
A novel parametric fuzzy CMAC network and its applications

Cheng-Jian Lin a,*, Chi-Yung Lee b

a Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung County 411, Taiwan, ROC
b Department of Computer Science and Information Engineering, Nankai University of Technology, Nantou County 542, Taiwan, ROC

Applied Soft Computing 9 (2009) 775–785

A R T I C L E I N F O

Article history:

Received 26 October 2005

Received in revised form 19 October 2007

Accepted 12 June 2008

Available online 21 October 2008

Keywords:

TSK-type fuzzy model

Cerebellar model articulation controller

(CMAC)

Self-clustering

Backpropagation

Chaotic

Approximation

A B S T R A C T

This paper shows fundamentals and applications of the novel parametric fuzzy cerebellar model

articulation controller (P-FCMAC) network. It resembles a neural structure that derived from the Albus

CMAC algorithm and Takagi–Sugeno–Kang parametric fuzzy inference systems. The Gaussian basis

function is used to model the hypercube structure and the linear parametric equation of the network

input variance is used to model the TSK-type output. A self-constructing learning algorithm, which

consists of the self-clustering method (SCM) and the backpropagation algorithm, is proposed. The

proposed the SCM scheme is a fast, one-pass algorithm for a dynamic estimation of the number of

hypercube cells in an input data space. The clustering technique does not require prior knowledge of

things such as the number of clusters present in a data set. The backpropagation algorithm is used to tune

the adjustable parameters. Illustrative examples were conducted to show the performance and

applicability of the proposed model.

� 2008 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsev ier .com/ locate /asoc
1. Introduction

In 1975, the cerebellar model articulation controller (CMAC)
developed by Albus [1,2], is an artificial neural network inspired by
the cerebellum. The advantages of the CMAC network are
summarized as follows: a simple local neural network that can
treat as a lookup table, fast learning speed, high convergence rate,
and easier hardware implementation, etc. Because of the simple
structure and fast learning speed of the CMAC network, it has been
successfully applied in many fields, such as identification [3],
control [4], pattern recognition [5], image processing [6], and
equalization [7]. However, there are several limitations for the
Albus’ CMAC network. Using this technique, the input space is
quantized into discrete states as well as larger size overlapped
areas called hypercubes. Each hypercube covers many discrete
states and is assigned a memory cell that stores information for it.
The CMAC network can be viewed as a basis function network that
uses plateau basis functions. In addition to the difference on the
type of basis functions, another major difference of the CMAC
network from the radial or Gaussian basis function networks and
wavelet networks is that the CMAC network its basis functions
each restricted to a local area, i.e., a hypercube. To compute the
output of the network for given input data point, only those basis
* Corresponding author.

E-mail address: cjlin@ncut.edu.tw (C.-J. Lin).

1568-4946/$ – see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2008.06.004
functions assigned to the hypercubes covering the input data point
are needed. Then the first problem that is while the conventional
CMAC network has a constant value assigned to each hypercube,
the data for a quantized state are constant and the derivative
information is not preserved. This problem can be solved by using
non-constant differentiable basis functions, such as spline func-
tions by Reay [8], and fuzzy membership functions by Lin [9], etc.
In this paper, we use mathematical equations to describe the CMAC
network with Gaussian basis functions as receptive field functions.

Secondly, the CMAC network needs an extraordinarily big
memory space to solve high-dimensional problems for imple-
mentation [3]. Thus, the choice of clustering technique in the
CMAC network is an important consideration. This is due to the use
of partition-based clustering techniques, such as fuzzy C-means
(FCM) [10], linear vector quantization (LVQ) [11], fuzzy Kohonen
partitioning (FKP), and pseudo-FKP [12], to perform cluster
analysis. However, such clustering techniques require prior

knowledge of things such as the number of clusters present in a
data set. To solve the above problem, online-based cluster
techniques were proposed [13,14]. But there are still problems
with these methods; that is, the clustering methods only consider
the total variations of the mean and deviation in all dimensions per
input. This is because the cluster numbers increase quickly. In this
paper, we propose a new self-constructing method (SCM) to
partition the input space of the CMAC network.

A neural fuzzy network consists of a set of fuzzy IF–THEN rules
that describe the input–output mapping relationship of the

mailto:cjlin@ncut.edu.tw
http://www.sciencedirect.com/science/journal/15684946
http://dx.doi.org/10.1016/j.asoc.2008.06.004

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785776
network. The antecedents of fuzzy rules partition the input space
into a number of linguistic term sets while the consequent
constituent can be chosen as a fuzzy membership function
(Mamdani-type fuzzy model) [15], a singleton value, or a function
of a linear combination of input variables (i.e., TSK-type fuzzy
model) [16–18]. No matter which type of neural fuzzy networks is
chosen, different consequent constituents result in different types
of fuzzy models. Many researchers [17,18] have been shown that if
a TSK-type fuzzy model is used, the network size and learning
accuracy is superior to those of Mamdani-type fuzzy model. In this
paper, we use a TSK-type fuzzy model to represent the weight
vector of the CMAC network.

This work presents a new network structure, mainly derived
from the CMAC algorithm and Takagi–Sugeno–Kang (TSK) para-
metric fuzzy inference systems [19,20]. The so-called parametric
fuzzy CMAC (P-FCMAC) network resembles the original CMAC
proposed by Albus, in the sense that it is a local network, i.e., for a
given input vector, only a few of the networks nodes (or hypercube
cells) will be active and will effectively contribute to the
corresponding network output. In addition, the internal mapping
structure is built in such a way that it implements, for each CMAC
memory locations, one linear parametric equation of the network
input variance.

The rest of this paper is organized as follows. The fundamentals
of the P-FCMAC network are detailed in Section 2. We also present
the difference between the conventional CMAC network and the
proposed P-FCMAC network. Section 3 presents the learning
algorithm for the P-FCMAC network. The various applications of
the proposed network are shown in Section 4. Section 5 shows the
conclusion of the computer simulation for the P-FCMAC network.

2. The parametric fuzzy CMAC network

In this section, we will review the architecture of the CMAC
network and describe the proposed P-FCMAC network, individu-
ally. The active principle from network input to network output
and the difference for these two networks are in detail here.
Fig. 1. The architecture o
2.1. The CMAC network

The CMAC network [1] is a local network implies for a given
input vector, only a few of the networks nodes (or hypercube cells)
will be active and will effectively contribute to the corresponding
network output. The architecture of the CMAC network is shown in
Fig. 1. The basic idea of the CMAC network is to store learned data
into overlapping regions in a way that the data can easily be
recalled but use less storage space. Furthermore, the action of
storing weight information in the CMAC network is similar to that
of the cerebellum in humans. In the case of the CMAC network, it
approximates a nonlinear function y = f(x) by using two primary
mappings:

S : X)A (1)

P : A)D (2)

where X is a ND-dimensional input space, A is a NA-dimensional
association space, and D is a one-dimensional output space. For the
systems with multiple output dimensions, this CMAC network can
be extended directly. The function S(x) maps each point x in the
input space onto an association vector a = S(x) 2 A that has NL

nonzero elements (NL < NA). For a conventional CMAC network, the
association vector contains only binary elements, either zero or
one. The function P(a) computes a scalar output y by projecting the
association vector onto a vector w of adjustable weights so that the
scalar output y can be obtained by evaluating the inner product of
the two vectors a and w. Then the actual output y is derived as
follows:

y ¼ PðaÞ ¼ aT w ¼
XNL

j¼1

a jw j (3)

where aj represents the jth element of the association vector, w j

represents the jth element of the weight vector, and NL denotes the
number of neurons.
f the CMAC network.

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785 777
Let us take a two-dimensional (2D) input vector, or the so-
called two-dimensional CMAC (2D CMAC), as an example. The
structure of a 2D CMAC is shown in Fig. 2. The input vector is
defined by two input variables, x1 and x2, with quantized into three
discrete regions, call blocks. It is noted that the width of blocks
affects the generalization capability of the CMAC network. For the
first way of quantization, the variable x1 is divided into blocks A, B,
and C and the variable x2 is divided into blocks a, b, and c. The areas
Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, and Cc formed by quantized regions
are called hypercubes. By shifting each block a small interval,
different hypercubes can be obtained. In Fig. 2, there are 27
hypercubes used to distinguish 49 different states in the 2D CMAC.
For example, let the hypercubes Bb, Ee, and Hh be addressed by the
state (x1, x2) = (3, 3), only these three hypercubes are one, and the
others are zero. About above mention, the trained data is stored
into these regions.

2.2. The architecture of the P-FCMAC network

In this section, we propose a new parametric fuzzy CMAC
network. The architecture of the P-FCMAC network is illustrated in
Fig. 3, which consists of the input space partition, association
memory selection, and defuzzification. The P-FCMAC network like
the conventional CMAC network that also approximates a non-
linear function y = f(x) by using two primary mappings, S(x) and
P(a). These two mappings are realized by fuzzy operations. The
function S(x) also maps each point x in the input space onto an
association vector a = S(x) 2 A that has NL nonzero elements
(NL < NA). Different from conventional CMAC network, the
association vector a ¼ ða1;a2; . . . ;aNA

Þ, where 0 � a � 1 for all
components in a, is derived from the composition of the receptive
field functions and sensory inputs. Another, several hypercubes is
addressed by the input state x that hypercube value is calculated by
product operation through the strength of the receptive field
functions for each input state. In the P-FCMAC network, we use
Gaussian basis function as the receptive field functions and the
linear parametric equation of the network input variance as the
TSK-type output for learning. Some learned information is stored
in the receptive field functions and TSK-type output vectors. A one-
dimension Gaussian basis function can be given as follows:

mðxÞ ¼ e�ðx�m=sÞ2 (4)
Fig. 2. The structure
where x represents the specific input state, m represents the
corresponding center, and s represents the corresponding
variance. Let us consider a ND-dimensional problem. A Gaussian
basis function with ND dimensions is given as follows:

a j ¼
YND

i¼1

e�ðxi�mi j=si jÞ2 (5)

where
Q

represents the product operation, the aj represents the jth
element of the association vector, xi represents the input value of
the ith dimension for a specific input state x, mij represents the
center of the receptive field functions, sij represents the variance of
the receptive field functions, and ND represents the number of the
receptive field functions for each input state. The function P(a)
computes a scalar output y by projecting the association vector
onto a vector of adjustable receptive field functions. Each element
of the receptive field functions is inferred to produce a partial fuzzy
output by applying the value of its corresponding association
vector as input matching degree. The partial fuzzy output is
defuzzified into a scalar output y by the centroid of area (COA)
approach. Then the actual output y is derived as follows:

y ¼
PNL

j¼1 a j a0 j þ
PND

i¼1 ai jxi

� �
PNL

j¼1 a j

(6)

The jth element of the TSK-type output vectors is described as
follows:

a0 j þ
XND

i¼1

ai jxi (7)

where a0j and aij denote the scalar value, ND denotes the number of
the input dimensions, NL denotes the number of hypercube cells,
and xi denotes the ith input dimension. Based on the above
structure, a learning algorithm will be proposed to determine the
proper network structure and its adjustable parameters.

3. The learning algorithm for P-FCMAC network

In this section, a learning algorithm, which consists of an input
space partition scheme and a parameter learning scheme, is
developed for constructing the P-FCMAC network. The flow
diagram of the learning scheme for the P-FCMAC network is
of a 2D CMAC.

Fig. 3. The architecture of the P-FCMAC network.

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785778
shown in Fig. 4. First, the input space partition scheme is used to
determine proper input space partitioning and to find the mean
and the width of each receptive field function. The input space
partition is based on the self-clustering method to appropriately
determine the various distributions of the input training data. After
the self-clustering method, the number of hypercube cells is
determined. That is, we can obtain the initial m and s of receptive
Fig. 4. The flow diagram of the learning scheme for the P-FCMAC network.
field functions by using SCM. Second, the parameter learning
scheme is based on supervised learning algorithms. The gradient
descent learning algorithm is used to adjust the free parameters. To
minimize a given cost function, the m and s of the receptive field
functions and the parameters a0j and aij of the TSK-type output
vector are adjusted using the backpropagation algorithm. Accord-
ing to the requirements of the system, these parameters will be
given proper values to represent the memory information. For the
initial system, the values of the tuning parameters a0j and aij of the
element of the TSK-type output vector are generated randomly and
the m and s of receptive field functions are generated by the
proposed SCM clustering method.

3.1. A self-clustering method

The receptive field functions can map input patterns. Hence, the
discriminative ability of these new features is determined by the
centers of the receptive field functions. To achieve good
classification, centers are best selected based on their ability to
provide large class separation.

An input space partition scheme, called the self-clustering
method, is proposed to implement scatter partitioning of the input
space. Without any optimization, the proposed SCM clustering
method is a fast, one-pass algorithm for a dynamic estimation of
the number of hypercube cells in a set of data, and for finding the
current centers of hypercube cells in the input data space. It is a
distance-based connectionist clustering algorithm. In any hyper-
cube cell, the maximum distance between an example point and
the hypercube cell center is less than a threshold value, which has
been set as a clustering parameter and which would affect the
number of hypercube cells to be estimated.

In the clustering process, the data examples come from a data
stream, and the process starts with an empty set of hypercube cells.
When a new hypercube cell is created, the hypercube cell center, C,
is defined, and its hypercube cell distance and hypercube cell
width, Dc and Wd, is initially set to zero. When more samples are

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785 779
presented one after another, some created hypercube cells will be
updated by changing the positions of their centers and increasing
the hypercube cell distances and hypercube cell width. Which
hypercube cell will be updated and how much it will be changed
depends on the position of the current example in the input space.
A hypercube cell will not be updated any more when its hypercube
cell distance, Dc, reaches the value that is equal to the threshold
value Dthr.

The details of the SCM algorithm are described in the following
steps:
� S
tep 0: Create the first cluster C1 by simply taking the position of
the first input data as the first cluster mean Cci 1 where i means
the ith input variables. And setting a dimension distance value to
0 (see Fig. 5(a)).

� S
tep 1: If all of the training input data have been processed, the

algorithm is finished. Otherwise, the current input example, xi

[k], is taken and the distances between this input example and all
already created cluster mean Cci j are calculated:

Di j½k� ¼ jjxi½k� � Cci jjj (8)

where j = 1, 2, . . ., R denotes the jth cluster, k = 1, 2, 3, . . ., N

represents the kth input, and i = 1, 2, . . ., n represents the ith

dimension.

� S
tep 2: If the distance calculation in Eq. (8) is equal to or less than

all of the dimension distances CDi_j that represent the ith
dimension distance in the jth cluster (set to 0 initially), then the
current input example belongs to a cluster with the minimum
distance:

Dmin j½k� ¼min
Xn

i¼1

xi½k� � Cci j

�� �� !
(9)

Dmin ½k� ¼ x ½k� � Cc
�� �� (10)
i j i i j

where j in Eq. (10) represents the jth cluster that is computed using

Eq. (9). The use of Eqs. (9) and (10) is to find the minimum sum of all

the dimension distances in a cluster with the kth input data. The

constraint is described as follows:

Dmini j½k� � CDi j (11)

If no new clusters are created or no existing clusters are
updated (the cases of (x1[4], x2[4]) and (x1[6], x2[6]) in Fig. 5(b)),
the algorithm returns to Step 1. Otherwise, the algorithm goes to
the next step.

� S
Fig. 5. A brief clustering process using SCM with samples in 2D space.
tep 3: Find a cluster from all existing cluster centers by
calculating Si_j[k] = Di_j[k] + CDi_j, j = 1, 2, . . ., R, and then choosing
the cluster center with the minimum value:

Smini j½k� ¼ Dmini j½k� þ CDi j (12)

where j = 1, 2, . . ., R.

In Eqs. (10) and (11), the minimum distance from any cluster
mean to the examples that belong to this cluster is not greater
than the threshold Dthr, though the algorithm does not keep any
information of passed examples. However, we find that the
formulation only considers the distance between the input data
and the cluster mean in Eq. (12). But the special situation [6]
shows that the distances between the given point xi[10] and both
cluster means Cci_1 and Cci_2 are the same as in Fig. 6. In the
aforementioned technique, the cluster C2, which has small
dimension distances CDi_2, will be selected to expand according
to Eq. (12). However this causes a problem in that the cluster
numbers increase quickly. To avoid this problem, we state a
condition, as follows.
If there are two Dminj [10] compute in Eq. (9) that
Dmin1[10] = Dmin2[10] and (CD1_1 + CD2_1 > CD1_2 + CD2_2)

Then Dmin1 1½10� ¼ D1 1½10� (13)

D ½10� ¼ D ½10� (14)
min2 1 2 1

where Dmin1[10] represents the minimum distance between the

10th input data and the mean of the 1st cluster that is calculated by

Eq. (11); Dmin2_1[10] represents dimension distance between the

2nd dimension of the 10th input data and the 2nd dimension mean

of the 1st cluster that is calculated by Eq. (12); D2_1[10] represents

dimension distance between the 2nd dimension of the 10th input

Fig. 6. The special case of SCM.

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785780
data and the 2nd dimension mean of the 1st cluster that is

calculated by Eq. (10). In Eqs. (13) and (14), we find that when the

distances between the input data and both clusters are the same,

the formulation will choose the cluster that has the large dimension

distance CD1_1and CD2_1.

� S
tep 4: If Smini_j[k] in Eq. (12) is greater than Dthr, the input

example xi[k]does not belong to any existing cluster. A new
cluster is created in the same way as described in Step 0 (the
cases of (x1[3], x2[3]) and (x1[8], x2[8]) in Fig. 5(c)), and the
algorithm returns to Step 1.

� S
tep 5: If Smini j½k� is not greater than Dthr, the cluster is updated

by moving its mean, Cci_j, and increasing the value of its
dimension distances. The new mean is moved to the point on the
line connecting the input data, and the distance from the new
mean to the point is equal to its dimension distance (the cases of
(x1[5], x2[5]) and (x1[9], x2[9]) in Fig. 5(d)). The details for
updating the equations are as follows:

If CDi j <
xi½k� � Cci j þ CDi j

2

Then CDi j ¼
xi½k� � Cci j þ CDi j

2

(15)

Cci j ¼ xi½k� � CDi j if Cci j > ¼ xi½k� (16)

Cci j ¼ xi½k� þ CDi j if Cci j < xi½k� (17)

where k = 1, 2, 3, . . ., N represents the kth input, j represents the jth

cluster that has a minimum distance in Eq. (9), x represents the

input data, and i represents the ith dimension. After this step is

performed, the algorithm returns to step 1.

The threshold parameter Dthr is an important parameter in
the input space partition scheme. A low threshold value leads to
Dmi j ¼ he
@y

@a j

@a j

@mi j

Dmi j ¼ he
a0 j þ

PND

i¼1 ai jxi

� �PNL

j¼1 a j �
PNL

j¼1 a j a0 j þ
PND

i¼1 ai jxi

� �
PNL

j¼1 a j

� �2
a j

2ðxi �mi jÞ
s2

i j

(25)

Dsi j ¼ he
@y

@a j

@a j

@si j

Dsi j ¼ he
a0 j þ

PND

i¼1 ai jxi

� �PNL

j¼1 a j �
PNL

j¼1 a j a0 j þ
PND

i¼1 ai jxi

� �
PNL

j¼1 a j

� �2
a j

2ðxi �mi jÞ2

s3
i j

(26)
the learning of fine clusters (such that many hypercube cells are
generated), whereas a high threshold value leads to the learning
of coarse clusters (such that fewer hypercube cells are
generated). Therefore, the selection of the threshold value Dthr

critically affects the simulation results, and the threshold value
is determined by practical experimentation or trial-and-error
tests.
3.2. The parameter learning scheme

In the parameter learning scheme, there are four parameters
need to be tuned, i.e., mij, sij, a0j, and aij. The total number of tuning
parameters for the multi-input single-output P-FCMAC network is
2NDNL + 4NL, where ND and NL denote the number of inputs and
hypercube cells, respectively. The parameter learning algorithm of
the P-FCMAC network uses the supervised gradient descent
method to modify these parameters. When we consider the single
output case for clarity, our goal is to minimize the cost function E,
defined as follows:

EðtÞ ¼ 1

2
ðydðtÞ � yðtÞÞ2 (18)

where yd(t) denotes the desired output at time t and y(t) denotes the
actual output at time t. Then their parameter learning algorithm,
based on backpropagation, is described in detail as follows.

The TSK-type outputs are updated according to the following
equation:

a0 jðt þ 1Þ ¼ a0 jðtÞ þDa0 j (19)

ai jðt þ 1Þ ¼ ai jðtÞ þDai j (20)

where a0j denotes the proper scalar, aij denotes the proper scalar
coefficient of the ith input dimension, and j denotes the jth element
of the TSK-type output vector for j = 1, 2, . . ., NL. The elements of the
TSK-type output vectors are updated by the amount

Da0 j ¼ he
@y

@a0 j
¼ he

a jPNL

j¼1 a j

(21)

Dai j ¼ he
@y

@ai j
¼ he

xia jPNL

j¼1 a j

(22)

where h is the learning rate, between 0 and 1, and e is the error
between the desired output and the actual output, e ¼ yd � y.

The receptive field functions are updated according to the
following equation:

mi jðt þ 1Þ ¼ mi jðtÞ þDmi j (23)

si jðt þ 1Þ ¼ si jðtÞ þDsi j (24)

where i denotes the ith input dimension for i = 1, 2, . . ., n, mij

denotes the mean of the receptive field functions, and sij denotes
the variance of the receptive field functions. The parameters of the
receptive field functions are updated by the amount
where h is the learning rate of the mean and the variance for the
receptive field functions.

4. Illustrative examples

In this section, we compare the performance of the P-FCMAC
network with other various existing models on three applications.

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785 781
There are two parameter learning schemes are used during the
training process. The first parameter learning scheme (i.e., Scheme
1) represents that only the TSK-type consequent parameters are
tuned by gradient descent method while the receptive field
functions are fixed. The second parameter learning scheme (i.e.,
Scheme 2) represents that both the TSK-type consequent para-
meters and the receptive field functions are tuned by gradient
descent method. The first example is the prediction of the chaotic
time series [21]. The second example is the approximation of the
nonlinear systems [22]. The third example is the identification of
the nonlinear systems that are described in [23].

5. Example 1: prediction of the chaotic time series

The Mackey–Glass chaotic time series x(t) in consideration here
is generated from the following delay differential equation:

dxðtÞ
dt
¼ 0:2xðt � tÞ

1þ x10ðt � tÞ � 0:1xðtÞ (27)

Cowder [21] extracted 1000 input–output data pairs {x, yd}
which consist of four past values of x(t), i.e.

½xðt � 18Þ; xðt � 12Þ; xðt � 6Þ; xðtÞ; xðt þ 6Þ� (28)

where t = 17 and x(0) = 1.2. There are four inputs to the P-FCMAC
network, corresponding to these values of x(t), and one output
representing the value x(t + Dt), where Dt is a time prediction into
the future. The first 500 pairs, from x(1) to x(500), are the training
data set, while the remaining 500 pairs, from x(501) to x(1000), are
the testing data set used for validating the proposed method.
Fig. 7. (a) Simulation results of the time series from x(501) � x(1000) for Scheme 1 metho

FCMAC network output for Scheme 1 method. (c) Simulation results of the time

x(501) � x(1000) between the desired output and the P-FCMAC network output for Sch
In this example, the initial threshold value in the SCM is 0.7, and
the learning rate is h = 0.01. After the SCM clustering process, there
are four hypercube cells generated. After 500 epochs training for
Scheme 1 method (i.e., only the TSK-type consequent parameters
are tuned), the final trained rmse (root mean square error) of the
prediction output approximates 0.0094. Using Scheme 2 method
(i.e., both the TSK-type output parameters and the receptive field
functions are tuned), the final trained rmse of the prediction output
approximates 0.0048 after 500 epochs. The prediction outputs of
the chaotic time series from x(501) � x(1000), when 500 training
data from x(1) � x(500) were used for Schemes 1 and 2 methods,
are shown in Fig. 7(a) and (c). The solid line represents the output
of the time series, and the dotted line represents the output of the
P-FCMAC network. Fig. 7(b) and (d) shows the prediction errors
from x(501) � x(1000) between the desired output and the P-
FCMAC network output using Schemes 1 and 2 methods. The
learning curves of Schemes 1 and 2 methods are shown in Fig. 8.

Table 1 shows the comparison results of the prediction
performance among various predictors. The previous results were
taken from [24,25]. The performance of the very compact fuzzy
system obtained by the P-FCMAC network is better than all
previous works. In addition, the proposed network takes four
hypercube cells and its size only is 48. The comparative table can
demonstrate that the proposed P-FCMAC network performs better
than other existing models.

5.1. Example 2: approximation of a Sugeno’s nonlinear function

Let us consider the nonlinear system, presented by Sugeno
and Yasukawa in [22], used widely in the literature as a
d. (b) Prediction errors from x(501) � x(1000) between the desired output and the P-

series from x(501) � x(1000) for Scheme 2 method. (d) Prediction errors from

eme 2 method.

Table 2
The two-input and one-output training data for the approximation example.

No. x1 x2 y No. x1 x2 y

1 1.40 1.80 3.70 26 2.00 2.06 2.52

2 4.28 4.96 1.31 27 2.71 4.13 1.58

3 1.18 4.29 3.35 28 1.78 1.11 4.71

4 1.96 1.90 2.70 29 3.61 2.27 1.87

5 1.85 1.43 3.52 30 2.24 3.74 1.79

6 3.66 1.60 2.46 31 1.81 3.18 2.20

7 3.64 2.14 1.95 32 4.85 4.66 1.30

8 4.51 1.52 2.51 33 3.41 3.88 1.48

9 3.77 1.45 2.70 34 1.38 2.55 3.14

10 4.84 4.32 1.33 35 2.46 2.12 2.22

11 1.05 2.55 4.63 36 2.66 4.42 1.56

12 4.51 1.37 2.80 37 4.44 4.71 1.32

13 1.84 4.43 1.97 38 3.11 1.06 4.08

Fig. 8. Learning curves of Schemes 1 and 2 parameter learning methods in Example 1.

Fig. 9. Desired input–output relation of the nonlinear system.

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785782
benchmark

z ¼ ð1þ x�2
1 þ x�1:5

2 Þ2; 1 � x1; x2 � 5 (29)

The fuzzy system identification is based on fifty samples
reported in [22]. The original samples were four inputs and one
output with two dummy inputs. The P-FCMAC network discarded
the two dummy inputs. We show a desired input–output graph of
this nonlinear function in Fig. 9. Table 2 represents the two-input
one-output training data.

In this example, the initial threshold value in the SCM is 2.6, and
the learning rate is h = 0.01. After the SCM clustering process, there
are five hypercube cells generated. Using the first and second
parameter learning schemes, the final trained rmse of the outputs
approximates 0.0051 and 0.0035 after 5000 epochs. The desired
output and the P-FCMAC network output (using Schemes 1 and 2
methods) are shown in Fig. 10(a) and (c). Fig. 10(b) and (d) shows
the errors between the desired output and the P-FCMAC network
output using Schemes 1 and 2 methods. The learning curves of
Schemes 1 and 2 methods are shown in Fig. 11.

Table 3 reports results found in the literature plus the error
found by the P-FCMAC network. The performance of the very
compact fuzzy system obtained by the P-FCMAC network is better
than all previous works. In addition, the proposed network takes
five hypercube cells and its size only is 40. It can be concluded that
the proposed model obtains better results than some existing
models.

5.2. Example 3: identification of a nonlinear system

In this example, a nonlinear system with an unknown nonlinear
function, which is approximated by the P-FCMAC network as
shown in Fig. 12(b), is a model. First, some of training data from the
unknown function are collected for an off-line initial learning
process of the P-FCMAC network. After off-line learning, the
Table 1
Comparison results of various existing models on chaotic time series prediction.

Methods RMSE Methods RMSE

P-FCMAC 0.0094 (Scheme 1) 6th-order Polynomial 0.04

0.0048 (Scheme 2)

GEFREX [25] 0.0061 Cascade Correlation NN 0.06

ANFIS [17] 0.007 Min operator 0.09

Kim and Kim [24] 0.026 Wang (product operator) 0.091
trained P-FCMAC network is applied to the nonlinear system to
replace the unknown nonlinear function for on-line test.

Consider a nonlinear system in [23] governed by the difference
equation:

yðkþ 1Þ ¼ 0:3yðkÞ þ 0:6yðk� 1Þ þ g½uðkÞ� (30)

We assume that the unknown nonlinear function has the form:

gðuÞ ¼ 0:6 sinðpuÞ þ 0:3 sinð3puÞ þ 0:1 sinð5puÞ (31)

For off-line learning, twenty-one training data pairs are
provided in Table 4 using Eq. (30). The off-line learning
configuration of the twenty-one training data points is shown in
Fig. 12(a). And the on-line test configuration of the 1000 data
points is shown in Fig. 12(b) that using the difference equation is
defined as

ŷðkþ 1Þ ¼ 0:3yðkÞ þ 0:6yðk� 1Þ þ f̂½uðkÞ� (32)

where f̂½uðkÞ� is the approximated function for g[u(k)] by the P-
FCMAC network and a0 = 0.3, a1 = 0.6. The error is defined as
14 1.67 2.81 2.47 39 4.47 3.66 1.42

15 2.03 1.88 2.66 40 1.35 1.76 3.91

16 3.62 1.95 2.08 41 1.24 1.41 5.05

17 1.67 2.23 2.75 42 2.81 1.35 3.11

18 3.38 3.70 1.51 43 1.92 4.25 1.92

19 2.83 1.77 2.40 44 4.61 2.68 1.63

20 1.48 4.44 2.44 45 3.04 4.97 1.44

21 3.37 2.13 1.99 46 4.82 3.80 1.39

22 2.84 1.24 3.42 47 2.58 1.97 2.29

23 1.19 1.53 4.99 48 4.14 4.76 1.33

24 4.10 1.71 2.27 49 4.35 3.90 1.40

25 1.65 1.38 3.94 50 2.22 1.35 3.39

Table 3
Comparison results of various existing models on the approximation example.

Methods MSE Methods MSE

Fig. 10. (a) Simulation results of the approximation problem for Scheme 1 method. (b) Errors between the desired output and the P-FCMAC network output for Scheme 1

method. (c) Simulation results of the approximation problem for Scheme 2 method. (d) Errors between the desired output and the P-FCMAC network output for Scheme 2

method.

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785 783
follows [28]:

errorðtÞ ¼ ðydðtÞ � yðtÞÞ2 (33)

In this example, the initial threshold value in the SCM is 0.15, and
the learning rate is h = 0.01. After the SCM clustering process, there
are eleven hypercube cells generated. Using the first and second
parameter learning schemes, the final trained error of the output
approximates 0.00057 and 0.00024 after 300 epochs. The numbers
of the adjustable parameters of the trained P-FCMAC network are 66.
Fig. 11. Learning curves for Schemes 1 and 2 parameter learning methods in

Example 2.
For on-line testing, we assume that the series-parallel model
shown in Fig. 12(b) is driven by u(k) = sin(2pk/250). The test
results of the P-FCMAC network are shown in Fig. 13(a) and (c) for
Schemes 1 and 2 methods. The errors between the desired output
and the P-FCMAC network output are shown in Fig. 13(b) and (d)
P-FCMAC 0.0051 (Scheme 1) Sugeno and Yasukawa [22] 0.01

0.0035 (Scheme 2)

Emami et al. [26] 0.004 Delgado et al. [27] 0.231

Lin et al. [28] 0.005 Genetic algorithm et al. [29] 2.98

Table 4
Training data and approximated data obtained using the P-FCMAC network for 300

epochs.

u g(u) f̂ðuÞ u g(u) f̂ðuÞ

�1.0000 �0.0000 �0.000357 0.1000 0.5281 0.526161

�0.9000 �0.5281 �0.528020 0.2000 0.6380 0.640683

�0.8000 �0.6380 �0.628281 0.3000 0.4781 0.472271

�0.7000 �0.4781 �0.480252 0.4000 0.3943 0.400248

�0.6000 �0.3943 �0.392093 0.5000 0.4000 0.401699

�0.5000 �0.4000 �0.405011 0.6000 0.3943 0.390031

�0.4000 �0.3943 �0.390852 0.7000 0.4781 0.471195

�0.3000 �0.4781 �0.481167 0.8000 0.6380 0.648287

�0.2000 �0.6380 �0.635818 0.9000 0.5281 0.516553

�0.1000 �0.5281 �0.531204 1.0000 0.0000 0.007459

0.0000 0.0000 0.002119

Fig. 13. (a) Outputs of the nonlinear system (solid line) and the identification model using

the approximated model for Scheme 1 method. (c) Outputs of the nonlinear system (so

Scheme 2 method. (d) Identification error of the approximated model for Scheme 2 m

Fig. 14. Learning curves for Schemes 1 and 2 parameter learning methods in

Example 3.

Fig. 12. The series-parallel identification model. Off-line learning by twenty-one

training data in Table 4. On-line testing for real u(k) = sin(2pk/250).

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785784
for Schemes 1 and 2 methods. The learning curves of Schemes 1
and 2 methods are shown in Fig. 14. Fig. 13 can prove that the P-
FCMAC network successfully approximates the unknown non-
linear function.

Table 5 shows the comparison the learning result
among various models. The previous results were taken from
[30–33]. The performance of the very compact fuzzy system
obtained by the P-FCMAC network is better than all previous
works.
the proposed network (dotted line) for Scheme 1 method. (b) Identification error of

lid line) and the identification model using the proposed network (dotted line) for

ethod.

Table 5
Comparison results of the twenty-one training data for off-line learning.

Methods Error Methods Error

P-FCMAC 0.00057

(Scheme 1)

Gradient

descent [31]

0.2841

0.00024

(Scheme 2)

SGA-SSCP [30] 0.00028 MRDGA [32] 0.5221

Symbiotic

evolution [33]

0.1997 Genetic algorithm

et al. [29]

0.67243

C.-J. Lin, C.-Y. Lee / Applied Soft Computing 9 (2009) 775–785 785
6. Conclusion and future work

In this paper, a new parametric fuzzy CMAC network was
proposed for dynamic system identification and prediction. The
proposed model uses a non-constant differentiable basis function,
i.e. Gaussian basis function, to model the hypercube structure and
the linear parametric equation of the TSK-type output that can
proper to express the various input state. A learning algorithm was
presented for constructing and adjusting the parameters. The
proposed algorithm consists of the self-clustering method to
perform input space partition and the backpropagation algorithm
to perform parameter learning. With the proposed self-clustering
method, a flexible partitioning of the input space is achieved to find
the center and variance of the receptive field functions. The
advantages of the proposed P-FCMAC network are summarized as
follows: (1) it implements scatter partitioning of the input space
dynamically; (2) it can keep a smaller rms error; and (3) it has
much lower memory requirement than conventional CMAC
network. The three examples given confirm the effectiveness of
the proposed model.

Although the P-FCMAC network can perform better than other
methods, an advanced topic should be addressed for the proposed P-
FCMACnetwork. Inthis study,sincethebackpropagation algorithmis
used to minimize the cost function, the results may reach the local
minimasolution. Infuturework, wewill adoptthe genetic algorithms
(GA) to solve the local minima problem. GA is a global search
technique. Because it simultaneously evaluates many points in the
search space, it is more likely to converge toward the global solution.

Acknowledgement

This work was supported by National Science Council, R.O.C.
under grant NSC95-2221-E-390-040-MY2.

References

[1] J.S. Albus, A new approach to manipulator control: the cerebellar model articula-
tion controller (CMAC), Trans. ASME J. Dyn. Syst. Meas. Contr. (1975) 220–227.

[2] J.S. Albus, Data storage in the cerebellar model articulation controller (CMAC),
Trans. ASME J. Dyn. Syst. Meas. Contr. (1975) 228–233.

[3] Z.J. Lee, Y.P. Wang, S.F. Su, A genetic algorithm based robust learning credit
assignment cerebellar model articulation controller, Appl. Soft Comput. 4 (4)
(2004) 357–367.

[4] J. Wang, C. Zhang, Y. Jing, Hybrid CMAC-PID controller in heating ventilating and
air-conditioning system, in: Proceedings of the International Conference on
Mechatronics and Automation, vols. 5–8, 2007, pp. 3706–3711.
[5] H.T. He, Y. Li, The research on flatness pattern recognition based on CMAC neural
network, in: Proceedings of the International Conference on Machine Learning
and Cybernetics, August 19–22, vol. 5, 2007, pp. 2745–2748.

[6] H.C. Lu, T. Tao, The treatment of image boundary effects in CMAC networks, in:
Proceedings of the IEEE International Joint Conference on Neural Networks, July
25–29, vol. 2, 2004, pp. 867–872.

[7] D. Reay, Nonlinear channel equalization using associative memory neural net-
works, in: Proceedings of the International Workshop on Applied Neural Net-
works Telecom, Stockholm, Sweden, (1995), pp. 17–24.

[8] D.S. Reay, CMAC and B-spline neural networks applied to switched reluctance
motor torque estimation and control, in: Proceedings of the 29th Annual Con-
ference of the IEEE Industrial Electronics Society (IECON’ 03), November 2–6, vol.
1, 2003, pp. 323–328.

[9] C.Y. Lee, C.J. Lin, H.J. Chen, A self-constructing fuzzy CMAC model and its
applications, Informat. Sci.: Int. J. 177 (1) (2007) 264–280.

[10] S. Chen, D. Zhangm, Robust image segmentation using FCM with spatial con-
straints based on new kernel-induced distance measure, IEEE Trans. Syst. Man
Cyber.—Part B 34 (4) (2004) 1907–1916.

[11] C.E. Pedreira, Learning vector quantization with training data selection, IEEE
Trans. Pattern Anal. Mach. Intell. 28 (1) (2006) 157–162.

[12] K.K. Ang, C. Quek, M. Pasquier, POPFNN-CRI (S): pseudo outer product based
fuzzy neural network using the compositional rule of inference and singleton
fuzzifier, IEEE Trans. Syst. Man Cyber.—Part B: Cybernetics 33 (6) (2003) 838–
849.

[13] W.L. Tung, C. Quek, GenSoFNN: a generic self-organizing fuzzy neural network,
IEEE Trans. Neural Networks 13 (5) (2002) 1075–1086.

[14] N.K. Kasabov, Q. Song, DENFIS: dynamic evolving neural-fuzzy inference system
and its application for time-series prediction, IEEE Trans. Fuzzy Systems 10 (2)
(2002) 144–154.

[15] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples, IEEE
Trans. Syst. Man Cyber. 22 (6) (1992) 1414–1427.

[16] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to
modeling and control, IEEE Trans. Syst. Man Cyber. vol. SMC-15 (1985) 116–132.

[17] J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans.
Syst. Man Cyber. 23 (1993) 665–685.

[18] C.J. Lin, Y.J. Xu, The design of TSK-type fuzzy controllers using a new hybrid
learning approach, Int. J. Adaptive Control Signal Process. 20 (1) (2006) 1–25.

[19] M. Sugeno, G.T. Kang, Structure identification of a fuzzy model, Fuzzy Sets Syst. 28
(1) (1988) 15–33.

[20] T. Takagi, M. Segeno, Fuzzy identification of systems and its applications to
modeling and control, IEEE Trans. Syst. Man Cybern. SMC-15 (1985) 116–132.

[21] R.S. Crowder. Predicting the Mackey-Glass time series with cascade correlation
learning. In: Proceedings of 1990 Connectionist Models Summer School, Carnegie
Mellon University, 1990, pp. 117–123.

[22] M. Sugeno, T. Yasukawa, A fuzzy-logic-based approach to qualitative modeling,
IEEE Trans. Fuzzy Syst. 1 (1) (1993) 7–31.

[23] L.X. Wang, Adaptive Fuzzy Systems and Control, Englewood Cliffs, NJ, Prentice-
Hall, 1994.

[24] D. Kim, C. Kim, Forecasting time series with genetic fuzzy predictor ensemble,
IEEE Trans. Fuzzy Syst. 5 (4) (1997) 523–535.

[25] M. Russo, Genetic fuzzy learning, IEEE Trans. Evol. Comput. 4 (3) (2000) 259–273.
[26] M.R. Emami, I.B. Türksen, A.A. Goldberg, Development of a systematic methodol-

ogy of fuzzy logic modeling, IEEE Trans. Fuzzy Syst. 6 (3) (1998) 346–361.
[27] M. Delgado, F. Gómez-Skarmeta, F. Martı́n, A fuzzy clustering based rapid

prototyping for fuzzy rule-based modeling, IEEE Trans. Fuzzy Syst. 5 (2)
(1997) 223–233.

[28] Y. Lin, G.A. Cunningham III, S.V Coggeshall, Using fuzzy partitions to create fuzzy
systems from input–output data and set the initial weights in a fuzzy neural
network, IEEE Trans. Fuzzy Syst. 5 (4) (1997) 614–621.

[29] C.L. Karr, Design of an adaptive fuzzy logic controller using a genetic algorithm, in:
Proceedings of the 4th Conference on Genetic Algorithms, 1991, pp. 450–457.

[30] W.Y. Wan, Y.H. Li, Evolutionary learning of BMF fuzzy-neural networks using a
reduced-form genetic algorithm, IEEE Trans. Syst. Man Cybern.—Part B 33 (6)
(2003) 966–976.

[31] C.H. Wang, W.Y. Wang, T.T. Lee, P.S. Tseng, Fuzzy B-spline membership function
(BMF) and its applications in fuzzy-neural control, IEEE Trans. Syst. Man Cybern.
25 (5) (1995) 841–851.

[32] W.A. Farag, V.H. Quintana, G. Lambert-Torres, A genetic-based neuro-fuzzy
approach for modeling and control of dynamical systems, IEEE Trans. Neural
Networks 9 (5) (1998) 756–767.

[33] C.F. Juang, J.Y. Lin, C.T. Lin, Genetic reinforcement learning through symbiotic
evolution for fuzzy controller design, IEEE Trans. Syst. Man Cybern.—Part B 30 (2)
(2000) 290–302.

	A novel parametric fuzzy CMAC network and its applications
	Introduction
	The parametric fuzzy CMAC network
	The CMAC network
	The architecture of the P-FCMAC network

	The learning algorithm for P-FCMAC network
	A self-clustering method
	The parameter learning scheme

	Illustrative examples
	Example 1: prediction of the chaotic time series
	Example 2: approximation of a Sugeno's nonlinear function
	Example 3: identification of a nonlinear system

	Conclusion and future work
	Acknowledgement
	References

