bold.

Detailed information on the 9th trial is also given in Table 7.
Through ICPPTC classification, we obtain a total of 132 objects of
right class ‘‘A” data, 78 objects of right class ‘‘B” data, 77 objects
of right class ‘‘C” data, 155 objects of right class ‘‘D” data and 58 ob-
jects of right class ‘‘E” data. Referring to A in Table 7’s test experi-
ment results as an example, the sensitivity, or the ratio between
the predicted and real values of predicting classification ‘‘A” is
129/132 = 0.977273, while those for ‘‘B,” ‘‘C,” ‘‘D” and ‘‘E” are
0.923077, 1.00, 1.00 and 1.00, respectively.

The experimental results of the complete ICPPTD datasets and
reduced sets are shown in Fig. 3. Table 8 shows that the mean
and standard deviations of the reduced sets are superior to those
of the complete ICPPTD sets in the testing set and that the features
produced by RSAR improve the generalization accuracy. Training
and testing set classification accuracies are 96.9% and 98.2%,
respectively, and from the experimental results, we can conclude
that the reduct gained by RSAR exhibits higher classification accu-
racy than those without feature selection.
5. Conclusion

In this paper we have tested the use of the RSAR_BPNN method
to assess the classification accuracy of IC package type selection
from a real database. The IC’s design specifications are also classi-
fied by the RSAR_BPNN model, using rules derived inductively
from the data to overcome the shortcomings of methods tradition-
ally applied in the semiconductor industry. IC package product
classification technology, based on rough sets and neural networks
is also presented, and we have demonstrated that rough sets the-
ory is able to be applied successfully to feature reduction for larger
datasets. We also compared the performance of neural networks,
with and without rough set preprocessing, and discovered that
when the number of features is low, the ICPPTC classifier offers
better performance. For example, RSAR can remove redundant
ineffective attributes for the ICPPTC classifier, and as a result, those
feature values that have very little effect on classification accuracy,
are reduced. The accuracy of TFBGA and LGA classifications, on the
other hand, are found to be the worst, at 97.7273% and 92.3077%,
respectively. In IC package factories, TFBGA and LGA are the most
difficult to distinguish (the most similar results), so future research
could further explore these two methods to improve the accuracy
rate of the whole classification. In the end, we found that the over-
all performance of ICPPTC based on RSAR was better than the per-
formance when rough set preprocessing was not used. We have
also demonstrated an effective RSAR_BPNN technique for dealing
with a large amount of information and multiclass IC package
product classification activity. It should also be noted here that
the results here presented, this research demonstrates an advance
on previous research because it was used to predict a class of per-
formance that the IC design type should belong to, rather than an
actual product classification. Beyond the attractive accuracy re-
sults, these models could also be adapted for other IC product de-
signs, where the particular parameters within the testing datasets
of the particular package types could be further altered for exper-
imental purposes.
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