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a b s t r a c t

The brain–computer interface (BCI) is a system that transforms the brain activity of different mental

tasks into a control signal. The system provides an augmentative communication method for patients

with severe motor disabilities. In this paper, a neural classifier based on improved particle swarm

optimization (IPSO) is proposed to classify an electroencephalogram (EEG) of mental tasks for left-hand

patterns utilize principle component analysis (PCA) in order to reduce the feature dimensions. Then a

three-layer neural network trained using particle swarm optimization is used to realize a classifier.

The proposed IPSO method consists of the modified evolutionary direction operator (MEDO) and the

traditional particle swarm optimization algorithm (PSO). The proposed MEDO combines the

evolutionary direction operator (EDO) and the migration. The MEDO can strengthen the searching

global solution. The IPSO algorithm can prevent premature convergence and outperform the other

existing methods. Experimental results have shown that our method performs well for the classification

of mental tasks from EEG data.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Many people suffer from amyotrophic lateral sclerosis, brain-
stem stroke, brain or spinal cord injury, cerebral palsy, muscular
dystrophies, multiple sclerosis, and numerous other diseases.
These diseases impair a person’s neural pathways that control
muscles or impair the muscles themselves. Moreover, a person
suffering from one of these diseases may lose all voluntary muscle
control, including eye movements and respiration, and may be
completely imprisoned in their bodies, unable to communicate in
any way.

Because of new understanding into how the brain functions,
low-cost computer equipment, advances in signal process tech-
nology, research in brain–computer interface (BCI) has received
much interest in the past decade. A BCI is a communication
system that does not depend on the brain’s normal output
pathways of peripheral nerves and muscles [27]. Therefore, BCI
system [13] can provide an augmentative communication method
for patients with severe motor disabilities. Paralyzed patients can
ask for basic necessities like water and food or use a computer by
ll rights reserved.
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moving the cursor on a monitor screen using a BCI system without
any voluntary muscle control.

Since a BCI system is controlled directly by the brain, it needs a
method to detect brain activity. The method can be magnetic
resonance imaging (MRI), functional magnetic resonance imaging
(FMRI), positron emission topography (PET), near-infra-red spec-
troscopy (NIRS), magnetoencephalography (MEG), or electroence-
phalogram (EEG). Among these methods, the EEG is relatively
inexpensive, has rapid response time, and can function in most
environments. At present, the EEG is widely used to monitor brain
activity in BCI research [18,1,11]. MRI belongs to the structural
imaging. Structural imaging represents a range of measurement
techniques, which can display anatomical information. Optical
imaging offers some disadvantages over both MEG and FMRI, both
of which involve the use of large, heavy, expensive instruments,
and a dedicated building to eliminate effects of external magnetic
fields. PET is a nuclear medicine imaging modality that provides
information about the regional cerebral blood flow and tissue
metabolism. NIRS is a non-invasive technique used for monitoring
blood oxygenation. PET and NIRS are both unsuited for monitor
brain activity.

An electroencephalogram (EEG) is a recording of the very weak
(on the order of 5–100 mV) electrical potentials generated by the
brain on the scalp. First, it was introduced by Hans Berger in 1929.
An EEG is recorded as a potential difference between a signal
electrode placed on the scalp and a reference electrode (generally
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Fig. 1. The procedure of one session of each subject.
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connected to one ear or both ears). The amplitude and frequency
of an EEG are related to different brain conditions. We usually
consider specific frequency bands thought to be associated with
specific brain rhythms: the alpha (8–13 Hz), beta (13–30 Hz), delta
(0.5–4 Hz), and theta (4–7 Hz) bands. Alpha rhythm is character-
istic of a relaxed state of consciousness. Alpha rhythms are best
detected with the eyes closed. Alpha attenuates with drowsiness
and open eyes, and is best seen over the occipital (visual) cortex.
Beta rhythm is often associated with active, busy or anxious
thinking and active concentration. Rhythmic beta with a domi-
nant set of frequencies is associated with various pathologies and
drug effects, especially. Delta rhythm is often associated with the
very young and underlying lesions. Theta rhythm is associated
with drowsiness, childhood, adolescence, and young adulthood.

In Pfurtscheller’s study [21], movement or preparation for
movement is typically accompanied by a decrease in mu and beta
rhythms, particularly contra-lateral to the movement. An alpha-
like normal variant called mu is sometimes seen over the motor
cortex and attenuates with movement, or rather with the
intention to move. This decrease is called ‘‘event-related desyn-
chronization’’ (ERD). A rhythm increase, called ‘‘event-related
synchronization’’ (ERS), on the other hand, occurs after movement
and with relaxation. Further, the ERD/ERS is not necessary to
actual movement. They have been researched occur with motor
imagery [20]. Thus, the mu and beta rhythms are commonly used
in BCI research.

Many methods [13,18,1,11,24,22,9,16] have been proposed to
BCI in the past few years. As a classifier, linear discriminant
analysis (LDA) [11,9], support vector machine (SVM), and recently
neural network (NN) were used [13,18,1,24,22]. Guger et al. [11]
used both recursive least squares and the LDA algorithms to aim at
classify left- or right-hand movement. Furthermore, Garrett et al.
[9] compared these linear (LDA) and two nonlinear classifiers
(NNs and SVMs) applied to the classification of spontaneous EEG
during five mental tasks. During mental imagination of specific
movements, Dennis et al. [16] used the adaptive multiple
regressions where the result EEG recorded from the sensorimotor
cortex was classified on-line and used for cursor control. Due to
the high-dimensional and artificial noise (e.g., tester blinks his/her
eyes) of the EEG signals, the nonlinear classification methods are
better than the linear ones [9]. Therefore, we will use the
nonlinear NN methods to classify the high-dimensional and
artificial noisy EEG signals.

In this paper, we propose a method to classify the EEG of
mental tasks for left-hand movement imagination, right-hand
movement imagination, and word generation. We expect that the
three mental tasks can be classified and that they correspond to
three control commands in a BCI system. First, we use principle
component analysis (PCA) [6,7] to extract the EEG power
spectrum density (PSD) feature. The PCA achieves a linear
transformation of a high-dimensional data into a lower-dimen-
sional subspace one whose components are uncorrelated. Next,
we classify the PCA feature using artificial NNs. Artificial NNs are
deliberately constructed to make use of organizational principles
that resemble those of the human brain [12,15,8].

The NN has been trained by back-propagation (BP) algorithm,
which uses gradient steepest descent method to train parameters
of the network. However, the error curve may converge very
slowly or the solution may fall into the local minimum, when it
has been trained by BP. In recent years, many researchers studied
to avoid falling into local minimum, such as [30] the optimal
setting of initial weights optimal learning rates and momentum,
finding optimal NN architectures using pruning techniques and
construction techniques sophisticated optimization techniques
and adaptive activation functions. Therefore, we use an improved
particle swarm optimization (IPSO) to search for a better solution
of the weights in a NN instead of the BP. The proposed IPSO
method consists of the modified evolutionary direction operator
(MEDO) and the traditional particle swarm optimization algo-
rithm (PSO). The traditional PSO is an evolutionary algorithm that
is based on the flocking of birds or the schooling of fish in nature.
Since all the particles have local and global knowledge, PSO can
search for and obtain the global solution quickly. The advantages
of the proposed IPSO method are as follows: (1) it can prevent
premature convergence; (2) it can accelerate the global search
capacity using the MEDO; and (3) as demonstrated in Section 4,
the IPSO method can find a better solution than the other
methods in same iterations.

This paper is organized as follows. Section 2 describes the
detailed descriptions of the EEG dataset, which is used in this
study. The proposed analysis method, including the extract
feature, the classifier, and the learning algorithm, is described in
Section 3. The experimental results are shown in Section 4. Finally,
conclusion and future work are given in Section 5.
2. EEG dataset

In this study, we use the dataset provided by IDIAP Research
Institute (Silvia Chiappa, José del R. Millán) [5] in the Data
Competition III.

This dataset contains data from three normal subjects taken
during four non-feedback sessions. The subject sat in a normal
chair, relaxed arms resting on their legs. All four sessions of a
given subject were acquired on the same day, each session lasting
4 min, with 5–10 min breaks in between each session. The subject
performed a given task for about 15 s and then switched randomly
to another task at the operator’s request (see Fig. 1). Three mental
tasks were classified in this study:
1.
 Imagination of the left-hand movements (left).

2.
 Imagination of the right-hand movements (right).

3.
 Generation of words beginning with the same random letter

(word).

EEG signals were recorded with a Biosemi system using a cap
with 32 integrated electrodes located at standard positions of the
International 10–20 system. The sampling rate was 512 Hz.

In this dataset, EEG data were not split into trials since the
subjects were continuously performing any one of the mental
tasks. The data were provided in pre-computed features. The raw
EEG potentials were first spatially filtered by means of a surface
Laplacian [17]. An EEG electrode actually measures a mixture of
signals from several neuronal clusters. Spatial filters, such as a
Laplacian filter, are usually applied to concentrate the signals to a
single neuronal cluster.

Every 62.5 ms (i.e., 16 times per second) the power spectral
density (PSD) in the 8–30 Hz band was estimated over the last
second of the EEG data with a frequency resolution of 2 Hz for the
eight centro-parietal channels C3, Cz, C4, CP1, CP2, P3, Pz, and P4.
The detailed locations of the eight channels are shown in Fig. 2.
The PSD was used the Welch periodogram method [19]. Hence, an
EEG sample data was 96 dimensions (eight channels in 12
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frequency components) [5]. The average PSD of all sessions for
subject 1 was plotted in Fig. 3. In this figure, the mental tasks of
imagination of left-hand movement, imagination of right-hand
movement, and word generation are plotted in the left column,
middle column, and right column, respectively.
Fig. 2. The placement of the electrodes.

Fig. 3. The PSD valu
3. Analysis method

In this section, we introduce the proposed analysis method for
EEG pattern classification. Fig. 4 shows the flowchart of data-
processing procedure. First of all, the EEG data are recoded using
downsampling of 2 Hz for later analysis. Second, the efficient PCA can
find these features for k dimensions. Third, the mental signal will be
classified by using a three-layer NN with IPSO algorithm. After
training this network, the classified data can be determined. The
detailed introduction will be presented in the following subsections.
3.1. Data preprocessing

Cross-validation is a valid assesses generalization error for
stopping the training of a network. During performance analysis
of network, cross-validation method can be used for determining
large amount of training data. We performed the following cross-
validation procedure for training the network as a way to control
the over-fitting of training data. NN performance was assessed on
both the training and the test validation set. We randomly select
75% of all dataset as training network and 25% of all dataset as test
validation for each subject after each training epoch. In order to
compare with other methods [28,26,3], the setup of the training
e of subject 1.
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Fig. 4. The block diagram of the analysis procedure.

Table 1
Class distribution of the samples in the training data and testing data

Subject Class Number of training data Number of testing data

1 L 366 130

R 432 128

W 518 180

2 L 370 108

R 426 144

W 504 182

3 L 426 150

R 430 146

W 430 140

x1

x2

xkIn

Left

Right

Word

h1

h2

wxh why

Output LayerHidden LayerInput Layer

hnHid

Fig. 5. Three-layer feed-forward neural network.
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set and testing set are recoded down sample to 2 Hz. Let L be
imagination the left-hand movement, R be imagination the right-
hand movement, and W be generation of words. The class
distribution numbers of the training sample and testing sample
for three subjects after preprocessing are shown in Table 1.
3.2. Extract feature using PCA

Before classification, we use the PCA to extract the PSD data
that will be the input of the classifier. PCA is a statistics method
and is widely used in pattern recognition. By using PCA, we can
project PSD data from the higher 96-dimension vector to the
lower k-dimension eigenspace, which is composed of k eigenvec-
tors, and retain the feature information. The detailed steps of PCA
are as follows:

Step 1: Compute the mean vector

m ¼
1

nTr

XnTr

i¼1

pi; (1)

where pi ¼ ½p1 � � �pd�
t is the ith d-dimension training sample (i.e.,

PSD value of all channels) and nTr is the total number of the
training samples.

Step 2: Compute the covariance matrix

R ¼
XnTr

i¼1

ðpi �mÞðpi �mÞt , (2)

where R is a d� d matrix.
Step 3: Find the eigenvalue and eigenvector from the
covariance matrix by solving

Rx ¼ lx, (3)

which can be rewritten as follows:

ðR� lIÞx ¼ 0, (4)

where I is the identity matrix and 0 is a zero vector. The solution
vector x ¼ ei and corresponding scalar l ¼ li are the eigenvector
and associated eigenvalue, respectively. Because R is real and
symmetric, there are d solution vectors {e1, e2,y,ed}, each with an
associated eigenvalue {l1, l2,y,ld}, where the eigenvalues are
sorted from large to small. The eigenvector with the highest
eigenvalue represents the principle component of the dataset.
That is, the eigenvectors with the larger eigenvalues represent the
most significant relationship between the data dimensions.

Step 4: Generate a d� k matrix A whose columns consist of the
k eigenvectors having the largest eigenvalues:

A ¼ ½e1; e2; . . . ; ek�. (5)

Step 5: Represent the original data by projecting the data onto
the k-dimensional subspace according to

p0 ¼ At
ðp�mÞ (6)

where p0 ¼ ½p01 � � �p
0
k�

T is the PCA feature vector.
If we need to extract the PCA feature of the testing data, we

only do Step 5 again by replacing the training data p with the
testing data.

3.3. NNs

For the classification of three mental tasks, a NN is used as a
classifier to distinguish the PCA feature of the PSD value in the
EEG. In order to adjust the parameter of the NN efficiently, we
used the learning algorithm by IPSO. Before the classification
process, we need to normalize the EEG data (i.e., the training data
and the testing data) to between 0 and 1.

In this study, we used three-layer feed-forward artificial NN
with one hidden layer and one output layer as shown in Fig. 5.
Thus, kIn and nHid represent the number of input nodes and
hidden nodes, respectively. An input vector is applied to the input
layer, where all of the inputs are distributed to each unit in the
hidden layer. All of the units have weight vectors, which are
multiplied by these input vectors. Each unit sums these inputs
and produces a value that is transformed by nonlinear activation
function, for which we used the sigmoid function. The output of
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Fig. 6. The procedure of proposed IPSO.
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the final layer is then computed by multiplying the output vector
from the hidden layer by the weights into final layer. More
summations and activation of theses units then give the actual
output of the network.

In this study, the NN consisted of one input layer, one hidden
layer, and one output layer. The number of the input nodes is
defined by the size of the PCA feature. Since the EEG is classified
into three mental tasks, we set the three output nodes that
correspond to the mental tasks left, right, and word, respectively.
The three outputs are represented by unit vectors: left ¼ [10 0],
right ¼ [0 10], and word ¼ [0 0 1]. The different hidden nodes of
the NN are tested and explained in Section 4.

3.4. An IPSO

Particle swarm optimization is an evolutionary computation
technique developed by Kennedy and Eberhart [10,14,2]. It is a
global search method based on natural systems. PSO originated
from studies of the social behavior of animals, such as birds
flocking and fish schooling.

The system initially has a swarm of random solutions. Each
potential solution, called a particle, is given a random initial
velocity and is flown through the problem space. At each time step
n, the velocity is updated by the following equation:

vi;dðnþ 1Þ ¼ o� vi;dðnÞ þ c1 � rand1 � ðplbest_i;d � xi;dðnÞÞ

þ c2 � rand2 � ðpgbest;d � xi;dðnÞÞ. (7)

In the updating velocity equation, the new velocity vi,d of particle i

in dimension d is computed by summing three components
provided by the information from previous searches. The first
component is referred to as ‘‘inertia’’ and is the current velocity of
the given particle computed from a previous iteration. The second
component is referred to as ‘‘individual knowledge’’ and is the
best position plbest_i,d found by the particle i; this position is called
the local best. The third component is referred to as ‘‘group
knowledge’’ and is the best position pgbest,d found by all the
particles; this position is called the global best. The basic concept
of the PSO technique lies in accelerating each particle towards its
local best and the global best locations iteratively. The first,
second, and third components are scaled using the constants o, c1,
and c2, respectively. Controlling the proportion of the moving
velocity between the inertia, individual knowledge and group
knowledge will make the solution towards the local or global
optimum and influence the convergence speed [23]. In addition,
rand1 and rand2 are two uniform random functions and give
random search in the problem space.

After the new velocity is obtained, the particle updates the
position using the following equation:

xi;dðnþ 1Þ ¼ xi;dðnÞ þ vi;dðnþ 1Þ, (8)

where xi,d represents a position of the particle.
The traditional evolutionary direction operator (EDO) [29] was

used for GA originally. The EDO selects good target points (i.e.,
particles), and other points will move toward these good target
points. Because the GA is a random search method, it cannot
obtain optimal solutions efficiently and quickly. The EDO method
can enhance GA to search for the optimal solution. The main
shortcoming of the EDO is that the new particle created from
three arbitrary particles in each generation cannot be certain to
have good evolutionary direction. For this reason, the evolutionary
direction may not be toward a better direction. Therefore, we
propose a MEDO to improve this shortcoming of the traditional
EDO. We use the MEDO to enhance the capability of the
traditional PSO to find the optimal solution. The new algorithm
is called the IPSO. Fig. 6 shows the flowchart of the proposed IPSO
learning process. The whole learning process is described step-by-
step as follows:

3.4.1. Initialize the swarm

The swarm is initialized using m particles with random
positions and velocities of D dimensions in the problem space.
In this study, the coordinate positions of a particle in dimension d

correspond to each variable (weight and bias) that will be trained
in a NN (see Fig. 7).

3.4.2. Evaluate the swarm

For each particle, evaluate its fitness according to the desired
optimization. For the evaluation of a NN, the root-mean-square-
error (RMSE) is used to compute the average output error and is
defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nTr

XnTr

i¼1

XnOut

j¼1

ðti;j � yi;jÞ
2

vuut , (9)

where nTr is the number of training data, nOut the number of
network outputs, and ti,j and yi,j the jth target output and real
network output of the ith training data, respectively. The fitness
function is defined as

fitness ¼
1

1þ RMSE
. (10)

Fitness was used for measuring performance of the NN. After the
evaluation of the initial swarm, the local best of each particle and
the global best will be recorded. Naturally, in the initial state, the
local best of each particle is its initial position. The global best
stores the index of the particle, which has the best local best of all
the particles.

3.4.3. Update local best and global best

In this step, we update the local best and the global best. If the
fitness value of the particle is higher than that of the local best,
then the local best will be replaced with the particle; and further,
if the local best is better than the current global best, then the
global best has to be replaced in the swarm.

3.4.4. MEDO

With the MEDO, we choose the three best solutions in each
generation to perform the evolutionary direction operation. The
new solution is superior to the original best solution.

After learning, we can obtain the three best particles. These
three best particles are ordered according to their fitness and are
called the ‘‘low,’’ ‘‘medium,’’ and ‘‘high’’ particles. Three inputs
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Fig. 7. The structure of the swarm.
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(preferred) and the output (created) particles are denoted as
follows:

Input particles:
�
 ‘‘low’’ particle, Cl ¼ ðCl1;Cl2;Cl3; . . . ;CldÞ, with fitness Fl.

�
 ‘‘medium’’ particle, Cm ¼ ðCm1;Cm2;Cm3; . . . ;CmdÞ, with fitness

Fm.

�
 ‘‘high’’ particle, Ch ¼ ðCh1;Ch2;Ch3; . . . ;ChdÞ, with fitness Fh.
Fig. 8. Flowchart of the proposed MEDO.
Output particle, Co ¼ ðCo1;Co2;Co3; . . . ;CodÞ, with fitness Fo.
First, the ‘‘low’’ particle is updated using a migration operation

to generate a new ‘‘low’’ particle. Next, the ‘‘medium’’ particle and
the ‘‘high’’ particle will be set as the moving target direction of the
new ‘‘low’’ particle. That is, the new ‘‘low’’ particle will be updated
again toward the ‘‘medium’’ and ‘‘high’’ particles. This process
improves the global search capacity. Fig. 8 shows the flowchart of
the proposed MEDO. The detailed MEDO is described as follows:

Step 1: Set the magnitudes of the two evolutionary directions
to 1 (i.e., D1 ¼1 and D2 ¼ 1), where D1 and D2 are the constant
values. Then we also set the initial index of the MEDO to 1
(i.e., Ts ¼ 1), the loop number of the MEDO to NL (termination
condition, i.e., NL ¼ 10), and the three particles with the best
fitness values from the local best swarm to Ch, Cm, and Cl.

Step 2: The migration operation [4] in the MEDO is used to
regenerate a newly diverse population, which prevents indivi-
duals from gradual clustering. Thus, the migration operation
greatly increases the amount of search space explored for a small
swarm. The migrant individuals are generated based on the best
individual, Xi ¼ ðxi1; xi2; xi3; . . . ; xidÞ, by non-uniform random selec-
tion. We use Eq. (11) to update the low particle (Cl):

xid ¼
xid þ rðxL

id � xidÞ if r1o
xid � xL

id

xL
id � xU

id;

xid þ rðxU
id � xidÞ otherwise;

8>><
>>:

(11)

where r and r1 are random numbers in the range of [0,1]. xL
id is the

lower bound on this particle and xU
id is the upper bound on this

particle. If the fitness value is not improved and this optimum
value is a local optimum, then we use the migration operation to
solve this problem. The migration operation is the migrant xid to
other points and this idea of migration operation can escape the
local extreme value trap.
Step 3: Compute Co using

Coj ¼ Clj þ D1 � ðClj � CmjÞ þ D2 � ðClj � ChjÞ. (12)

Starting from the base point C and with the use of two difference
vectors, D1 � ðClj � CmjÞ and D2 � ðClj � CpjÞ, the next evolutionary
direction and the next evolutionary step-size can be determined
using this parallelogram. Point Co can then be created along the
evolutionary direction with the evolutionary step size.

Step 4: Evaluate the new fitness (Fo) of the newly created
output particle (Co).
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Step 5: Update the ‘‘low’’ particle (Cl), ‘‘medium’’ particle (Cm),
and ‘‘high’’ particle (Ch). The updating process is as follows:
(1)
 If Fo4Fh, then Ch ¼ Co, Cm ¼ Ch, and C1 ¼ Cm.

(2)
 Else if Fo4Fm and FooFh, then Cm ¼ Co and C1 ¼ Cm.

(3)
 Else if Fo4F1 and FooFm, then C1 ¼ Co.

(4)
 Else if Fo ¼ F1 ¼ Fm ¼ Fh, then Co ¼ Co+Nr (NrA[0,1]).

(5)
 Else if FooF1, then D1 ¼ D1��0.5 and D2 ¼ D2��0.5.
Fig. 9. The distribution of eigenvalues in subject 1.
According to statements (1)–(3) in the process above, we update
the ‘‘low’’ particle, the ‘‘medium’’ particle, and the ‘‘high’’ particle.
In statement (4), when the new particle, the ‘‘low’’ particle, the
‘‘medium’’ particle and the ‘‘high’’ particle all have the same
fitness values, the particle will fall into a local optimum. Thus, a
random number (Nr) is added to prevent the learning algorithm
from falling into a local optimum. If the fitness value of the new
particle in statement (5) is not good, we will decrease the moving
velocity (i.e., D1 and D2) to obtain a good fitness.

Step 6: In this step, we determine whether the MEDO is to be
terminated. If the MEDO is terminated, go to step 7. Otherwise,
Ts ¼ Ts+1, and go to step 2.

Step 7: In this step, we update the global best. The updating
process of the global best is as follows: If the fitness value of the
new particle is higher than that of the global best, then the global
best will also be replaced with the particle.

Finally, compute the new velocity of the particle according to
Eq. (7) and move it to the next position according to Eq. (8).
Fig. 10. The distribution of eigenvalues in subject 2.

Fig. 11. The distribution of eigenvalues in subject 3.
4. Experimental results

In this section, we will present the classification performance
of the proposed analysis method. The selection of the parameters
of the IPSO will critically affect the simulation results, and the
value will be based on practical experimentation or on trial-and-
error tests. In this study, o is taken to be a constant 0.4 throughout
the optimization process. We used c1 ¼ 1 and c2 ¼ 2 in Eq. (7), and
these could a further toward best position in the second
component of the velocity update equations. The particle numbers
could be tuned raise for the study at hand, nevertheless the
implementation of the particle swarm optimization is occupied a
large memory. Therefore, each run has been conducted with a
particle of 50 individuals. Each result is computed by averaging 10
trials. After 1500 iterations, the network state at the iteration for
which the validation error is smallest.

Furthermore, we make a preliminary analytical observation
of the feature, which was extracted using PCA. In PCA, if the
training data has the distinct feature, the first several largest
eigenvalue will be clearly larger than others. This indicates
that we can project the data into the feature space with
lower dimension. The distribution of the 96 eigenvalues that
were created by PCA (i.e., 96 dimensions of EEG sample data) is
shown in Figs. 9–11 for the data from subject 1, subject 2,
and subject 3, respectively. Decoding the EEG signal is not a
straightforward task. The signal is very weak and many
artifacts can be present just blinking an eye may add noise to
the signal. We observe that the data from subject 1 has the largest
eigenvalue while the data from subject 3 has the smallest
eigenvalue.

Next, we test validation by using different number of hidden
nodes and the different dimensions of feature. We defined the
classification accuracy as follows:

Classification accuracy

¼
Number of correct classified mental tasks

Number of total mental tasks
. (13)
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Fig. 12. The classification accuracy for different feature dimensions and hidden nodes for the subject 1.

Fig. 13. The learning curve of subject 1. Fig. 14. The learning curve of subject 2.
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The classification accuracy for different feature dimensions and
hidden nodes is shown in Fig. 12. In this figure, we find that 20
feature dimensions and 22 hidden nodes used can obtain the best
performance for subject 1.

In order to show the effectiveness and efficiency of the
proposed IPSO-NN, we applied the BP algorithm, the genetic
algorithm (GA) and traditional PSO to the same problem. In the BP,
the learning rate Z was set to 0.1. The one point crossover rate and
mutation rate of the GA were set to 0.5 and 0.1. In the PSO, the
parameters of IPSO and PSO were set to the same. In the BP, GA,
PSO, and IPSO, the evolutionary learning processed for 1500
generations and was repeated 10 times. For the evaluation of the
classifier during the optimization, a 10-fold 10-cross-validation
was computed. The comparison results are shown in Figs. 13–15;
the data used in the figures were taken from the datasets of
subject 1, subject 2, and subject 3, respectively. In these figures,
we find that the proposed method converges quickly and obtains a
lower RMSE than other methods.

Recently, several researchers [28,26,3] have proposed many
classifiers to improve the classification accuracy of the EEG of two
mental tasks of left-hand movement imagination and right-hand
movement imagination. In [28], Xiaomei et al. used the Fisher
discriminant analysis (FDA) as the base learner to distinguish the
mental tasks. Firstly, the eight consecutive PSD samples in
each frame of 62.5 ms are averaged t in every 0.5 s. Secondly,
according to the Fisher ratio of the averaged PSD within the three
classes, the most reactive PSD features are selected to form the
new feature vectors for further classification. Finally, by the
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Fig. 15. The learning curve of subject 3.

Table 2
The classification accuracy using various methods

Subject

methods

Accuracy of

subject 1 (%)

Accuracy of

subject 2 (%)

Accuracy of

subject 3 (%)

Average

(%)

IPSONN 78.31 70.27 56.46 68.35

PSONN 75.98 69.78 53.83 66.33

BPNN 76.02 65.89 51.14 64.35

GANN 69.315 60.32 44.40 58.01

FDA 76.03 69.36 51.61 65.67

RDA 78.08 63.83 52.72 64.91

SVM 77.85 66.36 53.44 65.90
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kernel-based FDA, the two mental tasks could be discriminated.
The kernel parameters are selected by cross-validation to mini-
mize the classification error. The regularized discriminant analysis
(RDA) [26], applied to motor imagery data of the subjects. The
classifier can separate better these two-class motor imagery data.
Their task was to imagine left- or right-hand movements
depending on the cue. This suggests that the effort needed to
find regularizing parameters for RDA. The SVMs [3] has also been
used to classify the electroencephalogram of mental tasks. The
complexity of the SVM is characterized by the number of a subset
of training data rather than the dimensionality of the transformed
feature space.

In this paper, a neural classifier based on IPSO is proposed to
classify an electroencephalogram of three mental tasks for left-
hand movement imagination, right-hand movement imagination,
and word generation. We compare our method with RDA, FDA and
SVM. Table 2 shows a performance comparison of various existing
models. The regularization and the degree parameters were both
set to 0.01 in RDA. In SVM, the margin constraint was set to 200.
As shown in Table 2, the accuracy rate of the proposed method is
better than those of the methods given in RDA, FDA, and SVM. The
result indicates that the nonlinear classification methods (IPSO
and SVM) are better than the linear ones (FDA and RDA). But SVM
cannot be analyzed under electroencephalogram of three mental
tasks. In other algorithms, our approach searches the ability to
solve solution space more than other methods. GA needs more
learning iterations consuming than IPSO. The classification
accuracy of GA is lower than other evolutionary algorithms in
1500 iterations. Our method outperforms other methods in
performance.
5. Conclusion and future work

This paper has proposed the IPSO to train NNs for EEG mental
task classification. We use PCA to extract the feature of the PSD
value of an EEG. Using PCA, we can reduce the data from 96
dimensions to 20 dimensions. Then the PCA feature is classified
using a three-layer feed-forward NN. The parameters of the NN
are trained using the IPSO algorithm. In the experimental result,
the average classification accuracy reached 78.31% for subject 1,
70.27% for subject 2, and 56.46% for subject 3. The results show
that IPSO has faster convergence speed than BP and can find a
better solution in same iterations. However, the proposed IPSO
method is used on off-line work presently. In this study, we
attempt to emphasize the methodology of the proposed IPSO
learning method. Therefore, we will extend the proposed method
to work on-line in the future work. These experiments will be also
performed on multiple subjects and multiple sessions.

In order to obtain good simulation results, the search
parameters are an important concern. In this study, the selection
of the parameter of the IPSO will critically affect the simulation
results. Although we cannot guarantee the minimum performance
in all cases, the adjustable parameters will be based on practical
experimentation or on trial-and-error tests. However, many
methods can be envisioned, especially in connection with the
kind of the search parameter used. For example, Taguchi method
[25] could improve the quality of a product, processes, and
equipment. The fundamental principle of Taguchi method is to
improve the quality of a product by minimizing the effect
of the causes of variation without eliminating the causes. In the
future work, we will adopt Taguchi method to solve the search
parameter problem.
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