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A B S T R A C T

This paper describes a self-constructing wavelet network (SCWN) controller for nonlinear systems

control. The proposed SCWN controller has a four-layer structure. We adopt the orthogonal wavelet

functions as its node functions. An online learning algorithm, structure learning and parameter learning,

allows the dynamic determining of the number of wavelet bases, and adjusting the shape of the wavelet

bases and the connection weights. The SCWN controller is a highly autonomous system. Initially, there

are no hidden nodes. They are created and begin to grow as learning proceeds. Computer simulations

have been conducted to illustrate the performance and applicability of the proposed learning scheme.
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1. Introduction

Nonlinear system control is becoming an important tool, which
can be used to improve control performance and achieve robust
fault-tolerant behavior. Among the different nonlinear control
techniques, methods based on artificial neural network (ANN) have
been grown into a popular research topic in recent years [1–3]. The
reason is that the classical control theory usually requires a
mathematical model for designing the controller. The inaccuracy
of mathematical modeling of the plants usually degrades the
performance of the controller, especially for nonlinear and complex
control problems [4]. ANN modeling has been admitted as a
powerful tool, which can facilitate the effective development of
models by combining information from different sources, such as
data, records. However, the ANN lacks a systematic way to
determine the appropriate model structure, has no localizability,
and converges slowly. A suitable approach to overcoming the
disadvantages of global approximation networks is the substitution
of the global activation function with localized basis functions. In
this type of local network, only a small subset of the network
parameters is engaged at each point in the input space. The network
transparency may be improved by adopting the wavelet decom-
position technique from the field of adaptive signal processing. Due
to the local properties of wavelets, arbitrary functions can be
approximated by the truncated discrete wavelet transform.
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Recently, many researches proposed wavelet neural networks for
identification and control [5–14]. Ikonomopoulos and Endou [9]
proposed the analytical ability of the discrete wavelet decomposi-
tion with the computational power of radial basis function
networks. Members of a wavelet family were chosen through a
statistical selection criterion that constructs the structure of the
network. Ho et al. [10] used the orthogonal least squares (OLS)
algorithm to purify the wavelets from their candidates, which
avoided using more wavelets than required and often resulted in an
overfitting of the data and a poor situation in ref. [6]. Lin et al. [11]
proposed a wavelet neural network to control the moving table of a
linear ultrasonic motor (LUSM) drive system. They chose an
initialization for the mother wavelet based on the input domains
defined by the examples of the training sequence. Huang and Huang
[12] proposed an evolutionary algorithm for optimally adjusted
wavelet networks. However, the selections of wavelet bases were
based on practical experience or trial-and-error tests.

To steady control the nonlinear systems, a self-constructing
wavelet network (SCWN) controller is proposed in this paper. It is a
four-layered network structure, which is comprised of an input
layer, wavelet layer, product layer, and output layer. We adopt the
orthogonal wavelet functions as its node functions. Based on the
self-learning ability, the on-line structure/parameter learning
algorithm is performed concurrently in the SCWN controller. In
the structure learning scheme, the degree measure method is used
to find the proper wavelet bases and to minimize the number of
wavelet bases generated from input space. In parameter learning
scheme, the supervised gradient descent method is applied to
adjust the shape of wavelet functions and the connection weights
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Fig. 1. The architecture of the SCWN controller.
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in SCWN controller. To a great extent, the learning quality of a
network is related to the parameters of feedback error. The SCWN
controller based on feedback error learning strategy has favorable
control performance. Finally, the proposed SCWN controller is
applied to two nonlinear control problems: control for backing up
the truck, and control of water bath temperature system. The
proposed SCWN model has the following advantages: (1) this
study adopts the wavelet network to control nonlinear systems.
The local properties of wavelets in the SCWN model enable
arbitrary functions to be approximated more effectively. (2) We
use an online learning algorithm to automatically construct the
SCWN model. No nodes or wavelet bases exist initially. They are
created automatically as learning proceeds, as online incoming
training data are received and as structure and parameter learning
are performed. The structure learning adopts partition-based
clustering techniques to perform cluster analysis in a data set. The
parameter learning, based on the gradient descent method, can
adjust the wavelet functions and the corresponding weights of the
SCWN. (3) As demonstrated in Section 4, the SCWN model is
characterized by small network size and fast learning speed.

2. Structure of the SCWN controller

The structure of the SCWN controller is shown in Fig. 1. The
proposed SCWN controller is designed as a four-layer structure,
which is comprised of an input layer, wavelet layer, product layer,
and output layer.

The input data in the input layer of the network is x = [x1, x2, . . .,
xi, . . ., xn]T, where T is the transpose and n is the number of
dimensions. Noted that in ordinary wavelet neural network model
applications, it is often useful to normalize the input vectors x into
the interval [0,1]. Then, the activation functions of the wavelet
nodes in the wavelet layer are derived from the mother wavelet
f(x), with a dilation of d and a translation of t [6]:

fd:tðxÞ ¼ 2d=2fð2dx� tÞ (1)

The mother wavelet is selected so that it constitutes an
orthonormal basis in L2ðRnÞ. The derivation of a differentiable
Mexican-hat function is adopted as a mother wavelet herein,

fðxÞ ¼ ð1� jjxjj2Þ e�jjxjj
2=2; (2)

where jjxjj2 = xTx. Therefore, the activation function of the jth
wavelet node connected with the ith input data is represented as:

fd jt j
ðxiÞ ¼ 2di j=2ð1� jj2di j xi � ti jjj2Þ e�jj2

di j xi�ti j jj2=2;

i ¼ 1; . . . ;n; j ¼ 1; . . . ;m;
(3)

where n is the number of input-dimensions and m is the number of
the wavelets. The wavelet functions of (3) with various dilations
and translations are presented in Fig. 2. Then, each wavelet in the
product layer is labeled P, i.e., the product of the jth multi-
dimensional wavelet with n input dimensions x = [x1, x2, . . ., xi, . . .,
xn]T can be defined as

c jðxÞ ¼
Yn

i¼1

fd jt j
ðxiÞ: (4)

According to the theory of multi-resolution analysis (MRA) [10,13],
any f 2 L2(R) can be regarded as a linear combination of wavelets at
different resolution levels. For this reason, the function f is
expressed as

YðxÞ ¼ f ðxÞ �
Xm
j¼1

w jc jðxÞ (5)
If cj = [c1, c2, . . ., cm] is used as a nonlinear transformation
function of hidden nodes and weight vectors and w j ¼
w1;w2; . . . ;wm defines the connection weights, then Eq. (5) can
be considered the functional expression of the SCWN modeling
function Y.

3. A self-constructing learning algorithm

In this section, the degree measure method and the well-known
back propagation (BP) algorithm are used concurrently for
constructing and adjusting the SCWN controller. The degree
measure method is used to decide the number of wavelet bases in
the wavelet layer and the product layer. On the other hand, the BP
algorithm is used to adjust the parameters of the wavelet bases and
connection weights. The details of the algorithm are presented
below. Finally in this section, the stability analysis of the SCWN
model based on the Lyapunov approach is performed the
convergence property.

3.1. The structure learning scheme

Initially, there are no wavelet bases in the SCWN controller. The
first task is to decide when a new wavelet base is generated. We
adopt partition-based clustering techniques to perform cluster
analysis in a data set. For each incoming pattern xi, the firing
strength of a wavelet base can be regarded as the degree of the
incoming pattern belonging to the corresponding wavelet base. An
input datum xi with a higher firing strength means that its spatial
location is nearer to the center of the wavelet base tj than those
with smaller firing strength. Based on this concept, the firing
strength obtained from Eq. (4) in the product layer can be used as
the degree measure

F j ¼ jc jj; j ¼ 1; . . . ;q; (6)

where q is the number of existing wavelet bases and jcjj is the
absolute value of cj. According to the degree measure, the criterion
of a new wavelet base generated for new incoming data is
described as follows:

Find the maximum degree Fmax

Fmax ¼ max
1� j�q

F j (7)

If Fmax � F̄, then a new wavelet base is generated, where F̄ is a pre-
specified threshold that should decay during the learning process,
limiting the size of the SCWN model.



Fig. 2. Wavelet bases with various dilations and translations.
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In the structure learning scheme, the threshold parameter F̄ is
an important parameter. The threshold is set to between zero and
one. A low threshold leads to the learning of coarse clusters (i.e.,
fewer hidden nodes are generated), whereas a high threshold leads
to the learning of fine clusters (i.e., more hidden nodes are
generated). If the threshold value equals zero, then all the training
data belong to the same cluster in the input space. Therefore, the
selection of the threshold value F̄ will critically affect the
simulation results. As a result of our extensive experiments and
by carefully examining the threshold value F̄, which uses the range
[0,1], we concluded that the relationship between threshold value
F̄ and the number of input variables. Accordingly, F̄ is defined as
[0.1n,0.5n], where n is the number of input variables.

tqþ1 ¼ xi (8)

dqþ1 ¼ dinit ¼ 0 (9)

wqþ1 ¼ random value; (10)

where xi is the new incoming data; the connection weight wqþ1 of
the output layer is selected from the range between �1 and 1
randomly; and the dilation dq+1 is set to zero to obtain a suitable
firing strength for the input value xi (see Fig. 2).

The concise online degree measure method of the SCWN model
is shown as follows:
3.2. The parameter learning scheme

After the network structure has been adjusted according to the
current training pattern, the network then enters the second
learning step to adjust the parameters of the wavelet base and the
connection weight (t, d, and w) with the same training pattern. The
parameter-learning algorithm is based on a set of input/output
pairs {x, yd(x)}. If the error function is

e ¼ yðxÞ � ydðxÞ; (11)

where y(x) is the model output and yd(x) is the desired output, then
the cost function E can be defined as

E ¼ 1

2
e2 (12)

and can be minimized by all adjustable parameters using an
iterative computational scheme.

Assuming that W is the adjustable parameter in the wavelet
layer and the output layer, the general learning rule used is

Wðkþ 1Þ ¼WðkÞ þDWðkÞ ¼WðkÞ þ h � @E

@W

� �
; (13)

where h and k represent the learning rate and the iteration
number, respectively. The gradient of the cost function E in Eq. (12)
with respect to the vector of arbitrarily adjustable parameter W is
defined as

@E

@W
¼ �e

@y

@W
(14)

With the above equation defined, we can infer that the free
parameters adjusted in the SCWN are as follows.

The connection weight of the output layer is updated by

w jðkþ 1Þ ¼ w jðkÞ þDw j (15)

where

Dw j ¼ �hw

@E

@w j
¼ �hwec j (16)

Similarly, the updated laws of tij and dij are shown as follows:

ti jðkþ 1Þ ¼ ti jðkÞ þDti j (17)

di jðkþ 1Þ ¼ di jðkÞ þDdi j (18)



Fig. 3. Diagram of the simulated truck and loading zone.
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where

Dti j ¼ �ht

@E

@ti j

¼ �htew jc j

2di j xi � ti j

1� ð2di j xi � ti jÞ
2
½2þ ð1� ð2di j xi � ti jÞ

2
Þ�

8<
:

9=
;

(19)

Ddij ¼�hd

@E

@dij

¼�hdewjc j

ln2

2
�2dij xi ln2ð2dij xi� ti jÞ 1þ 2

1�ð2dij xi� ti jÞ
2

2
4

3
5

8<
:

9=
;

(20)

3.3. Convergence analysis

The selection of suitable learning rates is very important. If the
learning rate is small, convergence will be guaranteed. In this case,
the speed of convergence may be slow. However, the learning rate is
large, and then the system may become unstable. Therefore, we set a
suitable learning rate as 0.05 in this study. Appendix A derives varied
learning rates, which guarantee convergence of the output error
based on the analyses of a discrete Lyapunov function, to train the
SCWN model effectively. The convergence analyses in this study are
performed to derive specific learning rate parameters for specific
network parameters to ensure the convergence of the output error
[15–17]. Moreover, the guaranteed convergence of output error does
not imply the convergence of the learning rate parameters to their
optimal values. The following simulation results demonstrate the
effectiveness of the online learning SCWN model based on the
proposed delta adaptation law and varied learning rates.

4. Illustrative examples

In this section, two control examples are given to demonstrate
the validity of the presented SCWN controller. The first example is
to control the truck backing-upper [18], the second example is to
control the water bath temperature system [19].

4.1. Control for backing up the truck

Backing a truck to a loading dock is a nonlinear control problem
for which no traditional control design methods exits. In this
example, we develop a controller (called SCWN controller) to back
up a simulated truck to a loading dock in a planar parking lot. This
Fig. 4. The final distribution of the wa
SCWN controller enables the truck to reach the desired position
successfully.

The simulated truck and loading zone are shown in Fig. 3. The
truck position is exactly determined by three state variables wheref
is the angle of truck with the horizontal and the coordinate pair (x, y)
specifies the position of the rear center of the truck in the plane. The
steering angle u of the truck is the controlled variable. The positive
values of u represent clockwise rotations of the steering wheel and
negative values represent counterclockwise rotations. The truck is
placed at some initial position and is backed up while being steered
by the controller. The objective of this control problem is to use
backward movements of the truck only make the truck arrive at the
loading dock at right angle (fdesired = 908) and to have the position of
the truck with the desired loading dock (xdesired = 50, ydesired = 100).
The truck moves backward by fixed distance ‘dis’ of the movement of
the steering wheel at every step. The loading region is limited to the
plane [0,100] � [0,100].

The input and output variables of the SCWN controller must be
specified. The controller has two inputs, truck angle f and the
crossposition x. Assuming enough clearance between the truck and
the loading dock, the y coordinate not considered as an input
variable. The output of controller is the steering angle u. The range
of the variables x, f and u are as follows:

0 � x � 100
�90o � f � 270o

�30o � u � 30o
(21)

The equations of backward motion of the truck are given by

xðK þ 1Þ ¼ xðKÞ þ dis cos uðKÞ cos fðKÞ
yðK þ 1Þ ¼ yðKÞ þ dis cos uðKÞ cos fðKÞ

fðK þ 1Þ ¼ tan�1 l sin fðKÞ þ dis cos fðKÞ sin uðKÞ
l cos fðKÞ � dis sin fðKÞ sin uðKÞ

� � (22)
velet bases on the input variable.



Fig. 5. Learning curve of various existing models in example 1.

Fig. 6. Three-dimensional (3D) control surface of the learned SCWN controller in

example 1.
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where l is the length of the truck. Eq. (22) is used to obtain the next
state when the present state is given. For the purpose of training
the SCWN controller, learning takes place during six different tries,
each starting from an initial state and terminate when the desired
state is reached. The truck moves by a small fixed distance dis = 1.6
at every step and the length of the truck is set to as l = 1. The
learning parameters are h = 0.05, dinit = 0, and F̄ ¼ 0:25. The
training process is continued for 200 epochs, and was performed
30 times. The lowest RMS (root mean square) error approximates
0.039. After the on-line structure-parameter learning, there are 9
Fig. 7. Truck moving trajectories starting at three different initial positions under th
wavelet nodes generated in our simulation as shown in Fig. 4a and
b. Fig. 5 shows the RMS error for the trained SCWN controller. The
control surface of the learned SCWN controller is shown in Fig. 6. In
this figure, the steering signal outputs with respect to all the
combinations of two input variable values x and f after learning
the six sets of training trajectories. After the training process is
terminated, Fig. 7a–c shows the trajectories of the moving
truck controlled by the SCWN controller starting from the initial
position (x,y,f) = (a) (108,308,�308), (b) (308,208,2508), and (c)
(708,208,�308). We now compare the performance of our model
with that of other existing methods [20–23]. The comparison
results are tabulated in Table 1. Table 2 shows the CPU time of the
e control of the SCWN controller after learning six sets of training trajectories.



Table 1
Performance comparison of various existing models in example 1

SCWN CNFN [22] FALCON [20] Neuro-fuzzy [21] Neural networks [23]

Training epochs 200 200 600 200 200

Number of rules/hidden nodes 9 13 19 35 25

RMS errors 0.039 0.0449 2.3 0.0924 0.0978

Table 2
The average training time using various methods in example 1

Method Average training time (s)

SCWN 62.8281

CNFN [22] 63.7188

Neuro-fuzzy [21] 124.0313

Neural networks [23] 256.8438
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cost of the SCWN controller, the CNFN model, the neuro-fuzzy
model, and neural networks. The average training times of the
SCWN controller, the CNFN model, the neuro-fuzzy model, and
neural networks were 62.8281, 63.7188, 124.0313, 256.8438 s,
respectively. The computation time was measured on a personal
computer with an Intel Pentium 4 (2.8 GHz) CPU inside. Simulation
results show that the proposed SCWN controller obtains a smaller
RMS error and needs fewer CPU time by using fewer hidden nodes
than other methods.

4.2. Control of water bath temperature system

Consider a discrete time temperature-control system:

yðt þ 1Þ ¼ e�aTs yðkÞ þ ðb=aÞð1� e�aTs Þ
1þ e0:5yðkÞ�40

uðkÞ þ ½1� e�aTs �y0: (23)

The above equation models real water bath temperature-control
systems give in ref. [19]. The parameters in this example are
a = 1.0015e�4 and b = 8.67973e�3 and y0 = 25 (8C). The input u(k) is
limited to 0 and 5 V represent voltage unit. The sampling period is
Ts = 30. The system configuration is shown in Fig. 8, where yref is
the desired temperature of the controlled plant. By implement the
on-line training scheme for SCWN controller, a sequence of
random input signals urd(k) limited to 0 and 5 V is injected directly
into the simulated system described in (23). The 120 training
patterns are chosen from the input–outputs characteristic in order
to cover the entire reference output. The initial temperature of the
water is 25 8C, and the temperature rises progressively when
random input signals are injected.

In this paper, we compare the SCWN controller to the PID
controller, the manually designed fuzzy controller, neural net-
works (NN) controller and self-constructing fuzzy neural networks
(SCFNN) [24] controller. For the PID control, a velocity-form
Fig. 8. Flow diagram of using SCWN controller for solving the temperature control

problem.
discrete PID controller is described by

DuðkÞ ¼ KfeðkÞ � eðk� 1Þ þ Ts

2T i
½eðkÞ þ eðk� 1Þ� þ Td

Ts
½eðkÞ

� 2eðk� 1Þ þ eðk� 2Þ�g

¼ KP½eðkÞ � eðk� 1Þ� þ K IeðkÞ þ KD½eðkÞ � 2eðk� 1Þ

þ eðk� 2Þ� (24)

where KP ¼ K � ð1=2ÞK I;K I ¼ ðKTs=T iÞ;KD ¼ ðkTd=TsÞ. The para-
meter Du(k) is the increment of the control input, e(k) is the
performance error at the sampling instant k, and KP, KI, and KD are
the proportional, integral, and derivative parameters, respec-
tively. In order not to aggravate noise in the plant, only a two-term
PID controller is used, i.e., KD is set to zero in the water bath
system. The other two parameters KP and KI are set as 80 and 70,
respectively.

For the manually designed fuzzy controller, the input variables
are chosen as e(t) and ce(t), where e(t) is the performance error
indicating the error between the desired water temperature and
the actual measured temperature and ce(t) is the rate of change in
the performance error e(t). The output or the controlled linguistic
variable is the voltage signal u(t) to the heater. Seven fuzzy terms
are defined for each linguistic variable. These fuzzy terms consist of
negative large (NL), negative medium (NM), negative small (NS),
zero (ZE), positive small (PS), positive medium (PM), and positive
large (PL). Each fuzzy term is specified by a Gaussian membership
function. According to common sense and engineering judgment,
25 fuzzy rules are specified in Table 3. Like other controllers, a
fuzzy controller has some scaling parameters to be specified. They
are GE, GCE, and GU, corresponding to the process error, the change
in error, and the controller’s output, respectively. We choose these
parameters as follows: GE = 1/15, GCE = 1/15, GU = 450.

Lin et al. [24] presented a self-constructing fuzzy neural
network (SCFNN), which is suitable for practical implementation.
The SCFNN is also using on-line learning scheme to decide the
structure of fuzzy rules and to turn the adjustable parameters
through the backpropagation algorithm in SCFNN model.

For the aforementioned controllers (SCWN controller, PID
controller, manually designed fuzzy controller, NN controller and
SCFNN controller), for groups of computer simulations are
conducted on the water bath temperature control system. Each
simulation is performed over 120 sampling time steps.
Table 3
Fuzzy rule table formulated for the water bath temperature control system

Error, e(t)

NL NM NS ZE PS PM PL

Change error, ce(t) PL PL PL PL PL

PM PM PM PM PL

PS PS PS PS PM PL

ZE NL NM NS ZE PS PM PL

NS NS NS NS

NM NM

NL NL



Fig. 9. (a) Final regulation performance of the SCWN controller for water bath system. (b) Corresponding errors of SCWN controller and SCFNN controller.

Table 4
Performance comparison of various controllers

SAE ¼
X120

k¼1

jyref ðkÞ � yðkÞj SCWN controller PID controller Fuzzy controller NN controller SCFNN controller [24]

Regulation performance 353.33 418.5 401.5 364.62 356.41

Influence of impulse noise 270.5 311.5 275.8 272.17 280.50

Effect of change in plant dynamics 261.84 322.2 273.5 262.80 268.21

Number of adjustable parameters 195 3 150 241 205

Fig. 10. (a) Behavior of the SCWN controller under the impulse noise for water bath system. (b) Corresponding errors of SCWN controller and SCFNN controller.
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The first task is to control the simulated system to follow three
set-points.

yref ðkÞ ¼
35 �C; for k � 40
55 �C; for 40< k � 80
75 �C; for 80< k � 120:

8<
: (25)

For the proposed SCWN controller, the learning rate h = 0.05, the
initial variance dinit = 0 and the prespecified threshold F̄ ¼ 0:02 are
chosen. The learning proceeded for 10,000 epochs, and was
performed 30 times. The regulation performance of the SCWN
controller is shown in Fig. 9a, and the corresponding errors for
SCWN controller and SCFNN controller [24] are shown in Fig. 9b.
Fig. 11. (a) Behavior of the SCWN controller when a change occurs in the water ba
As shown in the error curves, the SCWN controller has much
smaller error than SCNNF controller. To test their regulation
performance, a performance index, sum of absolute error (SAE), is
defined by

SAE ¼
X

k

jyref ðkÞ � yðkÞj (26)

where yref(k) and y(k) are the reference output and the actual
output of the simulated system, respectively. The SAE values of the
SCWN controller, the PID controller, the fuzzy controller, the NN
controller and the SCFNN controller are 353.33, 418.5, 401.5,
364.52 and 356.41, which are shown in the first column of Table 4.
th system. (b) Corresponding errors of SCWN controller and SCFNN controller.



C.-J. Lin / Applied Soft Computing 9 (2009) 71–7978
The proposed SCWN controller obtains much better SAE value of
regulation performance than other methods.

The second set of simulations is carried out for the purpose of
studying the noise-rejection ability of the four controllers when
some unknown impulse noise is imposed on the process. One
impulse noise value �5 8C is added to the plant output at the
sixtieth sampling instant. A set-point of 50 8C is performed in this
set of simulations. For the SCWN controller, the same training
scheme, training data and learning parameters are used as those
used in the first set of simulations. The behaviors of the SCWN
controller under the influence of impulse noise and the
corresponding errors are shown in Fig. 10a and b. The SAE values
of the SCWN controller, the PID controller, the fuzzy controller,
the NN controller and the SCFNN are 270.5, 311.5, 275.8, 272.17
and 280.5, which are shown in the second column of Table 4. It is
observed that the SCWN controller performs quite well. It
recovers very quickly and steadily after the presentation of the
impulse noise.

One common characteristic of many industrial-control pro-
cesses is that their parameters tend to change in an unpredictable
way. To test the robustness of the four controllers, a value of
0.7u(k � 2) is added to the plant input after the sixtieth sample in
the fourth set of simulations. A set-point of 50 8C is used in this set
of simulations. For the SCWN controller, the same training
scheme, training data and learning parameters are used as those
used in the first set of simulations. The behaviors of the SCWN
controller when there is a change in the plant dynamics are shown
in Fig. 11a. The corresponding errors of the SCWN controller and
SCNNF controller [24] are shown in Fig. 11b. The SAE values of the
SCWN controller, the PID controller, the fuzzy controller, the NN
controller and the SCFNN controller are 261.84, 322.2, 273.5,
262.8 and 270.21, which are shown in the third column of Table 4.
The results show the good control and disturbance rejection
capabilities of the trained SCWN controller in the water bath
system.

5. Conclusion

In this paper, we propose a self-constructing wavelet network
(SCWN) for nonlinear systems control. The goal of SCWN
controller is to improve control performance and achieve robust
fault-tolerant behavior. An on-line structure/parameter learning
algorithm is proposed concurrently in the SCWN controller. The
degree measure method is used to find the proper wavelet bases
from input space while the supervised gradient descent method
is used to adjust the shape of wavelet functions and the
connection weights in SCWN controller. Experimental results
have been given to illustrate the performance and effectiveness
of the proposed SCWN controller. We also compare the
performance of SCWN controller with other existing models.
The computer simulations demonstrate that the proposed SCWN
controller can obtain a smaller RMS error and a quicker
convergence than other methods by small network size for
nonlinear systems control problems.
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Appendix A

A.1. Proof of convergence theorem
Theorem 1. Let hw be the learning rate parameter of the SCWN

weight, and let Pw max be defined as Pw max�maxkjjPwðkÞjj, where

PwðkÞ ¼ @y=@w j and jj	jj is the Euclidean norm in R
N . The convergence

is guaranteed if hw is chosen as hw ¼ l=ðPw maxÞ2 ¼ l=q, in which l is

a positive constant gain, and q is the number of existing wavelet bases

in the SCWN model.

Proof of Theorem 1: Since

PwðkÞ ¼
@y

@w j
¼ c j (A.1)

and c j � 1, the following result holds;

jjPwðkÞjj �
ffiffiffi
q
p

: (A.2)

Then, a discrete Lyapunov function is selected as

VðkÞ ¼ 1

2
e2ðkÞ: (A.3)

The change in the Lyapunov function is obtained as

DVðkÞ ¼ Vðkþ 1Þ � VðkÞ ¼ 1

2
½e2ðkþ 1Þ � e2ðkÞ� (A.4)

The error difference can be represented as [16]

eðkþ 1Þ ¼ eðkÞ þDeðkÞ ¼ eðkÞ þ @eðkÞ
@w j

� �T

Dw j (A.5)

where De and Dw j represent the output error change and the
weight change in the output layer, respectively. Eqs. (15) and (A.5)
yield

@eðkÞ
@w j

¼ @eðkÞ
@y

@y

@w j
¼ PwðkÞ (A.6)

eðkþ 1Þ ¼ eðkÞ � PT
wðkÞhweðkÞPwðkÞ: (A.7)

Then,

jjeðkþ 1Þjj ¼ jjeðkÞ½1� hwPT
wðkÞPwðkÞ�jj

� jjeðkÞjjjj1� hwPT
wðkÞPwðkÞjj (A.8)

is true. If hw ¼ ðl=ðPw max
2ÞÞ ¼ ðl=qÞ is chosen, then the term jj1�

hwPT
wðkÞPwðkÞjj in Eq. (A.8) is less than 1. Therefore, the Lyapunov

stability of V > 0 and DV > 0 is guaranteed. The output error
between the reference model and actual plant converges to zero as
t!1. This fact completes the proof of the theorem.

The following lemmas are used to prove Theorem 2.

Lemma 1. Let gðxÞ ¼ ð2di j xi � ti j=1� ð2di j xi � ti jÞ
2
Þ½2þ ð1� ð2di j xi

�ti jÞ2Þ�, then gðxÞj<1; if jdj<1; 8 x2R.

Lemma 2. Let f ðxÞ ¼ ðln2=2Þ � 2di j xiln2ð2di j xi � ti jÞ½1þ ð2=1�
ð2di j xi �ti jÞ2Þ�, then f ðxÞj<1; if jdj<1; 8 x2R.

Theorem 2. Let ht and hd be the learning rate parameters of the

translation and dilation of the wavelet function for the SCWN; let Ptmax

be defined as Ptmax BB maxkjjPt(k)jj, where Pt(k) = @y/@tij; let Pdmax

be defined as Pdmax BB maxkjjPd(k)jj, where Pd(k) = @y/@tij. The con-
vergence is guaranteed if ht and hd are chosen as ht ¼ hd

¼ hw½jw jjmax�
�2, in which w jjmax ¼maxkjw jðkÞj and j	j is the absolute

value.
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Proof of Theorem 2: According to Lemma 1, jðln 2=2Þ � 2di j xi ln

2ð2di j xi � ti jÞ½1þ ð2=ð1� ð2di j xi � ti jÞ
2
ÞÞ�j<1. The upper bounds on

Pt(k) can be derived as follows;

PtðkÞ

¼ @y

@ti j
<
Xq

j¼1

w j

������
������ c j

2di j xi � ti j

1� ð2di j xi � ti jÞ
2
½2þ ð1� ð2di j xi � ti jÞ

2
ÞÞ�

8<
:

9=
;

������
������

<
Xq

j¼1

w j

������
������<

ffiffiffi
q
p
jw jjmax (A.9)

Thus,

jjPtðkÞjj<
ffiffiffi
q
p
jw jjmax: (A.10)

The error difference can also be represented as [16]

eðkþ 1Þ ¼ eðkÞ þDeðkÞ ¼ eðkÞ þ @eðkÞ
@ti j

� �T

Dti j (A.11)

where Dtij represents the change of the translation of the wavelet
function in the membership function layer. Eqs. (17) and (A.11)
yield

@eðkÞ
@ti j

¼ @eðkÞ
@y

@y

@ti j
¼ PtðkÞ (A.12)

eðkþ 1Þ ¼ eðkÞ � PT
t ðkÞhteðkÞPtðkÞ: (A.13)

Then,

jjeðkþ 1Þjj ¼ jjeðkÞ½1� htP
T
t ðkÞPtðkÞ�jj

� jjeðkÞjjjj1� htP
T
t ðkÞPtðkÞjj (A.14)

is true. If ht ¼ l=ðPt maxÞ2 ¼ hw½w jjmax�
�2 is chosen, then the term

jj1� hwPT
wðkÞPwðkÞjj in Eq. (A.14) is less than 1. Therefore, the

Lyapunov stability of V > 0 and DV < 0 given by Eqs. (A.3) and
(A.4), is guaranteed. The output error between the reference model
and actual plant converges to zero as t!1.

According to Lemma 2, ðln2=2Þ � 2di j xi ln 2ð2di j xi � ti jÞ½1þ ð2=ð1�
ð2di j xi � ti jÞ

2
ÞÞ�j<1. The upper bounds on Pd(k) can be derived as

follows;

PdðkÞ

¼ @y

@dij
<
Xq

j¼1

wj

������
������

ln2

2
�2dij xi ln2ð2dij xi� ti jÞ 1þ 2

1�ð2dij xi� tijÞ
2

2
4

3
5

������
������

<
Xq

j¼1

wj

������
������<

ffiffiffi
q
p
jwjjmax (A.15)

Thus,

jjPdðkÞjj<
ffiffiffi
q
p
jw jjmax: (A.16)

The error difference can be represented as

eðkþ 1Þ ¼ eðkÞ þDeðkÞ ¼ eðkÞ þ @eðkÞ
@di j

� �T

Ddi j (A.17)

where Ddij represents the change of the dilation of the wavelet
function in the membership function layer. Eqs. (18) and (A.17)
yield

@eðkÞ
@di j

¼ @eðkÞ
@y

@y

@di j
¼ PdðkÞ (A.18)

eðkþ 1Þ ¼ eðkÞ � PT
dðkÞhdeðkÞPdðkÞ: (A.19)

Then,

jjeðkþ 1Þjj ¼ jjeðkÞ½1� hdPT
dðkÞPdðkÞ�jj

� jjeðkÞjjjj1� hdPT
dðkÞPdðkÞjj (A.20)

is true. If hd ¼ l=ðPd maxÞ2 ¼ hw½w jjmax�
�2 is chosen, then the term

jj1� hdPT
dðkÞPdðkÞj in Eq. (A.20) is less than 1. Therefore, the

Lyapunov stability of V > 0 and DV < 0 given by Eqs. (A.3) and (A.4)
is guaranteed. The output error between the reference model and
actual plant converges to zero as t!1. This fact completes the
proof of the theorem.

References

[1] M. Khalid, S. Omatu, A neural network controller for a temperature control
system, IEEE Trans. Control Syst. (1992).

[2] J.D. Johnson, Neural networks for control, Neurocomputing 14 (3) (1997) 301–
302.

[3] F.J. Lin, C.H. Lin, C.H. Hong, Robust control of linear synchronous motor servo drive
using disturbance observer and recurrent neural network compensator, Electr.
Power Appl. 147 (4) (2000) 263–272.

[4] K.J. Astrom, B. Wittenmark, Adaptive Control, Addison-Wesley, Reading, MA,
1989.

[5] M.R. Sanner, J.J.E. Slotine, Structureally dynamic wavelet networks for adaptive
control of robotic systems, Int. J. Control 70 (3) (1998) 405–421.

[6] Q. Zhang, Using wavelet networks in nonparametric estimation, IEEE Trans.
Neural Networks 8 (1998) 227–236.

[7] J. Zhang, G.G. Walter, Y. Miao, W.N. Wayne Lee, Wavelet neural networks for
function learning, IEEE Trans. Signal Process. 43 (6) (1997) 1485–1497.

[8] J. Chen, D.D. Bruns, WaveARX neural network development for system identifica-
tion using a systematic design synthesis, Ind. Eng. Chem. Res. 34 (1995) 4420–
4435.

[9] A. Ikonomopoulos, A. Endou, Wavelet decomposition and radial basis function
networks for system monitoring, IEEE Trans. Nucl. Sci. 45 (5) (1998) 2293–2301.

[10] D.W.C. Ho, P.A. Zhang, J. Xu, Fuzzy wavelet networks for function learning, IEEE
Trans. Fuzzy Syst. 9 (1) (2001) 200–211.

[11] F.J. Lin, R.J. Wai, M.P. Chen, Wavelet neural network control for linear ultrasonic
motor drive via adaptive sliding-mode technique, IEEE Trans. Ultrason. Ferroe-
lectr. Freq. Control 50 (6) (2003) 686–698.

[12] Y.C. Huang, C.M. Huang, Evolving wavelet networks for power transformer
condition monitoring, IEEE Trans. Power Deliv. 17 (2) (2002) 412–416.

[13] L. Jiao, J. Pan, Y. Fang, Multiwavelet neural network and its approximation
properties, IEEE Trans. Neural Networks 12 (5) (2001) 1060–1066.

[14] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pur.
Appl. Math. 41 (1998).

[15] P. Niyogi, F. Girosi, On the relationship between generalization error, hypothesis
complexity, and sample complexity for radial basis functions, Neural Comput. 8
(1996).

[16] C.C. Ku, K.Y. Lee, Diagonal recurrent neural networks for dynamic systems control,
IEEE Trans. Neural Networks 6 (1995) 144–156.

[17] Y.C. Chen, C.C. Teng, A model reference control structure using a fuzzy neural
network, Fuzzy Sets Syst. 73 (1995) 291–312.

[18] D. Nguyen, B. Widrow, The truck backer-upper: an example of self-learning in
neural network, IEEE Conf. Syst. Mag. 10 (3) (1990) 18–23.

[19] C.T. Lin, C.F. Juang, C.P. Li, Temperature control with a neural fuzzy inference
network, IEEE Trains. Syst. Man Cybernet. Part C: Appl. Rev. 29 (3) (1999).

[20] C.J. Lin, C.T. Lin, An ART-based fuzzy adaptive learning control network, IEEE
Trans. Fuzzy Syst. 5 (4) (1997) 477–496.

[21] H. Nomura, I. Hayashi, N. Wakami, A learning method of fuzzy inference rules by
descent method, IEEE Conf. Fuzzy Syst. (1992) 203–210.

[22] C.J. Lin, C.H. Chen, Nonlinear system control using compensatory neuro-fuzzy
networks, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E86-A (9) (2003)
2309–2316.

[23] C.W. Anderson, Strategy learning with multilayer connectionist representations,
in: Proceedings of the Fourth International Workshop on Machine Learning,
Irvine, CA, (1987), pp. 103–114.

[24] F.J. Lin, C.H. Lin, P.H. Shen, Self-constructing fuzzy neural network speed con-
troller for permanent-magnet synchronous motor drive, IEEE Trans. Fuzzy Syst. 9
(2001) 751–759.


	Nonlinear systems control using self-constructing wavelet networks
	Introduction
	Structure of the SCWN controller
	A self-constructing learning algorithm
	The structure learning scheme
	The parameter learning scheme
	Convergence analysis

	Illustrative examples
	Control for backing up the truck
	Control of water bath temperature system

	Conclusion
	Acknowledgement
	Appendix A
	Proof of convergence theorem

	References


