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Abstract—This paper presents an efficient immune symbiotic
evolution learning (ISEL) algorithm for the compensatory neuro-
fuzzy controller (CNFC). The proposed ISEL method includes
three major components-—initial population, subgroup symbiotic
evolution, and immune system algorithm. First, the self-clustering
algorithm that determines proper input space partitioning and
finds the mean and variance of the Gaussian membership functions
and number of rules is applied to the initial population. Second, the
subgroup symbiotic evolution method that uses each subantibody
represents a single fuzzy rule and the evolution of the rule itself.
Third, the immune system algorithm uses the clonal selection prin-
ciple, such that antibodies between others of high similar degree are
canceled, and these antibodies, after processing, will have higher
quality, accelerating the search, and increasing the global search
capacity. Finally, the proposed CNFC with ISEL (CNFC-ISEL)
method is adopted to solve several nonlinear control problems.
The simulation results have shown that the proposed CNFC-ISEL
can outperform other methods.

Index Terms—Compensatory fuzzy operator, immune system
algorithm, neuro-fuzzy network, self-clustering algorithm (SCA),
symbiotic evolution.

I. INTRODUCTION

HE CONCEPT of fuzzy systems and artificial neural net-
T works for resolving control problems has been extensively
studied in recent years [1], [2], because classical control theory
usually requires a mathematical model to design the controller.
However, the inaccuracy of the mathematical modeling of the
plants usually degrades the performance of the controller, espe-
cially for nonlinear and complex control problems [3]. On the
contrary, the fuzzy system controller and the artificial neural
network controller offer a key advantage over traditional adap-
tive control systems. Restated, they do not require mathemati-
cal models of the plants. Although traditional neural networks
can learn from data and feedback, the meaning associated with
each neuron and each weight in the network is not easily under-
stood. Alternatively, fuzzy logical models are easily appreciated,
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because they use linguistic terms and the structure of if—then
rules. However, fuzzy systems lack the learning capacity to
fine-tune fuzzy rules and membership functions. In contrast to
pure neural networks or fuzzy systems, neuro-fuzzy network
representations have emerged as a highly effective approach to
solve many problems [4]-[6].

Recent developments in genetic algorithms (GAs) have pro-
vided a method for fuzzy system and neuro-fuzzy network de-
sign. GAs represent highly effective techniques for evaluating
system parameters and finding global solutions while optimiz-
ing the overall structure. Thus, many researchers have developed
GAs to implement fuzzy systems and neuro-fuzzy networks in
order to automate the determination of parameters and struc-
tures [7]-[16]. Lee and Takagi [7] proposed an automatic fuzzy
system design method that integrates membership functions, the
number of fuzzy rules, and the rule consequent by the GA. Ng
and Li [8] applied a string (chromosomes) in the GA to opti-
mize sophisticated membership functions for a nonlinear water-
level control system. They concentrated on encoding all of the
fuzzy rules into the chromosome while keeping the membership
function fixed [9]. A small number of significant fuzzy if-then
rules were selected by GA method by Ishibuchi ef al. [10]. Lim
et al. [11] described a paradigm for learning fuzzy rules using
GA. The n rules were selected from the possible rule com-
binations. Evolutionary fuzzy expert systems have been dis-
cussed in which the membership function shapes and types and
the fuzzy rule set are evolved using a GA by Shi er al. [12].
Seng et al. [13] proposed a neuro-fuzzy network that is based
on the radial basis function neural network, all of whose pa-
rameters are simultaneously tuned using GA. A flexible posi-
tion coding strategy of the neuro-fuzzy network parameters is
also implemented to yield near optimal solutions. Lam ef al.
[14] presented the fuzzy nonlinear control systems that use GA
with arithmetic crossover and nonuniform mutation. Karr [15]
used a GA to generate membership functions for a fuzzy sys-
tem. In Karr’s work, a user needs to declare an exhaustive rule
set and then use a GA to design only the membership functions.
In [16], a fuzzy controller design method that used GAs to find
the membership functions and the rule sets simultaneously was
proposed. In [15] and [16], the input space was partitioned into a
grid. In this grid scheme, a partitioned grid is taken as the initial
state at the beginning of learning and is simple to implement.
Unfortunately, the number of fuzzy rules (i.e., the length of each
chromosome in the GA) increased exponentially as the number
of inputs increased. However, such GAs encounter some impor-
tant issues: 1) The input space is partitioned into a grid; 2) the
number of fuzzy rules is determined by trial-and-error or by a ex-
pert system; 3) a fuzzy system was encoded into a chromosome;
and 4) the rate of convergence of the evolution process is low.
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This study presents an efficient immune symbiotic evolu-
tion learning (ISEL) algorithm for compensatory neuro-fuzzy
controller (CNFC). The proposed CNFC is based on our previ-
ous research [17], [18]. The ISEL method includes three major
components-—initial population, subgroup symbiotic evolution,
and immune system algorithm. First, the self-clustering algo-
rithm (SCA) that determines proper input space partitioning
and finds the mean and variance of the membership function
and the number of rules is applied to the initial population.
Second, the subgroup symbiotic evolution method in which
each subantibody represents a single fuzzy rule differs from
traditional GAs. A fuzzy system with R-rules is constructed by
selecting and combining R subantibodies from a given popu-
lation, and allowing the evolution of the rule itself. Third, the
immune system algorithm uses the clonal selection principle to
cancel antibodies between others of high similar degree, and
these antibodies, after the process, will be of higher quality,
accelerating the search and increasing the global search capac-
ity. The advantages of the proposed ISEL method are sum-
marized as follows: 1) The proposed SCA method can online
cluster the input partitions and considers the variation of each
dimension for the input data; 2) the subgroup symbiotic evo-
lution method uses the subgroup-based population to evaluate
the fuzzy rules locally; and 3) the adopted immune system al-
gorithm can accelerate the search and increase global search
capacity.

The rest of this paper is organized as follows. Section II de-
scribes the basic concept of symbiotic evolution and immune
system. The structure of the CNFC is presented in Section III.
Next, Section IV describes the SCA. An ISEL method is pro-
posed in Section V. Section VI presents the results of the sim-
ulation of several nonlinear control problems. The conclusion
and future works are finally drawn in Section VIL.

II. SYMBIOTIC EVOLUTION AND IMMUNE SYSTEM

This section describes basic concepts concerning symbiotic
evolution and the immune system. The specialization property
of symbiotic evolution and the immune system can match the
local property of the neuro-fuzzy network. Therefore, the devel-
opment of a neuro-fuzzy network based on symbiotic evolution
and the immune system is valuable.

A. Basic Concept of Symbiotic Evolution

The notion of symbiotic evolution [19] is similar to the im-
plicit fitness sharing used in an immune system model. The
authors evolve artificial antibodies to match or detect artifi-
cial antigens. Each antibody can only match a single antigen,
and different antibodies are needed to protect effectively against
various antigens. These antibodies consist in separating the pop-
ulation into subpopulations and changing the way fitness values
are assigned by fitness sharing. In the proposed method, an
antibody is selected for replacement by randomly choosing a
subset of the population and then selecting the member of that
subset that is most similar to the new antibody. Therefore, sum-
ming the fitness values of all possible combinations of that anti-
body with other current antibodies and dividing the sum by the

total number of combinations yields the fitness of an antibody.
Moriarty and Miikkulainen [20] proposed a reinforcement learn-
ing method called symbiotic, adaptive neuro-evolution that
evolves a population of neurons through GAs to form a neu-
ral network. The GA adopted by Juang et al. [21] is based upon
symbiotic evolution, which, when applied in fuzzy controller de-
sign, complements the local mapping property of a fuzzy rule.
Jamei et al. [22] exploited the capacity of symbiotic evolution,
as a generic methodology, to elicit a fuzzy rule of the Mamdani
type.

As shown in [20]-[22], partial solutions can be characterized
as specializations. The specialization property ensures diversity,
which prevents a population from converging to suboptimal so-
lutions. A single partial solution cannot “take over” a popula-
tion since there must be other specializations present. Unlike the
standard evolutionary approach, which always causes a given
population to converge, hopefully at the global optimum, but
often, at a local one, the symbiotic evolution finds solutions in
different, unconverted populations [20]-[22].

The basic idea of symbiotic evolution is that an individual is
used to represent a single fuzzy rule. A fuzzy system is formed
when several individuals, which are randomly selected from
a population, are combined. With the fitness assignment per-
formed by symbiotic evolution and with the local property of
a fuzzy rule, symbiotic evolution and the fuzzy system design
can complement each other. If a normal GA evolution scheme is
adopted for fuzzy system design, only the overall performance
of the fuzzy system is known and not the performance of each
fuzzy rule. The best method to replace the unsuitable fuzzy rules
that degrade the overall performance of a fuzzy system is to use
crossover operations, followed by observing the performance of
the offspring.

B. Basic Concept of the Immune System

The natural immune system is the central paradigm of the
proposed approach. In the function of an immune system, the
diverse antibodies eliminate the antigens, while the lymphocytes
produce the antibodies through the clonal proliferation [23]. The
diverse antibodies can recognize all cells within the body as ei-
ther antibodies or antigens. Therefore, the immune system of
an organism includes a huge diversity of antibodies, waiting
for many possible specific antigens. When an antigen is en-
countered, the number of antibodies that can kill it increases
by many orders of magnitude. Therefore, clonal selection and
affinity maturation principles are used to explain how the im-
mune system responds to antigens and how it revises its ability
to recognize eliminate antigens [24]. Recently, Chun et al. [25]
proposed a method that employs the immune algorithm, which
is different from GA in memory-educating system and the pro-
duction system of various antibodies, as a search method to
optimize the shape of an electromagnetic device. Jiao et al. [26]
proposed the immune GA based on the theory of immunity,
which mainly constructs an immune operator accomplished
by a vaccination and an immune selection, into the canonical
GA.



670

Layer 5
(Output nodes)

Layer 4
(Consequent
nodes)

Layer 3
(Compensatory
rule nodes)

Layer 2
(Membership
function nodes)

Layer 1
(Input nodes)

Fig. 1. Structure of the proposed CNFC.

III. STRUCTURE OF COMPENSATORY
NEURO-FUzzy CONTROLLER

The section describes CNFC [17], [18]. Compensatory
operators are used to optimize fuzzy logic reasoning and
to select optimal fuzzy operators. Therefore, an effective
neuro-fuzzy controller should be able not only to adaptively
adjust fuzzy membership functions but also to dynamically
optimize adaptive fuzzy operators. Fig. 1 shows the structure
of the CNFC, which is systematized into N input variables,
R-term nodes for each input variable, M output nodes, and
N x R membership function nodes. The CNFC consists of
five layers, R x (N x 242+ (N + 1) x M) parameters and
N + (N x R) 4+ 2 x R+ M nodes, where R denotes the num-
ber of existing rules. Nodes in layer 1 are input nodes, which rep-
resent input variables. Nodes in layer 2 are called membership
functions nodes to express the input fuzzy linguistic variables.
Nodes in this layer are used to calculate Gaussian membership
values. Each node in layer 3 is called a compensatory rule node,
and nodes in layer 4 are called consequent nodes. The number
of nodes in layer 3 equals the number of compensatory fuzzy
sets that correspond to each external linguistic input variable.
Each compensatory rule node has a corresponding consequent
node, which calculates a weighted linear combination of input
variables. Nodes in layer 5 are called output nodes, each node
of which is an individual output of the system.

The CNFC realizes a fuzzy model in the following form.
Rule — 7 :

IF [Il is AU ... and z; is A”' ... and xy 1S A;\[j]liA/"JrW«’/N

THENy/ iSU)()j +’LU1j£L'1 +~~+wijxi+~~-+wijN (1)
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where z; is the input variable, 3/ is the output variable, A;; is
the linguistic term of the precondition part, v; € [0,1] is the
compensatory degree, and wy; and w;; are the corresponding
parameters of consequent part.

Next, the operation functions of the nodes in each layer of the
CNEC are described. In the following, u(!) denotes the output
of a node in the [th layer.

Layer 1 (Input node): No computation is performed in this
layer. Each node in this layer is an input node, which corresponds
to a single input variable, and only transmits directly input values
to the next layer.

Layer 2 (Membership function node): Nodes in this layer cor-
respond to a single linguistic label of the input variables in layer
1. Therefore, the calculated membership value that specifies the
degree to which an input value belongs to a fuzzy set in layer 2.
The performed Gaussian membership function in layer 2 is

L _ . 72
uf}) = exp (—[u’ ] ) ()

oij

where m;; and o;; are the mean and variance of the Gaussian
membership function, respectively, of the jth term of the ith
input variable z;.

Layer 3 (Compensatory rule node): Nodes in this layer repre-
sent the precondition part of a fuzzy logic rule. They receive the
1-D membership degrees of the associated rule from the nodes
of a set in layer 2. The compensatory fuzzy operator described
elsewhere [17] is adopted to perform the IF-condition matching
of fuzzy rules. As a result, the output function of each inference

node is
1=vj+7; /N
u = (H uE?) )

where v; = c? / (c? + d?) € [0, 1] is called the compensatory
degree and c;j,d; € [—1,1]. Tuning ¢; and d; increases the
adaptability of the fuzzy operator becomes more adaptive.

Layer 4 (Consequent node): Nodes in this layer are called
consequent nodes. The input to a node of layer 4 is the output
from layer 3, and the other inputs are the input variables from
layer 1, as shown in Fig. 1. For such a node

N
u§4> = u‘(jg) (wOj + Z wmﬁ;) (@)
i=1

where the summation is over all the inputs, and w;; are the
corresponding parameters of consequent part.

Layer 5 (Output node): Each node in this layer corresponds
to one output variable. The node integrates all of the actions
recommended by layers 3 and 4 and acts as a defuzzifier with

R 3 N
_ = uf  (wo; + SN | wija)
R (3 R 3
dj=1 Y ) > -1 “; )

(6)
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Dc;: cluster distance

We,: y-dimensions cluster width

Brief clustering process using the SCA with samples P} — Py in 2-D space. (a) Sample P; causes the SCA to create a new cluster center C'y . (b) Ps:

update cluster center C'1 ; P3: create a new cluster center C'a; Py : do nothing. (c) Ps: update cluster C; Pg: do nothing; Pr: update cluster center C2; Pg: create

anew cluster C3. (d) Py: update cluster C .

where R is the number of fuzzy rules, and IV is the number of
input variables.

IV. SELF-CLUSTERING ALGORITHM

The number of fuzzy rules and approximate estimates of
the corresponding parameters, such as means and variances,
describing the fuzzy term sets in the precondition parts need
to be extracted from given input—output pairs. Thus, the choice
of clustering technique in neuro-fuzzy networks is an important
consideration. This is due to the use of partition-based clustering
techniques, such as fuzzy C-means (FCM) [27], possibilistic
C-means (PCM) [28], linear vector quantization (LVQ) [29],
fuzzy Kohonen partitioning (FKP), and pseudo FKP [30], to
perform cluster analysis. However, such clustering techniques
require prior knowledge such as the number of clusters present
in a data set. To solve the aforementioned problem, online-
based cluster techniques were proposed [31], [32], but there
still is a problem with these methods, namely, the clustering
methods [31], [32] only consider the total variations of the mean
and variance in all dimensions of the input data. This is because
the cluster numbers increase quickly.

In this paper, we use an SCA to partition the input space to
create fuzzy rules. The proposed SCA is an online and distance-
based clustering method, which is unlike the traditional clus-
tering techniques [27]-[32]. The tendency of the traditional
clustering techniques is to consider the total variations in all
dimensions of the input data that will cause clusters to extend
too fast. According to the aforementioned problems, the pro-
posed SCA method considers the variation of each dimension
for the input data.

The SCA is proposed to perform the scatter partitioning of the
input space. With no optimization, the online SCA is a fast, one-

pass algorithm that dynamically estimates the number of clusters

in a set of data and finds the current centers of clusters in the

input data space. It is a distance-based connectionist-clustering

algorithm. In any cluster, the maximum distance between a

sample point and the center is less than a threshold value, which

has been set as a clustering parameter and which influences the
number of clusters to be estimated.

In the clustering process, the data samples come from a data
stream. The process begins with an empty set of clusters. When
a new cluster is created, the cluster center is defined, and its
cluster distance and cluster width Dc and Wc are initially set
to zero. When more samples are presented one after another,
some created clusters are updated by changing the positions
of their centers and increasing the cluster distances and cluster
width. Which cluster will be updated and the extent to which it
is changed depends on the position of the current sample in the
input space. A cluster will not be updated any more when its
cluster distance Dc reaches the value equals the threshold value
Dthr-

Fig. 2 shows the SCA clustering process in two-input space.
The SCA is described as follows.

Step 0) The input data set should be preprocessed. Finding
the optimal solution is difficult because the range of
training data is wide. Therefore, the data must be
normalized. Let x; be transformed to the interval of
[0,1]:

I; _ Tj — XTi_min (7)

Ti_max — Ti_min

where z is the value after normalization, x; is the
vector of the ith dimension to be normalized, z; ,in
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Fig. 3.

Step 1)

Step 2)

Step 3)

Step 4)

Case of the equal distances between the sample and two the cluster.

is the minimum value of vector x; and x; .« 1S the
maximum value of vector ;.

Create the first cluster by simply setting the position
of the first sample from the input stream as the first
cluster center C; and setting its cluster distance Dc;
and cluster widths W ¢y and Weo; to zero, as shown
in Fig. 2(a).

If all samples of the data stream have been processed,
then the algorithm is complete. Otherwise, the current
input sample F; is used, and the distances between this
sample and all p already created cluster centers C,
Dist;; = ||P, — C}|l,j =1,2,..., p are calculated.

If any distances Dist;; equals, or is less than, at least
one of the distances Dc;, j = 1,2, ..., p, then the cur-
rent sample P, is in the cluster C,, with the minimum
distance

Dist;,,, = ||B - Cm ||

=min(|P —-Ci|l), 5=1,2,... ®)

In such a case, neither is a new cluster created nor
is any existing cluster updated, as in the cases P, and
P shown in Fig. 2, for example. The algorithm then
returns to step 2. Otherwise, it proceeds to the next step.
Find a cluster with center C,, and cluster distance
Dec,, from all p existing cluster by calculating .S;; =
Wei; + Dej, 7 =1,2,..., p and then choosing the
cluster center C,,, with the minimum value S;,,, :

) P-

Sim = WC,jm + DCm = mln(S”), j = 1, 2, ey D
)
In (8), the maximum distance from the center of any
cluster to the samples in this cluster does not exceed
the threshold Dy, although the algorithm does not
keep any information on the passed samples. However,
the formulation involves only the distance between the
input data and the cluster center in (9). If the two dis-
tances Dist;,, are the same, then the distances between
the sample and any two cluster centers are equal. For
example, the distances between a given point Py and
both cluster centers C; and Csy, Distyo1 and Distig 2
are as shown in Fig. 3. In the aforementioned scheme,
the cluster Cy, which has a small distance Dcs, is ex-
panded according to (9). However, doing so causes
the problem of rapidly increasing the number of clus-
ters. The following condition is applied to solve this
problem.
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If (the distance between Pyy and Distio,1 equals the
distance between Py and Dist, 2) and (Dc; > Dcy),
then Dc,, = Dc,.

This rule dictates that when the distances between the
input data and both clusters are the same, the formula
chooses the cluster with large distances Dc;.

If S, exceeds Dy, then the sample P; is not in any
existing cluster. A new cluster is created as described
in step 1, as in cases P; and Ps shown in Fig. 2, and
the algorithm returns to step 2.

If S;,, does not exceed Dy, then the cluster C,, is
updated by moving its center, C),,, and increasing the
cluster distance Dc,, and the cluster widths Wy,
and Wy, . The parameters are updated according to
the following equation:

Step 5)

Step 6)

CHLJ; - RJ w m
e = (I A Wan)
Wy = (ICm y — Pz;y” + Weam) (11)
Cote = 1P — D |l (12)
Oy = 1Py = Dyl (13)
Dy = ST’” (14)

where C,,, , is the distance in the x direction associated

with Cy,, Cy, _ is the distance in the y direction asso-

ciated with C,,,, P, . is the distance in the x dimension

associated with F;, and P;_, is the associated with in

the y dimension for P;, as in the cases P», P5, P;, and

Py, as shown in Fig. 2. The algorithm returns to step 2.

Accordingly, the maximum distance from the center of any

cluster to the samples in the cluster does not exceed the threshold

value Dy, although the algorithm keeps no information on the

passed samples. Thereafter, the number of rules, the mean, and

the variance of the Gaussian membership function in CNFC are
given by the following equation:

Oij = 50% X WCZ‘]' (16)
R = the number of clusters 17

where Cj;, We;j, and the number of clusters are created by
SCA.

In the clustering process, the threshold parameter Dy, is an
important parameter. A low threshold value leads to the learning
of coarse clusters (i.e., fewer rules are generated), whereas a high
threshold value leads to the learning of fine clusters (i.e., more
rules are generated). Therefore, the selection of the threshold
value Dy, will critically affect the simulation results, and the
value will be based on practical experimentation or on trial-and-
error tests. We defined generally that Dy, is equal to 0.5—1 times
the summation of the inputs variance.
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Fig. 4. Flowchart of the proposed ISEL method.

V. IMMUNE SYMBIOTIC EVOLUTION LEARNING
FOR THE CNFC

This section describes an ISEL method for constructing
the CNFC. The ISEL method comprises of three major
components—initial population, subgroup symbiotic evolution,
and immune system algorithm. First, the initial population uses
the SCA that determines proper input space partitioning and
finds the mean and variance of the Gaussian membership func-
tion and the number of rules. Second, in traditional symbiotic
evolution, all rules generally evolve together; however, in the
subgroup symbiotic evolution method, each rule evolves sep-
arately. Third, the immune system algorithm uses the clonal
selection principle to accelerate the search and increase global
search capacity. Fig. 4 presents the ISEL of the CNFC.

A. Initial Population

This subsection introduces the production of initial popula-
tion, covering the coding and initialization steps. The coding
step involves the membership functions and the fuzzy rules of
a fuzzy system that represent subantibodies and are suitable for
subgroup symbiotic evolution. The initialization step assigns the
population values before the evolution process begins.

1) Coding Step: The first step in ISEL method is the coding
of a fuzzy rule into a subantibody. Fig. 5 shows an example of
a fuzzy rule coded into a subantibody where ¢ and j are the ¢th
dimension and jth rule. Fig. 5 describes a fuzzy rule given by
(1), where m;; and o;; are the mean and variance of a Gaussian
membership function, respectively, ¢; and d; are compensatory
parameters, and w;; is the corresponding parameter of the con-
sequent part associated with the jth rule node.

Sub-antibody

|m,,-| Oy, my O'2j||m,, O',j|| ¢ | d; | wy | wy | wy |w,, |
Fig. 5. Coding a fuzzy rule into a subantibody in subgroup symbiotic
evolution.

2) Initialization Step: Before the ISEL method is designed,
the individuals that will constitute an initial population must be
created. In this study, the initial population was created accord-
ing to the range of the mean and variance of the membership
function, which were computed by the SCA method. The follow-
ing formulations show the generation of the initial population:

Mean: Subantibody [index] = m;; + random [0,1] X o;;
where index = 1,3,...,2x N —1

Variance: Subantibody [index] = 4 x random [0, 1] x o;
where index = 2,4,...,2x N

Other parameters: Subantibody [index] = random [—1, 1]

where index > 2 x N

where index is the site of a subantibody, and m;; and o;; are
the mean and variance, respectively, of the Gaussian member-
ship function of the jth rule of the ith input variable. The size of
the population depends on the complexity of the problem. Many
experiments showed that the population size of 20 is most effec-
tive. Besides the population size, other parameters must be set.
This is the number of fuzzy systems to be formed and evaluated
in each generation. The crossover rate and the mutation rate and
these parameters also depend on the complexity of the problem.

B. Subgroup Symbiotic Evolution

This section presents a novel method of subgroup symbiotic
evolution. As described before, in the subgroup symbiotic evo-
lution, the affinity value of a rule (a subantibody) is computed
as the sum of the affinity values of all the feasible combina-
tions of that rule with all other randomly selected rules and then
dividing this sum by the total number of combinations. Fig. 6
shows the structure of the subantibody in the subgroup symbi-
otic evolution. The stepwise assignment of the affinity value is
as follows.

Step 0) Divide the rules into subgroups of size ps.

Step 1) Randomly select R fuzzy rules (subantibody) from
each of the aforementioned subgroups, and compose
the fuzzy system using these R rules.

Calculate affinities of the antibodies using the CNFC
thus composed. In this study, the affinity value is given
by the follow formula:

Step 2)

1

1+ \/1/Nt Sy (e — )

(18)
where y;. represents the kth model output, y,;’ represents
the desired output, and V; represents the number of
input data.

Affinity value =
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Fig. 6. Structure of subantibody in subgroup symbiotic evolution.
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vided affinity value to the affinity record of the R se- 1 2 _“__’,’ I\ Ll L
lected rules with their recorded affinity values initially . T 0
set to Zero. Sub-antibody / | | |,| d; ||‘|| | |
Step 4) Repeat the earlier steps until each rule (subantibody) in : i !
each subgroup has been selected a sufficient number of . i 1
. . Subgroup j Sub-antibody & | | | 1| d, | | | |
times, and record the number of fuzzy systems to which grotps .< . Y ! ‘ E
each subantibody has contributed. ! |'
.. . . ; !
Step 5) Divide the accu'mulatfad affinity of each subantibody by Sub-antibody ps |l
the number of times it has been selected. - T
Step 6) Sort these subantibodies in each subgroup in order of o)

decreasing affinity.

C. Immune System Algorithm

This section introduces the implementation of the immune
system algorithm that is based on the clonal selection principle,
the reproduction step, the crossover step, and the self-adaptive
mutation step.

1) Clonal Selection Principle: The antibodies of this im-
mune system that eliminate the antigen should exhibit at least
a minimal threshold of diversity. Accordingly, the diversity op-
erator is applied to these antibodies such that those between
others of high similar degree are canceled, guaranteeing an im-
provement in quality. This process is called the clonal selection
principle. Therefore, if the affinity between two antibodies ex-
ceeds the suppression threshold T'h 4, then these two antibodies

Fig. 7. Composition of subgroup with these subantibodies.

are called similar. Now, the subgroup is assumed to be composed
of ps subantibodies with L genes, as shown in Fig. 7.

Information theory yields the entropy value EV;(ps) of the
[th gene in this jth subgroup:

ps
EVi(ps) = Z —PylogPy,
k=1

19)

where P is the probability of the kth allele from the /th gene
and Py; = 1/(1 + ||di — di||) is defined, where dj, and dj are
the genes of the kth and the 'th subantibody, respectively. The
diversity of the genes is calculated using (19). If all alleles of the
lth gene are of the same form, then the entropy value E'V;(ps)
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Old Subgroup
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1 Sub-antibody / )
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ps/2 Sub-antibody ps/2 y
ps/2 +1 | Sub-antibody ps/2 +1
: Tournament
) Selection )
ps-1 Subgroup ps-1
ps Subgroup ps
Generation N

Fig. 8. Flowchart of reproduction, crossover, and mutation steps.

will be zero. The average entropy value EV(ps) of diversity is
also given as follows:
BV (ps) = 2= EVi(ps)
where L is the size of the gene in a subantibody. Equation (20)
yields the diversity of the subantibody pool in terms of the en-
trop. Two affinity expressions are considered in the proposed
approach. The first explains the relationships between the anti-
body and the antigen and is given by (18). The second describes
the degree of association between subantibodies. The following
equation computes the affinity between subantibodies:
1
1+ EV(2)
where Affinity_Aby; is the affinity between two subantibodies
k and k', and EV(2) is the entropy of only the subantibodies
k and k’. This affinity is constrained from zero to one. When
EV(2) is zero, the genes of the kth subantibody and those of the
k’th subantibody are the same. Therefore, the clonal selection
principle is that if the Affinity_Abyj exceeds Thyy, then the
subantibody should be canceled. Reproduction, crossover, and
mutation steps follow, according to the flowchart presented in
Fig. 8.

2) Reproduction Step: Reproduction is a process in which
subantibody strings are copied according to their affinity val-
ues. This process is an artificial version of natural selection.
This study uses the roulette-wheel selection method [33]—
a simulated roulette is spun—in this reproduction step. The
best performing subantibodies in the top half of the subgroup
evolves to the next generation. The other half is generated to
perform crossover on subantibodies in the top half of the parent
generation.

3) Crossover Step: Reproduction directs the search toward
the best existing subantibodies but does not create any new sub-
antibodies. In nature, an offspring has two parents and inherits

(20)

Afﬁnity,Abkk-/ = 21
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New Subgroup
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Sub-antibody 2

Reproduction

Sub-antibody ps/2

Y

Sub-antibody ps/2 +1

Crossovetr/
Mutation

Subgroup ps-1

Subgroup ps

Generation N+/

genes from both. The main operator working on the parents is
the crossover operator, the operation of which occurred for a
selected pair with a crossover rate that was set to 0.5 in this
study. Therefore, the new subantibodies are principally gener-
ated by crossover. In this process, the first step is to select two
subantibodies for crossover. Two subantibodies for crossover
are selected by tournament selection [33] on the top half of
the best-performing subantibodies. Tournament selection ran-
domly selects three subantibodies in each subgroup, and the
subantibody with the best affinity is adopted as the designated
subantibody. The other designated subantibody is selected in the
same way. Two new subantibodies are generated by perform-
ing crossover on the selected designated subantibodies. In the
second step, the two designated subantibodies are crossed and
separated using a two-point crossover in which new subanti-
bodies are created by exchanging the gene between the selected
sites of the two designated subantibodies. In the crossover step,
we also keep the same number of subantibodies in the other half
of the population for each subgroup. After this operation, the
new subantibodies replace the designated subantibodies with
poor performances.

4) Self-Adaptive Mutation Step: After reproduction and the
crossover step yielded new strings, no new information is intro-
duced to the subgroup at the site of a subantibody. As a source
of new sites, mutation should be used sparingly because it is a
random search operator. In the following simulations, a muta-
tion rate was set to 0.3. Mutation is an operator that randomly
alters the allele of a gene. The self-adaptive mutation adopted
in the immune system algorithm yields high diversity. The sub-
antibody suffers from a mutation to avoid falling in a local
optimal solution and to ensure the searching capacity of ap-
proximate global optimal solution. The self-adaptive mutation
with real-valued representation can be used to produce mutants
by adding a number randomly selected from some interval to
a given antibody. The mutation value is generated according to
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TABLE I

INITIAL PARAMETERS BEFORE TRAINING
Parameter Value
Size of Subgroup (ps) 20
Crossover Rate 0.5
Mutation Rate 0.3
Threshold of Affinity (Th44) [0.95
Coding Type Real Number

(22), shown below. Following self-adaptive mutation, a new
subantibody can be introduced into the population.

S Ab|index|

S Ablindex] + (max (SAb[:]) — SAb[index]) x A
B ifa>05
S Ablindex] + (min (SAb[:]) — SAb[index]) x
ifa <0.5
(22)

where A = 8 x (t/T)", and a, 3 € [0,1] are random values,
index represents the gene in a subantibody (SAb), ¢ is the tth
generation, and 7 is the maximum number of generations.

VI. ILLUSTRATIVE EXAMPLES

This study evaluated the performance of the proposed CNFC
using ISEL (CNFC-ISEL) algorithm for nonlinear control sys-
tems. This section presents several examples and compares the
performance with that of other neural fuzzy networks using sym-
biotic evolution (NFN-SE) [21], [22]. In the nonlinear control
system problems, CNFC-ISEL is adopted to design controllers
in four simulations—multi-input single-output (MISO) plant
control, multi-input multi-output (MIMO) plant control [2],
backing up the truck [34], and the ball-and-beam system [35].
Table I presents the initial parameters before training used in
the four computer simulations.

A. Example 1: Multi-Input Single-Output Control

The controlled plant is the same as that used elsewhere [2]
and is described by

Yp(k+1) = flyp, y(k — )] +u(k) (23)

where  fly,, y(k —1)] = [y, (k)yp (k — 1)(y, (k) +2.5)]/[1 +
Yz (k) + 2 (k — 1)]. In designing the CNFC, the desired out-
put y, is specified by the following 250 pieces of data:

yr(k+1) =0.6y, (k) + 0.2y, (k= 1) +r(k) (24)

where r(k) = 0.5 sin(27k/45) + 0.2 sin(27k/15) 4+ 0.2 sin
(2mk /90).

The inputs to the CNFC are y,(k),y,(k+ 1), y,(k), and
Y, (k + 1), and the output is u(k). For the SCA, we chose the
parameter Dy, = 0.85, and then, four rules are generated by
SCA in CNFC; hence, R = 4, and the number of total pa-
rameters is 60. Accordingly, the number of genes is also 15
in each subgroup. Fig. 9 plots the learning curves of the best
performance of the CNFC-ISEL for the affinity/fitness value,
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the symbiotic evolution of the fuzzy controller (SEFC) [21],
and the Mamdani-type fuzzy system using the symbiotic evo-
Iution algorithm (MFS-SE) [22], after the learning process
of 500 generations. Fig. 10(a) plots the control results of the
desired output and the model output after a learning process
of 500 generations. Fig. 10(b) shows the errors of the pro-
posed method. Table II presents the best and averaged affin-
ity/fitness values after 500 generations of training. The com-
parison indicates that the best and averaged affinity/fitness val-
ues of CNFC-ISEL are better than those obtained using other
methods.

B. Example 2: Multi-Input Multi-Output Control

In this example, the MIMO plants [2] to be controlled are
described by

-

Slyp1(k)/(1 + ypz(k))} }
pr(k + 1)

5[yp1 (k)ypa (B) /(1 + ypo (K))]
+[ 1(k)

The controlled outputs should follow the desired output y;,
and y,, , as specified by the following 250 pieces of data:

] = e )

The inputs of the CNFC are y,,, (k), Yp, (), yr, (k), and y,., (),
and the outputs are u; (k) and ug (k). For the SCA, we chose
the parameter Dy, = 1, and then, six rules generated by SCA
in CNFC: R = 6. Therefore, the total number of parameters is
120, and the number of genes is 20 in each subgroup.

Fig. 11 plots the learning curves of the best performance of the
CNFC-ISEL model for the affinity/fitness value, the SEFC [21],
and the Mamdani-type fuzzy system using symbiotic evolution
algorithm (MFS-SE) [22], after the learning process of 500
generations. To demonstrate the control result, Fig. 12(a) and
(b) plots the control results of the desired output and the model
output after the learning process of 500 generations. Fig. 12(c)
and (d) shows the errors of the proposed method. Table III
presents the best and averaged affinity/fitness values after 500
generations of training. The comparison indicates that the best
and averaged affinity/fitness values of CNFC-ISEL are better
than those of other methods.

(25)

(26)

C. Example 3: Control of Backing Up the Truck

Backing a truck into a loading dock is difficult. It is a nonlinear
control problem for which no traditional control method exists
[34]. Fig. 13 shows the simulated truck and loading zone. The
truck’s position is exactly determined by three state variables
¢, x, and y, where ¢ is the angle between the truck and the
horizontal, and the coordinate pair (x, y) specifies the position
of the center of the rear of the truck in the plane. The steering
angle 6 of the truck is the controlled variable. Positive values
of 6 represent clockwise rotations of the steering wheel, and
negative values represent counterclockwise rotations. The truck
is placed at some initial position and is backed up while being
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Fig. 10.  (a) Desired (solid line) and model (dotted line) output generated by CNFC designed with ISEL in Example 1. (b) Errors of proposed CNFC-ISEL.

TABLE I
PERFORMANCE COMPARISONS WITH CNFC-ISEL, SEFC,
AND MFS-SE IN EXAMPLE 1

Method CNFC-ISEL SEFC [21] | MFS-SE [22]
Affinity/Fitness Value (Ave) 0.9916 0.9793 0.9655
Affinity/Fitness Value (Best) 0.9961 0.9802 0.9745

steered by the controller. The objective of this control problem is
to use backward only motion of the truck to make it arrive at the
desired loading dock (zdesiredv ydesired) ata I'ight angle (d)desired =
90°). The truck moves backward as the steering wheel moves

through a fixed distance (dy) in each step. The loading region is
limited to the plane [0 1 0 0] x [0 1 0 0].

The input and output variables of the CNFC must be specified.
The controller has two inputs: truck angle ¢ and cross position
x. When the clearance between the truck and the loading dock
is assumed to be sufficient, the y coordinate is not considered to
be an input variable. The output of the controller is the steering
angle 6. The ranges of the variables x, ¢, and 6 are as follows:

0<z<100 Q27)
—90° < ¢ < 270° (28)
—30° < 6 < 30°. 29)
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TABLE III

The equations of backward motion of the truck are

x(k+1) = z(k) + d; cosb(k) + cos ¢(k)
y(k+1) = y(k) + dy cos (k) + sin ¢(k

1 [1sing(k) + df cos

— tan— ¢
¢k +1) = tan l cos (k) — dy sing

(30)

)
(k)sind(k)
(k)sin6(k)

where [ is the length of the truck. Equation (30) yields the next
state from the present state.

Learning involves several attempts, each starting from an ini-
tial state and terminating when the desired state is reached;
the CNFC is thus trained. For the SCA, we chose the parame-
ter Dy, = 0.45. After SCA learning, 13 fuzzy logic rules are
generated, and the parameters of the membership functions are
determined. Hence, the total number of parameters is 117, and
the number of genes is nine in each subgroup. The training pro-
cess continues for 500 generations. The affinity of the CNFC
is approximately 0.95587, and the learning curve of CNFC
is compared with those obtained using various existing mod-
els [21], [22], as shown in Fig. 14. Fig. 15(a)—(d) plots the
trajectories of the moving truck controlled by the CNFC, start-
ing at initial positions (x, y, ¢) = (40, 20, —30°), (10, 20, 150°),
(70,20, —30°), and (80, 20, 150°), after the training process has
been terminated. The considered performance indices include
the best affinity/fitness and the average affinity/fitness value.
Table IV compares the results. According to these results, the
proposed CNFC-ISEL outperforms various existing models.

D. Example 4: Control of the Ball-and-Beam System

Fig. 16 shows the ball-and-beam system [35]. The beam is
made to rotate in the vertical plane by applying a torque at the
center of rotation and the ball is free to roll along the beam. The
ball must remain in contact with the beam.

COMPARISON OF PERFORMANCE OF CNFC-ISEL, SEFC,
AND MFS-SE IN EXAMPLE 2

Method CNFC-ISEL SEFC [21] | MFS-SE [22]
Affinity/Fitness Value (Ave) 0.9721 0.9553 0.8503
Affinity/Fitness Value (Best) 0.9786 0.9581 0.8560

TABLE IV

COMPARISONS OF PERFORMANCE OF CNFC-ISEL, SEFC,
AND MFS-SE IN EXAMPLE 3

Method CNFC-ISEL SEFC [21] | MFS-SE [22]
Affinity/Fitness Value (Ave) 0.9511 0.9451 0.9332
Affinity/Fitness Value (Best) 0.9558 0.9516 0.9398

The ball-and-beam system can be written in state space form
as

21 T3 0
@2 _ B(xlxz — Gsinxg) 0 u
T3 Ty 0
Ty 0 1
Yy=x 3D

where = = (1,29, 23, 24)" = (r,7,0,0)T is the state of the
system, and y = x; = r is the output of the system. The control
u is the angular acceleration (5), and the parameters B = 0.7143
and G = 9.81 are set in this system. The purpose of control is
to determine u(x) such that the closed-loop system output y will
converge to zero from different initial conditions.

According to the input-/output-linearization algorithm [35],
the control law u(x) is determined as follows: For state x, com-
pute v(z) = —a3 ¢4 () — aa 3 (x) — 1 P2 () — Py (x), where
o1(z) = x1, ¢o(x) =9, ¢3(x) = —BG sinzxz, ¢4(x)
—BGx, coszs, and o; are chosen so that s* + as3s®
ass? + a1s + aq is a Hurwitz polynomial. Compute a(x)

=+
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Fig. 12.  (Solid line) desired and (dotted line) model output generated by CNFC designed with ISEL in Example 1. (a) Output 1. (b) Output 2. Errors of proposed

CNFC-ISEL for (c) output 1 and (d) output 2.

loading dock (Xdcsired, Ydesired)
1

Fig. 13.  Diagram of simulated truck and loading zone.

—BG cos 3 and b(x) = BGx} sinxy; then, u(r) = [v(z) —
b()]/a(z).

In the simulation herein, the differential equations are solved
using the second/third-order Runge—Kutta method. The CNFC
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Fig. 14.  Learning curves of best performance of the CNFC-ISEL, SEFC, and

MFS-SE in Example 3.
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erated, and the corresponding parameters of membership func-
tions are determined in our simulation. Therefore, the number of  Fig. 17. Learning curves of best performance of the CNFC-ISEL, SEFC, and

total parameters is 135. The number of genes is 15 in each sub-
group. Fig. 17 plots the learning curves of the best performance
of the CNFC-ISEL and various other models [21], [22] after a
learning process of 1000 generations. The controller after learn-
ing was tested under the following four initial conditions: x(0) =
[2.4,-0.1,0.6,0.1]7,[1.6,0.05, —0.5, —0.05]*, [-1.6, —0.05,
0.5, 0.05]17, and [-2.4, 0.1, —0.6, —0.1]". Fig. 18 plots the
output responses of the closed-loop ball-and-beam system con-

MFS-SE in Example 4.

trolled by the CNFC. These responses approximate those of the
original controller under the four initial conditions. Fig. 19 also
shows the behavior of the four states of the ball-and-beam sys-
tem, starting from the initial condition [-2.4,0.1, —0.6, —0. 117.
In this figure, the four states of the system decay gradually
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Fig.19. Responses of four states of the ball-and-beam system under the control

of the learned CNFC.

TABLE V
COMPARISON OF PERFORMANCE OF CNFC-ISEL, SEFC,
AND MFS-SE IN EXAMPLE 4

Method CNFC-ISEL SEFC [21] | MFS-SE [22]
Affinity/Fitness Value (Ave) 0.9782 0.9478 0.9328
Affinity/Fitness Value (Best) 0.9836 0.9530 0.9414

to zero. The results show the perfect control capability of the
trained CNFC-ISEL method. The performance of CNFC is
compared with the SEFC [21] and the Mamdani-type fuzzy sys-
tem using the symbiotic evolution algorithm (MFS-SE) [22].
Table V compares the results. These results indicate that the
proposed CNFC-ISEL is better than various existing models.

VII. CONCLUSION AND FUTURE WORKS

This study proposes an efficient ISEL algorithm for CNFC.
The ISEL method includes three major components—initial
population, subgroup symbiotic evolution, and immune sys-
tem algorithm. However, the SCA, which is an evolution of the
rule itself, the clonal selection principle of antibodies, and self-

adaptive mutation are achieved by the ISEL method. Moreover,
the proposed CNFC-ISEL obtains better simulation results than
alternative models in some circumstances, for example, achiev-
ing faster learning and higher design accuracy in many nonlinear
control problems.

Two advanced topics on the proposed CNFC-ISEL should
be addressed in future research. First, it would be better if the
CNFC-ISEL has the ability to delete unnecessary or redundant
rules. The fuzzy similarity measure [36] determines the simi-
larity between two fuzzy sets in order avoid having the existing
membership functions be too similar. Second, in addition to the
simulations done in this paper, the proposed CNFC-ISEL will
be used to solve many practical problems, including the control
of magnetic levitation systems and the control of the inverted
pendulum system in our laboratory.
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