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The majority of the scheduling studies carry a common assumption that machines are available all the
time. However, machines may not always be available in the scheduling period due to breakdown or pre-
ventive maintenance. Taking preventive maintenance activity into consideration, we dealt with the two-
machine flowshop scheduling problem with makespan objective. The preventive maintenance policy in
this paper was dependent on the number of finished jobs. The integer programming model was proposed.
We combined two recent constructive heuristics, HI algorithm and H algorithm, with Johnson’s algo-
rithm, and named the combined heuristic H&J algorithm. We also developed a constructive heuristic,
HD, with time complexities O(n2). Based on the difference in job processing times on two machines, both
H&J and HD showed good performance, and the latter was slightly better. The HD algorithm was able to
obtain the optimality in 98.88% of cases. We also employed the branch and bound (B&B) algorithm to
obtain the optimum. With a good upper bound and a modified lower bound, the proposed B&B algorithm
performed significantly effectively.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Most studies on scheduling assume that machines are available
throughout the planning horizon. However, in practice, machines
are not always available (Pinedo, 2002). That is, machines may
not be available during the scheduling horizon due to breakdown
(stochastic) or preventive maintenance (deterministic). Taking pre-
ventive maintenance activity into consideration, we dealt with a
flowshop scheduling problem with limited machine availability.

In capital-intensive industry, production generally proceeds
on a continuous basis and the availability of production centers
at all time is very important. Nevertheless, maintenance activi-
ties have to be performed. Possible events that necessitate main-
tenance operations include: (1) the occurrence of a failure
(failure-based maintenance); (2) the elapse of a certain amount
of time or usage (use-based maintenance); and (3) the tested
condition of a unit (condition-based maintenance) (Art, Knapp,
& Lawrence, 1998). For recent surveys of problems with limited
machine availability, refer to Sanlaville and Schmidt (1998) and
Schmidt (2000). However, research on these problems has
started only recently.

Johnson’s rule is well known for the case of continuous machine
availability, making the problem of minimizing the makespan easy
to solve for two machines. Lee (1997) proved the problem to be
NP-hard when an interval of non-availability (or hole, for short)
ll rights reserved.
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occurs, and then developed a pseudo-polynomial dynamic pro-
gramming algorithm to optimally solve the problem. Lee presented
two heuristic algorithms. The first heuristic had a worst-case error
bound of 1/2 for the case in which the hole occurred on the first
machine. The second heuristic with a worst-case error bound of
1/3 for the case in which the hole occurred on the second machine.
Similarly, Cheng and Wang (2000) studied the problem with the
holes occurred on the first machine. Their heuristic had a worst-
case error bound of 1/3. Breit (2004), studying the holes occurring
on the second machine, proposed a heuristic with a worst-case er-
ror bound of 1/4. Cheng and Wang (1999) considered a special case
where the availability constraint is imposed on each machine, but
the two availability constraints are consecutive.

Lee (1999) considered the two-machine flowshop problem un-
der the assumption that if a job cannot be finished before the next
down period of a machine, then the job must be restarted partially
when the machine becomes available again. His model was called
semi-resumable. The model contained two important special
cases: resumable where the job can be continued without any pen-
alty and non-resumable where the job must be totally restarted.
Lee also developed a pseudo-polynomial dynamic programming
algorithm to optimally solve the problem and proposed heuristic
algorithms with an error bound analysis.

Blazewicz, Breit, Formanowicz, Kubiak, and Schmidt (2001)
studied a two-machine flowshop problem where machines are
unavailable in given time intervals. They analyzed two construc-
tive heuristics, Johnson’s algorithm and look-ahead heuristic, and
a heuristic based on simulated annealing (SA). Blazewicz et al. con-
cluded that the SA-based heuristic is a more effective approach.
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Kubiak, Blazewicz, Formanowicz, Breit, and Schmidt (2002)
proved that no polynomial time heuristic with a finite worst-case
bound may exist when at least two holes are allowed to occur.
Their study also showed that makespan minimization becomes
NP-hard in the strong sense even if arbitrary number of holes occur
on one machine only. Most important, Kubiak et al. proved two
important properties of optimal schedules for the two-machine
flowshop, a theory which serves as the framework of the current
paper. They further developed a branch and bound algorithm
based on the proposed properties.

Some papers stated that machines are available in time win-
dows, which is true in computer systems. Aggoune, Mahdi, and
Portman (2001) and Aggoune (2004) considered a flowshop prob-
lem with availability constraints, and provided two approaches to
dealing with the maintenance activities: either starting time of the
maintenance tasks are fixed or the maintenance tasks must be per-
formed on a given time window. Aggoune et al. proposed a heuris-
tic based on genetic algorithm to solve the makespan and the total
weighted tardiness minimization problems. Aggoune developed a
heuristic based on genetic algorithm and tabu search to solve the
makespan minimization problem.

Most studies on machine availability take into consideration the
elapse of a certain amount of time or usage (use-based mainte-
nance). However, Dell’Amico and Martello (2001) considered a
practical assembly line for printed circuit boards. They asserted that
the machine is not available after processing a fixed number of jobs
to allow for time precision adjustment of the machines. That is, the
time periods of preventive maintenance activities are dependent
on the number of finished jobs. Liao, Chen, and Lin (2007) provided
an algorithm to solve two parallel machines where there are one
or more unavailability intervals for each machine. The algorithm
had exponential time complexities, but it could optimally solve the
various-sized problems in reasonable computation time.

This paper dealt with the two-machine flowshop scheduling
problem with makespan objective. The preventive maintenance
policy was dependent on ‘‘the number of finished jobs”. We com-
bined two recent constructive heuristics, HI algorithm (Cheng &
Wang, 1999, 2000) and H algorithm (Breit, 2004), with Johnson’s
algorithm, and named the heuristic H&J algorithm. We also devel-
oped a constructive heuristic, HD, which is based on the difference
in the jobs’ processing times on two machines. In order to evaluate
the performance of H&J and HD, we further developed a branch
and bound algorithm with a modified lower bound. Compared with
the optimum solution, H&J was able to obtain optimality in 1562
out of 1600 instances (97.63%), and HD was able to obtain optimal-
ity in 1582 out of 1600 instances (98.88%). Both H&J and HD
showed good performance, and the latter was slightly better.

The rest of the paper is organized as follows. Section 2 defines
the terminology and constructs an integer programming model.
Section 3 addresses basic properties of optimal solution and the
development of two constructive heuristics, H&J and HD algo-
rithms. A branch and bound algorithm (B&B algorithm) with a
modified lower bound is constructed in Section 4. The performance
of HD algorithm is evaluated in Section 5. The final section draws
the conclusions of this work.

2. Terminology and integer programming model

Given n jobs to be processed in a two-machine flowshop, we de-
fine the following notations:

Jj job j, j = 1, . . . ,n
J[j] the job at the jth position of schedule
Mi machine i, i = 1, 2
pi,j processing time for Jj on Mi

ti length of hole on Mi
xi the number of finished jobs, the preventive maintenance
policy on Mi

hi,[j] the index of Mi is available after the jth job. hi,[j] = 1 if Mi is
not available (hole) after the jth job; hi,[j] = 0 if Mi is avail-
able after the jth job, i.e., hi,[j] = 1 if j/xi is integer; hi,[j] = 0,
otherwise.

zj,k the index of job j is scheduled at the kth position. zj,k = 1 if
job j is scheduled at the kth position; zj,k = 0, otherwise.P
schedule of jobs 1,. . .,n.

J
P
k For a given schedule

P
the holes partition jobs into dis-

joint subsets, the subset contains jobs completed on M1 be-
tween starting points of the kth and the (k + 1)th holes.

Ci,j the completion time for Jj on Mi.
Ci,[l] the completion time of the lth ranked job on Mi.
C1,max makespan‘, C1,max = C1,[n] = max{C1,j, j = 1,. . .,n}.
Cmax makespan,Cmax = C2,[n] = max{C2,j, j = 1,. . .,n}.
Sa set of jobs before executing forward insert.
Sb set of jobs before executing backward insert.
dj difference in processing time for Jj on M1 and M2, dj = p1,j-p2,j.

In order to describe the problem clearly, an integer program-
ming model is presented. The decision variables and auxiliary vari-
ables are zj,k and Ci,[l], respectively. The parameters are pi,j, ti, xi and
hi,[j]. The mixed integer programming model with n2 + 2n variables,
including n2 binary variables and 2n variables, and 5n constraints is
formulated. The model is formulated as follows.

Objective function:

min C2;½n�

Subject to:

Xn

j¼1

zj;k ¼ 1; k ¼ 1;2; . . . ;n ð1Þ

Xn

k¼1

zj;k ¼ 1; j ¼ 1;2; . . . ; n ð2Þ

C1;½l� ¼
Xl

k¼1

Xn

j¼1

ðzj;k � p1;jÞ þ
Xl

k¼1

ðh1;½k�1� � t1Þ; l ¼ 1;2; . . . ;n ð3Þ

C2;½l� P C1;½l� þ
Xn

j¼1

ðzj;l � p2;jÞ; l ¼ 1;2; . . . ;n ð4Þ

C2;½l� P C2;½l�1� þ h2;½l�1� � t2 þ
Xn

j¼1

ðzj;l � p2;jÞ; l ¼ 1;2; . . . ;n ð5Þ

hi;½j� 2 f0;1g; i ¼ 1;2; j ¼ 1;2; . . . ;n ð6Þ
zj;k 2 f0;1g; j; k ¼ 1;2; . . . ;n ð7Þ

Constraint (1) specifies that exactly only one job can be sched-
uled to position k for any job j. Constraint (2) specifies that job j has
to be scheduled to exactly one position. Constraint (3) defines the
completion time of the lth ranked job on M1. Constraints (4) and (5)
insure that a job’s completion time on M2 is no earlier than that
job’s completion time on M1 plus that job’s processing time on
M2 and its previous job’s completion time on M2 plus that job’s
processing time on M2.

3. The proposed solution methods

In this section, two critical properties of optimal schedules are
described and two heuristics, H&J algorithm and HD algorithm,
are proposed.

3.1. Basic properties

The two properties of optimal schedules, Lemmas 1 and 2,
which were initially provided by Kubiak et al. (2002), were used
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in this study. Lemma 1 was applied to HD algorithm to enhance its
performance. Both Lemmas 1 and 2 were applied to B&B algorithm
to enable a decrease in branching nodes. The B&B algorithm could
accordingly effectively increase performance. The two properties
are described as follows.

Lemma 1. There exists an optimal schedule
P

such that jobs in sets

J
P
k are in Johnson order.

Lemma 2. There exists an optimal schedule
P

such that if p1;j0 6 p1;j,

p2;j0 P p2;j, j0 2 J
P
k and j 2 J

P
l , then k 6 l.
3.2. H&J algorithm

The authors proposed the first heuristic (H&J), which combined
two heuristics of HI algorithm (Cheng & Wang, 1999, 2000) and H
algorithm (Breit, 2004), with Johnson’s algorithm. The proposed
algorithm required O(nlogn) computation time, and is described
as follows.

Step 1. Use Johnson’s algorithm to schedule the jobs and let the
corresponding schedule be S1.
Step 2. Sequence the jobs in a non-increasing order of p2,j/p1,j,
and let the corresponding schedule be S2.
Step 3. Let Jk and Jl be two jobs with the largest and the second
largest processing time on M2, respectively, i.e.,
p2,k P p2,l P max p2,j for j = 1,. . .,n, j – k, and j – l. The jobs are
sequenced in the same sequence as that in Step 2 except that
Jk and Jl are scheduled as the first two jobs such that the make-
span is minimized. Let the corresponding schedule be S3.
Step 4. Let Ja and Jb be two jobs with the largest and the second
largest processing time on M1 and M2, respectively, i.e.,
p1,a + p2,a P p1,b + p2,b P max{p1,j + p2,j} for j = 1, � � � ,n, j – a,b.
And let Jc be the job with the largest processing time on M2,
other than job Ja, i.e., p2,c = max{p2,jjJj 2 Sn Ja}.
Step 5. Construct schedule S4 by moving Ja to the first position in S2.
Step 6. Construct schedule S5 by moving Ja to the last position in S4.
Step 7. Sequence Ja and Jc as the first two jobs such that the max-
imum completion time of these jobs is minimized, and
sequence other jobs after Ja and Jc in the same order as that in
S2. Let the schedule be S6.
Step 8. Sequence Ja and Jb as the first two jobs such that the max-
imum completion time of these jobs is minimized, and
sequence other jobs after Ja and Jc in the same order as that in
S2. Let the schedule be S7.
Step 9. Select the best schedule from S1, S2, S3, S4, S5, S6 and
S7, named it SH&J, and its makespan is CH&J

max ¼minfCmaxðS1Þ;Cmax

ðS2Þ; � � � ;CmaxðS7Þg.
3.3. HD algorithm

The authors developed the second heuristic and named it HD
algorithm, which involved two main phases. The first phase se-
quenced jobs according to differences in processing times of jobs
on two machines, and performed local adjustment for jobs be-
tween two consecutive holes by Lemma 1. The second phase in-
volved insert procedures including forward and backward insert,
and also performed local adjustment for jobs between two consec-
utive holes by Lemma 1. The proposed algorithm had polynomial
time complexities, O(n2), and is described as follows.

First phase

Step 1. Compute difference in processing time of every job on M1

and M2, that is, dj = p1,j � p2,j. Sequence the jobs in a non-
decreasing order of dj.
Step 2. Perform local adjustment for jobs between two consecu-
tive holes by Lemma 1. Let the schedule be S and the corre-
sponding makespan be Cmax(S).
Second phase

Step 3. Let l denote the position index and its initial value be 1.
Let Sa = {J1, . . . , Jn}.
Step 4. Select Jf, where p1,f = min{p1,j}, j 2 Sa and p1,f 6 p2,f, and
forward insert Jf to the lth position. Perform Step 2 to obtain
S0, and its corresponding makespan Cmax(S0).
Step 5. If Cmax(S0) < Cmax(S) has met or Cmax(S0) = Cmax(S) has not
all met in three successive times, then S = S0, Cmax(S) = Cmax (S0),
and Sa = Sa � {Jf}; otherwise, go to Step 6. If l < n, then let l = l + 1
and back to Step 4.
Step 6. Let l denote the position index and its initial value be n.
Let Sb = {J1,. . .,Jn}.
Step 7a. Select Jb1 and Jb2, where p2,b1 = min{p2,j}, j 2 Sb and
p2,j 6 p1,j, and p2,b2 = min{p2,j}, j 2 Sb � {Jb1} and p2,j 6 p1,j. Back-
ward insert Jb1 and Jb2 to the lth position respectively and obtain
two different schedules.
Step 7b. The two schedules obtained above are applied to per-
form Step 2, and then obtain S0b1 and S0b2, respectively. Select
the better schedule from S0b1 and S0b2, and the makespan of the
selected schedule is C0max ¼minfCmaxðS0b1Þ;CmaxðS0b2Þg. If
C0max ¼ CmaxðS0b1Þ, then Jb = Jb1, and S0 ¼ S0b1; otherwise, Jb = Jb2

and S0 ¼ S0b2.
Step 8. If Cmax(S0) < Cmax(S) has met or Cmax(S0) = Cmax(S) has not
all met in three successive times, then S = S0, Cmax(S) = Cmax(S0),
and Sb = Sb � {Jb}; otherwise, go to Step 9. If l > 1, then let
l = l � 1 and back to Step 7a.
Step 9. The best schedule is SHD = S, and yields its corresponding
makespan, CHD

max ¼ CmaxðSÞ.
4. Branch and bound algorithm

In order to evaluate the performance of H&J and HD, the authors
employed the branch and bound (B&B) algorithm to obtain the
optimum. The key elements of the B&B procedures were the
branching rule which breaks up the feasible set of solutions, the
lower bounding procedure, and the rule for selecting the next
subproblem to be solved. We referred to Sule’s procedure of
B&B (1997) and developed our B&B algorithm.

4.1. Branching step

The branching rule that we proposed to use is the best bound
search. Forward branching method employed when the total work-
load (including processing times and hole’s times) of M2 is larger
than that of M1; otherwise, the backward branching method is
used. The tree structure has its root node at level 0 in which none
of the jobs are placed in any position of the sequence. Level 1 is
constructed from the root by branching at each job which satisfies
Lemmas 1 and 2. For example, when there are n jobs, there must be
fewer than n nodes at level 1. Next, at each node of level 1, we cre-
ate fewer than (n � 1) children at level 2. Expanding likewise, we
can generate the tree structure where at level k, we have a partial
solution with the first k jobs (forward branching) or the last k jobs
(backward branching).

4.2. Bounding step

Let the initial upper bound (UB) be the better solution of H&J
and HD algorithms, namely, UB ¼minfCHD

max; C
H&J
maxg. The bound is

updated whenever a node of the search tree results in a makespan



eJ

eJfJ

fJ
1, fC

1,eC

2,eC2, fC

1M

2M

Fig. 4. Scheme of LB2
4.

L.-M. Liao, C.-H. Tsai / Computers & Industrial Engineering 56 (2009) 306–311 309
smaller than the current upper bound. Determine a lower bound
(LB) at each node of the tree. Since the policy of maintenance is
dependent on the number of finished jobs, that is, xi jobs have been
done on Mi, the machine maintenance task occurs immediately. For
convenient description, let Je and Jf be two unscheduled jobs with
respectively the shortest and the second shortest processing time
on M1. Moreover, let Jk and Jl be two unscheduled jobs with respec-
tively the shortest and the second shortest processing time on M2.
The LB is derived as follows.

(1) LB1 ¼
Pn

j¼1p1;j þ
Pn

j¼1ðh1;½j�1� � t1Þ þ p2;k ¼ C1;max þ p2;k

(2) LB2 = C1,max + p2,k + min {max{(p2,l � p1,k � h1,[n�1] � t1),0},
(p2,l � p2,k)}

(i) If p2,l > p1,k + h1,[n�1] � t1 and Jk is placed in the last posi-
tion of the sequence, then LB1

2 ¼
Pn

j¼1p1;j þ
Pn

j¼1ðh1;½j�1� � t1Þ
þp2;k þ ðp2;l � p1;k � h1;½n�1� � t1Þ ¼ C1;max þ p2;k þ ðp2;l � p1;k�
h1;½n�1� � t1Þ, as shown in Fig. 1.
(ii) If p2,l > p1,k + h1,[n�1] � t1 and Jl is placed in the last posi-
tion of the sequence, then LB2

2 ¼
Pn

j¼1p1;j þ
Pn

j¼1ðh1;½j�1� � t1Þ
þp2;k þ ðp2;l � p2;kÞ ¼ C1;max þ p2;l, as shown in Fig. 2.
From (i) and (ii), we know that minfLB1

2; LB2
2g ¼ C1;max þ p2;k

þminfðp2;l�p1;k�h1;½n�1� � t1Þ;ðp2;l�p2;kÞg, if p2,l > p1,k +
h1,[n�1] � t1. Therefore, LB2 = C1,max + p2,k + min{max{(p2,l

� p1,k � h1,[n�1] � t1),0},(p2,l � p2,k)}.
(3) LB3 ¼

Pn
j¼1p2;j þ

Pn
j¼1ðh2;½j�1� � t2Þ þ p1;e

(4) LB4¼
Pn

j¼1p2;jþ
Pn

j¼1ðh2;½j�1� �t2Þþp1;eþminfmaxfðp1;f �p2;eÞ;
0g;ðp1;f �p1;eÞg
M

M

M

M

M

M

(i) If p1,f > p2,e, and Je is placed in the first position of the sche-
dule, then LB1

4¼
Pn

j¼1p2;jþ
Pn

j¼1ðh2;½j�1� � t2Þþp1;eþðp1;f �p2;eÞ,
as shown in Fig. 3.
(ii) If p1,f > p2,e, and Jf is placed in the first position of the
sequence, then LB2

4 ¼
Pn

j¼1p2;j þ
Pn

j¼1ðh2;½j�1� � t2Þ þ p1;f , as
shown in Fig. 4.
From (i) and (ii), we know that minfLB1

4; LB2
4g ¼Pn

j¼1p2;jþ
Pn

j¼1ðh2;½j�1��t2Þþp1;eþminfðp1;f�p2;eÞ;ðp1;f�p1;eÞg,
if p1,f > p2,e. Therefore, LB4¼

Pn
j¼1p2;jþ

Pn
j¼1ðh2;½j�1��t2Þþp1;eþ

minfmaxfðp1;f�p2;eÞ;0g;ðp1;f�p1;eÞg.
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(5) LB5 = C1,max + p2,k + min{max{(p2,l + t2 � p1,k� h1,[n�1]� t1),0},
(p2,l � p2,k)}, when a hole occurs before the last job on M2.

(i) If p2,l + t2 > p1,k + h1,[n�1] � t1 and Jk is placed in the last
position of the sequence, then LB1

5 ¼ C1;max þ p2;k þ ðp2;l þ t2

�p1;k � h1;½n�1� � t1Þ, as presented in Fig. 5.
(ii) If p2,l + t2 > p1,k + h1,[n�1] � t1 and Jl is placed in the last
position of the sequence, then LB2

5 ¼ C1;max þ p2;l, as pre-
sented in Fig. 6.
From (i) and (ii), we know that minfLB1

5; LB2
5g ¼ C1;maxþ

p2;k þ minfðp2;l þ t2 � p1;k � h1;½n�1� � t1Þ; ðp2;l � p2;kÞg, if
p2,l + t2 > p1, k + h1,[n�1] � t1. Therefore, LB5 = C1,max + p2,k +
min{max{(p2,l + t2 � p1,k � h1,[n�1] � t1),0},(p2,l � p2,k)}.

(6) LB = max{LB2,LB4,LB5}.From above derivation, it can be seen
that LB2 P LB1, LB4 P LB2, and LB5 P LB1. Therefore,
LB = max{LB2,LB4,LB5}.

4.3. Fathoming step

For each new node, we apply the following three fathoming
tests to help us prune nodes:

(1) If the lower bound is larger than or equal to UB, i.e., LB P UB,
then the node is dominated by the best solution so far. (Non-
optimal solution.)
(2) If the node has no child, then prune it. (Infeasible solution.)
(3) If the node is a feasible solution and its corresponding make-
span is smaller than UB, then update the best solution; other-
wise, prune it. (Feasible solution.)

5. Experiment and results

This section presents the evaluation of the performances of H&J
and HD algorithms by computational experiments, where all the
algorithms were coded in C++ and run on a Pentium 2.0 G PC. The
experiments conducted under the following three categories:
kJ

kJ
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Table 1
Results of comparison between HD and H&J (holes on M2)

n # of instances % of CHD
max 6 CH&J

max

CHD
max < CH&J

max CHD
max ¼ CH J

max CHD
max > CH&J

max

20 4 76 0 100
30 3 77 0 100
40 0 80 0 100
50 1 79 0 100
60 0 80 0 100

Total 8 392 0 100

Table 2
Performance of H&J (holes on M2)

n # of CH&J
max ¼ C�max % of CH&J

max ¼ C�max

x = 3 x = 5 x = 7 x = 9

20 17 20 20 19 95.00
30 20 20 18 19 96.25
40 20 20 20 20 100.00
50 20 20 19 20 98.75
60 20 20 20 20 100.00

Average 98.00

Table 3
Performance of HD (holes on M1 or M2)

n # of CHD
max ¼ C�max % of CHD

max ¼ C�max

x = 3 x = 5 x = 7 x = 9

20 20 20 20 20 100
30 20 20 20 20 100
40 20 20 20 20 100
50 20 20 20 20 100
60 20 20 20 20 100

Average 100

Table 4
Results of comparison between HD and H&J (holes on M1 and M2)

n # of instances % of CHD
max 6 CH&J

max

CHD
max < CH&J

max CHD
max ¼ CH&J

max CHD
max > CH&J

max

20 6 314 0 100.00
30 13 318 2 100.00
40 9 318 3 100.00
50 7 312 2 99.69
60 3 320 0 100.00

Total 38 1555 7 99.94

Tab
Per

n

20
30
40
50
60

Ave
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(1) holes on M1;
(2) holes on M2; and
(3) holes on M1 and M2.
le 5
formance of H&J (holes onM1 and M2)

# of CHD
max ¼ C�max

3 � 3,5,7,9 5 � 3,5,7,9 7 � 3,5,7,9

79 77 78
77 73 80
78 77 79
77 77 80
79 78 80

rage
The experimental instances were generated randomly. The total
number of jobs, n, are 20, 30, 40, 50 and 60 while the numbers of
block jobs, x, are 3, 5, 7, and 9 (four different blocks). Therefore,
experimental instances for the first and second condition were
both 400, and experimental instances for the third condition were
1600.

The job processing times (pi,j) and the lengths of the holes (ti)
were randomly generated from uniform distribution in [20,50].
With assembly line balancing taken into consideration, the pro-
cessing times were adjusted as follows. (1) If machine maintenance
occurs only on M1, then p1,j is adjusted as p1,j � x1/(x1 + 1). (2) If
machine maintenance occurs only on M2, then p2,j is adjusted as
p2,j � x2/(x2 + 1).

The two proposed algorithms were analyzed in terms of
solution quality. First, HD was compared with H&J, and both
were evaluated in terms of relative performance. Then, the
mean and worst relative performance of H&J and HD were cal-
culated according to the optimum. The process is described as
follows.

(1) Mean relative performance of H&J and HD:
MR ¼ 1
N

XN

i¼1

CmaxðiÞ � C�maxðiÞ
C�maxðiÞ

 !
� 100%
(2) Worst relative performance of H&J and HD:
WR ¼maxi
CmaxðiÞ � C�maxðiÞ

C�maxðiÞ

� �
� 100%

For the first category, the solution quality of HD was exactly
the same as that of H&J, and both completely equal to optimum.
For the second category, the solution quality of HD is slightly
superior to that of H&J, as shown in Table 1. H&J and HD obtained
optimum solution in all 400 instances, which are 98% and 100%
optimality, respectively, as shown in Tables 2 and 3. Apparently,
in the first two categories, HD obtained optimum solution in all
800 instances, which was 100% optimality. In other words, HD
performs excellently when holes occur either on the first or sec-
ond machine.

The third category included 16 combinations of x1 � x2, where
x1 and x2 are the number of holes on M1 and M2, respectively.
For each combination, 100 replications were run, and the total
instances were 1600. The results are given in Table 4. As can
be seen, HD performed better than H&J. Of the 1600 instances,
H&J and HD obtain the optimum solution in 1562 and 1582 in-
stances, respectively. The worst relative error values of H&J and
HD, as shown in Tables 5 and 6, are only 1.3100% and 0.2913%,
respectively, and the mean are 0.0058% and 0.0017%,
respectively.

The average computation times of HD were 0.023 s, 0.060 s,
0.123 s, 0.205 s and 0.343 s for the 20-, 30-, 40-, 50-, and 60-job in-
stance, respectively. The longest computation time of HD is only
% of CH&J
max ¼ C�max MR (WR)%

9 � 3,5,7,9

80 98.13 0.0125 (1.3100)
77 95.94 0.0092 (0.5803)
77 97.19 0.0022 (0.1380)
79 97.81 0.0046 (0.4464)
80 99.06 0.0006 (0.0939)

97.63 0.0058 (1.3100)
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6. Conclusion

This paper has addressed a special case of a two-machine flow-
shop problem with availability constraints imposed on the first or/
and the second machines. Moreover, we have developed a con-
structive heuristic, HD, which is based on the difference in process-
ing times of job on two machines. We observe that the HD
algorithm is slightly superior to H&J algorithm, which modifies
HI algorithm and H algorithm.

When holes only occur on M1, both the percentages of opti-
mum of H&J and HD are 100%; when holes only occur on M2,
the percentages of optimum of two heuristics are 98% and
100%, respectively. As holes occur on M1 and M2, the average
percentages of obtaining the optimum of H&J and HD are
97.63% and 98.88%, respectively. The mean relative performances
of H&J and HD according to the optimum, MR, are 0.0058% and
0.0017%, and the worst relative performances of H&J and HD
according to the optimum, WR, are only 1.3100% and 0.2913%,
respectively. The average computation time of HD is only
0.343 s for the 60-job instances. We may, therefore, conclude
that the performance of the two heuristics is superior, especially
the HD algorithm. HD is not only very close to the optimum but
it obtains excellent efficiency. Also, the proposed modified lower
bound of the B&B algorithm greatly contributes to the computa-
tion efficiency. For future research, it is interesting to develop a
good heuristic for hybrid flowshop problem with various ma-
chine availability constraints.
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