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a b s t r a c t

In this study, we proposed a new technique to compensate the backlight images. Two processing stages,
called the backlight level detection and the backlight image compensation, are proposed. In the backlight
level detection stage, we first transferred the color space to gray space by feature weighting, then obtain
two backlight factors. We apply these two backlight factors to the proposed functional-link-based neuro-
fuzzy network (FNFN) with immune particle swarm optimization (IPSO) for detecting compensation
degree. In the backlight image compensation stage, we also proposed the adaptive cubic curve method
to compensate and enhance the brightness of backlight images according to the compensation degree
of each image. The backlight degree is indicated by histograms of the luminance distribution in the back-
light level detection stage. The experiment results showed that the backlight images can be compensated
effectively.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Digital cameras (DC) are getting more universal in our daily.
They even become one of the most essential functions for mobile
phones. Recently, the techniques of the digital camera have many
appealing features, such as auto focus, auto exposure, etc. How-
ever, users still have chances of getting backlight images, the back-
light problem needs to be improved. In this study, we mainly focus
on addressing an effective compensation method for the backlight
problem.

Recently, some researches about backlight image compensation
have been reported, but the numbers are very scanty (Chin & Lin,
2005; Lin & Huang, 2003; Shimizu, Kondo, Kohashi, Tsumta, &
Komuro, 1992). Shimizu et al. (1992) proposed an algorithm to
compensate exposure in the case of backlighting or excessive
front-lighting, regardless of the position of objects. To achieve this
compensation, not only a new criterion parameter called HIST is
introduced in the system but also fuzzy logic is applied to deter-
mine the amount of compensation. Lin and Huang(2003) proposed
a two-stage compensation technique for improving the appearance
of the pictures. They utilize the fuzzy c-means learning mechanism
and the fuzzy logic rule inference to compensate the back-light
images. To overcome the disadvantages of conventional backlight
image processing methods, such as over-saturation and dimin-
ished contrast, Chin and Lin (2005) proposed a backlight image
ll rights reserved.
detection and compensation algorithm with fuzzy logic and adap-
tive compensation curve. In Lin and Huang (2003) and Chin and
Lin (2005), they are also use fuzzy logic and two backlight factors
to determine the compensation value of backlight images, but they
employed difference ways to extract the two backlight factors from
backlight images.

In this article, there are two major stages, which are the back-
light level detecting and backlight image compensation. First, in
the backlight prediction step, we will transfer images to gray value,
then use pixel for the clustering which will separate the backlight
object and the background. We can gather two backlight factors
from the information which is in result of the clustering and the
gray histogram. We apply these two backlight factors to the pro-
posed functional-link-based neuro-fuzzy network (FNFN) ( Chen,
Lin, & Lin, 2007), for image compensation. We also proposed a
new learning algorithm, called the immune particle swarm optimi-
zation (IPSO) (Lee, Lin, & Chuang, 2006), to train the FNFN model.
Secondly, according to the deductive compensation value of the
FNFN in the backlight compensation stage, we can gather a com-
pensation curve from the backlight image. After the backlight im-
age is transferred through the curve function, it will be acquired a
compensation image. Then following by applying this image with
this technique and obtain a backlight compensation, we will not
have to worry about the backlight problem which is caused by
the main accessories between the light and the lens, when the
photos are taken. This is because all backlight images can be
compensated. In our simulations, we have actually applied
above-mentioned techniques to solve backlight image problems.
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The proposed method performs the accurate detection of the back-
light degree and strong compensation effect in backlight images.

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed compensation method. Next, Section 3 pre-
sents the simulation results of several backlight images.
Conclusions are finally drawn in Section 4.

2. The proposed compensation method

In this section, we will introduce the proposed approach for
backlight image compensation. The flow chart of the proposed
algorithm is shown in Fig. 1.

2.1. Image color space transformation

In order to satisfy the follow-up two unit: the image histogram
and the region clustering, we change images color space from the
RGB color model to the YIQ model, and we adopt to operate on
the luminance Y component only. This design choice takes advan-
tage of the fact that the human eyes are less sensitive to quantize
errors affecting the chrominance components of the image. Eq. (1)
shows the color space transformation from RGB to YIQ.
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2.2. Determine two factors of the backlight image

2.2.1. Backlight factor B_fcm
In a backlight image, the contrast between background and

backlight objects is usually very great. Through observation of
the backlight image histogram, we can find a phenomenon, the dis-
tribution of the luminance between background and backlight ob-
ject that presents the obvious distance. Fig. 2 shows a backlight
image and its histogram.

Therefore, in order to measure the gradient between back-
ground and backlight object in HIST histogram, we utilize sliding
window (SW) to deal with the B_hist factor. HIST is defined as
the ratio between the number of pixels whose brightness is higher
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Fig. 1. Flow chart of the proposed compensation method.
than a threshold value and the total number of pixels in the whole
image. First, we apply the SW to calculate the max SW, when the
accumulation of the HIST is smaller than 0.2. Fig. 3 show the HIST
histogram and the max SW:

We can find a phenomenon through observing, the backlight
degree will raise with the SWmax. So, we define the B_hist as fol-
lowing equation:

B hist ¼ T hist
SWmax

255

� �
; ð2Þ

where Thist(.) was a transfer function which transformed B_hist into
a fuzzy degree. The transfer function is show in the list:

ThistðxÞ ¼
ðx� 0:3Þ=ð0:6� 0:3Þ; if 0:6 > x > 0:3;
1; if x >¼ 0:6;
0; otherwise:

8><
>: ð3Þ
2.2.2. Backlight factor B_fcm
Another backlight factor, we also use the cluster result extract

by fuzzy c-means (FCM) (Pal & Bezdek, 1995) to determine it. Sep-
arately, the background and backlight object represent the bright
and dark area separately in backlight images. Therefore, for the
sake of segmenting background and backlight object, the cluster
number is set to 2. After FCM algorithm, we will obtain two clus-
tering centroid C1and C2. According to the image histogram infor-
mation, the luminance can‘t be accumulated in histogram area
between the background and the backlight object, In other word,
the smaller accumulating amount of luminance between the back-
ground and backlight object is, then the higher the backlight de-
gree is. Based on the characteristic of the above, we can define
another backlight factor, B_fcm for determining the backlight de-
gree of an image:

Bfcm ¼ T fcm

PC2
i¼C1

pðriÞ
ðC2 � C1Þ � pðC1ÞþpðC2Þ

2

 !
ð4Þ

where pðriÞ ¼ ni
n is the probability of the ith gray level, when n was

the total number of pixels in the image and ni was the number of
times the level appeared in the image, Tfcm(.) was a transfer function
which transformed B_fcm into a fuzzy degree. The transfer function
is show in the list:

T fcmðxÞ ¼
ð0:8� xÞ=ð0:8� 0:25Þ; if x gt; 0:8

0 if x > 0:8;

1; otherwise:

8><
>: ð5Þ

The factor, B_fcm, expresses the accumulation of the luminance be-
tween two cluster centroid C1and C2, and the backlight degree is
growing with B_fcm.

2.3. A new functional-link-based neuro-fuzzy network

Recently, neuro-fuzzy networks have been demonstrated in lots
of research (Halgamuge, 1998; Juang & Lin, 1998; Lin & Lin, 1997;
Lin & Xu, 2006; Patra & Pal, 1995; Patra, Pal, Chatterji, & Panda,
1999; Takagi & Sugeno, 1985). Neuro-fuzzy network owns the
advantage of fuzzy system and neural network simultaneously:
one is the inference characteristic of the fuzzy system; the other
one is the system according to the learning ability of the neural
network which can do the adjustment of the fuzzy rule. Therefore,
the neuron-fuzzy network becomes a popular research target pro-
gressively, and applies on various problems, such as control, pre-
diction, classification and pattern recognition. Two typical types
of neuro-fuzzy networks are Mamdani-type (Lin & Lin, 1997; Hal-
gamuge, 1998) and TSK-type neuro-fuzzy networks (Juang & Lin,
1998; Lin & Xu, 2006; Takagi & Sugeno, 1985). For Mamdani-type



Fig. 2. The example of the backlight image and histogram.

Fig. 3. The HIST histogram and the max window.
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neuro-fuzzy networks, the minimum fuzzy implication is used in
fuzzy reasoning. Meanwhile, for TSK-type neuro-fuzzy networks,
the consequence of each rule is a function input variable. The gen-
eral adopted function is a linear combination of input variables
plus a constant term. Many researchers (Juang & Lin, 1998; Lin &
Xu, 2006) have shown that using a TSK-type neuro-fuzzy network
achieves a superior performance in network size and learning
accuracy than that of Mamdani-type neuro-fuzzy networks. In
the classic TSK-type neuro-fuzzy network, which is a linear poly-
nomial of the input variables, the system output is approximated
locally by the rule hyper-planes. Nevertheless, the traditional
TSK-type neuro-fuzzy network does not take a full advantage of
the mapping capabilities that the consequent part might offer.
The TSK-type model result didn’t make the efficient satisfaction
in some non-linear or high complexity problems. Therefore, this
article uses a more valid network structure, and the consequent
part of the rules has led to the FLNN models (Patra & Pal, 1995; Pa-
tra et al., 1999), is named the functional-link-based neuro-fuzzy
network (FNFN). Each fuzzy rule that corresponds to a FLNN con-
sist the functional expansion of the input variables. The orthogonal
polynomials and linearly independent functions are adopted as
functional link neural network bases.

This subsection describes the FNFN model, which uses a nonlin-
ear combination of input variables. Each fuzzy rule corresponds to
a sub-FLNN, comprising a functional link. Fig. 4 presents the struc-
ture of the proposed FNFN model. Nodes in layer 1 are input nodes,
which represent input variables. Nodes in layer 2 are called mem-
bership function nodes and act as membership functions, which
express the input fuzzy linguistic variables. Nodes in this layer
are adopted to determine Gaussian membership values. Each node
in layer 3 is called a rule node. Nodes in layer 3 are equal to the
number of fuzzy sets that correspond to each external linguistic in-
put variable. Links before layer 3 represent the preconditions of the
rules, and links after layer 3 represent the consequences of the rule
nodes. Nodes in layer 4 are called consequent nodes, each of which
is a nonlinear combination of the input variables. The node in layer
5 is called the output node; it is recommended by layers 3 and 4,
and acts as a defuzzifier.

The FNFN model realizes a fuzzy if-then rule in the following
form:

Rule-j : IF x1 is A1j and x2 is A2j . . . andxi is Aij . . . and xN is ANj

THEN ŷj ¼
PM
k¼1

wkj/k

¼ w1j/1 þw2j/2 þ � � � þwMj/M ;

ð6Þ

where xi and ŷj are the input and local output variables, respec-
tively; Aij is the linguistic term of the precondition part with Gauss-
ian membership function; N is the number of input variables; wkj is
the link weight of the local output; uk is the basis trigonometric
function of the input variables; M is the number of basis function,
and Rule-j is the jth fuzzy rule.

The operation functions of the nodes in each layer of the FNFN
model are now described. In the following description, u(l) denotes
the output of a node in the lth layer.

Layer 1 (input node): No computation is performed in this layer.
Each node in this layer is an input node, which corresponds to one
input variable, and only transmits input values to the next layer
directly:

uð1Þi ¼ xi: ð7Þ

Layer 2 (membership function node): Nodes in this layer corre-
spond to a single linguistic label of the input variables in Layer 1.
Therefore, the calculated membership value specifies the degree
to which an input value belongs to a fuzzy set in layer 2. The imple-
mented Gaussian membership function in layer 2 is

uð2Þij ¼ exp � ½u
ð1Þ
i �mij�2

r2
ij

 !
; ð8Þ

where mij and rij are the mean and variance of the Gaussian mem-
bership function, respectively, of the jth term of the ith input vari-
able xi.

Layer 3 (rule node): Nodes in this layer represent the precondi-
tioned part of a fuzzy logic rule. They receive one-dimensional
membership degrees of the associated rule from the nodes of a
set in layer 2. Here, the product operator described above is
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Fig. 4. Structure of proposed FNFN model.
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adopted to perform the IF-condition matching of the fuzzy rules. As
a result, the output function of each inference node is

uð3Þj ¼
Y

i

uð2Þij ; ð9Þ

where the
Q

iu
ð2Þ
ij of a rule node represents the firing strength of its

corresponding rule.
Layer 4 (consequent node): Nodes in this layer are called conse-

quent nodes. The input to a node in layer 4 is the output from layer
3, and the other inputs are nonlinear combinations of input vari-
ables from a functional link neural network, where the nonlinear
combination function has not used the function tanh(.), as shown
in Fig. 4. For such a node,

uð4Þj ¼ uð3Þj �
XM

k¼1

wkj/k; ð10Þ

where wkj is the corresponding link weight of functional link neural
network and wk is the functional expansion of input variables. The
functional expansion uses a trigonometric polynomial basis func-
tion, given by [x1sin(px1)cos(px1)x2sin(px2)cos (px2)] for two-
dimensional input variables. Therefore, M is the number of basis
functions, M = 3 � N, where N is the number of input variables.

Layer 5 (output node): Each node in this layer corresponds to a
single output variable. The node integrates all of the actions rec-
ommended by layers 3 and 4 and acts as a defuzzifier with,

y ¼ uð5Þ ¼
PR

j¼1uð4ÞjPR
j¼1uð3Þj

¼
PR

j¼1uð3Þj ð
PM

k¼1wkj/kÞPR
j¼1uð3Þj

¼
PR

j¼1uð3Þj ŷjPR
j¼1uð3Þj

; ð11Þ

where R is the number of fuzzy rules, and y is the output of the
FNFN model.

As described above, the number of tuning parameters for the
FNFN model is known to be 5 � N � R, where N and R denote the
number of inputs and existing rules, respectively.
2.4. The proposed immune particle swarm optimization learning
algorithm

In neuro-fuzzy networks, we need to use some learning algo-
rithm for network parameter adjusting. Many neuro-fuzzy net-
works with the learning of the network parameter were done
by using backpropagation (BP) learning algorithm (Jishuang,
Chao, & Zhengzhi, 2003; Juang & Lin, 1998; Lin & Lin, 1997;
Nauck & Kruse, 1993), but it is based on gradient descents that
are easily trapped at local minima. The other drawback is aiming
at a different network, we must describe it by different mathe-
matical models, and it will increase the complexity of solving
the problem. Recently, evolutionary computation has designed
to do the optimization of parameters for neuro-fuzzy networks
and it solves optimization problems. GA (Farag, Quintana, & Ger-
mano, 1998; Lin & Xu, 2006) and IA (Kalinli & Karabogab, 2005;
Wen & Song, 2004; Zuo, Li, & Ban, 2003) are two popular evolu-
tionary algorithms that simulate the biological behavior and hu-
man physiological function. Many researches have already been
successful to utilize these two kinds of evolutionary algorithms
to solve a lot of problems. GA and IA are very efficient at explor-
ing the global search space, but the problems about local mini-
mum and premature convergence still exist. Therefore, for the
sake of enhancing the search ability of the global best solution
and avoiding trap in a local optimal solution, we proposed an im-
proved algorithm which combines PSO and IA, is named the im-
mune particle swam optimization (IPSO) to realize network
parameter learning in FNFN. The PSO ( Kennedy & Eberhart,
1995), was proposed by Kennedy and Eberhart, has proved to
be very effective for solving global optimization according to a
small amount of calculation, and it is very easy to understand
and implement. In order to avoiding the trapping in a local opti-
mal solution and to ensuring the searching capability of near glo-
bal optimal solution, mutation plays an important role in IPSO.



Fig. 6. Coding a FNFN into an antibody in the IPSO method.
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Therefore, we employ the merits of PSO to improve mutation
mechanism of immune algorithm.

This subsection describes an efficient immune particle swarm
optimization (IPSO) learning method for the FNFN model design.
Analogous to the biological immune system, the proposed algo-
rithm has the capability of seeking feasible solutions while main-
taining diversity. The proposed IPSO is combining the immune
algorithm (IA) and the particle swarm optimization (PSO) to per-
form parameter learning. The IA uses the clonal selection principle
to accelerate the search and increase global search capacity. The
PSO algorithm has been proved to be very effective for solving glo-
bal optimization. It is not only a recently invented high-perfor-
mance optimizer that is very easy to understand and implement,
but it also requires little computational bookkeeping and generally
only a few lines of code. In order to avoid trapping in a local opti-
mal solution and to ensure the search capability of a near global
optimal solution, mutation plays an important role in IPSO. There-
fore we employed the advantages of PSO to improve the mutation
mechanism of immune algorithm. A detailed IPSO is presented in
Fig. 5. The whole learning process is described step-by-step below.

2.4.1. Coding step
The coding scheme consists of the coding done by the IPSO. The

IPSO codes the adjustable parameters of a FNFN into an antibody,
as shown in Fig. 6, where MSi represents the parameters of the
antecedent of the ith rule in the FNFN and Ci represents the param-
eters of the consequent of the ith rule, respectively. In this paper, a
Gaussian membership function is used with variables representing
the mean and deviation of the membership function. Each fuzzy
rule in Fig. 4 has the form in Eq. (6), where mij and rij represent
a Gaussian membership function with mean and deviation of the
jth dimension and ith rule node and wim represents the corre-
sponding parameters of consequent part, and m is equal the M in
Eq. (6).
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Fig. 5. Flowchart of the proposed IPSO.
2.4.2. Initial population production
In the immune system, the antibodies are produced in order to

cope with the antigens. In other words, the antigens are recognized
by a few of high affinity antibodies. All of the initial antibodies uti-
lizing a real variable string are generated by random.

2.4.3. Calculate affinity values
For the large number of various antigens, the immune system

has to recognize them for their posterior influence. In biological
immune system, affinity refers to the binding strength between a
single antigenic determinants and an individual antibody-combin-
ing site. The process of recognizing antigens is to search for anti-
bodies with the maximum affinity with antigens. In this paper,
the affinity value is designed according to the follow formulation:

Affinity value ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

PNt
k¼1ðyk � yd

kÞ
2

q ; ð12Þ

where yk represents the kth model output, yd
k represents the desired

output, and Nt represents the number of the training data. In the
problems, the higher affinity refers to the better antibody.

2.4.4. Production of sub-antibodies
In this step, we will generate several neighborhoods to maintain

solution variation. This strategy can prevent the search process
from becoming premature. We can generate several clones for each
antibody on feasible space by Eqs. (13) and (14). Each antibody re-
gards as parent while the clones regard as children (sub-antibod-
ies). In other words, children can regard as several
neighborhoods of near parent.

mean and deviation : clons½childreni c� ¼ antibody½parenti� þ a;
ð13Þ

weight : clons½childreni c� ¼ antibody½parenti� þ b; ð14Þ

where parenti represents the ith antibody from the antibody popu-
lation; childreni_c represents clones number c from the i-th anti-
body; a and b are parameters that control the distance between
parent.

2.4.5. Mutation of sub-antibodies based on particle swarm
optimization

In order to avoid trapping in a local optimal solution and to en-
sure the search capability of near global optimal solution, mutation
plays an important role in IPSO. Through the mutation step, only
one best child can survive to replace its parent and enter the next
generation. Hence, we employed the advantages of particle swarm
optimization (PSO) to improve mutation mechanism.

PSO is not only a recently invented high-performance optimizer
that is very easy to understand and implement, but it also requires
little computational bookkeeping and, generally, only a few lines of
code. Each particle has a velocity factor * mi and a position factor
* xi to represent a possible solution. The velocity for each particle
is updated by
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* miðkþ 1Þ ¼ x�* miðkÞ þ /1 � randðÞ�
ðLbest�* xiðkÞÞ þ /2 � randðÞ � ðGbest�* xiðkÞÞ; ð15Þ

where x is the coefficient of inertia, u1 is the cognitive study, and
u1 is the group study. The rand() is uniformly distributed random
numbers in [0,1]. The term * mj is limited to the range �* mmax.
If the velocity violates this limit, it will be set at its proper limit.
Changing velocity enables every particle to search around its indi-
vidual best position and global best position. Based on the updated
velocities, each particle changes its position according to the
following:

* xiðkþ 1Þ ¼* xiðkÞþ* miðkþ 1Þ: ð16Þ

When every particle is updated, the affinity value of each particle is
calculated again. If the affinity value of the new particle is higher
than those of local best, then the local best will be replaced with
the new particle. The mutation step flowchart is presented in Fig. 7.

2.4.6. Promotion and suppression of antibodies
In order to affect antigens and keep diversity to a certain degree,

we use information entropy theory to measure the diversity of
antibodies. If the affinity between two antibodies is greater than
the suppression threshold Thaff, these two antibodies are similar,
and the antibody of lower affinity value is reduced a small amount
of value k. The antibodies with high antigenic affinity are trans-
formed into long-lived B memory cells; others with low antigenic
affinity are affected. Fig. 8 shows the immune algorithm composed
of N antibodies having L genes.

From information entropy theory, we get

IElðNÞ ¼
XN

i¼1

�Pil log Pil; ð17Þ

where Pil is the probability that the i-th allele comes out at the l-th
gene. The diversity of the genes is calculated using Eq. (13). The
average entropy value IE(N) of diversity can be also computed as
follows:

IEðNÞ ¼ 1
L

XL

l¼1

IElðNÞ; ð18Þ
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where L is the size of the gene in a antibody. There are two kinds of
affinities in IPSO. One explains the relationship between an anti-
body and an antigen using Eq. (12). The other accounts for the de-
gree of association between the j-th antibody and the k-th
antibody and measures how similar these two antibodies are. It
can calculated by using

Affinity Abjk ¼
1

1þ IEð2Þ : ð19Þ
2.4.7. Elitism selection
When a new generation is created, the risk of losing the best

individuals is always existent. In this study, we adopt elitism selec-
tion to overcome the above-mentioned problem. Therefore, the
antibodies are ranked in ascending order to their affinity value.
The best individuals are kept as the parent for the next generation.
Elitism selection improves the efficient of IPSO considerably, as it
prevents losing the best result.

2.5. Image compensation

In the previous sub-section, we proposed a procedure to detect
the backlight degree of an image. After the backlight degree is de-
tected, we can compensate the backlight image according to the
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the mutation step.



Table 1
The initial parameters before training

Parameters Value

Antibody population Size 50
Coding type Real number
Clones number c 5
x 0.25
u1 0.8
u2 1.25
Suppression threshold (Thaff) 0.8
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detected backlight degree. In light of the characteristic of the con-
trast degree in backlight image, we have to increase the luminance
of backlight object and reduce the luminance of background.
Therefore, this paper depends on the adaptive cubic curve method
which is determined by the backlight degree to compensation a
backlight image. The element that the curve constitutes includes
the upward and downward parabolic curves, and the curve can
be adjustable by tuning point (TP). The curve shown in the follow-
ing figure: Fig. 9.
Fig. 10. (a) The original image and (b) the compensated image.

Fig. 9. An adaptive cubic curve.

Fig. 11. (a) The original image and

Fig. 12. (a) The original image and (b) the compensated image.
The tuning point (a,b) is determine by backlight degree which is
computed through a well-trained FNFN. The cubic curve which is
described by Eq. (20):

f ðxÞ ¼
�b
a2 ðx� aÞ2 þ b; if x < a;
ð255�bÞ
ð255�aÞ2

ðx� aÞ2 þ b; otherwise:

8<
: ð20Þ

The above-mentioned equation is combined with the half-upward
curve and the half-downward parabolic curves, and the value a
and b is calculated as:

a ¼ ðC1 þ C2Þ=2
b ¼ aþ ðBdegree � ðC2�aÞÞ

�
; ð21Þ

where C1 and C2 are the cluster center which are obtained by FCM
algorithm; Bdegree is the backlight degree which is obtained by
FNFN. Finally, we can get a compensated image, when all pixels in
backlight image are transformed via the adaptive cubic curve.
(b) the compensated image.



Table 2
Performance comparison of various methods
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3. Experiment results

In this section, we will apply the proposed FNFN with IPSO
learning to estimate the backlight degree of a backlight image.
The initial parameters of FNFN with IPOS are shown in Table 1.

We compensated three backlight images for testing the effi-
ciency of the proposed method. Figs. 10(a), 11(a) and 12(a) show
the original backlight images while Figs. 10(b), 11(b) and 12(b)
show the compensated images.

In addition, we also compared our method with that of other
method (Chin & Lin, 2005). In Chin & Lin (2005), they compensated
backlight images with fuzzy C-mean learning algorithm and fuzzy
inference. The comparison results are shown in Table 2. In this ta-
ble, the first column is the original backlight images. The second
column is the compensated images access by fuzzy C-mean meth-
od (Chin & Lin, 2005) and the third column is the compensated
images access by our method. In Chin & Lin (2005), a two-stage
processing technique utilizing the fuzzy c-means learning mecha-
nism and the fuzzy logic rule inference is proposed to compensate
the backlight images. In their method, the luminance is only ad-
justed in the local area (i.e., the object) of the backlight images.
Therefore, the edge the local area of the backlight images is too
sharp. For this reason, we use an adaptive cubic curve for compen-
sating the whole area of each backlight images. In Table 2, we can
find that the edges between object and background of our method
are more natural than fuzzy c-mean method.

4. Conclusions

In this paper, a new backlight image compensation method,
which combines the proposed FNFN with IPSO learning method
and the adaptive multi-cubic curve, is proposed. In the backlight
level detecting stage, we have extracted two operative backlight
factors, and the FNFN model is based on the two factors that can
accurately detect the compensation degree. In the compensation
stage, we using adaptive compensation curve effectively to im-
prove image backlight problem and to accord with the generaliza-
tion state of backlight images. Simulation results show that our
method can obtain more natural image backlight compensation
in the edges between object and background.
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