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a b s t r a c t

Assembly sequence planning (ASP) needs to take relevant constraint factors such as the geometric

characteristics and tool factors into consideration so as to work out a particular assembly sequence. At

last, a product will come into being through the assembly of each part according to the assembly

sequence. A problem encountered in ASP is that a larger number of components will cause more

constraints to assembly a product, thus increasing the complexity of assembly problem. Therefore, it has

been an objective for researchers to look for suitable methods for the solution space of feasible

solutions.

Among them, traditional genetic algorithms (GAs) belong to a random searching method. When the

constraints are complicated in ASP, GAs often come out with a large number of solutions not feasible.

Consequently, previous research results have proposed some approaches such as Guided genetic

algorithms (Guided-GAs) or memetic algorithms (MAs) to enhance the structure of GAs to cope with the

complexity of constraints in ASP problems. In this study, artificial immune systems (AIS) were proposed

to help solve the assembly sequence problem. In AIS algorithm, the antibody (Ab) in the immune system

is simulated to encounter one or more unknown antigens (Ags). Moreover, the clonal selection concept

is employed in the immune system in which a better antibody will be selected in each generation of

revolution and different antibodies will be cloned to protect the infection of the original antigen. With

this mechanism, the shortcoming such as the traditional GAs to converge in local optimal solution will

be overcome. Practical examples have demonstrated that AIS can solve the ASP problem with

complicated constraints. Compared with guided genetic algorithms and memetic algorithms, AIS can

generate the same or better solutions in terms of quality and searching time.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the type of bill of order in enterprises has been
transformed into a customer-oriented manufacturing mode.
Instead of mass production of fewer types of products, more
varieties of product configurations with smaller batches can be
seen under this trend of mass customization. Therefore, the fast
change of customers’ needs draws forth a tremendous impact
upon the current design of the manufacturing system indeed
(Eimaraghy, 2006). Based upon the concept of concurrent
engineering (CE), if the planning of manufacturing can be
integrated in the stage of product design, both the lead time
and production costs will be reduced noticeably. For most
industrial products, the assembly costs take up 10–30% of total
production costs (Hong and Cho, 1997). Therefore, from the
viewpoint of CE, if the Research and Development (R&D) of new
products can be integrated with assembly planning at the early
stage, the effectiveness will be uplifted. In assembly planning
ll rights reserved.
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problems, many relevant constraint factors will be taken into
consideration; for example, the geometric and tool factors. For
that reason, how to work out a specific assembly sequence quickly
and correctly and assemble parts into a product is one of the
important issues in current manufacturing environment we
cannot overemphasize.

Assembly planning problems can be divided into two major
parts: assembly modeling and assembly sequence planning (ASP)
(Fujimoto and Sebaaly, 2000). In assembly modeling, data for
computer-aided design are transformed into constraints and
regulations of assembly procedure. Such kinds of data consist of
geometric and non-geometric information through which con-
straints for assembly sequence will be formed and followed.
Generally, these constraints are presented by the precedence
graph. In the past, the Liaison graph proposed by De Fazio and
Whitney (1987) and the graphic exhaustive search were used to
solve the ASP problem (Baldwin et al., 1991; Homem De Mello and
Sanderson, 1991; Gottipolu and Ghosh, 1997). Though it is
possible to find feasible solutions or even the optimal solution
from the graphic methodology, the time and problem scale is
largely limited. Moreover, because Liaison graph solves assembly
planning problems with information of parts, when the number of

www.sciencedirect.com/science/journal/eaai
www.elsevier.com/locate/engappai
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parts increases dramatically, the amount of information will also
increase astonishingly, adding difficulties to the searching of
solutions.

To cope with the considerable expand and change of solution
space in the mass customization environment, many researchers
have tried AI-related methodologies. Such methodologies include
A* algorithms (Laperrière and Eimaraghy, 1996), AO* search
method (Kim et al., 1996), neural networks (Hong and Cho,
1995), simulated annealing method (Motavalli and Islam, 1997),
and genetic algorithms (GAs) (Smith and Smith, 2003). Among the
approaches, genetic algorithms have been attempted by most
researchers in that GAs can effectively expand the solution space
in the traditional graphic methods.

Reconsideration of the information of assembly parts of a
product offers another approach to ASP problems. Tseng and Li
(1999) once proposed a connector-based assembly planning. The
so-called connector is a way of product description based upon
the combination of parts. It acts as a sort of concept product
building block at the design stage and may contain more
engineering information to incorporate with product functions.
Connectors come in various types. Sonnenberg and Sodhi (2003)
have tried to generate categorizations of connectors. Chung and
Peng (2006) incorporated the concept of connectors into the
combination of selective disassembly planning and genetic
algorithms. In order to solve complex constraints caused by large
numbers of parts, Tseng (2006) proposed a Guided genetic
algorithms (Guided-GAs) in which the mechanisms in GAs were
changed to adapt to the ASP environment. Later, the concept of
memetic algorithms (MAs) was used to upgrade the quality of
solution searching but the solution time had often been found
longer than that in Guided-GAs (Tseng et al., 2007).

Taking the quality and time of solution searching into
consideration, the present study is focused upon uplifting the
effectiveness of genetic algorithms. More importantly, it is
another reasonable way to apply artificial immune systems (AIS)
(De Castro and Timmis, 2003). The good quality of solution
searching in its application in other domains demonstrates that
AIS has been progressively accepted by researchers. For example,
it has been applied in PCB flow shop scheduling (Alisantoso et al.,
2003), a redundant reliability problem with multiple component
choices (Chen and You, 2005) and the facility layout problem
(Khilwani et al., 2008).

In addition, Cao and Xiao (2007) used the random searching
method to generate the initial solution and tried an immune
approach to solve the ASP problem, in which the affinity values of
antibody (Ab) and antigen (Ag) were compared. In their study, a
controller assembly case made up of 19 components as used to
illustrate their algorithm. As mentioned earlier, in the liaison-
based ASP approach, when the case is complicated, it is difficult to
generate solutions because of the complex constraint factors. At
the present study, the connector-based approach was used and
the Adjacency List method was adopted in the generation of initial
solutions so that all of them were feasible ones. Hence, it is not
necessary to compare the affinity value of antibody and antigen.
Instead, the variety among antibodies was investigated. More
importantly, the variety among in the memory zone was
maintained by deleting the affinity values between antibodies.

Briefly, it is easy to combine the concept of AIS with genetic
algorithms for ASP problems. Reasonable outputs can be seen
from the addition of AIS mechanism in the original GAs structure.
In this paper, the relationships and application of AIS in ASP is
discussed in Section 2. The concept of connectors is delineated in
Section 3. In Section 4, modified AIS algorithms are proposed.
Practical examples are illustrated to verify the proposed method
in Section 5 and finally some concluding remarks are reached in
Section 6.
2. Outline of artificial immune systems

The immunity system refers to the procedure of immune cells
to resist infection from microorganisms or viruses, especially as a
result of antibody formation. The viruses or organisms that trigger
the immune system to react are defined as an antigen. From the
stimulus of antigens, the immune cells that are combined with
antigens are the antibody. There are many levels of defense in an
organism’s immune system. And the algorithm derived from the
immune system boasts of specialization and memory character-
istics from the adaptive immune response (De Castro and Von
Zuben, 2002).

Among immune cells, B cell and T cell are the focus of people’s
attention. The so-called B cell refers to B lymphocyte, which is
generated by the bone marrow. From the stimulus of antibody,
B cell will have a reaction and secrete some antibody to combine
with the antigen. T cell is the T lymphocyte that gets ripe in the
thymus. T cell’s major function is to recognize and destroy the
outer invader. In other words, whether B cell can effectively
produce antibody to resist from outer viruses depends on the help
of T cell. There are many receptors on the surfaces of B cell and
T cell. Through the immune stage, different epitopes will be
produced from the antigen. Some bio-chemical reaction happens
when these two things contact each other. The degree of their
combination is called the affinity. The more closely the receptor
combines with the epitope, the higher the degree of the affinity.
This is the specialization characteristic of immune systems.

From the recognition in immune system, B cell will be
stimulated and activated if the affinity between B cell and the
antigen exceeds a threshold value. Such an affinity selection is
called the affinity maturation. By doing this way, the immune
system will generate a specific integrated cell to clone in a large
quantity. And most of the newly generated B cells will become
plasma cells serving as the antibody and the rest as the memory
cells. Through blood circulation, the memory cells will reach the
lymphocyte structure and be stored in T cells and B cells. The
memory cells have the prevention function. If the immune system
detects the infection from the same antigen, the lymphocyte cells
will be reactivated. Such a procedure is called the clonal selection
(De Castro and Von Zuben, 2002).

An overview of AIS can be found by some articles (De Castro
and Timmis, 2003; Musilek et al., 2006). Furthermore, many
studies have explored ASP and outstanding achievements can be
seen from the investigation of GAs. With AIS, some problems in
GAs can be overcome. First of all, the searching of solutions in
original GAs mainly uses the fitness function to find the near-
optimal solution. In AIS, the affinity between antibodies and the
objective functions are mixed to find the near-optimal solution. In
addition, the control strategy used in AIS differs from that in GAs.
AIS take advantage of the memory characteristic to speed up the
algorithm for local searching. The variety in memory units is
sustained to keep from the falling of local solutions. Without
evident memory units, GAs keep on the evolutionary procedure
lacking in the stopping mechanism, making it easy to get into the
local optimal solution.

If we define the antigen as the objective function for a
connector-based assembly planning, the antibody can be defined
as the solution to the corresponding objective function. And the
affinity serves as an index for the combination of the antibody and
antibody in AIS. In ASP, the variety of assembly sequence is
emphasized. The fundamental concepts of the AIS algorithm
specially designed for ASP are listed below:
(1)
 The initial solution is built-up through greedy algorithms that
will be described in Section 4.2. The initial solution should
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meet the constraints described in the precedence graph so as
to generate feasible solutions. Furthermore, the concept of
clonal selection is used to select better antibodies in the
memory cells, and split into a proper number of new cells
required.
(2)
 The crossover and mutation mechanisms in GAs are used to
generate multiple feasible solutions to reach the variety goal
of antibodies.
(3)
 In terms of memory, each solution searching is recorded. The
selected antibody in the memory cell area will react quickly to
the antigen. Finally, an optimal antibody will be generated
from the memory cell area.
3. Concepts and information content of connectors

3.1. Connector concepts

Connectors indicate the connecting way between parts. They
can serve as the concept product building block at the early
Fig. 1. Connector example: bolt–nut–washer.

e 1
sification of connector types according to Akagi et al. (1980).

Code Example

connector

ssembled FD Screw, bolted joint, key, spline, wedge

disassembled FND Pressing fits, riveted joints, welding

able connector

ssembled MD Snap ring, bearing, spring

disassembled MND Races and ball-bearing balls

e 2
sification of assembly tools.

l Force magnitude Tool name

None Hand

Small Work bench, handgun, screw driver,

spanner, pliers

Medium Screw driver, spanner, racket spanner

hand vice

Large Hacksaw, heavy sledgehammer, crush

torsional twister, chassis
product design stage. Fig. 1 shows the connection of a bolted joint
and bolt–nut–washer. With the description of connectors, the
complexity of product description can be largely reduced due to
fact that the assembly properties of these three parts are
integrated in the basic units of connectors (Tseng and Li, 1999).

In this study, the combination property, assembly tool,
assembly direction, and the precedence relationships of connec-
tors are considered. They are discussed as follows:
�

,

er,
Combination property: From Table 1, four types of connectors
can be categorized. They include disassembleable fixed
connectors, undisassembleable fixed connectors, disassemble-
able movable connectors, and undisassembleable movable
connectors (Akagi et al., 1980). They can serve as references
for initial categorization of parts.

�
 Tool property: In assembly planning, the selection of assembly

tool will influence the efficiency and fluency of the assembly
task. According to the difficulties of assembly tasks, four types
of assembly tools are specified (Table 2).

�
 Direction property: The assembly direction will influence the

process of assembly task. Six indexes, 7x, 7y, and 7z, are used
in this study to describe the accessed direction.

�
 Precedence relationship: The precedence relationship of con-

nectors is judged according to the engineering attributes or
geometric information of the parts belonging to the connector.
At the present study, the precedence relationships among
connectors are assumed to be preliminarily set.

Take the stapler as an example. There are 18 parts in the stapler
(Fig. 2(a)). Nine connectors can be assigned (Table 3) according to
the combination, assembly tool and assembly direction
properties. For instance, connector 7 (C7) is composed of three
parts, steel cover, bracket spring, rivet1 compose. Its combination
property belongs to tight fastening, a disassembleable fixed
connector; the assembly direction is y; the assembly tool uses a
hand vice (T3). Fig. 2(b) shows the precedence graph of the
connectors in a stapler.
3.2. Describing precedence sequence by adjacency list

The adjacency listing technique in data structure is used to
deal with the precedence graph of connectors. First, the Outdegree
and Indegree are defined as follows:

Outdegree: The number of nodes connected after a specific
node. Take node Ci for instance, its Outdegree means the
number of nodes after Ci. If Ci-Cj in the sequential order, then
the number of Cj is the Outdegree node of Ci.
Indegree: The number of nodes connected before a specific
node. Take node Ci as an example, its Indegree means the
number of nodes before Ci. If Cj-Ci in the sequential order,
then the number Cj is the Indegree node of Ci.
Details on assembly operation

No tools are needed, i.e., the assembly is manual.

Use a simple hand tool to assemble, no strict interference occurs

between components.

Use simple hand tool to assemble; other tools are needed to support the

assembly work.

Use a special tool to assemble the product; the operation may cause a

destructive result.
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In this study, the Outdegree and Indegree are used to construct
the successor lists (SL) and predecessor lists (PL). SL represents the
lists where successors in each node in the forward searching, from
1

2

3

4

5

6

8

10

11

12

13

14

16

Steel cover

Steel top

Pivot spring

Slide foot

Bottom track

Impact plate

base

spring

Rivet buttom

Rivet3

Rivet2

Bracket spring

Rivet1

S

C4

C5

Combination:FND
Direction: X
Tool: T1

C0

Combination:FND
Direction: -Y
Tool: T3

C1

Combination:FND
Direction: Y
Tool: T3

C2

Combination:MD
Direction: -Y
Tool: T1

C6

Combination:MD
Direction: -Y
Tool: T1

C7

Combination:FND
Direction: Y
Tool: T3

C3

Combination
Direction: -X
Tool: T1

Combination
Direction: -X
Tool: T1

Fig. 2. (a) Stapler: diagram of parts and (b) st
the source to the sink, are recorded while PL represents the lists in
which predecessors in each node in the backward searching, from
the sink to the source, are taken down.
17

15

18

9

7

Rivet4

Pivot rod

Staple spring

Guide rod

Fastener piece

F

:FND

:MD
Combination:FND
Direction: Z
Tool: T3

C8

apler: connector-based precedence graph.
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The algorithm to generate SL list based upon the Outdegree is
listed below:

Step 1: Enter information for the precedence graph of connec-
tors.

Step 2: From the precedence graph, find the nodes after the first
node according to its Outdegree. For instance, node Cj is
the Outdegree of node Ci. Since Cj is a node after Ci, the
Outdegree of Ci is 1.
Table 3
Connector information for stapler.

No. Connector name Combination type

C0 Interference fit FND

C1 Interference fit FND

C2 Spring MD

C3 Insert FND

C4 Spring MD

C5 Insert FND

C6 Snap fit MD

C7 Interference FND

C8 Interference FND

FD: fixed fastener disassembled;

FND: fixed fastener not disassembled;

MD: movable fastener disassembled;

MND: movable fastener not disassembled.

CS

C C

C C

C C C

C

C

1st row

2nd row

3rd row

4th row

5th row

6th row

C C

C

C

C C

C

0

0 8

1 8

2 3 4

5

6

1 2

8

8

7 8

8 F

7th row

8th row

C5

C3 C2

C2 S

C4 C2

C1C8 C0

F C4

SC0

SC6

SC7

C3

SC5

C1 S

5

3 2

2

4 2

18 0

4

2nd row

4th ro w

3 rd ro w

5th row

9 th row

1 0th ro w

01 st ro w

6th ro w

67th row

78th row

C3

5

1

C

C C

C S

C C

CC C

F C

SC

SC

SC

SC

C S

Fig. 3. Stapler: adjacency list example: (a) succe
Step 3: Connect the nodes after the first node. In the sequential
order, Ci posseses a higher priority than Cj. In the case of
Step 2, this can be expressed as Ci-Cj.

Step 4: Repeat the above steps searching for the nodes in the
precedence graph. If yes, repeat Step 2. Otherwise, stop
the searching.

Take the stapler parts in Fig. 2(a) as an example. Fig. 3 shows
the adjacency list for stapler under the precedence situations of
Direction Tool Component owned by connector

�y T3 10, 11, 12, 13, 14

y T3 12, 15, 16, 17

�x T1 7, 9

�x T1 6, 9

�x T1 6, 7

x T1 8, 9

�y T1 6, 5, 4

y T3 1, 2, 3

z T3 1, 4, 8, 12, 18

C7C C5 6

C4 C5 C6 C7C4 C5 C6 C7

ssor lists (SL) and (b) predecessor lists (PL).
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Connector Number

 C0 C1 C2 C3 C4 C5 C6 C7 C8

C0 --- 0.67 0 0.33 0 0.33 0.33 0.67 0.67 

C1 0.67 --- 0 0.33 0 0.33 0 1 0.67 

C2 0 0 --- 0.67 1 0.33 0.67 0 0 

C3 0.33 0.33 0.67 --- 0.67 0.67 0.33 0.33 0.33 

C4 0 0 1 0.67 --- 0.33 0.67 0 0 

C5 0.33 0.33 0.33 0.67 0.33 --- 0.33 0.33 0.33 

C6 0.33 0 0.67 0.33 0.67 0.33 --- 0 0 

C7 0.67 1 0 0.33 0 0.33 0 --- 0.67 

C8 0.67 0.67 0 0.33 0 0.33 0 0.67 --- 

Fig. 4. Stapler: similarity matrix SS for engineering information.
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Fig. 2(b). The transformation procedure is described in the
following two parts:

As can be seen in Fig. 3(a), the above algorithm is used to
generate successor lists according to the Outdegree.

Step 1: Enter the data of the precedence graph in Fig. 2(b).
Step 2: In Fig. 2(b), specify the nodes connected after the first

virtual node S. Judging from the Outdegree, these nodes
include C0, C1, C2, C5, C6, and C7.

Step 3: Connect the nodes C0, C1, C2, C5, C6, C7 after the virtual
node S. As can be seen in Fig. 3(a), the virtual node S

possesses higher priority in assembly sequence than C0,
C1, C2, C5, C6, and C7.

Step 4: Step 2 is repeated because some other nodes can be
found in Fig. 2(b).

Step 2: Based upon the data of Outdegree, node C8 will be
connected after node C0.

Step 3: Connect node C8 to node C0 as can be seen on second
row in Fig. 3(a), indicating the precedence relationship
of C0-C8.

Step 4: Execute Step 2.
Step 2: According to the Outdegree of node C1, node C8 should be

connected after node C1.
Step 3: After node C1, place node C8 as can be seen on third row

in Fig. 3(a). The precedence relationship between node
C1 and node C8 is C1-C8.

Step 4: Execute Step 2.
Step 2: For node C2, the Outdegree data shows that nodes C3 and

C4 are connected after C2.
Step 3: After node C2, place nodes C3 and C4 on fourth row in Fig.

3(a), indicating the precedence relationships of C2-C3

and C2-C4.

Repeat the process until eighth row is constructed. The whole
Successor list is then completed.

Besides, the predecessor lists can be generated from the
Indegree data. This is described in the following steps.

Step 1: Enter the connector data in the precedence graph.
Step 2: Check the nodes connected after the first node in the

precedence graph according to its Indegree data. For
example, node Cj is the Indegree of node Ci. In other
words, the Indegree of node Ci equals to 1, indicating that
Cj is a node connected after Ci.

Step 3: Connect all the nodes after node Ci and we can find that
Cj possesses higher priority than Ci in precedence
sequential order. From Step 2, it can be denoted as Cj-Ci.

Step 4: Repeat the above steps and check whether there exist in
the precedence graph other nodes for further searching.
If yes, repeat Step 2; otherwise stop the transformation
procedure and complete the construction of the connec-
tion of connectors.

In Fig. 3(b), Indegree is used to generate PL in a way simi-
lar to the generation of SL. This part is omitted. In this study,
SL and PL lists are used to record the precedence graph.
The data will be used in Section 4.3 to search for the initial
solution.
82 4 650 1 73Antibody
value

Antibody
position

1 876543 92

Fig. 5. Representation of an antibody for stapler example.
3.3. Connector engineering data similarity matrix SS

At the present study, the engineering information similarity of
connector is employed for the evaluation of the value of the
design objective function. According to Göngör and Gupta’s study
(1997), when the frequency of alternation of the precedence
sequence for a product is lower, the probability it will fit and
survive is higher. To compare connector Ci with connector Ci+1

from a connector set V whose precedence sequence has been set,
if the contents of engineering information (combination, direc-
tion, and tools) for connectors Ci and Ci+1 are similar, it is more
likely that they will survive. To do this, we need to build up the
engineering information similarity matrix SS first. SSi,j represents
engineering information similarity of the cell of ith row and jth
column in a symmetrical matrix; i.e., the engineering similarity
between ith connector and jth connector. SSi,j can be calculated
from Formula (1):

SSi;j ¼Wc � Ci;j þWd � Di;j þWt � Ti;j (1)

where SSi,j is the engineering similarity between ith connector and
jth connector. If i ¼ j, they represent the same connectors and it is
meaningless to give values to them, as shown in Fig. 4; i and
j ¼ 1,2,y,m, where m is the number of connectors. Ci,j is the
combination condition between the connectors. When the
combination property of connector Ci and Cj is the same, Ci,j ¼ 1;
otherwise, Ci,j ¼ 0; Di,j the direction condition between the
connectors. When the direction property of connector Di and Dj

is the same, Di,j ¼ 1; otherwise, Di,j ¼ 0; Ti,j is the tool condition
between the connectors. When the tool property of connector Ti

and Tj is the same, Ti,j ¼ 1; otherwise, Ti,j ¼ 0. Wc is weight of the
combination property; Wd the weight of the assembly direction
and Wt the weight of the assembly tool.

Take the stapler as an example. To compare with Guided-GAs
(Tseng, 2006) and MAs (Tseng et al., 2007), the relative weight for
combination, assembly tool and assembly direction properties are
set to be equal. Since WcWdWt ¼ 1, Wc ¼Wd ¼Wt ¼

2
6. Through

Formula (1), SS0,1 in SS matrix is 2
6� 1þ 2

6� 1þ 2
6� 0 ¼ 0:6667.

Other elements in SS matrix can be obtained in the same way. The
result is shown in Fig. 4.
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3.4. Representation scheme

In this study, decimal numbers are used to represent the
chromosomes of a solution (an antibody). The length of the
chromosomes is equal to the number of connectors in a product.
Each connector has a number of which the position represents the
assembly sequence of the specific connector. In the case of stapler
(Fig. 5), an antibody represents the assembly sequence of stapler’s
connectors, 3-2-0-1-4-8-5-6-7. Here, the arrow mark
‘‘-’’ denotes the priority order in connector’s precedence
sequence. For example, 1-4 means that the priority order of C1

is higher than that of C4 in precedence sequence.
The main reason to take engineering information similarity

between connectors into consideration is that if the similar
connectors are connected together, the number to change the
assembly tool and assembly direction will reduce, thus saving
assembly time and cost (Tseng et al., 2004). Therefore, the design
objective function (OF) in AIS is based upon the similarity matrix
of connectors. Then the sum of engineering information similarity
Generate
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in an antibody can be calculated from formula (2):

OF ¼
Xm

1

SSh;hþ1 (2)

where SSh,h+1 is the engineering information similarity between
the hth and h+1th connectors in the antibody, h ¼ 1,2,3,y,m and
m is the the number of connectors.

In the case of the antibody in the stapler example (Fig. 5), the
value of the objective function of the antibody, OF ¼ SS3,2+SS2,0+
SS0,1+SS1,4+SS4,8+SS8,5+SS5,6+SS6,7 ¼ 2, which can be calculated by
Formula (3) and the similarity matrix SS in Fig. 4.
4. Artificial immune systems for assembly sequence problems

4.1. Framework of artificial immune systems for ASP
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Step 1: Construct the SL and PL (refer to Section 3.2): The
engineering information of connectors (Section 3.1),
data in the precedence graph and engineering informa-
tion similarity matrix SS (Section 3.3) are entered for the
construction of SL and PL.

Step 2: Generate the initial population from the concept of

adjacency list (see Section 4.2): In the study, SL and PL
are used to generate the initial solution and place it in
the antibody memory zone.

Step 3: Calculate the value of the objective function: Calculate the
value of the objective function of each antibody and
antigen (Formula (2)), which will serve as a standard for
the selection of antibodies.

Step 4: Clonal selection (see Section 2): From the ranking order of
the objective function values of antibodies, select the
best n antibodies to proliferate by cloning.

Step 5: Gene reorganization (see Section 4.3): The guided cross-
over method is applied to reorganize the genes.

Step 6: Guided mutation method (see Section 4.4).
Step 7: Calculate the affinity and redo the selection (see

Section 4.5): Evaluate the new population according to
Formula (2) and add the better ones to the memory
zone. Wipe out the worse antibodies in the original
memory zone. Then delete the antibodies that are too
similar to each other to maintain the variety of
antibodies in the memory zone.

Step 8: Check if the termination condition is satisfied: The
maximum generation of evolution is used as a criterion
to stop the algorithm. If the maximum generation is not
reached, repeat Step 3; otherwise, find the optimal/near-
optimal assembly sequence.
C1 C7 C0 C6 C2 C3 C4 C5 C8parent2

C1 C0 C7 C5 C2 C4 C6 C3 C8offspring

Fig. 8. Procedure of guided crossover method.
4.2. Apply the adjacency list to generate initial population (Step 2)

On the base of the satisfaction of the precedence relationship,
the assembly sequence SEQ can be represented by an ordered list
of connector, in which SEQi indicates the ith solution in the
memory zone. If H(i) is a set of the candidate notes (i is the
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cursor), then the cursor i will point to the last connector in the set
SEQ. With SL and PL lists, connectors can be placed in H(i). Step by
step, a complete SEQ will be found for the initial solution. The
algorithm to generate the initial solution is listed below:

Step 2.1: Because the set of the initial candidate connectors is c,
and i points to the initial virtual node S, do Step 2.2.

Step 2.2: Because S possesses Outdegree only, the SL list is used to
find node Ci after H(S) and add it to H(i).

Step 2.3: If the current cursor points to S, then directly update
H(S) ¼ {Ci}. If the cursor points to Ci, find node Cj that has
the biggest similarity with Ci from Formula (1) and place
the cursor to pointing to Cj.

Step 2.4: Because node Ci has been found from SL, nodes after Ci

will then be found according to the Outdegree data. If
Outdegree ¼ 0, go to Step 2.6. If OutdegreeZ1, go to Step
2.5.

Step 2.5: Use PL to find the nodes before Ci according to the
Indegree data. If Indegree ¼ 1, then add the found node
to H(Ci). If Indegree41, temporarily save the found nodes
in H(Ci). Then check whether these found nodes belong
to the initial candidate connector set.

Step 2.6: End the algorithms and find an initial feasible solution.

Using the stapler in Fig. 2 as an example, the procedure to find
antibodies for the initial solution is listed below:

Step 2.1: Because SEQ1 ¼ {f}, and from Fig. 3(a), the cursor i is
currently pointing to virtual node S, H ¼ {S}. Further-
more, because Outdegree41, SEQ1 ¼ {S}. Do Step 2.2.
0 2571

5 2710

2501 7

The best antibody

Second best antibody 1

Second best antibody 2

Fig. 10. Affinity

C 1 C 0 C 7 C 5 C 2 C 4 C 3 C 6 C 8

C 1 C 0 C 5 C 2 C 4 C 3 C 6 C 7 C 8

Cut-point Combine-point

C 1 C 0 C 7 C 5 C 2 C 4 C 3 C 6 C 8

Cut-point Combine-point

Combine-pointCut-point

Fig. 9. Operation of guided mutation: (a) cut-point and combine-point, (b)

adjusted combine-point and (c) adjusted cut-point.
Step 2.2: From SL, find nodes before S in Fig. 3(a) and add them to
H(S). These nodes before S include C0, C1, C2, C5, C6, C7;
therefore, H(S) ¼ {C0, C1, C2, C5, C6, C7}.

Step 2.3: Because S is a virtual node, from the candidate initial
connector set H(S), randomly find node C0 and place the
cursor i pointing to C0. Currently, H(C0) ¼ {C1, C2, C5, C6,
C7}, and SEQ1 ¼ {S-C0}.

Step 2.4: From SL in Fig. 3(a), we know that only C8 can be found
after C0. Now, Outdegree ¼ 1, go to Step 2.5.

Step 2.5: From PL in Fig. 3(b), we know that {C0, C1, C3, C4, C5, C6,
C7} is positioned before C8. Moreover, the Indegree ¼ 7,
and neither C3 nor C4 belongs to H(C0) ¼ {C1, C2, C5, C6,
C7}. Therefore, C8 may not be added to H(C0). So,
H(C0) ¼ {C1, C2, C5, C6, C7}.

Step 2.3: From connector S, H(C0) ¼ {C1, C2, C5, C6, C7}, and the
connector engineering information similarity matrix SS,
we find {C1, C7} have the biggest similarity with C0. C1 is
randomly chosen for next candidate node, cursor i

pointing to node C1. Now, we have H(C1) ¼ {C2, C5, C6,
C7}, and SEQ1 ¼ {S-C0-C1}.

Step 2.4: From SL in Fig. 3(a), we can find only node C8 is
positioned after C1. Because current Outdegree ¼ 1, do
Step 2.5.

Step 2.5: From PL in Fig. 3(b), we know that {C1, C3, C4, C5, C6, C7}
are positioned before C8. Now, Indegree ¼ 6, and neither
C3 nor C4 belongs to the first initial connector set.
Therefore, C8 may not be added to H(C1). H(C1) ¼ {C2, C5,
C6, C7}.

Step 2.3: From the candidate initial connector set H(C1) ¼ {C2, C5,
C6, C7} and connector engineering similarity matrix SS,
we can find that C7 possesses the biggest similarity with
C1. Therefore, with cursor i pointing to node C7, C7 is
chosen for next position. Now we have H(C7) ¼ {C2, C5,
C6}, and SEQ1 ¼ {S-C0-C1-C7}.

Repeat Steps 2.1–2.6, we can obtain a complete initial antibody
with SEQ1 ¼ {S-C0-C1-C7-C5-C2-C4-C3-C6-C8-F}.

4.3. Gene reorganization (Step 5)

In this study, a guided crossover mechanism is used to
reorganize genes (Tseng, 2006). The crossover procedure is listed
below:

Step 5.1: Randomly select two parent antibodies, parent1 and
parent2.

Step 5.2: From these two parent antibodies, randomly generate
their crossover interval and divide the antibodies into
three sections: block-start, block and block-rear.

Step 5.3: From one of the parent antibodies, reproduce the gene
codes in the block interval to the offspring generation.
34 6 8

34 6 8

4 6 83
Number of the same 
individual k = 6
66.7 %

100%

Number of the same 
individual k = 5
55.6 %

selection.



ARTICLE IN PRESS

C.-C. Chang et al. / Engineering Applications of Artificial Intelligence 22 (2009) 1218–1232 1227
Step 5.4: According to the precedence relationships of the con-
nectors in antibody parent2, duplicate the connectors in
the block-front area of antibody parent1 and place them
Fig. 11. Illustration of electric fan parts: (a) exploded drawin

Table 4
Comparison between three algorithms for stapler.

Method Average time Average

objective value

Max objective

value

Guided-GAs 1.572 5.495 5.667

Memetic algorithms 2.494 5.667 5.667

AIS 2.453 5.667 5.667
on the corresponding locations of antibody offspring1. In
the same way, duplicate the connectors in the block-front

area of antibody parent2 and place them on the
corresponding locations of antibody offspring2, accord-
ing to the precedence relationships of the connectors in
antibody parent1.

Step 5.5: According to the precedence relationships of the con-
nectors in antibody parent2, duplicate the connectors in
the block-rear area of antibody parent1 and place them
on the corresponding locations of antibody offspring1.
Similarly, duplicate the connectors in the block-rear area
of antibody parent2 and place them on the correspond-
ing locations of antibody offspring2, according to the
g and (b) enlarged scale drawing for small parts in (a).
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precedence relationships of the connectors in antibody
parent1.

4.4. Guided mutation method (Step 6)

The adding of mutation mechanism in AIS for ASP helps
with the variety of the antibody, which can prevent the problem
S
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Fig. 12. Precedence graph of c
of premature convergence. In this study, the guided muta-
tion method is adopted. Such a mutation procedure is listed
below:

Step 6.1: Randomly select an antibody from the initial population.
Step 6.2: Randomly generate a cut-point, and set combine-

point ¼ cut-point+1.
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Fig. 13. Convergence plot of the electric fan.

Fig. 14. Illustrations of printer parts: (a) exploded drawing and (b) enlarged scale

drawing of screw parts in (a). Note: Parts numbered 48–92 are screws.

Table 5
Comparison between three algorithms for electric fan.

Method Average

time

Average

objective value

Max objective

value

Guided-GAs 2.808 16.133 16.667

Memetic Algorithms 3.951 18.285 18.333

AIS 3.045 18.365 18.667

C.-C. Chang et al. / Engineering Applications of Artificial Intelligence 22 (2009) 1218–1232 1229
Step 6.3: Check the assembly precedence relationship between
the connector on the cut-point and that on the combine-

point connector.
(a) If the connector on the cut-point has a higher priority
of assembly sequence than that on the combine-point,
then execute Step 6.4.
(b) If the connector on the cut-point does not have a
higher priority of assembly sequence than that on the
combine-point, then add 1 to the combine-point, and
execute Step 6.3 again.

Step 6.4: Insert the connector on the cut-point to the location of
combine-point-1.

Step 6.5: Repeat the procedure form Step 6.1 to Step 6.5 m/3

times. m is the number of connectors.

4.5. Affinity maturation (Step 7)

The calculation of affinity function is mainly based on the
similarity between antibodies. Greater values of affinity mean
higher similarities between antibodies. To maintain the variety of
antibodies in the memory zone, some antibodies that are too
similar to one another will be deleted. In this study, the antibody
whose objective value is best in the memory zone in each
generation is considered as the base for other antibodies in terms
of the gene sequential positions for the calculation of similarity
between antibodies. All the other antibodies will be compared
with the base antibody one by one for counting the number of
different chromosome position. Then, the affinity function is used
to transform the similarity data into percentage from which a
threshold value is set for further selection. The calculation of
affinity (Formula (3)) between antibodies is described below:

Affinity value ¼
k

m
(3)

where k is the number of gene codes the same as those in the best
antibody and m the number of connectors.

Step 7.1: From memory zone, calculate the antibody whose value
of objective function is the best and select it for the best
antibody.

Step 7.2: Contrast and mark the gene codes of the second best
antibodies in the memory zone. Add 1 to k if the gene
codes are the same and add 0 to k if the gene codes are
totally different.

Step 7.3: Calculate k for every antibody whose gene codes are the
same and select them according to affinity function in
Formula (3).

Step 7.4: According to the threshold value, select the proper
antibodies.

4.6. An illustrated example

The stapler example in Fig. 2 is used as an example to illustrate
the algorithms in this section:

Step 1: Enter the connector engineering information, the
precedence graph and engineering information similarity data
for the construction of SL and PL (Fig. 3).
Step 2: Construct the initial solution data from SL and PL. As
mentioned in Section 4.3, the current memory zone is set to 3.
Then three initial solutions can be generated:

SEQ1 ¼ {S-C0-C1-C7-C5-C2-C4-C3-C6-C8-F}
SEQ2 ¼ {S-C1-C7-C0-C5-C2-C4-C3-C6-C8-F}
SEQ3 ¼ {S-C5-C0-C1-C7-C2-C4-C3-C6-C8-F}
The same way can be applied to other initial antibodies.
Step 3: Calculate the values of objective function: Through
engineering similarity matrix SS and Formula (2), the values of
objective function for all antibodies can be calculated. For
example, SEQ1 ¼ {S-C0-C1-C7-C5-C2-C4-C3-C6-

C8-F} and its objective value ¼ SS0,1+SS1,7+SS7,5+SS5,2+SS2,4+
SS4,3+SS3,6+SS6,8 ¼ 4.33.
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Step 4: Clonal selection: According to the objective values of
antibodies, select the best n antibodies and clone them into a
new population. In this case, n ¼ 3. As can be seen in Fig. 7,
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Step 5: Guided crossover method
Step 5.1: Randomly select two parent antibodies, parent1

and parent2 (Fig. 8(a)).
Step 5.2: From parent1 and parent2, randomly generate
their crossover interval and divide the antibodies into three
sections: block-start, block and block-rear. (Block section is
the yellow area in Fig. 8(a))
Step 5.3: Reproduce the gene codes in the block interval
from parent1 to the offspring generation. (Fig. 8(b)).
Step 5.4: According to the precedence relationships of the
connectors in antibody parent2, 1-0, duplicate connector
C0, C1, in the block-front area of antibody parent1 and place
them on the corresponding locations of antibody offspring1.
This is shown in Fig. 8(c).
Step 5.5: Duplicate connectors C3, C6, C8 in the block-rear

area of antibody parent1 and place them on the correspond-
ing locations of antibody offspring1 according to the
precedence relationships of the connectors in antibody
parent2, C6-C3-C8, as shown in Fig. 8(d).
Step 6: Guided mutation method
Step 6.1: Randomly select an antibody (Fig. 9).
Step 6.2: Randomly generate a cut-point ¼ 3, and set
combine-point ¼ 3+1 ¼ 4.
Step 6.3: Check the assembly precedence relationship
between the connector on the cut-point and that on the
combine-point connector. Because the connector on the cut-

point does not have a higher priority of assembly sequence
than that on the combine-point, set combine-point+1 ¼ 5,
and execute Step 6.3 again. In the same way, it can be
specified combine-point ¼ 9, as shown in Fig. 9(b).
Step 6.4: Insert connector C2 on the cut-point to the location
of combine-point-1, as shown in Fig. 9(c).
Step 6.5: Repeat the procedure from Step 4.1 to Step 4.4
three times and stop the mutation mechanism.
Step 7: Calculate the affinity and redo the selection.
Step 7.1: Fig. 10 shows the ranking order for the objective
values of the antibodies in the memory zone. Therefore, the
first antibody C0-C1- C7-C5-C2-C4-C3-C6-C8 is
currently the best antibody.
Table 6
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Fig. 16. Convergence plot
Step 7.2: Contrast the gene codes of other second best
antibodies with those in the best antibody. We can get k ¼ 6
for the second antibody and k ¼ 5 for the third antibody.
Step 7.3: Calculate the affinity values from Formula (3) and
we get 66.7% for the second antibody and 55.6% for the
third antibody.
Step 7.4: If the threshold value of affinity is set to 60%, the
second antibody is deleted because it is too similar to the
first antibody. A new population will be obtained.
Step 8: Satisfy stopping criteria and stop the algorithms.

5. Practical examples

Borland C++ Builder 6.0 is used in this study for AIS-related
programming. Under the computer specification of an Intel
Celeron CPU 2.67 GHz CPU and 512 Mb memory, a stapler, an
electric fan and a laser printer are used as practical examples to
compare the results of AIS algorithm with those of Guided-GAs
(Tseng, 2006) and MAs (Tseng et al., 2007).

5.1. The stapler example

In the stapler example, both Guided-GAs and MAs reach the
objective value 5.667. Under the conditions of the crossover rate
70%, mutation rate 30%, parent population size 21, maximum
generation 1500, cloning number 3, threshold value of affinity 80%,
10 experiments were conducted for AIS, Guided-GAs and MAs.
Table 4 shows the average quality and time in solution searching,
the maximum objective values of AIS, Guided-GAs and MAs.

Because the stapler is an easier example, all of three algorithms
can find the optimal assembly sequence of stapler in a very short
period of time. Overall, the quality for solution searching in AIS
and MAs is a little bit better than that of Guided-GAs (Table 4).

5.2. The electric fan example

The electric fan is composed of 40 parts (Fig. 11). Through the
rules of connector, these parts can be divided into 25 connectors.
Fig. 12 shows the precedence graph of the connectors in the
electric fan. The execution of AIS is under the conditions of the
crossover rate 70%, mutation rate 30%, parent population size 51,
maximum generation 1500, cloning number 10, and threshold
value of affinity 75%.

Table 5 lists the results of 10 tests of three algorithms. In terms
of the average solution searching time, AIS is 20% better than MAs.
For maximum objective value, AIS is 12% better than Guided-GAs
and about 2% better than MAs. Generally speaking, AIS and MAs
are better than Guided-GAs in the quality of solution searching. In
AIS

Memetic
Algorithms

Guided-
GAs

000 1200 1400 1600

of the laser printer.
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solution searching time, AIS is better than MAs. Moreover, it can
be seen from Fig. 13 that Guided-GAs converges in less than 200
generations. However, both AIS and MAs have the ability to escape
from local optimization; AIS runs away from 1100 generations and
MAs get free about 850 generations. For AIS, the algorithms of
Affinity maturation play the role of escaping mechanism. The
experiment demonstrates that both AIS and MAs are able to keep
away from early convergence and jump from the local optimal
solutions.

5.3. The laser printer example

The laser printer is made up of 92 parts (Fig. 14) and 91
connectors. The precedence graph of the connectors in the laser
printer is shown in Fig. 15. The execution of AIS is under the
conditions of the crossover rate 70%, mutation rate 30%, parent
population size 51, maximum generation 1500, cloning number
15, and threshold value of affinity 85%.

The results of 10 trials of three genetic algorithms are listed in
Table 6. In terms of the average solution searching time, AIS is
26.6% better than MAs. For maximum objective value, AIS is 7.4%
better than Guided-GAs and about 2.9% better than MAs.
Generally speaking, AIS and MAs are approximately the same in
the quality of solution searching. But, in solution searching time,
AIS is better than MAs. Moreover, Fig. 16 clearly shows that
Guided-GAs converges in about 230 generations. However, both
AIS and MAs have the ability to evade from local optima; AIS gets
away from 1000 generations and MAs break out in 1120
generations. This demonstrates that both AIS and MAs are able
to keep away from early convergence and generate better
solutions.
6. Conclusion

In this study, an AIS algorithm was mainly proposed to solve
the assembly planning problem. Moreover, its performance was
compared with those of Guided-GAs and MAs (Tseng, 2006; Tseng
et al., 2007). Such an AIS algorithm has two advantages. First of all,
it uses the adjacency list to generate proper initial solutions. Then,
the crossover and mutation mechanisms in genetic algorithms are
used to upgrade the quality in solution searching. To avoid the
impairment of the quality in searching solutions, common
immune algorithms often eliminate the crossover mechanism. It
has been demonstrated in this study that in ASP problems, a
better initial solution will have more effectiveness in the quality
than traditional immune algorithms. Secondly, the proposed AIS
algorithm is different from traditional GAs in that it makes use of
the variety characteristic of artificial immune systems, keeping
from falling in the difficulty of local optimal.

Compared with past genetic algorithms, AIS is about 20% better
than Guided-GAs in solution searching time and about 12% better
than Guided-GAs and about 2% better than MAs in maximum
objective value, taking the electric fan as an example. In the case
of the laser printer, AIS is 26.6% better than MAs in average
solution searching time and about 7.4% and 2.9% better than
Guided-GAs and MAs, respectively, in maximum values. This
demonstrates that AIS can offer effective solutions to ASP
problems with more constraints, longer time for solution search-
ing, or of the local optimal dilemma. Overall, AIS can be used to
help solve the difficulty of falling in local optimization in ASP
problems in Guided-GAs. Compared with MAs, AIS is about the
same in quality of solution searching. But the solution searching
time can be effectively shortened in AIS. However, the upper limit
of the number of connectors in this study is 91 (i.e. the laser
printer).
For future work suggestions, the integrations of assembly
modeling and assembly sequence generator related to CAD will be
helpful to the implementation of computer-aided automatic
assembly planning. In addition, the parameters of AIS algorithm
are obtained through constant trials and experiments. The
optimal combination of parameters will differ with cases. There-
fore, the dynamic adjustment of control of parameters is a
direction worth of further investigation.
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