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a b s t r a c t

Given the amino-acid sequence of a protein, the prediction of a protein’s tertiary structure is known as
the protein folding problem. The protein folding problem in the hydrophobic–hydrophilic lattice model
is to find the lowest energy conformation. In order to enhance the performance of predicting protein
structure, in this paper we propose an efficient hybrid Taguchi-genetic algorithm that combines genetic
algorithm, Taguchi method, and particle swarm optimization (PSO). The GA has the capability of powerful
global exploration, while the Taguchi method can exploit the optimum offspring. In addition, we present
the PSO inspired by a mutation mechanism in a genetic algorithm. We demonstrate that our algorithm
can be applied successfully to the protein folding problem based on the hydrophobic-hydrophilic lattice
model. Simulation results indicate that our approach performs very well against existing evolutionary
algorithm.
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1. Introduction

The prediction of protein structure from its amino-acid se-
quence is one of the most prominent problems in computational
biology. A protein’s function depends mainly on its tertiary struc-
ture, which in turn depends on its primary structure. Mistakes in
the folding process create proteins with abnormal shapes, which
are the causes of diseases such as cystic fibrosis, Alzheimer’s, and
mad cow. If we could predict the tertiary structures of proteins
from their sequences, we would be able to treat these diseases bet-
ter. The knowledge of protein tertiary structures also has other
applications, such as in the structure-based drug design field (Bui
& Sundarraj, 2005).

Currently, protein structures are primarily determined by
techniques such as MRI (magnetic resonance imaging) and X-ray
crystallography, which are expensive in terms of equipment,
computation, and time. Additionally, these techniques require
isolation, purification, and crystallization of the target protein.
Computational approaches to protein structure prediction are
therefore very attractive. The difficulty in solving protein structure
prediction problems stems from two major sources: (1) finding
good measures for the quality of candidate structures, and (2)
given such measures, determining optimal or close-to-optimal
structures for a given amino-acid sequence (Krasnogor, Hart,
Smith, & Pelta, 1999).

Recently, many researchers (Krasnogor, Pelta, Lopez, Mocciola,
& de la Canal, 1998; Krasnogor et al., 1999; Patton, Punch, III, &
009 Published by Elsevier Ltd. All
Goodman, 1995; Pedersen & Moukt, 1997) have used evolution-
ary algorithms, such as the genetic algorithms (GA), for solving
the protein folding problem. Genetic algorithms are stochastic
search techniques based on the mechanism of natural selection,
which requires information to search effectively in a large or
poorly understood search space. The effectiveness of crossover
and mutation is weakened in the protein folding problem
(Krasnogor et al., 1998, 1999), since by increasing the compact
folded structure, the failure of the crossover operation increases
due to collisions. Further, in sequences of mutation, there will be
often invalid conformations due to collisions within compact
conformation. Therefore, some researchers (Bui & Sundarraj,
2005; Jiang, Cui, Shi, & Ma, 2003; König & Dandekar, 1999;
Takahashi, Kita, & Kobayashi, 1999) have proposed various hy-
brid methods to improve GA. The above-mentioned improved
GA methods were mainly aimed at the crossover and mutation
operations.

Recently, the Taguchi method is a robust design approach. It
uses many ideas from statistical experimental design for evaluat-
ing and implementing improvements in products, processes, and
equipment. The fundamental principle is to improve the quality
of a product by minimizing the effect of the causes of variation
without eliminating the causes. The Taguchi method is suitable
for a wide range of applications (Kaytakoğlu & Akyalçın, 2007;
Liu, Fung, & Wang, 2007; Wang & Huang, 2008), including the
following practices: quality engineering, experimental design,
business data analysis, management by total results, pattern
recognition, and so on. The Taguchi method is a series of
approaches that predicts and prevents troubles or problems that
might occur in the market after a product is sold and used by a
rights reserved.
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Fig. 1. An optimal conformation for the sequence ‘‘ðHPÞ2PHðHPÞ2ðPHÞ2HPðPHÞ2” in a
2D lattice model.
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customer under various environment and real-life conditions for
the duration of the product life.

In this paper, we focus on the 2D hydrophobic-polar (HP) lat-
tice model. An efficient hybrid Taguchi-genetic algorithm (HTGA)
is proposed for solving the protein folding problem in the 2D HP
model. The proposed HTGA is mainly aimed to improve the cross-
over and mutation operators and enhance exploitation capability.
In order to improve the crossover operation, we use the Taguchi
method to select the better genes. In the mutation operation,
we employ the merits of PSO to improve the mutation mecha-
nism. Lin, Liu, and Lee (2008) and Lin and Hong (2007) used
the particle swarm optimization to improve the mutation mech-
anism. Simulation results show that our method has a better per-
formance than those of existing methods in protein folding
problem.

The remainder of this paper is structured as follows: Section 2
gives the preliminaries and the formal definition of the protein
folding problem in the 2D HP lattice model. Section 3 describes
our approach in detail. The proposed hybrid Taguchi-genetic algo-
rithm combining the traditional genetic algorithm, the Taguchi
method, and particle swarm optimization is presented. The exper-
imental results obtained by our method and by other methods are
compared in Section 4. Finally, the conclusion is given in the last
section.
2. Preliminaries

In this section, we briefly present the 2D HP protein folding
problem and its free energy calculation.

2.1. The 2D HP protein folding problem

Lattice proteins are highly simplified computer models of pro-
teins which are used to investigate protein folding. Dill (1985) pro-
poses the hydrophobic-polar model. Because proteins are such
large molecules, containing hundreds or thousands of atoms, it is
not possible with current technology to simulate more than a
few microseconds of their behavior in complete atomic detail.
Hence, real proteins cannot be folded in a computer simulation.
Lattice proteins, however, are simplified into two ways: the amino
acids are modeled as single ‘‘beads” rather than by every atom, and
the beads are restricted to a rigid (usually cubic) lattice. This sim-
plification means they can fold to their energy minima in a time
quick enough to be simulated. Lattice proteins are made to resem-
ble real proteins by introducing an energy function (Takahashi
et al., 1999), a set of conditions which specify the energy of
interaction between neighboring beads, usually taken to be those
occupying adjacent lattice sites. The energy function mimics the
interactions, which include hydrophobic and hydrogen bonding
effects, between amino acids in real proteins. The beads are divided
into types, and the energy function specifies the interactions,
depending on the bead type, just as different types of amino acid
interact differently.

One of the most popular lattice models, the HP model, feature
just two bead types: H (hydrophobic or non-polar) and P (hydro-
philic or polar). An instance is shown in Fig. 1 for the 2D HP lat-
tice model (Guo, Feng, & Wang, 2007). The black squares denote
the hydrophobic amino acid and the white squares denote the
hydrophilic. The dotted line denotes the H–H contacts (free en-
ergy) in the conformation, which are assigned an energy value
of �1. The free energy is minimum value; the number of H–H
contact is the maximum. Fig. 1 shows a protein structure with
9 H–H contacts (energy = �9). Since the native state of a protein
generally corresponds to the lowest free energy state for the pro-
tein, the optimal conformation in the HP model is the one that
has the maximum number of H–H contacts which gives the low-
est energy value.

2.2. Calculating the free energy

For any sequence in any particular structure, the free energy can
be rapidly calculated from the free energy function. For the simple
HP model, this is simply an enumeration of all the contacts between
the H residues that are adjacent in the structure but not in the
chain. Most researchers consider a lattice protein sequence pro-
tein-like only if it possesses a single structure with an energetic
state lower than in any other structure. This is the energetic ground
state, or the native state. The relative positions of the beads in the
native state constitute the lattice protein’s tertiary structure. Lattice
proteins do not have genuine secondary structure, although some
researchers have claimed that they can be extrapolated to real pro-
tein structures, which do include secondary structure, by appealing
to the same law by which the phase diagrams of different sub-
stances can be scaled onto one another. By varying the free energy
function and the bead sequence of the chain (the primary struc-
ture), effects on the native state structure and the kinetics (rate)
of folding can be explored. This may provide insights into the fold-
ing of real proteins. In particular, lattice models have been used to
investigate the free energy landscapes of proteins (Guo et al., 2007),
i.e. the variation of their internal free energy as a function of confor-
mation. We present the minimum free energy function of the 2D HP
lattice model with calculation conditions as follows:

E� ¼
Pn

i¼1

Pn
j¼1f ðiÞSði; jÞ

h i
2

2
4

3
5 n ¼ length of the protein sequence

ð1Þ
s:t: Sði; jÞ ¼ f ðjÞ � kdj � dik ¼ 1 and ki� jk > 2

where f is a mapping function: f ! f0;1g. That is, f ðiÞ ¼ 0 repre-
sents the hydrophilic residue and f ðiÞ ¼ 1 represents the hydropho-
bic residue. d ¼ fd1; d2; . . . ;dj; . . . ;dng is a vector set, where dj

denotes a projection onto the Cartesian coordinate. If each residue
is connected to its sequence neighbor on an adjacent lattice site,
then Sði; jÞ ¼ 1. Otherwise Sði; jÞ – 1. Each lattice site is only occu-
pied by one amino acid residue, which we call a conformation valid.

3. Methods

In this section, we review the Taguchi method and particle
swarm optimization. An efficient hybrid Taguchi-genetic algorithm
is also presented.
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3.1. Review of the Taguchi method

The Taguchi method is a robust design approach developed by
Taguchi, Chowdhury, and Taguchi (2000) that uses many ideas
from statistical experimental design for evaluating and imple-
menting improvements in products, processes, and equipment.
The foundation of an experimental design is a method for effi-
ciently designing experiments and analyzing the results. It
searches for cause-and-effect relationships to improve quality by
minimizing the effect of the causes of variation without eliminat-
ing the causes (Ross, 1989; Roy, 1990; Taguchi et al., 2000; Wu &
Wu, 2000). Taguchi’s parameter design uses two major tools, the
orthogonal array (OA) and the signal-to-noise ratio (SNR). The
SNR measures quality, and orthogonal arrays are used to study
many design parameters simultaneously.

In order to explore the design space, factors are assigned an
orthogonal array. The weakness of a typical shotgun approach or
the one-factor-at-a-time method is that conclusions are drawn
from a fixed design configuration. An orthogonal array provides a
balanced set of experimentation runs such that the conclusions
are drawn in a balanced fashion. The general symbol for two-level
standard orthogonal arrays is Lnð2n�1Þ, where n ¼ 2k is number of
experiment runs; k denotes a positive integer which is greater than
one; the symbol 2 is the number of levels for each factor; and n� 1
denotes the number of columns in the orthogonal array.

Table 1 is an example of an orthogonal array, called the L8 array.
In this table, factors A, B, . . . ,G are assigned to columns 1, 2, . . . ,7,
respectively. It is used to design experiments involving up to seven
2 level factors. Each column contains four level 1 and four level 2
conditions for the factor assigned to the column. Two 2 level fac-
tors combine in four possible ways, such as (1,1), (1,2), (2,1),
and (2,2). Thus, all seven columns of an L (Latin) are orthogonal
to each other. The array forces all experimenters to design almost
identical experiments. Experimenters may select different designa-
tions for the columns but the eight trial runs will include all com-
binations independent of column definition. Thus, the OA assures
consistency of design by different experimenters.

The signal-to-noise ratio is a quality index that has been histor-
ically used in the communications industry to evaluate communi-
cations systems. In quality engineering, the concept of SNR has
been adapted by Genichi Taguchi to evaluate the quality of a prod-
uct or a manufacturing process. The SNR is an index of robustness
since it measures the quality of energy transformation that occurs
within a design. The quality of energy transformation is expressed
as the ratio of the level of performance of the desired function to
the variability of the desired function. A high ratio represents high
quality. There are several categories of SNR, depending on the type
of characteristic: lower is better (LB), nominal is best (NB), and
higher is better (HB) (Ross, 1989).

The SNR, which condenses multiple data points within a trial,
depends on the type of characteristic being evaluated. The equa-
tions for calculating SNR ðgÞ for LB and HB characteristics are:
Table 1
Orthogonal array L8 ð27Þ.

Experiment number Factors

A B C D E F G

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2
(i) Lower is better (LB) !

gLB ¼ �10 log

1
n

Xn

i¼1

y2
i ð2Þ

where n is the number of tests in an experiment; we have a
set of characteristics yi.
(ii) Higher is better (HB) !

gHB ¼ �10 log

1
n

Xn

i¼1

1
y2

i

ð3Þ

which is also measured in decibels.
An orthogonal array is used for optimization, i.e., to maximize
the signal-to-noise ratio. It is necessary to use an orthogonal array
and instead use the signal-to-noise ratio as the most important
evaluation criteria.

3.2. Review of particle swarm optimization

Particle swarm optimization was originally introduced by Ken-
nedy and Eberhart in 1995 to study social and cognitive behavior
(Eberhart & Kennedy, 1995a, 1995b). The idea originated in studies
on the synchronous flocking of birds and the schooling of fish. The
PSO has come to be widely used as a problem solving method in
engineering and computer science. This algorithm has several
highly desirable attributes, including a basic algorithm that is very
easy to understand and implement. It is similar in some ways to
evolutionary algorithms, but requires less computational book-
keeping and generally fewer lines of code.

In the PSO, the trajectory of each individual in the search space
is adjusted by dynamically altering the velocity of each particle,
according to its own flight experience and the flight experience
of the other particles in the search space. The position vector and
the velocity vector of the ith particle in the D-dimensional search
space can be represented by Xi ¼ ðxi1; xi2; xi3; . . . ; xidÞ and
Vi ¼ ðmi1; mi2; mi3; . . . ; midÞ, respectively. According to a user-defined
fitness function, suppose that the best position of each particle
(which corresponds to the best fitness value obtained by that par-
ticle at time) is Pi ¼ ðpi1; pi2; pi3; . . . ; pidÞ, and the fittest particle
found so far is Pg ¼ ðpg1; pg2; pg3; . . . ; pgdÞ. Then the new velocities
and the positions of the particles for the next fitness evaluation
are calculated using the following two equations:

mkþ1
id ¼ mk

id þ c1 � randð�Þ � ðPid � xk
idÞ þ c2 � randð�Þ � ðPgd � xk

idÞ ð4Þ
xkþ1

id ¼ xk
id þ vkþ1

id ð5Þ

where c1 and c2 are constants known as acceleration coefficients.
The randð�Þ is uniformly distributed random numbers in the range
[0,1].

3.3. The proposed hybrid Taguchi-genetic algorithm (HTGA)

Fig. 2 shows the flowchart of the proposed hybrid Taguchi-ge-
netic algorithm (HTGA). The HTGA method works with a popula-
tion of candidate solutions. At each generation, the n best
individuals of the population are selected based on their fitness
(the minimum free energy). The details are illustrated as follows:

3.3.1. Initialization step
If the input amino acid sequence is of length n, then each indi-

vidual in the population is a string of length n� 1 over the sym-
bols = fU; L;R;Dg, and that denotes a valid conformation in the
2D square lattice (Yap & Cosic, 1999). The symbols U; L;R and D
are used to denote the fold directions up, left, right and down in
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Fig. 2. The proposed hybrid Taguchi-genetic algorithm for protein folding problem.
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the encoding scheme, respectively. An initial population is gener-
ated randomly and initializes an n� 1 dimensional space within
a fixed range.

3.3.2. Reproduction step
Reproduction is a process in which individual strings are copied

according to their fitness value. In this study, we use the roulette-
wheel selection method (Cordon, Herrera, Hoffmann, & Magdalena,
2001)—a simulated roulette is spun—for this reproduction process.
The best performing individuals in the top half of the population
(Lin & Hsu, 2007) advances to the next generation. The other half
is generated to perform crossover and mutation operations on indi-
viduals in the top half of the parent generation.

3.3.3. Crossover step
Reproduction directs the search toward the best existing indi-

viduals but does not create any new individuals. In nature, an off-
spring has two parents and inherits genes from both. The main
operation working on the parents is the crossover operation, the
operation of which occurred for a selected pair with a crossover
rate that was set to 0.8 in this study. The first step is to select
the individuals from the population for the crossover. Tourna-
ment selection (Cordon et al., 2001) is used to select the top-half
of the best performing individuals (Lin & Hsu, 2007). The individ-
uals are crossed and separated using a two-point crossover
operation.

In Fig. 3, new individuals are created by exchanging the site’s
direction between i and j point (the selected sites of individual’s
parents). After this operation, the individuals with poor perfor-
mances are replaced by the newly produced offspring.
3.3.4. Taguchi step
After the crossover operation, we randomly choose two chro-

mosomes from each run to execute the orthogonal array experi-
ment. The details are illustrated as follows (see Fig. 4):

In this study, we use a two-level orthogonal array. There are Q
factors, where Q is equal to the length of the input amino acid se-
quence minus one. We select the appropriate orthogonal array of Q
factors with two levels. Let Lnð2n�1Þ represent n� 1 columns and n
individual experiments correspond to the n rows, where n ¼ 2k,
k = a positive integer, and Q 6 n� 1. If Q < n� 1, only Q columns
are used. We delete the last ðn� 1Þ � Q columns to get an orthog-
onal array with Q factors.

We modified the SNR ðgÞ of Eqs. (2) and (3) for the protein fold-
ing problem. Let gi ¼ ðyiÞ

2, where yi is the energy function evalua-
tion value of experiment i, where i ¼ 1;2; . . . ;n experiments. The
effects of the various factors can be defined as follows:

fl ¼ total sum of gi for factor f at level l ð6Þ

where i is the experiment number, f is the folding direction, and l is
the level number.

The orthogonal arrays of the Taguchi method are used to study
a large number of decision variables with a small number of exper-
iments. An orthogonal array is used for optimization, i.e., to maxi-
mize the signal-to-noise ratio. However, it is necessary to use an
orthogonal array and instead use the signal-to-noise ratio as the
most important evaluation criteria. The magnitudes of the differ-
ences are compared to each other to find the relatively large
effects.

We selected the optimum level by giving the highest value of fl

in the experiment. For example, if f1 > f2, the optimum level is level
1 for the factor. Otherwise, level 2 is the optimum level. The two
levels of seven factors listed in Table 2 were chosen based on the
SNR analysis above. The optimal level of each factor is decided
by the highest SNR value of either f1 or f2, where f ¼ A;B; . . . ;G.
The optimal level is level 1 for factor A because A1 > A2; the opti-
mal level is level 1 for factor B because B1 > B2, and so on. An
orthogonal array provides an orthogonal design of the experiment
matrix. When factors are assigned to the columns of an orthogonal



Table 2
Effect table for SNR on selection of optimum levels.

Experiment number ðiÞ Factors ðf Þ

A B C D E F G E� gi

1 1 1 1 1 1 1 1 �4 16
2 1 1 1 2 2 2 2 �2 4
3 1 2 2 1 1 2 2 �2 4
4 1 2 2 2 2 1 1 �3 9
5 2 1 2 1 2 1 2 �2 4
6 2 1 2 2 1 2 1 �4 16
7 2 2 1 1 2 2 1 �2 4
8 2 2 1 2 1 1 2 �2 4
f1 33 40 28 28 40 33 45
f2 28 21 33 33 21 28 16
Optimal level 1 1 2 2 1 1 1

U R U L L D L R

Mutation point

Chromosome 
before one mutation

Chromosome after 
one mutation

U R U U R D L R

The direction via PSO is generated

i j

Fig. 5. Mutation operation using PSO with ith–jth chromosomes.

Fig. 7. Rotation motion.

Table 3
The residue folds direction with local search.

Original direction Opposite direction CW direction CCW direction

Right ðRÞ L D U
Left ðLÞ R U D
Up ðUÞ D R L
Down ðDÞ U L R

Table 4
The 2D HP benchmarks.

Sequence Length Protein sequence Energy

1 20 ðHPÞ2PHðHPÞ2ðPHÞ2HPðPHÞ2 �9
2 24 H2P2ðHP2Þ6H2 �9
3 25 P2HP2ðH2P4Þ3H2 �8
4 36 PðP2H2Þ2P5H5ðH2P2Þ2P2HðHP2Þ2 �14
5 48 P2HðP2H2Þ2P5H10P6ðH2P2Þ2HP2H5 �23
6 50 H2ðPHÞ3PH4PHðP3HÞ2P4ðHP3Þ2HPH4ðPHÞ3PH2 �21
7 60 PðPH3Þ2H5P3H10PHP3H12P4H6PH2PHP �36
8 64 H12ðPHÞ2ððP2H2Þ2P2HÞ3ðPHÞ2H11 �42

12450 C.-J. Lin, M.-H. Hsieh / Expert Systems with Applications 36 (2009) 12446–12453
array, the experiment runs will be balanced. This property is very
powerful compared to a traditional shotgun approach or a one-fac-
tor-at-a-time approach. When an L8 is used, there will be 8 combi-
nations of factors or 8 experimental runs. In other words, all
directions of the protein folding pathway will be tried out for factor
collection. Finally, the population via Taguchi method is generated.
We have updated the bottom-half of the population.

3.3.5. Mutation step
When the mutation points are selected, the mutation of an indi-

vidual is as shown in Fig. 5. For the HP protein folding problem,
every amino-acid residue owns each folding direction that is un-
ique to the site. GA is incapable of efficient mutation operations
aimed at each residue. Therefore, we propose a mutation operation
based on particle swarm optimization.

Eq. (4) represents variations of the folding direction to the next
generation. We calculate the difference between the current parti-
cle and the local best particle. We also calculate the difference be-
tween the current particle and the global best particle. Eq. (5)
represents variations of the current position that updates the par-
ticles. Through the mutation step, only one best child can survive
to replace its parent and enter the next generation. This involves
PSO changing the local structure between i and j, where i and j
Fig. 6. Opposit
are two randomly determined sequence positions, such that
1 6 i 6 j 6 n (the length of protein sequence). Hence, we employ
the merits of PSO to improve mutation mechanism.

In order to avoid trapping in a local optimal solution and to en-
sure the searching capability of the near global optimal solution,
mutation in PSO plays an important role. It is a recently invented
high performance optimizer that possesses several highly desirable
attributes, including the fact that the basic algorithm is very easy
to understand and implement. It requires less computational
memory and fewer lines of code. Each particle has a velocity vector
m and a position vector x to represent a possible solution. Each par-
ticle has three choices in evolution: (1) Insists on itself. (2) Moves
towards the optimum at present. Each particle remembers its own
e motion.



Fig. 8. Results of the structure of 8 protein sequences.
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Table 6
Performance of HTGA on the benchmark sequence.

Number 1 2 3 4 5 6 7 8

Size 20 24 25 36 48 50 60 64
E� �9 �9 �8 �14 �23 �21 �36 �42
Mean �9 �9 �7.42 �13.8 �22.44 �20.52 �33.66 �38.56
SD 0 0 0.532 1.00 1.899 1.628 1.716 2.316

Table 5
Comparison of our approach with the genetic algorithm (GA), ant colony optimization (ACO), Monte Carlo (MC), and tabu search with genetic algorithm (GTS).

Sequence Length E� Our methods GA
(Unger & Moult, 1993)

ACO
(Shmygelska et al., 2002)

MC
(Liang & Wong, 2001)

GTS
(Jiang et al., 2003)

Taguchi + GA + PSO GA + PSO

1 20 �9 �9 �9 �9 �9 �8 �9
2 24 �9 �9 �9 �9 �9 �8 �9
3 25 �8 �8 �8 �8 �8 �7 �8
4 36 �14 �14 �14 �12 �14 �12 �14
5 48 �23 �23 �23 �22 �23 �18 �23
6 50 �21 �21 �21 �21 �21 �19 �21
7 60 �36 �36 �35 �34 �34 �31 �35
8 64 �42 �42 �38 �37 �32 �31 �39
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personal best position that it has found, called the local best. (3)
Moves towards the best the population has met. Each particle also
knows the best position found by any particle in the swarm, called
the global best.

3.3.6. Local search step
After mutation, a local search is the same as the crossover oper-

ation. New individuals are created by changing the site’s direction
between point i and point j. Two motions have produced a new
direction. The new folding direction is superior to the original
direction. One of the two motions is selected by competition. If
the new folding direction is not better than the original direction,
the original direction will not change.

A local search can perform an intensive search for a new and
better solution. This is similar to the mutation operation. The local
search is different from the mutation operation in terms of the
rules. A local search has system rules and effectively finds a local
solution.

3.3.7. Opposite motion
As shown in Fig. 6, the motion of a local structure is in the oppo-

site direction. We can change the local structure between two ran-
domly determined sequence positions. The second residue to the
fifth residue directions are changed from right, down, and right to
left, up, and left.

3.3.8. Rotation motion
The rotation motion is divided into rotation clockwise (CW) and

counterclockwise (CCW). As shown in Fig. 7, the second to the fifth
residue directions are changed from right, down, and right to down,
left, and down.

Therefore, Table 3 shows the relationship between the original
directions and the transformed directions. We choose the best
direction in a local search by three methods. The new folding direc-
tion is superior to the original direction. If the new folding direc-
tion is not better than the original direction, the original
direction will be not changed.

3.3.9. Updating the local best and the global best
In this step, we update the local best and the global best. If the

fitness value of a particle is higher than that of the local best, then
the local best will be replaced with the particle; and if the local
best is better than the current global best, than we replace the local
best with the global best in the swarm.

3.3.10. Termination condition
The algorithm is run for a maximum of 2000 iterations or until

minimum free energy is achieved in the sequence. The best mem-
ber of the population is then returned.
4. Simulation results

In this section, we compared our method with the traditional
genetic algorithm (Unger & Moult, 1993), the ant colony algorithm
(Shmygelska, Anguirre-Hernandez, & Hoos, 2002), Monte Carlo
(Liang & Wong, 2001), and the tabu search with the genetic algo-
rithm (Jiang et al., 2003). In Table 4, the 8 chosen HP instances
are standard benchmarks used to test the searching ability of the
algorithms. The free energy is the optimal or best-known energy
value. Hi; Pieð. . . Þi indicates i repetitions of the relative symbol or
subsequence. Sequences 1 through 8 were introduced in Jiang et
al. (2003). These sequences have been used as the benchmark for
the 2D HP model.

We give the structure obtained by our algorithm as follows.
Fifty independent runs of the algorithms were performed. For se-
quences 1 through 3, a population size of 100 was used. For se-
quences 4 through 6, a population size of 200 was used.
Sequences 7 and 8 used a population size of 300. For all sequences,
2000 iterations of our algorithm were run. The crossover rate and
mutation rate were set to 0.8 and 0.1, respectively. We also chose
c1 ¼ c2 ¼ 1 in Eq. (4). These sets of parameters were experimen-
tally determined. The structure of 8 protein sequences can be
clearly seen in Fig. 8a–h.

Table 5 shows a performance comparison of various existing
algorithms. GA was implemented in (Unger & Moult, 1993). For
all sequences, 300 iterations of GA were run with a population
size of 200. The state-of-art algorithm for the 2D HP problem is
an ant colony optimization (ACO) algorithm (Shmygelska et al.,
2002). The ACO was run with 10,000 iterations. The results of
Metropolis Monte Carlo are reported in Liang and Wong (2001).
Each run of MC consisted of 50,000,000 iterations. For sequence
1 through 3 and 6, the tabu search with genetic algorithm
(GTS) (Jiang et al., 2003) was run for 100 iterations with a
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population size of 400. For sequence 4, 100 iterations were run
with a population size of 300. For sequences 5, 7, and 8, 100 iter-
ations were run with a population size of 1000. GTS was executed
with fewer iterations than others, but the tabu search was time-
consuming.

In Table 5, we also tested the traditional GA combined with par-
ticle swarm optimization with this problem. Though the results are
worse than GTS, it was better than the traditional GA. The results
indicate that our approach performs very well against existing evo-
lutionary algorithms. Our approach has obvious advantages over
other evolutionary algorithm for long sequences. In particular,
we found the free energy for protein sequence 7 to be en-
ergy = �36, and, for sequence 8, energy = �42. The results are sum-
marized in Table 6 in terms of the best found free energy ðE�Þ,
mean, and standard deviation (SD). It is important to note that
the standard deviation keeps a small value when the length of a se-
quence increases.
5. Conclusion

This paper proposed an efficient hybrid Taguchi-genetic algo-
rithm for solving protein structure prediction problem. The pro-
posed hybrid algorithm combines the genetic algorithm, Taguchi
method, Particle Swarm Optimization, and a local search of the
protein folding pathway. The Taguchi method was used obtain
the optimum offspring, while the particle swarm optimization
was used to improve mutation operation of the genetic algorithm.
In mutation operation based on particle swarm optimization, the
cognitive component encourages the particles to move toward
their own best positions. We demonstrated that our algorithm
can be applied successfully to the protein folding problem based
on the 2D hydrophobic–hydrophilic lattice model. Simulation re-
sults indicate that our approach performs very well against exist-
ing evolutionary algorithms. In future work, we intend to tackle
the prediction of 3D structures for protein folding using the pro-
posed algorithm and to test other local search strategies to en-
hance the predictive ability.
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