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This paper introduces a recurrent neural-fuzzy network (RNFN) based on improved particle swarm opti-
mization (IPSO) for pattern recognition applications. The proposed IPSO method consists of the modified
evolutionary direction operator (MEDO) and the traditional PSO. A novel MEDO combining the evolution-
ary direction operator (EDO) and the migration operation is also proposed. Hence, the proposed IPSO
method can improve the ability of searching global solution. Experimental results have shown that the
proposed IPSO method has a better performance than the traditional PSO in the human body classifica-
tion and the skin color detection.
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1. Introduction

Pattern recognition, one of the core techniques in computer
applications, how to recognize pattern is very important for infor-
mation learning. In the past, traditional pattern recognition prob-
lems usually use statistic methods (Abd-Almageed & Smith,
2002; Bicego et al., 2001) to analyze. However, the input pattern
may be rotated or scale-changed to its standard form and the pat-
terns can be corrupted by noise. The ability of the above-men-
tioned methods is still limited and unable to achieve better
efficiency in recognition. Therefore, there are many correlation re-
search looked for new methods overcome these problems.

In recent years, neural-fuzzy networks (Jang, 1993; Lin & Lee,
1996) have become a popular research topic (Castellano, Fanelli,
& Mencar, 2002). They are widely applied in fields such as pattern
recognition (Chiang & Hao, 2003), time-series prediction (Kasabov
& Song, 2002) and control problem (Lin & Chen, 2003). Developing
an intelligent visual surveillance helps replace traditional passive
video surveillance and skin color detection. The reason is that neu-
ral-fuzzy networks combine the semantic transparency of rule-
based fuzzy systems with the learning capability of neural net-
works. The main advantage of the neural-fuzzy network is that
the black box nature of the neural-network paradigm is resolved,
as the connectionist structure of a neural-fuzzy network essen-
tially defines the IF–THEN rules. Moreover, a neural-fuzzy network
can adjust the parameter of the fuzzy rules using neural-network-
based learning algorithms.
ll rights reserved.
The training of the parameters is the major problem in design-
ing a neural-fuzzy system. To solve this problem, back-propagation
(BP) (Lee & Teng, 2000; Lin & Chin, 2004; Lin, Shieh, Teng, & Shieh,
2005) training is widely used. It is a powerful training technique
that can be applied to networks with a forward structure. Since
the steepest descent technique is used in BP training to minimize
the error function, the algorithm may reach the local minima very
fast and never find the global solution. In addition, the perfor-
mance of BP training depends on the initial values of the system
parameters, and for different network topologies one has to derive
new mathematical expressions for each network layer.

The advent of evolutionary computation has inspired new de-
signs and models, such as the optimal design of neural networks
and fuzzy models, for optimal problem solving. In contrast to tra-
ditional computation systems, which may be good at accurate
and exact computation but have brittle operations (i.e. for different
topologies one has to derive new mathematical expressions), evo-
lutionary computation provides a more robust and efficient ap-
proach for solving complex real-world problems (Back &
Schwefel, 1993; Fogel, 1995; Yao, 1999). Many evolutionary algo-
rithms, such as genetic algorithms (GA) (Goldberg, 1989), genetic
programming (Koza, 1992), evolutionary programming (Fogel,
1994), particle swarm optimization (PSO) (Eberhart & Kennedy,
1995a; Eberhart & Kennedy, 1995b) and evolution strategies
(Rechenberg, 1994), have been proposed. Since they are heuristic
and stochastic, they are less likely to get stuck at the local mini-
mum, and they are based on populations made up of individuals
with specific behaviors similar to certain biological phenomena.
These common characteristics have led to the development of evo-
lutionary computation as an increasingly important field.
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A GA (Karr et al., 1993) is first used to design the membership
function (IF–THEN rules) of a fuzzy controller, with the fuzzy rule
set assigned in advance. GAs are efficient at exploring the entire
search space, but are relatively poor in finding the precise local
optimal solution in the region in which the algorithm converges.
Therefore, Yamamoto and Inoue (1995) uses the traditional evolu-
tionary direction operator (EDO) that selects good target points,
and other points will move toward these good target points meth-
od with enhances GAs to search for the optimal solution. Chiang
(2005) proposed an improved genetic algorithm that uses im-
proved evolutionary direction operator (IEDO) to enhance GA for
power economic dispatch of units with vale-point effects and mul-
tiple fuels. Therefore, we proposed a modified evolutionary direc-
tion operator (MEDO) enhance algorithms to search for the
optimal solution capability. Recent a new optimization algorithm,
called particle swarm optimization (PSO) (Eberhart & Kennedy,
1995b), was proposed. The PSO possesses obtain the optimal solu-
tion in search space. However, the PSO may easily get trapped in a
local optimal solution when solving complex problems. In this pa-
per, we will enhance the traditional PSO to enable it to obtain opti-
mal solution capability. Therefore, a new algorithm, called the
improved particle swarm optimization (IPSO), is proposed.

In this paper, we propose a recurrent neural-fuzzy network
(RNFN) based on improved particle swarm optimization (IPSO)
for solving pattern recognition problems. The proposed IPSO meth-
od consists of the modified evolutionary direction operator
(MEDO) and the traditional PSO. The proposed MEDO improves
the global search solution capability of the traditional PSO. Exper-
imental results have shown that the proposed IPSO method per-
forms better than the traditional PSO methods.

This paper is organized as follows. Section 2 describes the struc-
ture of the recurrent neural-fuzzy network. The proposed im-
proved particle swarm optimization (IPSO) is presented in
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Fig. 1. Schematic diagram
Section 3. Section 4 describes the experimental results in posture
classification and skin color detection. Finally, conclusions are gi-
ven in the last section.

2. A recurrent neural-fuzzy network

In this section, we will introduce the recurrent neural-fuzzy
network (RNFN). The RNFN model was proposed by Lin and Chin
(2004). In Lin and Chin (2004), each fuzzy rule corresponding to
a wavelet neural network (WNN) consists of single-scaling wave-
lets. The nonorthogonal and compactly supported functions are
adopted as wavelet neural-network bases.

The structure of the RNFN is shown Fig. 1 where the functions of
the node in each layer are described as follows:

Layer 1: Each node in this layer is an input node. These nodes
only pass the input signal to the next layer.

Oð1Þi ¼ xð1Þi : ð1Þ

Layer 2: Each node in this layer acts as a membership function
representing the term of the respective input-linguistic variables;
that is, the membership value specifying the degree to which an in-
put value belongs to a fuzzy set is determined in this layer. The
Gaussian function given below is adopted as the membership
function:

Oð2Þi ¼ exp �
ðIð2Þij �mijÞ2

r2
ij

 !
; ð2Þ

where mij and rij are the mean and standard deviation, respectively.
Additionally, the input of this layer for the discrete time scan be de-
noted by

Ið2Þij ¼ Oð1Þi þ Oðf Þij ðtÞ;O
ðf Þ
ij ðtÞ ¼ Oð2Þij ðt � 1Þ � hij; ð4Þ
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where hij is the feedback weight. Clearly, the input of this layer con-
tains the memory terms Oð2Þij ðt � 1Þ, which store the past informa-
tion of the network.

Layer 3: Each node in this layer is a rule node representing the
precondition part of one fuzzy logic rule. Therefore, each node of
this layer is denoted by P, which multiplies the incoming signals
from layer 2 and outputs the product result, i.e., the firing strength
of a rule. For the jth rule node

Oð3Þj ¼
Yn

i¼1

Oð2Þi ¼
Yn

i¼1

exp �
ðIð2Þij �mijÞ2

r2
ij

 !
; ð5Þ

where n is the number of external dimensions.
Layer 4: Nodes in this layer receive the signals, which are ŷj

from the output of the wavelet neural-network model and Oð3Þj from
the output of layer 3. The mathematical function of each node j is

Oð4Þj ¼ ŷp
j � O

ð3Þ
j ; ð6Þ

ŷp
j ¼

XM

k¼1

wp
jkua:b; ð7Þ

where ŷp
j denotes the local output of the WNN for the output and

the jth rule, and the link weight wp
jk is the output action strength

associated with the pth output

ua:b ¼
Pn

j¼1ua:bðxiÞ
jXj ; ð8Þ

where j X j is the number of input dimensions. The ua.b(xi) functions
which are used to input vectors to fire up the wavelet interval are
then calculated. A value ua.b is obtained as follows:

uðxiÞ ¼ cosðxiÞ; �0:5 6 xi 6 0:5
0 otherwise; ua:b ¼ cosðaxi � bÞ

�
: ð9Þ

Layer 5: The node in this layer computes the output signal Yp.
The output node together with links connected to it acts as a
defuzzifier. The mathematical function is

Yp ¼
PM

j¼1Oð4ÞjPM
j¼1Oð3Þj

¼
PM

j¼1ŷp
j Oð3ÞjPM

j¼1Oð3Þj

¼
PM

j¼1ðw
j
1/1:1 þwj

2/2:1 þ � � � þwj
k/m:mÞO

ð3Þ
jPM

j¼1Oð3Þj

: ð10Þ

Details of the structure of the RNFN model can be found in Lin and
Chin (2004).

3. An improved particle swarm optimization

Particle swarm optimization (PSO) was originally introduced by
Kennedy and Eberhart in 1995 for the study of social and cognitive
behavior (Eberhart & Kennedy, 1995a, 1995b). The idea originated
in studies on the synchronous flocking of birds and schooling of
fish. The PSO algorithm has come to be widely used as a problem
solving method in engineering and computer science. This algo-
rithm has several highly desirable attributes, including a basic
algorithm that is very easy to understand and implement. It is sim-
ilar in some ways to evolutionary algorithms, but requires less
computational bookkeeping and generally fewer lines of code.

In the PSO, the trajectory of each individual in the search space
is adjusted by dynamically altering the velocity of each particle,
according to its own flight experience and the flight experience
of the other particles in the search space. The position vector and
the velocity vector of the ith particle in the N-dimensional search
space can be represented by Xi = (xi1,xi2,xi3 , . . . ,xid) and Vi = (mi1,mi2,
mi3 , . . . ,mid), respectively. According to an user-defined fitness func-
tion, suppose that the best position of each particle (which corre-
sponds to the best fitness value obtained by that particle at time)
isPi = (pi1,pi2,pi3, . . . ,pid), and the fittest particle found so far is
Pg = (pg1,pg2,pg3 , . . . ,pgd). Then the new velocities and the positions
of the particles for the next fitness evaluation are calculated using
the following two equations:

mkþ1
vid ¼x� mk

vid þ c1 � randð�Þ � ðPid � xk
idÞ þ c2 � randð�Þ � ðPgd � xk

idÞ
ð11Þ

xkþ1
id ¼ xk

id þ vkþ1
id ; ð12Þ

where w, c1 and c2 are called the coefficients of the inertia term, the
cognitive term and the society term, respectively. Rand yields uni-
formly distributed random numbers in [0, 1].

The first part of Eq. (11) represents the previous velocity, which
provides the necessary momentum for particles to roam across the
search space. The second part of Eq. (11), known as the ‘‘cognitive”
component, represents the personal thinking of each particle. The
cognitive component encourages the particles to move toward
their own best positions found so far. The third part of Eq. (11) is
known as the ‘‘social” component, which represents the collabora-
tive effect of the particles, in finding the global optimal solution.
The social component always pulls the particles toward the global
best particle found so far.

The traditional evolutionary direction operator (EDO) (Juang &
Lin, 1998) was first used for GAs. The EDO selects good target
points (i.e., particles), and other points will move toward these
good target points. Because the GA is a random search method,
it cannot obtain optimal solutions efficiently and quickly. The
EDO method can enhance GAs to search for the optimal solution.
The main shortcoming of the EDO is that the new particle created
from three arbitrary particles in each generation cannot be certain
to have good evolutionary direction. For this reason, the evolution-
ary direction may not be toward a better direction. Therefore, we
propose a modified evolutionary direction operator (MEDO) to im-
prove this shortcoming of the traditional EDO. We use the MEDO
to enhance the capability of the traditional PSO to find the optimal
solution. The new algorithm is called the improved particle swarm
optimization (IPSO). In this study, a Gaussian membership func-
tion is adopted with variables that represent the mean and devia-
tion of the membership function. The fuzzy rule given by Eq. (5),
where mij and rij are the mean and deviation of a Gaussian mem-
bership function, respectively, and wij represents the correspond-
ing link weight of the consequent part that is connected to the
jth rule node. In this study, a real number represents the position
of each particle. Fig. 2 shows the flowchart of the proposed IPSO
learning process. The whole learning process is described step-
by-step as follows.

3.1. Individual initialization

The individual initialization step sets the initial values for every
particle. The individual initialization step sets the initial values for
every particle. Each particle includes the mean, deviation and
weight variables of the RNFN, and their values are generated
randomly.

3.2. Evaluate fitness

The evaluation step evaluates each particle in a swarm. The fit-
ness function is defined as follows:

fi ¼ 1=Y; ð13Þ

Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

p¼1

ðyp � �ypÞ

vuut ; for p ¼ 1;2; . . . ;N; ð14Þ
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where N represents the number of input data; y and �y represent the
model output and the desired output, respectively.

3.3. Update the local best and the global best

In this step, we update the local best and the global best. The
updating process of the local best and the global best is as follows:

1. If the fitness value of the ith particle is higher than that of the
ith local best, then the ith local best will be replaced with the
ith particle.

2. If the fitness value of the ith particle is higher than that of the
global best, then the global best will be also replaced with the
ith particle.

3.4. Modified evolutionary direction operator

With the MEDO, we choose the three best solutions in each gen-
eration to perform the evolutionary direction operation. The new
solution is superior to the original best solution.

After a generation of learning, the three best particles are ob-
tained. These three best particles are ordered according to their fit-
ness and are called the ‘‘low,” ‘‘medium,” and ‘‘high” particles.
Three inputs (preferred) and the output (created) particles are de-
noted as follows: Input particles:

‘‘low” particle, Cl = (Cl1,Cl2,Cl3, . . . ,Cld), with fitness Fl.
‘‘medium” particle, Cm = (Cm1,Cm2,Cm3, . . . ,Cmd), with fitness Fm.
‘‘high” particle, Ch = (Ch1,Ch2,Ch3, . . . ,Chd), with fitness Fh.
Output particle, Co = (Co1,Co2,Co3,. . .,Cod), with fitness Fo.

First, the ‘‘low” particle is updated using a migration operation
to generate a new ‘‘low” particle. Next, the ‘‘medium” particle and
the ‘‘high” particle will be set as the moving target direction of the
new ‘‘low” particle. That is, the new ‘‘low” particle will be updated
again toward the ‘‘medium” and ‘‘high” particles. This process im-
proves the capability of finding the global solution. Fig. 3 shows the
flowchart of the proposed MEDO. The detailed MEDO is described
as follows:

Step 1: Set the magnitudes of the two evolution directions to 1
(i.e., D = 1, D = 1). Then set the initial index of the MEDO
to 1 (i.e., Ts = 1), the number of the MEDO loop to NL,
and the three particles with the best fitness values from
the local best swarm to Ch, Cm, and Cl.
Step 2: The migration operation (Chiang, 2005) in the MEDO is
used to regenerate a newly diverse population, which pre-
vents individuals from gradual clustering. Thus, the
migration operation greatly increases the amount of
search space explored for a small swarm. The migrant
individuals are generated based on the best individual,
Xi = (xi1,xi2,xi3, . . .,xid), by non-uniform random selection.
We use Eq. (15) to update the low particle (Cl) and the
medium particle (Cm).
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xid ¼

xid þ qðxL
id � xidÞ; if r1 <

xid�xL
id

xL
id
�xU

id

xid þ qðxU
id � xidÞ; otherwise;

<
: ð15Þ

where q and r1 are random numbers in the range of [0,1].
If the fitness value is not improved and this optimum va-
lue is a local optimum, then we use the migration opera-
tion to solve this problem. The migration operation is the
migrant xid to other points and this idea can escape the lo-
cal extreme value trap.
Step 3: Compute Co using
Coj ¼ Clj þ D1 � ðClj � CmjÞ þ D2 � ðClj � ChjÞ: ð16Þ

Starting from the base point C and with the use of two dif-
ference vectors, D1 � (Clj � Cmj) and D2 � (Clj � Cpj), the
next evolutionary direction and the next evolutionary
step-size can be determined using this parallelogram.
Point Co can then be created along the evolutionary direc-
tion with the evolutionary step-size.
Step 4: Evaluate the new fitness (Fo) of the newly created output
particle (Co).

Step 5: Update the ‘‘low” particle (Cl), ‘‘medium” particle (Cm),
and ‘‘high” particle (Ch). The updating process is as
follows:
(1) If Fo > Fh, then Ch = Co, Cm = Ch, and Cl = Cm.
(2) Else if Fo > Fm and Fo < Fh, then Cm = Co and Cl = Cm.
(3) Else if Fo > Fl and Fo < Fm, then Cl = Co.
(4) Else if Fo = Fl = Fm, then Co = Co + Nr (Nr 2 [0,1]).
(5) Else if Fo < Fl, then D1 = D1 � � 0.5 andD2 = D2 � � 0.5.

According to statements (1)–(3) in the process above, we
update the ‘‘low” particle, the ‘‘medium” particle and the
‘‘high” particle. In statement (4), when the new particle,
the ‘‘low” particle, and the ‘‘medium” particle all have
the same fitness values, the particle will fall into a local
optimum. Thus, a random number (Nr) is added to pre-
vent the learning algorithm from falling into a local opti-
mum. If the fitness value of the new particle in statement
(5) is not good, we will decrease the moving velocity (i.e.,
D1 and D2) to obtain a good fitness.
Step 6: In this step, we determine whether the MEDO is to be ter-
minated. If the MEDO is terminated, go to step 7. Other-
wise, Ts = Ts + 1, and go to step 2.

Step 7: In this step, we update the global best. The updating pro-
cess of the global best is as follows: if the fitness value of
the new particle is higher than that of the global best,
then the global best will also be replaced with the
particle.

3.5. Update velocity and update position

The velocity of all particles along each dimension is updated
using Eqs. (11) and (12).
Table 1
The initial parameters before training

Generations 1000 Vmax 2
Number of rules 5 c1 and c2 2
Particles 100 x 0.3
4. Experimental results

In order to demonstrate the performance of the proposed IPSO
approach, experiments were conducted, human body classification
and skin color detection problems using two different data sets. All
the programs were developed using Borland C++ Builder 6.0, and
each problem was simulated 10 times on a Pentium IV 3.2 GHz
desktop computer.

4.1. Example 1: Human body classification problem

We adopt length–width ratio to compute body’s silhouette and
get a posture feature. We derive from vertical and horizontal pro-
jection histograms of segmented people. To continue, other body
posture features are extracted from histograms of body silhouette
horizontal and vertical projections. However, relies on the body sil-
houette size and position. If silhouette size differs as the distance
from people to camera varies and the same silhouette size, the pro-
jection histogram differs as a person’s image position differs.
Therefore, we exploit discrete Fourier transform (DFT) method to
perform in this paper. Because, DFT is performed on a vertical
and horizontal projection histogram of segmented people to solve
the scaling and shifting problem. So, the proposed DFT coefficients
are used as features and we extracted important 20 significant DFT
coefficients features of different postures.

For human body classification classifier training, the initial
parameters before training are given in Table 1 and we adopt 80
training data, with 20 training data for each of the postures. Only
four rules are generated after learning (standing, bending, sitting,
and lying). For training, 320 train images collected from different
posture views are used, with 80 images for each of the four pos-
tures. For testing, 400 test images collected from different posture
views are used, with 100 images for each of the four postures. The
output of the best performance in the IPSO-RNFN is shown in Fig. 4.
The x-axis represents the continue posture feature patterns and the
y-axis represents the four classes of the human postures – stand,
crow, sit and lying. In Fig. 4, the label ‘‘o” means that the pattern
is classified as the correct class while the label ‘‘x” means that
the pattern is classified as the incorrect class. The recognition re-
sults for each posture are shown in Table 2 where the average rec-
ognition rate of our method is 98.25%. In addition, though the
body-segmented result may be imperfect, the proposed classifica-
tion system still achieves a high classification rate, showing the
robustness of the system.

In this example, we compared the performance of the proposed
IPSO method with the traditional PSO (Eberhart & Kennedy, 1995b)
method. The learning curves are shown in Fig. 5. In Fig. 5, we find
that the performance of the proposed IPSO method is superior to
the PSO method. The comparison items the testing accuracy rates
(e.g. best, worst and average situations), training and testing errors,
and cost. The comparison results with various existing models are
tabulated in Table 3.

4.2. Example 2: Skin color detection problem

Current human recognition methods, such as fingerprinting,
retinal scanning, and voice detection have become mature technol-
ogies. The aforementioned detection processes generally require a
cooperative subject, views from certain aspects, and physical con-
tact with close subject proximity. Often people feel that these
detection systems violate their privacy. Skin color detection is
the only non-contact detection method. In skin color detection,
users pass through detection areas, with a computer system scan-
ning the face in a non-intrusive manner. Though the skin color
detection plays an important role in applications such as face rec-
ognition and face image database management, being able to de-
tect faces is a crucial step in identification applications.

Three input dimensions (Y, Cb, and Cr) were used in this exper-
iment. We chose 6000 training and testing data. We used the CIT
database to produce both the training data and the testing data.
The 6000 skin and non-skin pixel training data in the color images
were randomly chosen. The testing data were also chosen



Fig. 4. The results of correct and incorrect posture classification.

Table 2
The posture classification result by RNFN, where the columns indicate the percentage
of the true posture and rows indicate the classification

Standing Bending Sitting Lying Average

Standing 98 0 0 0
Crowing 2 100 5 0
Sitting 0 0 95 0
Lying 0 0 0 100
Recognition

rate (%)
98 100 95 100 98.25

Fig. 5. The learning curves of the two methods using the IPSO-RNFN and PSO-RNFN.

Table 3
Performance comparison with various existing models from 400 test Images

IPSO PSO

Testing 400 400
Best/worst accuracy rate (testing) 98.25%/90.25% 90.25%/77.5%
Average testing accuracy rate (%) 94.5 85.75
Generations 1000 1000

Table 4
The initial parameters before training

Generations 100 Vmax 2
Number of rules 5 c1 and c2 2
Particles 100 x 0.4

Fig. 6. The learning curves of the IPSO and the PSO methods for the CIT database.

Table 5
Performance comparison with various models from the CIT database

IPSO PSO

Training data 6000 6000
Best/worst accuracy rate (testing) 99.33%/88.78% 94.16%/85.9%
Average testing accuracy rate (%) 94.13 90.19
Generations 100 100
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randomly. We set four rules constituting a recurrent neural-fuzzy
network. We observe that 100 generations have the best perfor-
mance. Finally, we compared our method with other methods.

We used the California Institute of Technology (CIT) face data-
base on http://www.vision.caltech.edu/Image_Datasets/faces/.
The database has 450 color images, the size of each being
320*240 pixels, and contains 27 different people and a (W) variety
of lighting, backgrounds, and facial expressions.

Three input dimensions (Y, Cb, and Cr) were used in this exper-
iment. We chose 6000 training and testing data. We used the CIT
database to produce both the training data and the testing data.
The 6000 skin and non-skin pixel training data in the color images
were randomly chosen. The testing data were also chosen

http://www.vision.caltech.edu/Image_Datasets/faces/
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randomly. We set five fuzzy rules constituting a recurrent neural-
fuzzy network and compared our method with other methods.

The initial parameters before training are given in Table 4. The
learning curves are shown in Fig. 6. In this figure, we find that the
performance of the proposed IPSO method is superior to the tradi-
tional PSO method. In this example, as with example 1, the
performance of the IPSO method is also compared with the tradi-
tional PSO. The comparison items include the best testing accuracy
rates, the worst testing accuracy rates, and the average testing
accuracy rates. The comparison results with various models are
tabulated in Table 5.
Fig. 7. Original face database from Calif
The California Institute of Technology face (CIT) database con-
sists of complex backgrounds and diverse lighting. The color
images from the CIT database are shown in Fig. 7. A well-trained
network can generate binary outputs (1/0 for skin/non-skin) to de-
tect a facial region. Fig. 8 shows that our approach accurately
determines a facial region. Hence, from the comparison data listed
in Table 3, the average of the test accuracy rate is 90.19% for the
traditional PSO and 94.13% for the proposed IPSO. This demon-
strates that the CIT database is more complex and does not lead
to a decrease in the accuracy rate. The proposed IPSO method
maintains a superior accuracy rate.
ornia Institute of Technology (CIT).



Fig. 8. Results of skin color detection with three dimension input (Y, Cb, and Cr).
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5. Conclusion

This paper, proposed a recurrent neural-fuzzy network (RNFN)
with an improve particle swarm optimization (IPSO) for solving
pattern recognition problems. In RNFN, the consequent part of
the rules is a nonlinear function of input-linguistic variables. This
study adopts the wavelet neural network to the consequent part
of the rules. The local properties of wavelets in the RNFN model en-
able arbitrary functions to be approximated more effectively. In or-
der to avoid trapping in a local optimal solution and to insure the
search capability of a near global optimal solution, mutation plays
an important role in IPSO. The experimental results show that our
method achieves faster learning and a higher design accuracy rate
in the human body classification and skin color detection
problems.

References

Abd-Almageed, W., & Smith, C. (2002). Hidden Markov models for silhouette
classification. Proceedings of the world automation congress 2002, 395–402.

Back, T., & Schwefel, H. P. (1993). An overview of evolutionary algorithms for
parameter optimization. Evolution and Computations, 1(1), 1–23.

Bicego, J. M., & Murino, V. (2001). 2D shape recognition by Hidden Markov models.
In Proceedings of the IEEE conference on image analysis and processing (pp. 20–
24). Palermo, Italy.



5410 C.-J. Lin et al. / Expert Systems with Applications 36 (2009) 5402–5410
Castellano, G., Fanelli, A. M., & Mencar, C. (2002). A neuro-fuzzy network to generate
human-understandable knowledge from data. Cognitive Systems Research
Journal, 3(2), 125–144.

Chiang, C. L. (2005). Improved genetic algorithm for power economic dispatch of
units with vale-point effects and multiple fuels. IEEE Transactions on Power
Systems, 20(4), 1690–1699.

Chiang, J. H., & Hao, P. Y. (2003). A new kernel-based fuzzy clustering approach:
Support vector clustering with cell growing. IEEE Transactions on Fuzzy Systems,
11(4), 518–527.

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Proceedings of the sixth international symposium on micro machine and human
science (MHS’95) (pp. 39–43).

Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In IEEE international
conference on neural networks (Vol. 4) (pp. 1942–1948).

Fogel, L. J. (1994). Evolutionary programming in perspective: The top–down view. In
J. M. Zurada, R. J. Marks, II, & C. Goldberg (Eds.), Computational intelligence:
Imitating life. Piscataway, NJ: IEEE Press.

Fogel, D. B. (1995). Evolutionary computation: Toward a new philosophy of machine
intelligence. Piscataway, NJ: IEEE Press.

Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine
learning. Reading, MA: Addison-Wesley.

Jang, J.-S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE
Transactions on System, Man, and Cybernatics, 23, 665–685.

Juang, C. F., & Lin, C. T. (1998). An on-line self-constructing neural fuzzy
inference network and its applications. IEEE Transactions on Fuzzy Systems,
6(1), 12–31.
Karr, C. L., & Gentry, E. J. (1993). Fuzzy control of PH using genetic algorithms. IEEE
Transactions on Fuzzy Systems, 1(1), 46–53.

Kasabov, N. K., & Song, Q. (2002). DENFIS: Dynamic evolving neural-fuzzy inference
system and its application for time-series prediction. IEEE Transactions on Fuzzy
Systems, 10(2), 144–154.

Koza, J. K. (1992). Genetic programming: On the programming of computers by means
of natural selection. Cambridge, MA: MIT Press.

Lee, C. H., & Teng, C. C. (2000). Identification and control of dynamic systems using
recurrent fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 8, 349–366.

Lin, C. J., & Chen, C. H. (2003). Nonlinear system control using compensatory neuro-
fuzzy networks. IEICE Transactions on Fundamentals, E86-A(9), 2309–2316.

Lin, C. J., & Chin, C. C. (2004). Prediction and identification using wavelet-based
recurrent fuzzy neural networks. IEEE Transactions on Systems, Man and
Cybernetis-Part B: Cybernetics, 34(5), 2144–2154.

Lin, C. T., & Lee, C. S. G. (1996). Neural fuzzy systems: A neural-fuzzy synergism to
intelligent systems. Englewood Cliffs, NJ: Prentice-Hall. with disk.

Lin, F. J., Shieh, H. J., Teng, L. T., & Shieh, P. H. (2005). Hybrid controller with
recurrent neural network for magnetic levitation system. IEEE Transactions on
Magnetics, 41(7), 2260–2269.

Rechenberg, I. (1994). Evolution strategy. In J. M. Zurada, R. J. Marks, II, & C.
Goldberg (Eds.), Computational intelligence: Imitating life. Piscataway, NJ: IEEE
Press.

Yamamoto, K., & Inoue, O. (1995). New evolutionary direction operator for genetic
algorithms. AIAA Journal Technical Notes, 33(10), 1990–1993.

Yao, X. (Ed.). (1999). Evolutionary computation: Theory and applications. Singapore:
World Scientific.


	Pattern recognition using neural fuzzy neural-fuzzy networks based on improved particle swam optimization
	Introduction
	A Recurrent neural fuzzy recurrent neural-fuzzy network
	An improved particle swarm optimization
	Individual initialization
	Evaluate fitness
	Update the Local Best local best and the Global Bestglobal best
	Modified evolutionary direction operator
	Update velocity and update position

	Experimental results
	Example 1: Human Body Classification Problembody classification problem
	Example 2: Skin Color Detection Problemcolor detection problem

	Conclusion
	References


