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a b s t r a c t

Speech learning is an important foundation for literacy ability. In general, language training needs a pro-
fessional instrument to analyze speech for supporting the pronunciation of hearing impaired. However,
non-professional speech spectrum equipment is very expensive and its output is not easy for hearing
impaired to understand and learn. The purpose of this research is to implement a radar-graphic display-
ing system (RDS) to support the speech learning for hearing-impaired people at low cost and better per-
formance. The components of RDS include a computer connects to a microphone as input device to
capture the speech features; a neural network is used to extract the features for speech recognition; a
radar map displays the voice message on the screen to support the hearing impaired to learn speech.
A system performance evaluation of RDS was performed after the system was implemented.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Hearing ability is based on the onset of hearing loss and can be
divided into congenital inheritance and afterward occurred. If the
hearing ability occurred afterwards, then the hearing-impaired
people still possess language ability, but they can not clearly hear
what people say. If the hearing-impairment is a congenital inheri-
tance, they would have hard time to learn speech. According to the
critical period hypothesis (CPH), children have an idea period to
learn speech and language. The best time of language learning is
from age 8 to 12 (Johnson, Christie, & YawKey, 1998; Newport,
1991). After the CPH, to learn language becomes a difficult issue
for children. Thus, the hindrance of hearing and language will af-
fect individual’s learning performance and recognition. If hear-
ing-impaired people can not receive good education and be
guided properly, they can not communicate with people. It is hard
for hearing impaired people to get a job. They will feel frustrate.
Thus, it will increase the social load and social problems. Based
on the statistical data, one of one-thousand newborn babies is sick
with the congenital hearing handicap, which has much relation to
recessive inheritance. Hearing-impaired people are not completely
deaf and still have some residual hearing. They can not use their
own auditory ability or hearing-aid devices to monitor their pro-
nunciation correctly. Language learning of hearing-impaired peo-
ple depends on their feeling or guesses to determine the
pronunciation, so they can not pronounce properly and correctly.
ll rights reserved.
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Currently there is no effective method or tool to prevent and rem-
edy hearing loss. Therefore, implementing a computer-aided learn-
ing system to improve their language learning and training is an
effective and convenient method.

The radar-graphic displaying system for speech learning (RDS),
implemented in this study is suitable for hearing-impaired stu-
dents to learn Chinese pronunciation. The system includes a com-
puter with graphic-display screen and microphone to increase the
learning performance for hearing-impaired students. This system
is designed to simplify the process of language learning through
the home computer. The system calculates the speech features
through voice recognition technique to compare single-word
sounds with the sounds which are pronounced by hearing-
impaired users. Neuro-network analysis was used to compare each
single word in the database allowing a larger range of tolerance.
Each feature of single words with 2-dimensional coordinates dis-
play on the screen, which is visually similar to a radar map with
a fixed position. Hearing-impaired students can operate the system
by themselves. They can use a microphone to extract the signal
through the graphic-displaying mode to see whether their pronun-
ciation is correct or not. Hearing-impaired students can self-mon-
itor and self-modify their pronunciation. This system is suitable for
low-grade primary school students to learn proper Chinese
pronunciation.

2. System framework

Speech recognition initially should extract the speech features
to establish the speech feature database for neural network train-
ing data (Rabiner & Juang, 1993). Back propagation neural network
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Fig. 2. Speech feature parameter extraction flowchart.
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(BPN) and self-organizing maps (SOM) are applied in this system.
BPN is used to recognize the speech and SOM is used to create
the radar map. The speech features database is separately deliv-
ered to BPN and SOM for training. BPN gets the adjusted weighting
values and SOM obtains the speech features. The trained weighting
values are then delivered to BPN as a testing recognition reference.
The 2-dimensional topology is transferred into the radar chart
coordinates distribution graph. When the user operates the sys-
tem, a microphone is used to input the speech signal and then
the software extracts the speech features and sends them to BPN
for recognition. The result is displayed in the radar map. The sys-
tem framework is shown in Fig. 1.

3. Feature extraction

During the speech recognition process, speech recognition
extraction is the first step to develop the speech feature database
as a neural-network training database. An efficient method to rep-
resent the appropriate feature parameters is necessary to process
the speech data. The obtained feature parameters will indirectly af-
fect the speech recognition rate, through the sampling process
speech signals are extracted from soundcard inside the PC. The
sampling rate of the system is 8 K/s. The resolution is 8 bits, which
means the speech signal waveform is 8000 dots per second. The
extraction of speech features must go through some complicated
processes. The sampling process initially goes through the start-
ing-point and the ending-point to detect the start and end position
of speech. The speech signal interval is every 15 ms to construct the
sound-frame, following with the procedures including endpoint
detection, segmentation, pre-emphasize, Hamming window, auto-
correlation, LPC analysis and Cepstrum to get the speech feature
coefficients (Patil, 1998). Fig. 2 shows the extraction flowchart of
speech features. The speech data is represented by the suitable fea-
tures parameter. Generally, the size of speech data is very large and
can not be stored as the reference sample for speech recognition.
The speech features parameter is replaced by Cepstrum coefficients.

3.1. Energy

In general, the speech segmentation method uses energy and
zero-crossing rate. EðnÞ can calculate the speech signal variability
in a short-time to determine voice or non-voice.

EðnÞ ¼
XN�1

m¼0

½WðmÞXðn�mÞ�2 ð1Þ

Among which N is the length of a short-time signal, W(m) is the
window to choose a specific short-time pronunciation signal X(n).

3.2. Zero-crossing rate

Zero-crossing rate determines the speech voice or non-voice.
We can calculate the speech signal zero-crossing frequency and
energy detection endpoint for segmentation.
Fig. 1. Framework of the graphic speech learning system.
ZxðmÞ ¼
1
N

Xm

n¼m�Nþ1

jS½xðnÞ� � S½xðn� 1Þ�j ð2Þ

S: sign function, if neighbor signal is different from S then S is 2 else
is 0.

3.3. Pre-emphasize

Speech signal spectrum frequency follows a descending 6 dB/
oct. On the contrary, the auditory level has ascending 6 dB/oct
characteristic. For effectively simulating the ear’s automatic gain
control (AGC) function, speech signal must be processed with
pre-emphasize achieve +6 dB/oct.

HðZÞ ¼ 1� aZ�1;0:9 � a � 1 ð3Þ

where a is the pre-emphasis parameter.
This processing is usually obtained by filtering the speech signal

with a first order FIR (finite impulse response) filter whose transfer
function in the z-domain.

3.4. Hamming window

When processing, speech signals must be divided into individ-
ual frames, with each frame about 20–30 ms and no overlaps.
The sampling rate is 240 dots/s. For a more effective speech frame,
we must add a Hamming window. Hence, the endpoint of each
frame keeps the same characteristics as the middle part and gets
rid of the discontinuities of the speech signal on the both end-
points. The Hamming window is calculated by Eq. (4).

WðnÞ ¼ 0:54� 0:46 cos 2np
N�1

� �
; 0 � n � N � 1

0; otherwise

(
ð4Þ
3.5. Autocorrelation

Autocorrelation finds the speech signal waveform structure
after the Hamming window process.

/iðkÞ ¼
XN�1

n¼0

Xðnþ iÞXðnþ iþ kÞ0 � k � N � 1 ð5Þ

Eq. (5) is a speech starting from i, 0 � k � N � 1, n is the signal
length 20–40 ms.
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Fig. 3. Back propagation neural network structure.
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3.6. Linear prediction code (LPC) analysis

LPC analysis decreases the errors of actual and predicted speech
signals. The method is to measure the pitch period and resonance
frequency and gets the useful speech parameters quickly.

SðnÞ ¼
Xp

k¼1

akSðn� kÞ þ GUðnÞ ð6Þ

where Un is a digital filter, G is the digital filter amplitude gain, p is
the LPC prediction order and ak is the LPC coefficients.

3.7. Cepstrum

Cepstrum is a method to convert the speech signal spectrum
characteristics from the detailed variation and peaks of the waves.
The peaks of a speech signal’s wave appear in the low Cepstrum
and the detailed variation appears in the high Cepstrum. Eq. (7)
is the Cepstrum coefficient.

CðsÞ ¼ F�1 log jXðkÞj ¼ 1
N

XN�1

k¼0

log jXðkÞjej2pkn
N ; 0 � n � N � 1 ð7Þ

where N is the Cepstrum coefficients and X(k) is the speech signal.
Cepstrum coefficients have the characteristics of a discrete pro-

nunciation voice box model and simulating signal to precisely cal-
culate the vocal parameters. The obtained effective speech
parameters can be applied in the speech recognition.

4. Neural network

An artificial neural network is one kind of simulation of human
biological-type systems. The neural network (NN) is an intercon-
nected group of artificial neurons. The advantages of NN are
high-speed computing, large memory, high learning ability and
high error-tolerance. The types of NN’s learning method can be di-
vided into supervised and unsupervised learning network. Super-
vised neural-networks are applied in the classification, prediction
and recognition. The unsupervised neural-networks are mostly ap-
plied in the clustering (Zurada, 1992).

4.1. Back propagation neural network

Back propagation neural network (BPN), invented in 1957 is
very typically implemented. BPN is used commonly in everyday
life (Rumelhart, Hinton, & Williams, 1986). BPN consists of input
layer Xi, hidden layer Hh and output layer Yj. The input layer repre-
sents the input variable. The hidden layer represents how the input
layer influences with output layer. The output layer represents the
output variable. Every layer is connected by weighted values, but
neurons in the same layer are not connected. Every layer is con-
nected with different weights. Fig. 3 shows the framework of the
back propagation neural network.

The back propagation neural network uses the steepest gradient
descent method and minimizes the error function. BPN is an unsu-
pervised learning network which is suitable for prediction, recogni-
tion and so on. Unsupervised learning must be given network
training data which includes speech features Xi and its features, val-
ues represented by Yj. Through the training, the network can calcu-
late the weight. The testing data must be given first at the testing
procedure, which includes the testing speech features Xi. The calcu-
lation process must add the previous weighting values and then it
produces the prediction outcome Tk of speech recognition.

Through the training process, the Network calculates the new
weighting value. The Network randomly initializes weight W be-
tween every layer and the input training data is calculated. Eqs.
(8) and (9) calculate the hidden layer vector Hh.
Zh ¼
X

h

Wih � Xi � hh ð8Þ

Hh ¼
1

1þ e�Zh
ð9Þ

where Eq. (9) calculates Hh and then insert Eq. (9) into Eq. (10) to
get delta d

dh ¼ Hhð1� HhÞ
X

j

Whjdj ð10Þ

where Eq. (10) gets delta dh and then insert Eq. (10) into Eq. (11) to
get the hidden layer weighting delta DWih. The DWih adjusts the
network weighting value between the input layer to the hidden
layer.

DWih ¼ gdhXi ð11Þ

where Eq. (11) gets DWih and then insert Eq. (11) into Eq. (12) to get
the new weight Wih.

Wih ¼Wih þ DWih ð12Þ

From Eqs. (8) to (12) is the training cycle. In Eq. (10), dj and Yj

are the vectors to calculate the output layer vectors and the differ-
ences between the hidden layer and output layer. Tj is the target
vector. The updated weighting values are the same from input
layer to hidden layer. But the equation to calculate the delta Eq.
(13) is different.

dj ¼ Yjð1� YjÞðTj � YjÞ ð13Þ
4.2. Self-organizing map

Self-organizing map (SOM) is an unsupervised learning net-
work. The input is the series of values. The fundamental principle
of SOM is to learn the clustering rules and apply them to the test-
ing samples from the training samples. SOM consists of input layer
Xi and output layer Yj (Kohonen T, 1990). Fig. 4 shows the structure
of self-organizing map.

The algorithm of SOM applies the Euclidean distance to calcu-
late the output unit and network j topology and distance from
the center. Eq. (14) Dj is to calculate the Euclidean distance of
(Xj,Yj) to C on the coordinate diagram (Linske, 1988).

Dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXj � CxÞ2 � ðYj � CyÞ2

q
ð14Þ

where (Xj,Yj) are output j topology coordinates and C is the center of
the topology coordinates.

4.3. Self-organizing map coordinate diagram

The Mandarin phonetic signal distribution on the radar map is
using the cluster feature of the self-organizing map (SOM) neural



Fig. 4. Self-organizing maps structure.

Fig. 5. Chinese phonetic symbol distribution on 2-dmensional coordinate graph.
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network. SOM calculates the Euclidean distance of all of the Man-
darin phonetic signals between each other and signals with similar
characteristics move closer together. The similar Mandarin pho-
netic symbols cluster on the radar map. Each Mandarin phonetic
symbol selects 20 features in the self-organizing map and trains
1000 times. The result shows on the corresponding position on
the radar map. In Eq. (14), Dj is to calculate the Euclidean distance
of N to M on the coordinate diagram.

4.4. Training

When the network begins to learn, the first step must set the
network parameters, the input vector X, the hidden number H
the output vector Y, the learning cycle, and the learning rate g.
The Network randomly produces the weighting values including
the input layer to the hidden layer Wxhih, the hidden layer to out-
put layer Whyhj, the hidden layer’s bias hhh and the output layer’s
bias hyj.

The values of Eq. (15) are inserted into Eq. (16) to get the hidden
layer vector H.

neth ¼
X

i

WxhihXi � hhh ð15Þ

Hh ¼ f ðnethÞ ¼
1

1þ e�neth
ð16Þ

the values of Eq. (17) are inserted into Eq. (18) to get the output
layer vector Y.

netj ¼
X

h

WhyhjHh � hyj ð17Þ

Yj ¼ f ðnetjÞ ¼
1

1þ e�netj
ð18Þ

Eqs. (16) and (18) calculate the H and Y, and individually are in-
serted into Eqs. (19) and (20) to get the value of delta d.

dj ¼ Yjð1� YjÞðTj � YjÞ ð19Þ
dh ¼ Hhð1� HhÞ

X
j

Whyhjdj ð20Þ

Eq. (19) gets delta dj and is inserted into Eqs. (21) and (22), and sep-
arately gets the output layer weight delta DWhyhj and bias delta
Dhyj.

DWhyhj ¼ gdhHh ð21Þ
Dhyj ¼ �gdj ð22Þ
Eq. (20) gets delta dh and is inserted into Eqs. (23) and (24), and
individually gets the hidden layer weight delta DWxhih and bias del-
ta Dhhh

DWxhih ¼ gdhXi ð23Þ
Dhhh ¼ �gdh ð24Þ

Eqs. (21) and (22) get DWhyhj and Dhyj and are inserted into Eqs.
(25) and (26) to get the new output layer weighting values Whyhj

and new output layer bias hyj.

Whyhj ¼Whyhj þ DWhyhj ð25Þ
hyj ¼ hyj þ Dhyj ð26Þ

Eqs. (23) and (24) calculate the value of DWhyhj and Dhyj. Eqs. (23)
and (24) are inserted into Eqs. (27) and (28) to get the new
hidden layer weighting values Wxhih and the new hidden layer bias
hhh.

Wxhih ¼Wxhih þ DWxhih ð27Þ
hhh ¼ hhh þ Dhhh ð28Þ

Eqs. (15)–(28) are the formulas of the training cycle and hid-
den layer. The learning rate g affects the network convergence
speed.

4.5. Testing

When BPN is testing, all Cepstrum coefficient data is delivered
into the network and starts the iteration by the training data of
Whyhj, hhh, hyj, and Wxhih. The neural network is based on the con-
nected weight and bias to adjust the construction from testing data
to get the target vector T.

Eq. (29) is inserted into Eq. (30) to get the hidden layer vector H.

neth ¼
X

i

WxhihXi � hhh ð29Þ

Hh ¼ f ðnethÞ ¼
1

1þ e�neth
ð30Þ

Eq. (31) is inserted into Eq. (32) to get the input layer X to target
vector T

netk ¼
X

h

WhthkHh � htk ð31Þ

Tk ¼ f ðnetkÞ ¼
1

1þ e�netk
ð32Þ
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5. Radar charts

After the SOM training of the speech features, the network dis-
tributes every Mandarin phonetic symbol’s signal on a 2-dimen-
sional coordinate. The topology coordinate is an 8 � 8
2-dimensional array. Then, set the origin at (4,4) to get Mandarin
phonetic symbols with radius 4 as shown in Fig. 5. The distance be-
tween each Mandarin phonetic symbol represents their similarity.
The greater the similarity of the pronunciations, the closer the
coordinates on the radar chart will be. This is the cluster character-
istic of SOM.

The obtained 2-dimensional coordinates need to be converted
into radar graph. The radius unit length of radar maps is set to
150. In Fig. 6, Mandarin phonetic symbol coordinates are (Rx,
Ry). After SOM training gets the coordinates (X, Y), then the (X, Y)
Fig. 7. The implementation of the graphi
are separately inserted into Eqs. (33) and (34) to get the radar
map coordinates (Rx, Ry).

Rx ¼ X�26:52 ð33Þ
Ry ¼ Y�26:52 ð34Þ

Radius unit length of the radar maps is 150 with the equation of
isosceles right triangles. An isosceles right triangle with two-equal
sides, and their corresponding angles are 45�. The triangle length
ratio is 1 : 1 :

ffiffiffi
2
p

to get the radius unit length of 2-dimensional
coordinates with length 106 units. The coordinate axis of radar
charts of each scale is 26.52 units length which is one-forth of
the axis length.

The results of each radar map are calculated from SOM training
speech features. Each Mandarin symbol alphabet extracts 20 data
features as training data. Through 1000-iteration training cycles,
2-dimensional coordinates are obtained.

6. Experiment results

This system is using BPN as the framework of speech recogni-
tion (Lu & Wang, 2006). Choosing the practice button of a phoneme
signal on the operating interface, the computer screen shows the
right position of the phoneme signal. Pressing the REC button starts
the user’s recording by microphone and the data is shown in the
speech waveform window. When the speech waveform window
shows the user’s extracted speech, pressing the EXTRACT button
converts the speech into its features. After finishing the last step,
pressing the RECOGNITION button applies the BPN recognition
test’s speech. In final, pressing the SCORE button shows the recog-
nition results on radar chart window, compare to the database.

The tester using the microphone emits the appropriate pho-
neme signal. The red line on the radar graph is the mark of the cor-
rected pronunciation. The green line is the user’s mark of the
testing pronunciation. When the pronunciation is correct, the
two lines overlap. If the pronunciation is not correct, the two lines
are separated. The distance between the two lines is the reference
to adjust the pronunciation. The system calculates the corrected
pronunciation and similarity of the test and then the score is dis-
played on the screen, shown in Fig. 7.
c-displaying speech learning system.



Table 1
Mandarin phonetic alphabet recognition rate

Accuracy rate (%) Chinese phonetic alphabet

100–90
90–80
80–60
<60
Average rate 72%
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Twenty features from each phoneme were extracted for training
in BPN. Through the adjustment of the experimental process, each
phoneme trains 1000 times. After the adjusted weighting value,
the recognition rate is appropriated. The recognition accuracy rates
are shown in Table 1. The accuracy rate over 80% is good enough
for hearing impaired to learn the phoneme pronunciation. All of
the remaining phonemes under 80% recognition rates should not
be used as the learning sets. Those low recognition rate phonemes
are caused by the similarity in features which need more study to
resolve.

7. Conclusion

The RDS improves the traditional language training method
using radar maps to increase the hearing impaired’s learning per-
formance. When the hearing impaired start to learn languages,
they can not judge whether their pronunciation is correct or not
and then indirectly cause learning obstacles and decrease their
learning intention. In general, the hearing impaired use assistive
devices and special teaching methods to increase their learning
efficiency. Auditory training is the most important issue in the
hearing impaired education. The hearing impaired has residual
hearing ability. If the hearing-impaired students were trained by
lip language, they lose their original hearing ability to recognize
the speech ability. They lose the chance to use speech as a commu-
nicating tool with other people (Stewart & Kluwin, 2000).

From the standpoint of an assistive device for the hearing im-
paired, how to develop a suitable graphic-displaying learning sys-
tem for the pre-school children is a very critical issue for children’s
speech learning. Students can use the radar map on the system to
modify their pronunciation and also to increase their learning per-
formance. This system can help hearing-impaired people build up
their speech learning foundation and reduce their language learn-
ing problems. However, owing to the characteristics of sound var-
iability, speech is easily to be affected by external noise. This is
why it is hard to get the optimal recognition rate. How to increase
the recognition rate is a major technical problem. For advanced
study, the recognition rate is one of the major issues to overcome
in pronunciation, spelling, vocabulary, phrase and grammar to
build up a comprehensive language learning system.
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