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Photolithography Control in Wafer Fabrication
Based on Process Capability Indices With Multiple

Characteristics
W. L. Pearn, H. Y. Kang, A. H.-I. Lee*, and M. Y. Liao

Abstract—Photolithography, typically taking about one- third
of the total wafer manufacturing costs, is one of the most complex
operations and is the most critical process in semiconductor man-
ufacturing. Three most important parameters that determine the
final performance of devices are critical dimension (CD), alignment
accuracy and photoresist (PR) thickness. Process yield, a common
criterion used in the manufacturing industry for measuring process
performance, can be applied to examine the photolithography
process. In this paper, we solve the photolithography production
control problem based on the yield index . The critical values
required for the hypothesis testing, using the standard simulation
technique, for various commonly used performance requirements,
are obtained. Extensive simulation results are provided and ana-
lyzed. The investigation is useful to the practitioners for making
reliable decisions in either testing process performance or exam-
ining quality of an engineering lot in photolithography.

Index Terms—Alignment accuracy, critical dimension, critical
value, photolithography, photoresist thickness, process yield.

I. INTRODUCTION

T HE MANUFACTURING of integrated circuits (ICs) with
smaller devices and feature sizes on wafers of larger di-

ameters has been a trend in the semiconductor industry in order
to achieve a smaller die size, lower electric power consump-
tion, more rapid operating speed and reduced manufacturing
cost. The function of photolithography, which has the highest
impact on the development of semiconductor manufacturing, is
to project circuit patterns onto a silicon wafer with high fidelity
and repeatability. As wafer fabrication technology upgrades to a
higher precision level, the width of IC diagram copied from pho-
tolithography activity becomes smaller, and the final chip prod-
ucts possess a faster processing capability and a lower electricity
requirement. Photolithography is considered as the bottleneck
in semiconductor manufacturing because of the following rea-
sons: photolithography has the most important equipment; a
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wafer may go through the process up to fifty times for producing
a complex IC; and the process results are crucial to the final
functions of a product. As a result, the process control of pho-
tolithography workstation is essential.

In photolithography, the pattern printed on a wafer is not an
exact replica of the mask pattern in practice, and the variations re-
sult largely from three reasons [1]. First, the fundamental diffrac-
tion of the projection optics is limited. Second, the mask pattern
itself is not exactly the same as the design due to the limitations
of the mask fabrication process. Third, there are random and sys-
tematic variations of the multitude of photolithographic process
parameters, such as focus and exposure. The process materials,
the equipment and the processing environment also face time-
varying fluctuations that cannot be easily measured, and such
variations cause disturbances on the photolithography process
[2]. Therefore, it is important to implement manufacturing con-
trol, which strives to maintain output within prescribed lower and
upper specification limits [3]. Two of the most troublesome con-
trol tasks are the measurement of the alignment between layers
and the measurement of the dimensions of the smallest features
[4]. The alignment determines the success of transferring the IC
design pattern on the mask or reticle to the PR on the wafer sur-
face [5]. The latter are called “critical-dimensions” (CDs) and a
CD is defined as the linewidth of the PR line printed on a wafer
and reflects whether the exposure and development are proper
to produce geometries of the correct size [2]. In additional to the
above two parameters, PR thickness is also very important since
it determines the resolution and the resistance of the PR film, and
a specific thickness, which is consistent from wafer to wafer and
uniform across each wafer, is required. As a result, alignment
accuracy (AA), CD and PR thickness (PT) are the three param-
eters that have the greatest impact on device performance and
that should be controlled properly.

Processyield, thepercentageofprocessedproductunitpassing
the inspection, is a common and basic criterion used in the man-
ufacturing industry as a numerical measure on the performance.
For a product to pass the inspection, its product characteristic
must fall within the manufacturing tolerance, and all passed
product units are equally accepted by the producer. On the other
hand, for a product that is rejected due to nonconformities, it may
bescrapped,oradditionalcost is required to repair theproduct.To
examine the quality of wafers, the three key characteristics, AA,
CD, and PR, should be examined. An index, , which pro-
vides an exact measure of the overall process yield is performed
toassessprocesscapability for thephotolithographyprocess.The
rest of the paper is organized as follows. Section II presents the
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approach for photolithography production yield measurement.
Section III calculates the photolithography production yield.
Some conclusion remarks are made in the last section.

II. PCI APPROACH FOR PHOTOLITHOGRAPHY PRODUCTION

YIELD CONTROL

In this study, we investigate the photolithography process of
a semiconductor fab in the Science-Based Industrial Park in
Taiwan. The objective is to examine the process performance
and present critical values for determining whether the process
meets the capability requirement. In a wafer fab, each lot con-
tains 25 pieces of wafers, and each piece of wafer has 400 chips.
As a result, one lot has 10 000 chips. The number of chips, se-
lected for CD, AA, and PT measurements, in a lot needs to be es-
timated. The manufacturing specifications for the three param-
eters are as follows:

and

and

and

where is the upper specification limit, and is the
lower specification limit.

Based on historical data, the process characteristics we inves-
tigated are justified to be in statistically control and runs in stable
condition, which follows rather close to a normal distribution.
In addition, there is no correlation among the three parameters.
AA is totally independent with CD and PT since the AA mea-
surement is to make sure that the reticles for different layers
in photolithography process are aligned correctly and that the
physical construction of each chip is consistent with the original
design in consequence. As for the relation between CD and PT,
it is determined by the characteristics of the chosen PR. For the
chosen PR, swing curve, which shows the manufacturing range
for the CD and PT, will be studied first for the manufacturing
specifications. Within the range, CD and PT can be chosen inde-
pendently based on the need of design and process without any
interference. Therefore, within the given manufacturing speci-
fications, there is no correlation for these two parameters.

Process capability indices (PCIs) are very important for mea-
suring how well the process meets specifications. Based on the
expression of process yield, Boyles [6] considered a yield mea-
surement index ,

(1)
where is the process mean, is the process standard deviation,
and is the cumulative distribution function of the standard
normal distribution N(0,1).

The index establishes the relationship between the man-
ufacturing specifications and the actual process performance,
and provides an exact measure of the process yield. The natural
estimator can be applied to estimate the yield measure-
ment index from a stable process [7]:

(2)

TABLE I
THE CORRESPONDING PROCESS YIELD AND NCPPM FOR VARIOUS

VALUES �

TABLE II
� VALUE FOR THREE CHARACTERISTICS

where is the sample mean and the conventional
estimator of , and is the
sample standard deviation and the conventional estimator of .

However, the exact distribution of is analytically in-
tractable, and the process performance cannot be tested. The
estimator can be expressed approximately by Taylor expansion
as [8]:

(3)

(4)

Note that
for ,

for , and is the probability density function
of the standard normal distribution N(0,1). In addition, the re-
maining terms represent the error of the expansion having
a leading term of order in probability and can be estimated
through simulation. By taking the first order of the Taylor expan-
sion, can be approximated by a mathematical approach as

[7]. Moreover, Pearn and Chuang
[7] obtained the critical values required for the statistical testing
of process capability by standard simulation technique.

Capability measure for processes with single characteristic
has been investigated extensively (see [9]–[11] for more details).
However, capability measure for processes with multiple char-
acteristics is comparatively neglected. In evaluating the overall
process capability for processes with multiple characteristics,
Chen et al. [12] proposed a new index, , which is a gen-
eralization of . According to the definition of in (1),
for process with , we can obtain the process yield(%)
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TABLE III
DESIGNS FOR MONTE CARLO EXPERIMENTS WITH � � � AND VARIOUS �

. Obviously, there is a one-to-one relationship
between and the process yield. Considering a -charac-
teristic process, , , is the yield (percentage of
conformities) of the characteristic, and the corresponding

value is , . The relationship between
and can be represented as . To

evaluate the overall process yield , Chen et al. [12] proposed
the following formula, , for

. An index for measuring the overall process ca-
pability is ,
which can be derived by . The index

provides an exact measure on the overall process yield.
Table I displays various commonly used capability requirement
and the corresponding overall process yield associated with non-
conformities parts per million (NCPPM).

Statistical testing is used to determine if a process meets the
capability requirement. The null hypothesis is
(process is not capable) and the alternative hypothesis is

(process is capable), where is the required process
capability. If the point estimate of process capability exceeds
the critical value , the null hypothesis is rejected. Suppose
that the risk of rejecting a null hypothesis is (the chance of
wrongly concluding that an incapable process is capable), the
critical value can be obtained by

(5)

Since the exact distribution of is mathematically in-
tractable, standard simulation method is performed to find the
critical values for statistical testing.

1) Critical Value Determination: Monte Carlo experiments
are performed to find the distribution per-
centiles of , 1.33, 1.50, and 2.00 for processes
with characteristics using statistical software, Maple.
Note that , , must be larger than in order

TABLE IV
SAMPLE SIZES REQUIRED FOR � WITHIN THE DESIGNATED DIFFERENCES,

.01(0.01)0.10

to keep value be a finite real number; otherwise, an in-
finite number is resulted. For a process with characteristics,
there are combi-
nations in the simulation list, where represents the size of

. In this case, there are a total
of various combinations in the simulation list. The
combinations we select are , ,
which means that we examine from 1.60, and by an in-
crease of 0.10 each time, to 2.00. In addition, is a value
corresponding to , and . Table II lists various
index in the domains of , for three char-
acteristics, and Table III lists the designs for Monte Carlo ex-
periments with and various . After determining the
combinations for simulation, we select the process parameters
(process mean and process standard deviation ), which cor-
respond to , , to generate samples of Monte
Carlo experiments. Random samples from normal populations
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TABLE V
SIMULATED � FOR VARIOUS � , � � ��������� AND � � 0.05, 0.025, 0.01

with various parameters are generated to evaluate the estimated
value of . The sample sizes are 10(10)400. Each experi-
ment consists of 10 000 replications. After sorting the 10 000
estimated values of from the smallest to the largest of each
combination, and by selecting the (100 )th number, we can ob-
tain the distribution percentile of with various combi-
nations. Then, the values and the distribution
percentile of for various are obtained.

We note that under different fixed performance ,
the value is different, and the difference between the max-
imum and the minimum values decreases as sample size
increases. Table IV lists the required sample size for various

with . Note that when
the sample size exceeds 210, the difference becomes negli-
gibly small (no greater than 0.01). Consequently, the values
may be considered as a constant, which is independent of the

values. Since values are different under various com-
binations of fixed and , for practical purpose, we
take the maximal value among the combinations for statis-
tical testing, and this can ensure our decision makings being re-
liable. Table V presents the critical values for common used

capability requirement with sample size
and 0.01, 0.025, 0.05.

2) Extension to Correlated Data: For processes with corre-
lated characteristics, Pearn et al. [13] applied the principal com-
ponent analysis (PCA) method to transform related variables
into a set of uncorrelated linear functions of the original mea-
surements. The approach is described briefly here.

Assume that is a sample data matrix for process with
characteristics, where is the sample mean vector of

observations and is a symmetric matrix representing the
covariance between observations. and
represent the lower and upper specification limits, and
represents the target values of the quality characteristics. In
addition, the spectral decomposition can be used to obtain

, where is a diagonal matrix. The diagonal elements
of , , are the eigenvalues of , and the columns
of , , are the eigenvectors of . Consequently,
the principal component, , is expressed as ,

, where is vectors of the original variables.
The engineering specifications and target values of are

, and .
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TABLE VI
SAMPLE DATA OF CD, AA AND PT

TABLE VII
EMPIRICAL SIZES FOR � � ���� WITH SOME NON-NORMAL PROCESS

DISTRIBUTIONS

TABLE VIII
EMPIRICAL SIZES FOR � � ���� WITH SOME NON-NORMAL PROCESS

DISTRIBUTIONS

Similarly, the relevant sample estimators, and of ,
can be defined as and .

Consequently, if the characteristics are correlated, we can use
the above approach to transform the correlated variables and

into new variables and first, and our proposed
approach can proceed then.

III. PRODUCTION YIELD CALCULATION

In this study, 210 sample observations of the three parame-
ters, CD, AA and PT, are collected from the photolithography
process. By calculating sample mean, standard deviation and the
estimates for (see Table VI), we can estimate that the pro-
duction yield of the photolithography process is .

With risk , we could use Table V to obtain for
capability requirement . Since is greater than
the critical value , we conclude that the process meets the re-
quirement, and the process yield is no less than 99.99932047%
(equivalently, with a nonconformities of 6.8 PPM).

To show the robustness of our approach for non-normal pro-
cesses, we set nominal size and evaluate the empirical
size (the percentage that we reject the null hypothesis by our ap-
proach while the null hypothesis is true) by standard simulation
with 10 000 replications. Tables VII and VIII show the results
for process distributions with N(0,1), t(25), Gamma(22,1/6),
and Beta(4,9) with various and and 1.50. We
can see that the empirical sizes are close to the nominal size;
thus, we conclude that our approach is also adoptable for these
process distributions. However, for processes with too skewed
distribution, our approach still may not be adoptable.

IV. CONCLUSION

A good control of CD, alignment accuracy and PR thickness
is critical for maintaining a high level of yield in photolithog-

raphy. In this paper, we consider the yield measurement index
to establish the relationship between the manufacturing

specifications and the actual process performance, and provide
an exact measure on process yield. A photolithography process
in a semiconductor fab is investigated, and the testing process
performance of CD, alignment accuracy and PR thickness mea-
surement is considered based on the yield index . We ob-
tain the critical values required for the hypothesis testing, using
the standard simulation technique for various commonly used
performance requirements. Extensive simulation results are pro-
vided and analyzed. Statistical testing can be performed to ex-
amine whether the process meets the capability requirement.
The investigation is useful to the practitioners for making re-
liable decisions in testing the quality of an engineering lot in
the photolithography process.
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