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Preface 

 

This book and its companion volumes, LNCS vols. 5551, 5552 and 5553, constitute 
the proceedings of the 6th International Symposium on Neural Networks (ISNN 
2009), held during May 26–29, 2009 in Wuhan, China. Over the past few years, ISNN 
has matured into a well-established premier international symposium on neural net-
works and related fields, with a successful sequence of ISNN symposia held in Dalian 
(2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), and Beijing (2008). 
Following the tradition of the ISNN series, ISNN 2009 provided a high-level interna-
tional forum for scientists, engineers, and educators to present state-of-the-art research 
in neural networks and related fields, and also to discuss with international colleagues 
on the major opportunities and challenges for future neural network research. 

Over the past decades, the neural network community has witnessed tremendous ef-
forts and developments in all aspects of neural network research, including theoretical 
foundations, architectures and network organizations, modeling and simulation, em-
pirical study, as well as a wide range of applications across different domains. The 
recent developments of science and technology, including neuroscience, computer 
science, cognitive science, nano-technologies and engineering design, among others, 
have provided significant new understandings and technological solutions to move the 
neural network research toward the development of complex, large-scale, and net-
worked brain-like intelligent systems. This long-term goal can only be achieved with 
the continuous efforts of the community to seriously investigate different issues of the 
neural networks and related fields. To this end, ISNN 2009 provided a great platform 
for the community to share their latest research results, discuss critical future research 
directions, stimulate innovative research ideas, as well as facilitate international mul-
tidisciplinary collaborations.  

ISNN 2009 received 1235 submissions from about 2459 authors in 29 countries 
and regions (Australia, Brazil, Canada, China, Democratic People's Republic of Ko-
rea, Finland, Germany, Hong Kong, Hungary, India, Islamic Republic of Iran, Japan, 
Jordan, Macao, Malaysia, Mexico, Norway, Qatar, Republic of Korea, Singapore, 
Spain, Taiwan, Thailand, Tunisia, UK, USA, Venezuela, Vietnam, and Yemen) across 
six continents (Asia, Europe, North America, South America, Africa, and Oceania). 
Based on the rigorous peer reviews by the Program Committee members and the re-
viewers, 409 high-quality papers were selected for publication in the LNCS  
proceedings, with an acceptance rate of 33.1%. These papers cover major topics of the 
theoretical research, empirical study, and applications of neural networks. In addition 
to the contributed papers, the ISNN 2009 technical program included five plenary 
speeches by Anthony Kuh (University of Hawaii at Manoa, USA), Jose C. Principe 
(University of Florida, USA), Leszek Rutkowski (Technical University of Czesto-
chowa, Poland), Fei-Yue Wang (Institute of Automation, Chinese Academy of Sci-
ences, China) and Cheng Wu (Tsinghua University, China). Furthermore, ISNN 2009 
also featured five special sessions focusing on emerging topics in neural network 
research.  
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Optimal Inversion of Open Boundary Conditions Using 
BPNN Data-Driven Model Combined with Tidal Model 

Mingchang Li1, Guangyu Zhang1, Bin Zhou1, Shuxiu Liang2, 
and Zhaochen Sun2 

1 Laboratory of Environmental Protection in Water Transport Engineering, Tianjin Research 
Institute of Water Transport Engineering Tianjin 300456, China 

2 State Key Laboratory of Coastal and Offshore Engineering, DUT, Dalian 116024, China 
Lmcsq1997@163.com 

Abstract. One of major difficulties with numerical tidal models is accurate in-
version of open boundary conditions. A data-driven model based on artificial 
neural network is developed to retrieve open boundary values. All training data 
are calculated by numerical tidal model, so the tidal physics are not disturbed. 
The basic idea is to find out the relationship between open boundary values and 
the values of interior tidal stations. Case testes are carried out with a real ocean 
bay named Liaodong Bay, part of the Bohai Sea, China. Four major tidal con-
stituents, M2, S2, O1and K1, are considered in coupled inversion method. Case 
studies show that the coupled inversion for open boundary conditions can make 
a more satisfactory inversion for a practical problem.   

Keywords: Data-driven model, Open boundary conditions, Optimal inversion, 
Tidal current. 

1   Introduction 

Ocean is the source of material and energy for production and consumption. Being 
exploited widely, water quality and ecological system of ocean has been affected 
tremendously, especially of estuary and nears-shore region along big cities. So the sea 
area use demonstration, marine environmental impact assessment and total amount 
control of pollutant is required for marine environmental protection. However, accu-
rate numerical modeling by tidal and ecosystem model is the fundamental step of 
these works. 

Numerical tidal models have been applied widely to study tidal hydrodynamics for 
recent decades (Abbott, 1997; Davies, 1997). In order to make the numerical results 
come close to real ocean conditions, model parameters, initial and boundary condi-
tions have to be estimated. The process is called model calibration. One of the most 
significant difficulties is the inversion of open boundary conditions, especially for 
costal waters. Usually, the initial boundary values can be estimated based on the data 
of tidal stations nearby, or provided by a large-scale model (Egbert and Bennet et al, 
1994). Try and error (Gerristen, 1995) is a widely used technique during model cali-
bration. However, model calibration process might cost much time. Data assimilation 
methods have been employed for model calibration with the abundance of satellite 
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data. Adjoint technique is the most widely used one among them(Bennett,1982; 
Hall,1982; Cacuci,1985; Panchang,1989; Larder,1993; Seiler,1993; Zhu,1997; Voge-
ler,1999; Zhang,1999; Han,2000,2001; Lu,2002; Heemink,2002; Zhang,2003; Ay-
oub,2001,2006; Ferron,2003; Gebbie,2004; Ma and Jing,2005). Optimal inversion for 
parameters, initial and boundary conditions can be obtained by this technique. How-
ever, both tidal model equations and adjoint equations need to be calculated. Adjoint 
equations are as complicated as tidal model equations, so much time is needed. For 
practical engineering, it is lack in tidal data. When adjoint technique is chosen, much 
uncertainty might exist in the calibrated model. The application of data-assimilation 
method is limited.    

This paper aims to develop a more practical technique for optimal inversion of 
open boundary conditions. In the technique, only open boundary is adjusted, whereas 
initial values and model parameters are assumed to be correct. Optimal boundary 
conditions are estimated by data-driven model which is based on artificial neural 
network. POM (Blumberg and Mellor 1987) is employed to simulate the tidal hydro-
dynamics for interested area. 

The structure of the paper is as follows. In section 2, the basic idea and theory of 
data-driven, Back-Propagation Neural Network (BPNN) and tidal numerical model 
are introduced briefly. The detailed steps about how to inverse open boundary are 
described in section 3. In section 4, the method in section 3 is verified with Liaodong 
bay. Four major tidal constituents, M2, S2, O1and K1, are considered. In section 5, 
conclusions are made. 

2   Numerical Model 

2.1   Data-Driven Model 

The so-called data-driven models, is different from knowledge-driven models (physi-
cally-based modeling). These kinds of models are based on a limited knowledge of 
the modelling process and rely purely on the data describing input and output charac-
teristics. They make abstractions and generalizations of the process, so play often a 
complementary role to physically-based models. Data-driven model can use results 
from artificial neural networks (ANN), expert systems, fuzzy logic concepts, rule-
induction and machine learning systems (Solomatine, 2002). The fundamental expres-
sion is as follows:   

1 1( , , , ) ( , , , )i m i ny y y F x x x=L L L L                                     (1)  

Where 1, , ,i nx x xL L  and 1( , , , )i my y yL L  are the input and output variables respec-

tively； F is the objective function which need to be dug by model. In present paper, 
the results of ANN are used for the fitting of F . 

2.2   Back-Propagation Neural Network 

The BPNN proposed by Rumelhart et al. (1986) is the most commonly used among 
the entire artificial neural network models. The BPN uses the gradient steepest de-
scent method to determine the weight of connective neurons. The key point is  
the error back-propagation technique. In the learning process of the BPN, the  
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interconnection weights are adjusted from back layers to front layers to minimize the 
output error. The merit of the BPN is that it can approach any nonlinear continuous 
function after being trained (Hormik, 1991). The detailed information can be referred 
in Li and Liang et al (2007). There are only two differences in present study. One is 
the leaning rate and it is set to be 0.05. The other one is the introduction of appended 
momentum and its value is 0.5. 

2.3   Tidal Physical Numerical Model 

Tidal physical model is fundamental since it tries to explain the underlying physical 
processes. There are many tidal hydrodynamic models which can retrieve real ocean 
conditions with great precision. POM developed by Blumberg and Mellor (1987) is 
one of them. POM has been used widely not only for ocean circulation modeling but 
for costal waters studies. There are several modes can be tuned in the model and baro-
tropic 2-D model is chosen in the paper. 

3   Optimal Inversion Method 

Tens or even hundreds integral computation has to be repeated in the process of trial 
and error for the inversion of open boundary conditions. The results, however, are 
only approximate resolution. In present paper, a new technique is developed which 
combines data-driven model with tidal physical model automatically. In the tech-
nique, tidal physical model repeats a series of designed computations. Then, a data set 
which contain the corresponding relationship between open boundary values 
[ 1, , ,i nx x xL L  in equation (1)] and the values of interior tidal /current stations 

[ 1( , , , )i my y yL L in equation (1)] are stored. The task of data-driven model is to find 

out the relationship [ F in equation (1)] between 1( , , , )i nx x xL L  and 

1( , , , )i my y yL L . After measurement data are transported into the model, optimal 

boundary values will be inversed. The detailed technique is as follows: 
Step 1: Choice of control variables  
There are two kinds of open boundary for barotropic tidal model, water level or 

flux. Water level is usually used since it is easier and more accurate to measure. Real-
istic water level can be decomposed into the sum of tidal constitutes. Each of them 
has two constants- amplitude and phase. Realistic water level might involve more 
than hundreds of tidal constituents. They act each other, especially in coastal shallow 
waters. If all of them are included, the computation cost is excessive and uncertainty 
increases (Friedrichs, 2007). So major tidal constituents have to be analyzed, which 
aim to select control variables. 

Step 2: Cases computation by physical tidal model   
In tidal numerical models, the governing equations have to discretized into computation 

domain. Along one open boundary line, values of variables are interpolated linearly by 
two or more control nodes. In present paper, initial guess values for all the control nodes 
are assumed and their corresponding ranges are set. If the number of control nodes is m, 

and n values are taken for one control variable, there are as many as 1 m
n ii m

C n
=
⎡ ⎤∏ =⎣ ⎦    
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designed cases. All the designed cases are computed by tidal model one by one. The re-
sults of tidal elevation and current are stored and output for data-driven model.  

Step 3: open boundary inversion by data-driven model  
Harmonic constants for interior stations are analyzed using the results of designed 

cases.  
Input the harmonic constants of interior stations and their corresponding boundary 

values into data-driven model. After training, the relationships of interior stations and 
open boundary are generalized. 

Input the harmonic constants of interior stations analyzed from measurement data 
into the above relationship and the optimal solution are solved. 

Step 4: verification of optimal solution  
Input the optimal solution into the physical numerical model and repeat the compu-

tation. The relative error between measurement and results of numerical computation 
are calculated.  
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Optimal Inversion Module with Data-Driven Model  
Note: OROBC: Optimal Resolution of Open Boundary Conditions 

Fig. 1. Diagram of optimal inversion of Boundary Conditions Using Data-driven Model Com-
bined with Tidal Model 

In figure 1, the process of open boundary inversion is described. 1-8 is the  
sequence of it. In the whole process, there are two modules—hydrodynamic and op-
timal inversion. The computation of designed cases and the final verification are fin-
ished by hydrodynamic module. Optimal inversion module is responsible for the 
analysis of hydrodynamic results and generalization of relationship between open 
boundary and interior stations. A and B is the connection of the two modules.  

4   Case Studies 

Case testes are carried out with a real ocean bay named Liaodong Bay, north part of 
Bohai Sea, China. The total area is about 18,300 km2. It is very shallow and its aver-
aged water depth is less than 20m. The sea bottom is very flat and its mean slope is  
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The   Bohai   Sea  

Liaodong   Bay 

 

Fig. 2. Computation domain and measurement stations in the Liaodong bay 

1/2000-1/2500. The tide hydrodynamic is controlled by the tidal waves of the Bohai 
Sea and Yellow Sea, so the tidal current is complicated. Figure 2 shows the location 
of computated domain and measurement points. There is only one open boundary line 
controlled by Qinghuangdao and Changxingdao. Measurement data of tidal elevation 
from Huludao and tidal current from 69# are used. 

4.1   Choices of Control Variables 

In the interested ocean bay, the four major tidal constituents can account for more 
than 90% of total tidal elevation. However, amplitude of shallow water constituents 
may be as large as one of them. Two cases are designed to test the effects of shallow 
water constituents. In case 1, only the four major tidal constituents, M2, S2, O1and K1, 
are considered. In case 2, F4 and F6 are also included.  

In figure 3, the time series of tidal elevation for Huludao by case1 and case 2 are com-
pared. The same comparisons are made for 69# in fig. 4. Correlation coefficient is 0.9999 
and 0.9995 and the absolute error is only 0.02m and 0.02cm/s respectively. Therefore, 
the effects of F4 and F6 can be ignored and the M2, S2, O1and K1 are chosen as control 
variables. Each control variable includes two sub-variables—phase and amplitude.  
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Fig. 3. Comparison of tidal elevation for Huludao 
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Fig. 4. Comparison of tidal current for 69#  

Table 1. Values for amplitude (m) of control nodes along open boundary 

Tidal 
constituents 

Qinghuang
dao 

Changxing 
dao 

Tidal 
constituents 

Qinghuang
dao 

Changxing 
dao 

0.08 0.25 0.06 0.1 
0.12 0.39 0.09 0.15 
0.16 0.52 0.12 0.2 

M2 

0.25 0.77 

S2 

0.18 0.3 
0.21 0.17 0.24 0.13 
0.32 0.26 0.36 0.19 
0.43 0.35 0.48 0.26 

K1 

0.64 0.53 

O1 

0.72 0.4 

Table 2. Values for phase (º)of control nodes along open boundary  

Tidal  
constituents 

Qinghuang
dao 

Changxing 
dao 

Tidal  
constituents 

Qinghuang
dao 

Changxing 
dao 

-140 50 -60 100 
-155 65 -75 115 M2 
-170 80 

S2 
-89 130 

120 30 10 55 
135 45 25 70 K1 
150 60 

O1 
40 85 

 
An interesting phenomenon is founded by analyzing the result of designed cases, 

that is the tidal amplitude is not affected by the change of tidal phase in its assumed 
range. Therefore, the amplitude and phase for each control variables are inversed 
independently. When amplitude is inversed, its phase is set to be initial guess value 
and vice verse. When this rule is applied, less time is consumed. 

In table 1 and table 2, the values of amplitude and phase of control variables are 
listed. For each control variable, four values are taken in its range for amplitude and 
three values for phase. The total designed cases are 16 and 9 for amplitude and phase. 
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4.2   Coupled Inversion and Its Results 

The so called separated inversion is to inverse tidal constituents one by one. For 
example, when M2 is to be inversed, only M2 is control variables and tidal elevation 
along open boundary is calculated based on harmonic constant of M2 only.  

Different from Separated inversion, the four major constituents are input as con-
trol variables simultaneously in coupled inversion. When to inverse amplitude, all 
the values for three control variables are sequenced from big to small. When M2 is 
set to be 0.12, S2 is set to be 0.09, O1 is set to be 0.36 and K1 is set to be 0.32 for 
Qinghuangdao respectively. Therefore, when M2 is set to be 0.25, S2, O1, K1 should 
be 0.1, 0.13 and 0.17 respectively for Changxingdao. The same rule works on other 
combination. According to this rule, there are 16 designed cases for amplitude  
inversion.  

Table 3 shows the results of the coupled inversion for M2, S2, O1 and K1 by optimal 
inversion method. 

Table 3. Results of coupled estimation 

Tidal constituents Open boundary 
nodes 

Items 
M2 S2 K1 O1 

Amplitude (m) 0.1507 0.1000 0.4184 0.4441 Qinghuangdao 
Phase (º) -155.20 -74.65 135.45 27.17 

Amplitude (m) 0.4247 0.1948 0.3449 0.2428 
Changxingdao 

Phase (º) 65.54 112.67 45.16 70.19 

4.3   Verification of Optimal Solution 

Table 3 is optimal open boundary values inversed by coupled inversion. Input them to 
tidal model and repeat computation to verify the accuracy of the optimal solution. The 
results are shown in table 4. The maximal error for amplitude is -0.04m from M2 and 
for phase is 4.76° from O1, both in 69#. The error indicates coupled inversion can 
inverse realistic open boundary values in better accuracy.  

Table 4. Comparison of amplitudes (m) between measurement and simulation for interior 
stations  

Tidal constituents Interior  
stations 

Items 
M2 S2 K1 O1 

Measurement 0.9197 0.2579 0.3470 0.2707 
Simulation 0.8921 0.2923 0.3244 0.2523 Huludao 

Error 0.0276 -0.0344 0.0226 0.0184 
Measurement 0.510 0.150 0.090 0.068 

Simulation 0.550 0.162 0.081 0.061 69# 
Error -0.040 -0.012 0.009 0.007 
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Table 5. Comparison of phases (º) between measurement and simulation for interior stations 

Tidal constituents Interior 
stations 

Items 
M2 S2 K1 O1 

Measurement 116.88 170.88 78.54 58.34 

Simulation 118.40 172.40 78.80 59.80 Huludao 

Error -1.52 -1.52 -0.26 -1.46 

Measurement 6.4 52.1 -84.11 -51.44 

Simulation 7.8 54.9 -83.5 -56.2 69# 

Error -1.4 -2.8 -0.61 4.76 

5   Conclusion 

In this paper, a new method is developed to inverse open boundary values. In the 
method, data–driven model and physical tidal model are coupled automatically. 
Physical numerical model repeat a number of computation for designed cases, the 
results of tidal elevation are stored and output for data-driven model. Data-driven 
model generalizes the relationship between open boundary and interior stations. After 
measurement data is imported, optimal solution are obtained. 

In realistic case study, measurement data of tidal elevation are used to constrain the 
model better in a limited data. The results show the coupled inversion is suitable for 
realistic open boundary inversion.  

Compared with adjoint method, present method has two superiorities. One is sim-
plicity. There is no need to deduce and solve complicated adjoint equations. Data-
driven model based on ANN is easy to be developed. The other one is its flexibility. 
In adjoint method, different adjoint equations are needed to be deduced according to 
different numerical models. If the basic equations are changed, e.g., different closure 
models, the adjoint equations need to be altered accordingly. In present method, the 
data-driven model can be kept unchanged when different physical tidal models are 
used. Adjoint technique has to repeat computation for both tide equations and adjoint 
equations. Even in good initial guess, much time is consumed compared with present 
method. 
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Abstract. A special kind of recurrent neural networks (RNN) with im-
plicit dynamics has recently been proposed by Zhang et al, which could
be generalized to solve online various time-varying problems. In com-
parison with conventional gradient neural networks (GNN), such RNN
(or termed specifically as Zhang neural networks, ZNN) models are ele-
gantly designed by defining matrix-valued indefinite error functions. In
this paper, we generalize and investigate the ZNN and GNN models for
online solution of time-varying matrix square roots. In addition, soft-
ware modeling techniques are investigated to model and simulate both
neural-network systems. Computer-modeling results verify that superior
convergence and efficacy could be achieved by such ZNN models in this
time-varying problem solving, as compared to the GNN models.

Keywords: Time-varying matrix square roots, Recurrent neural net-
works, Zhang neural networks, Gradient neural networks.

1 Introduction

To our knowledge, the conventional gradient or gradient-based neural networks
(GNN) could be viewed as a useful and important method for time-invariant
problems solving [1,2]. However, many time-varying problems intrinsically ex-
ist in mathematics, science and engineering areas [2,3,4,5,6], such as the time-
varying matrix square roots (TVMSR) problem depicted as below:

X2(t) − A(t) = 0, t ∈ [0, +∞), (1)

where, being a smoothly time-varying positive-definite matrix, A(t) ∈ Rn×n and
its time derivative Ȧ(t) are both assumed known numerically (or at least mea-
surable accurately). In addition, let X(t) denote the time-varying square root of
A(t), which is to be solved for. In this paper, we investigate the TVMSR problem
to find matrix X(t) ∈ Rn×n satisfying the time-varying nonlinear matrix equa-
tion X2(t) = A(t) for any t � 0. For such a time-varying equation, GNN models

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 11–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and methods may not work well, since they could only approximately track the
theoretical solution A1/2(t) with relatively large residual errors [4,5,6]. In con-
trast, for such time-varying problems, a special kind of RNN models has recently
been proposed by Zhang et al [2,3,4,5,6] (formally, since March 2001) for their
real-time solution. In this paper, to solve the TVMSR problem, a Zhang neural
network (ZNN) model is generalized and designed by using a matrix-valued in-
definite error-function, instead of using scalar-valued norm-based lower-bounded
energy functions which are usually associated with GNN models and methods.

The remainder of this paper is organized as follows. In Section 2, we present
and compare the ZNN and GNN models/methods for online solution of time-
varying matrix square roots. In Section 3, simple but effective software-modeling
techniques are investigated for such RNN models. Illustrative verification results
are presented in Section 4. Finally, we concludes this paper with Section 5.

2 Neural-Network Solvers

In the ensuing subsections, the ZNN and GNN models for solving the time-
varying matrix square roots problem are developed comparatively.

2.1 ZNN Model

Firstly, to solve time-vary matrix square root A1/2(t) by Zhang et al’s neural-
dynamic method [2,3,4,5,6], we can define the following matrix-valued error func-
tion:

E(t) = X2(t) − A(t) ∈ Rn×n,

where, if the error function E(t) equals zero, X(t) achieves the time-varying
theoretical solution A1/2(t) of the time-varying matrix equation depicted in (1).

Secondly, in order to make every entry eij(t) ∈ R (i, j = 1, 2, · · · , n) of E(t) ∈
Rn×n converge to zero, a general form of the time derivative of E(t), denoted
by Ė(t), can be chosen as (i.e., the ZNN design formula [2,3,4,5,6]):

dE(t)
dt

= −ΓF(E(t)
)
, (2)

where design parameter Γ ∈ Rn×n is a positive-definite matrix used to scale the
convergence rate of the neural network, and for simplicity, we can use γ > 0 ∈ R
in place of Γ . In addition, the activation-function array F(·) : Rn×n → Rn×n is
a matrix-valued entry-to-entry mapping, in which each scalar-valued processing-
unit f(·) could be a monotonically-increasing odd activation function. In this
paper, two types of f(·) are investigated as examples for the RNN construction:

1)linear activation function f(eij) = eij ; and,
2)power-sigmoid activation function

f(eij) =

{
ep

ij , if |eij | � 1
1+exp(−ξ)
1−exp(−ξ) · 1−exp(−ξeij)

1+exp(−ξeij)
, otherwise

(3)

with suitable design parameters ξ � 2 and p � 3.
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Thirdly, expanding ZNN design formula (2) leads to the following implicit
dynamic equation of ZNN model for online matrix square roots finding [in other
words, it solves the nonlinear time-varying equation (1)]:

X(t)Ẋ(t) + Ẋ(t)X(t) = −γF(X2(t) − A(t)
)

+ Ȧ(t), (4)

where X(t), starting from an initial condition X(0) ∈ Rn×n, is the activa-
tion state matrix corresponding to theoretical time-varying matrix square root
X∗(t) := A1/2(t) of A(t).

In order to build up the MATLAB Simulink verification model [7] of the above
ZNN dynamic equation (4), we may need to transform it into the following
explicit-dynamic equation by simply adding Ẋ(t) on both sides (i.e., via our
so-called derivative-feedback or velocity-feedback technique [5,6]):

Ẋ(t) = Ẋ(t)
(
I − X(t)

)− X(t)Ẋ(t) − γF(X2(t) − A(t)
)

+ Ȧ(t). (5)

Moreover, for ZNN (4) solving for the time-varying matrix square root of A(t),
the following preliminaries [8,9,10] and proposition [4,5,6,9] can be given.

Square-root existence condition. If smoothly time-varying matrix A(t) ∈
Rn×n is positive-definite (in general sense [10]) at any time instant t ∈ [0, +∞),
then there exists a time-varying matrix square root X(t) ∈ Rn×n for matrix A(t).

Proposition. Consider a smoothly time-varying matrix A(t) ∈ Rn×n in nonlin-
ear equation (1), which satisfies the square-root existence condition. If a monoton-
ically-increasing odd activation-function-array F(·) is used, then

– state-matrix X(t) ∈ Rn×n of ZNN (4), starting from randomly-generated
positive-definite diagonal initial-state-matrix X(0), could converge to theo-
retical positive-definite time-varying matrix square root X∗(t) of A(t); and,

– state-matrix X(t) ∈ Rn×n of ZNN (4), starting from randomly-generated
negative-definite diagonal initial-state-matrix X(0) ∈ Rn×n, could converge
to theoretical negative-definite time-varying matrix square root X∗(t) of A(t).

In addition, if a linear-activation-function array F(·) is used, exponential conver-
gence with rate γ could be achieved for ZNN (4). As compared to the linear-array
situation, superior (and/or much superior) convergence can be achieved for ZNN
(4) by using an array F(·) made of power-sigmoid activation functions (3).

2.2 GNN Model and Comparisons

For the purpose of comparison, we can design a GNN model for constant matrix
square roots solving and then apply it to the solution of the time-varying problem
(by assuming a so-called short-time immobility/invariableness). In view of [1],
the following linear GNN model can be obtained for handling the static form
of equation (1), which is designed based on the scalar-valued norm-based lower-
bounded energy function ‖X2(t) − A‖2

F /2:

Ẋ(t) = −γXT (t)
(
X2(t) − A

)− γ
(
X2(t) − A

)
XT (t). (6)
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In addition, by using the nonlinear-activation technique [1,2,4,6,11], we could
have the following generalized nonlinear GNN model of (6):

Ẋ(t) = −γXT (t)F(X2(t) − A
)− γF(X2(t) − A

)
XT (t).

It is also worth mentioning that, just like almost all numerical algorithms and
neural-dynamic computational schemes, this conventional GNN method is de-
signed intrinsically for static problems solving [e.g., the square roots finding with
constant matrix A ∈ Rn×n in (1)] and could only have exact convergence results
for the situation of static problems solving.

Moreover, before ending this section, we would like to present the following
important remarks about the comparison between ZNN (4) and GNN (6).

1) ZNN model (4) is designed based on the elimination of every entry of
the matrix-valued indefinite error function E(t) = X2(t) − A(t) (which could
theoretically be positive, negative, bounded, or even unbounded). In contrast,
GNN model (6) is designed based on the elimination of the scalar-valued norm-
based energy function ‖X2(t) − A‖2

F /2 which could only be positive or at least
lower-bounded.

2) ZNN model (4) is depicted in an implicit dynamics, i.e., Ẋ(t)X(t) +
X(t)Ẋ(t) = · · · , which might coincide well with systems in nature and in prac-
tice (e.g., in analogue electronic circuits and mechanical systems [3] owing to
Kirchhoff’s and Newton’s laws, respectively). In contrast, GNN model (6) is
depicted in an explicit dynamics, i.e., Ẋ(t) = · · · , which is usually associated
with conventional Hopfield-type and/or gradient-based artificial-neural-network
models. Note that explicit dynamics can be viewed as a special case of implicit
dynamics (i.e., with the mass matrix being an identity matrix), and that implicit
dynamics can be transformed to explicit dynamics readily [e.g., via (5)].

3) ZNN model (4) could systematically and methodologically exploit the time-
derivative information of problem-matrix Ȧ(t) during its real-time solving pro-
cess. ZNN model (4) could thus exponentially and superiorly converge to the
exact time-varying theoretical solution of (1). In contrast, GNN model (6) has
not exploited such important information, thus less effective on solving the time-
varying problem. More specifically, when applied to the time-varying problem
solving, GNN model (6) could only generate approximate solutions to (1) with
much larger steady-state computational errors.

4) In essence, by making good use of the time-derivative information [e.g.,
Ȧ(t) in (4)], the ZNN model and method actually belong to a prediction ap-
proach, which could be more effective on the system convergence to a “moving”
theoretical solution. On the other hand, GNN model (6) and its design method
belong to the conventional tracking approach, which follows from the change of
the problem in a posterior (or to say, after-the-fact) passive manner, and thus
theoretically can not catch the theoretical solution on the move.

5) Moreover, we could find that the connection from Newton iteration to ZNN
models [11]. That is, Newton iteration for solving static problems appears to be
a special case of the discrete-time ZNN models (by considering the use of linear
activation functions as well as setting their step-size to be 1). In addition, the
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derivation of ZNN models [such as (4)] might only need bachelors’ mathematical
knowledge if we look at the scalar case of ZNN design formula (2). In contrast,
the derivation of GNN models [such as (6)] appears to require much deeper
mathematical knowledge of postgraduates’ or even PhD’s level.

3 Software-Modeling Techniques

While Sections 1 and 2 present ZNN (4) and GNN (6) together with their theo-
retical analysis results, the following modeling techniques [5,6,7] are investigated
in this section based on the MATLAB Simulink [7] environment.

3.1 Blocks Involved

There is a comprehensive block library in Simulink, which includes various kinds
of blocks (e.g., sinks, sources, linear/nonlinear components, and connectors). The
following blocks are used to construct the models of ZNN (4) and GNN (6).

1) The Gain block could be used to scale the neural-network convergence rate
(e.g., as the scaling parameter γ).

2) The Product block provides two types of multiplication, either element-wise
or matrix-wise. In this work, we use matrix-wise product by setting the option
“Multiplication” to be “Matrix(*)”.

3) The Constant block generates a constant scalar or constant matrix as spec-
ified by its parameter “Constant value”. For example, a 3-dimensional identity
matrix is generated by setting “Constant value” to be “[1 0 0; 0 1 0; 0 0 1]”.

4) The Subsystem block is used to construct the sigmoid or power-sigmoid
activation-function array, making the whole system simpler and more readable.

powersigmoid

In1 Out1

norm

MATLAB
Function

To Workspace

simout

[3x3]

Manual Switch

Integrator

1
s

1

Derivative

du/dt

Clock

MATLAB
Function

Matrix
Multiply

Matrix
Multiply

Matrix
Multiply

Matrix I

Ȧ(t)
A(t)

X(t)

X2(t) − A(t)

Ẋ(t)

X(t)Ẋ(t)

I − X(t)
Ẋ(t)

(
I − X(t)

)

‖E(t)‖ γ

Fig. 1. Overall ZNN Simulink model which solves for time-varying matrix square roots
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transpose

uT

norm

MATLAB
Function

To Workspace

simout

Integrator

1
s

1

Clock

MATLAB
Function

Matrix
Multiply

Matrix
Multiply

Matrix
Multiply

A(t)

X(t)

XT (t)

X2(t) − A(t)

Ẋ(t) γXT (t)F(X2(t) − A(t)
)

γF(X2(t) − A(t)
)
XT (t)

‖E(t)‖

γ

Fig. 2. Overall GNN Simulink model applied to time-varying square roots solving

5) The MATLAB Fcn block can be used to generate matrix A(t) with the
Clock block’s output as its input or can be used to compute the matrix norm.

6) The Math Function block can perform various common mathematical op-
erations, and, in our context, generates the transpose of a matrix and so on.

7) The To Workspace block, with its option “Save format” set to be “Array”,
is used to save the modeling results and data to the workspace.

8) The Integrator block makes continuous-time integration on the input signals
over a period of time. In this work, we set its “Initial condition” as “diag(2 ∗
rand(3, 1))” in order to generate a diagonal positive-definite initial state matrix
X(0) with its diagonal elements randomly distributed in [0,2].

3.2 Generating Activation-Function Arrays

The modeling investigated in this paper includes two types of activation-function
arrays mentioned in Section 2. For the linear-activation-function array, as the
array output is the same as its input, we can simply use a connecting line or use
the purelin block under the catalog of “Neural Network Blockset” to represent
it. However, for the power-sigmoid-activation-function array, as it is composed of
power and sigmoid activation functions, we can construct the two functions (or
function-arrays) as the underpinning subsystems. On one hand, for the power
function, we use the Math Function block by choosing “pow” in its function
list and setting its parameter p as 3. On the other hand, the sigmoid function
can be constructed by using some basic blocks with their detailed construction
presented in our previous works [5,6]. Now, to combine the power and sigmoid
subsystems, we can use a Switch block, where “u2>=Threshold” is chosen for
option “Criteria for passing first input”, and the value of “Threshold”is 1.



Time-Varying Matrix Square Roots Solving via ZNN and GNN 17

Fig. 3. Necessary “StopFcn” code of “Callbacks” in dialog box “Model Properties”

3.3 Configuration Parameters and Others Setting

After the overall RNN models are built up and depicted in Figs. 1 and 2, we
have to modify some of the default modeling-environment options. For example,
firstly, let us open the dialog box entitled “Configuration Parameters”. Sec-
ondly, let us set the modeling/simulation options as follows: 1) Solver: “ode23t”
(which is much different from our previous work); 2) Max step size: “0.2”; 3)
Min step size: “auto”; 4) Absolute tolerance:“auto”; 5) Relative tolerance:“1e-
6”(i.e., 10−6); and 6) Algebraic loop: “none”. In addition, the check box in front
of “States” as of the option “Data Import/Export” should be selected, which is
for the purpose of better displaying the RNN-modeling results and is associated
with the following “StopFcn” code (as of “Callbacks” in the dialog box entitled
“Model Properties” which is started from the “File” pull-down menu).

4 Modeling and Verification Results

To verify the performance, efficacy and superiority of ZNN (4) in comparison
with GNN (6), we consider the following time-varying matrix A(t) with its time-
varying theoretical square root X∗(t) given below for comparison purposes:

A(t) =

⎡⎣ 5 + 0.25s2 2s + 0.5c 4 + 0.25s × c
2s + 0.5c 4.25 2c + 0.5s

4 + 0.25s × c 2c + 0.5s 5 + 0.25c2

⎤⎦ , X∗(t) =

⎡⎣ 2 0.5s 1
0.5s 2 0.5c
1 0.5c 2

⎤⎦ ,

where s and c denote sin(4t) and cos(4t), respectively. The ZNN and GNN models
depicted in Figs. 1 and 2 are now applied to solving the TVMSR problem (1).
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(a) Neural state matrix X(t) of ZNN (4) using a power-sigmoid processing array
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Fig. 4. Online solution of time-varying matrix square root A1/2(t) by ZNN (4) and
GNN (6) with γ = 1, where the theoretical solution is denoted in dash-dotted curves
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Fig. 5. Residual-error profile of RNN models during time-varying square roots finding

4.1 Convergence Verification

As illustrated in Fig. 4(a), starting from randomly-generated positive-definite
diagonal initial-state X(0) ∈ [0, 2]3×3, the neural state matrix X(t) of ZNN (4)
with design parameter γ = 1 could converge rapidly to the theoretically time-
varying matrix square root X∗(t) in an error-free manner. In contrast, in Fig.
4(b), GNN (6) does not track the theoretical solution X∗(t) well, instead with
quite large solution errors.

4.2 Residual-Error Verification

To monitor and show the solution process of ZNN model (4) and GNN model (6),
residual error ‖X2(t)−A(t)‖ could also be exploited (which, for many engineering
applications, might be the only and preferable choice). The left two sub-graphs
of Fig. 5 show that, starting from randomly-generated positive-definite diagonal
initial-state X(0) ∈ [0, 2]3×3, the residual error of ZNN (4) converges to zero
exactly, and that superior performance can be achieved by increasing the value
of γ from 1 to 10. In comparison, as shown in Fig. 5(c), the residual error of GNN
model (6) is relatively much larger (never vanishing to zero) and oscillating.

5 Conclusions

A special neural-network model (namely, ZNN) is proposed and investigated for
the online time-varying matrix square roots finding. The important software-
modeling techniques have been introduced and discussed for such neural-network
construction. Computer-verification results have demonstrated further that su-
perior convergence and efficacy could be achieved by such ZNN models for online
time-varying matrix square roots finding, as compared to the well-known GNN
approach and models.
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Abstract. To investigate the time-varying characteristics of the multi-channels 
electroencephalogram (EEG) signals with 4 rhythms, a useful approach is de-
veloped to obtain the EEG’s rhythms based on the multi-resolution decomposi-
tion of wavelet transformation. Four specified rhythms can be decomposed 
from EEG signal in terms of wavelet packet analysis. A novel method for time-
varying brain electrical activity mapping (BEAM) is also proposed using the 
time-varying rhythm for visualizing the dynamic EEG topography to help 
studying the changes of brain activities for one rhythm. Further more, in order 
to detect the changes of the nonlinear features of the EEG signal, wavelet 
packet entropy is proposed for this purpose. Both relative wavelet packet en-
ergy and wavelet packet entropy are regarded as the quantitative parameter for 
computing the complexity of the EEG rhythm. Some simulations and experi-
ments using real EEG signals are carried out to show the effectiveness of the 
presented procedure for clinical use.  

Keywords: Time-varying EEG; Wavelet decomposition; Wavelet packet en-
tropy; Rhythm. 

1   Introduction 

EEG signals are the activity of ensembles of generators producing oscillation in sev-
eral rhythms’ activities with very complex mechanics [1]. In clinical applications, 
four basic rhythms from EEG have been associated with various states of brain under 
different brain functions and cognitions. EEG analysis has become an important way 
for investigating the state of the human brain function and reorganization process [2]. 
Four basic rhythms decomposed from the EEG signal are regarded as delta rhythm (1-
4Hz), theta rhythm (4-8Hz), alpha rhythm (8-13Hz) and beta rhythm (13-30Hz) which 
are all defined with frequency band. 

As we known, Fourier transform enable us to measure different rhythms and esti-
mate the frequency components with each rhythm. However, the spectral decomposi-
tion with Fourier transform cannot detect the time-varying EEG’s rhythms. In many 
clinical applications, we need to study the dynamic changes of the EEG and its 
rhythms. Short time Fourier transform (STFT) can provide us a useful time-varying 
frequency analysis method for non-stationary signals. But it has been noted that the 
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short time Fourier transform depends critically on the choice of the window. With a 
narrow window, the frequency resolution will be poor; and if the window is too wide, 
the time localization will be less precise. The assumption of stationary of the EEG 
signal is another drawback of the method. Wavelet transform brings a solution to this 
problem. As a multi-resolution analysis method, wavelet transform can provide us a 
more accurate temporal localization and a good way for detecting a seizure [3]. In 
clinical, a more accurate frequency band of the EEG rhythm is required. To detect the 
specified rhythm, wavelet packet transform is used to reflect the changes of the de-
sired band related with the rhythm. Wavelet packet transform is one of the useful 
method for the analyzing the non-stationary process [4]. It can generate spectral  
resolution fine enough to meet the problem requirement. Entropy derived from infor-
mation theory can characterize the degree of randomness of time sequence and to 
quantify the difference between two probability distributions [5, 6]. Spectral entropy 
is a nature approach to quantify the degree of order of a signal [7, 8]. The spectral 
entropy is a measure of how concentrated or widespread the Fourier power spectrum 
of a signal is.  

Another aim of this paper is to demonstrate the application of wavelet packet en-
tropy measure to analysis of the segment of spontaneous EEG. This application may 
turn especially useful for studying EEG synchronization in conditions with certain 
limitation for long duration records of EEG signals. 

2   Method of Wavelet Analysis 

2.1   Wavelet Packet 

One of drawbacks for the wavelet transform is that the frequency resolution is poor in 
the high frequency region. The wavelet transform may not provide a spectral resolu-
tion fine enough to meet the problem requirement in clinical application. To deal this 
problem, wavelet packet transform can be used as a generalization of a wavelet in that 
each octave frequency band of wavelet spectrum is further subdivided into finer fre-
quency band by using the tow-scale relations repeatedly. 

The wavelet packet function can be defined as 

2 1
1 ( ) 2 ( ) (2 )i i

j j
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t h k t kψ ψ
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The ( )tψ  is called as the mother wavelet function. The ( )h k , ( )g k  are quartered 

mirror filters associated with the scaling function and the mother wavelet function. 
The recursive relations between the j level and the j+1 level are: 
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The wavelet coefficients k
jc can be obtain as 

( ) ( )k i
j jc f t t dtψ

∞

−∞

= ∫  (5) 

Thus, each wavelet packet subspace can be viewed as the output of a filter turned 
to a particular basis. A signal can be decomposed into a series of wavelet packet com-
ponents as specified. We can select a set of wavelet packets for a given level of reso-
lution for matching the desired rhythm. Different combination of wavelet packet 
should be chosen for the specific rhythm required.  

2.2   Energy via Wavelet Packet Component  

Since wavelet packet node energy is more robust in representing a signal than using 
the wavelet packet coefficients directly, we define the signal energy as[9] 

 (6) 

Wavelet packet component energy i
jf

E  can be defined as the energy stored in the 

component signal  

 (7) 

Total signal energy can be decomposed into a summation of wavelet packet com-
ponent energy that corresponds to different frequency bands. Total energy can be 
obtained by 
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A reasonable tree structure must be designed for analyzing the specific frequency 
band. For example, the signal would be covered by 2

1 ( )f t , 1
2 ( )f t  and 2

2 ( )f t  or 

by 2
1 ( )f t , 2

2 ( )f t , )(1
3 tf  and )(2

3 tf . Define that the energy of each sub-band as
lE . Then, 

the normalized value which represent the relative wavelet packet energy 

l
l

tot

E
P

E
=  (9) 

Equation (9) represents the energy distribution in each wavelet packet. It is clear that 

lP  is sensitive to the energy changes. It represents the energy relation among each 

wavelet packet. 
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2.3   Wavelet Packet Entropy 

As we known, Shannon entropy gives a useful criterion for analyzing the complexity 
and the probability. It is a dynamic quantity distribution of the amount of disorder in 
system, which can view as a measure of uncertainty regarding the information content 
of a system. With the definition of entropy given by Shannon, the wavelet packet 
entropy can be defined as 

ln[ ]wp l lS p p= −∑  (10) 

If a signal is very ordered (suppose a single frequency signal), all the energy will 
be in one frequency band. The energy of all other frequency band will be nearly zero. 
As a result, the relative wavelet packet energy will be 1,0,0….,which will lead to zero 
or very low value in the wavelet packet entropy. In another aspect, a very disordered 
signal (suppose a random signal) with energy distribution in every frequency band. 
The relative wavelet packet energy will be almost the same and lead to a maximum 
value in wavelet packet entropy [10]. 

Entropy is a description of uncertainty in the signal duration. It is not useful for 
analyzing non-stationary signal. To study temporal evolution, the signal is divided in 
to nonoverlapping temporal windows. Define the length of the window M, and the 
signal is divided into k segments. The total length of the signal is N KM= . Wavelet 
packet entropy is performed in each time window. The mean wavelet packet energy at 
frequency band l for the time window k  is given by 
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= ∑ ,   with k=1,2… (11) 

where lN  is the number of points at the frequency band l for the time window k . 

The total mean energy at the window is 
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The time-dependent wavelet packet entropy will be given by 

( ) ( ) ( )ln[ ]k k k
wp l lS p p= −∑  (14) 

Mean wavelet packet energy at frequency band l  
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and the total mean of the wavelet packet energy average is 

tot ll
E E〈 〉 = 〈 〉∑  (16) 
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The mean energy probability distribution for the whole signal is  

l
l

tot

E
q

E

〈 〉
=
〈 〉

 (17) 

The mean wavelet packet entropy is given as 

ln[ ]wp l lS q q〈 〉 = −∑  (18) 

3   Experiment 

3.1   Data Recording 

ERP activity was recorded from 14 scalp electrode sites using disc electrodes 
embedded in a nylon mesh cap placed on the subjects' head. The electrode loca-
tions, according to the international 10-20 system[11], consisted of Fp1, Fp2, F3, 
F4, C3, C4, P3, P4, O1, O2, F7, F8, T5, T6. The reference electrode was placed 
on the tip of the nose. Original EEG signals were recorded and stored in a per-
sonal computer. The sampling rate of the system was 100 Hz, and the EEG sig-
nals was amplified by SYNAMPS amplifiers (Neuroscan, Inc.) filtered on-line 
with a low-frequency half amplitude cutoff at 0.01 Hz and a high-frequency half 
amplitude cutoff at 50 Hz. The EEG signals were recorded under various brain 
functions and with eyes open or closed. Rejection of EEG segments affected by 
blink, muscular or other kinds of artifact activity was performed off-line by an 
experienced EEG expert visual inspection of the recordings. 

3.2   Data Analysis 

From the EEG signals analysis of [12], it was well established that the four kinds of 
brain rhythms played an important role in the brain function analysis. The wavelet 
packet transform allowed us to decompose the signals accurately in the specific fre-
quency bands which could not be achieved by the wavelet transform. In order to ob-
tain an accurate separation of the four kinds of rhythm of the EEG, a six-level wavelet 
packet decomposition was performed. Four kinds of brain rhythms were obtained: 
delta rhythm (0.78-13.28Hz), theta rhythm (3.91-7.8Hz), alpha rhythm (7.8-13.28Hz) 
and beta rhythm (13.28-30.47Hz). 

To investigate the effect of the wavelet packet decomposition, a four seconds 
EEG signal was applied. The EEG was recorded when the subject closed the eyes. 
400 points of EEG signal were decomposed by a six-level Discrete Meyer wave-
let. Four kinds of rhythm were obtained by the wavelet packet tree. From figure 1, 
we could see that the rhythms were well extracted by the wavelet packet decom-
position. 
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Fig. 1. A segment of original EEG signal in channel P3 with eyes closed and the decomposition 
result of the wavelet packet decomposition 
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Fig. 2. Component energy of each rhythm in the open eyes status and closed eyes status respec-
tively 

4   Result and Discussion 

It has been proved that the alpha rhythm in the spontaneous EEG will enhance when the 
subject close his eyes, which represent different brain state compared to the open eyes 
status. Two segments of EEG signal were chosen to be tested. The first segment is a 2 
seconds EEG signal with eyes open. The other EEG signal is a 2 seconds period with the 
subject’s eyes closed. From figure 2, we can obviously see that when the subject opens his 
eyes, the four kinds of rhythms were comparable to each other. Nevertheless the alpha 
rhythm was enhanced and became the domain rhythm when the subject closed the eyes. 
From figure 3, we can see that the wavelet packet entropy is lower in the closed eyes 
status, which represent that the brain activity is more order than the eyes open status. 

In order to reflect the rhythms’ time-varying characteristic of EEG signals in the 
whole cerebral cortex, we calculate wavelet packet entropy of each channel, and then, 
using 2D interpolation method to get the topographic map of mean wavelet packet 
entropy of EEG signals. Figure 4 is topographic maps of mean wavelet packet entropy 
of 14 channels EEG signals in the open eyes and closed eyes status. From this figure, 
we can clearly observe the difference between the two statuses. 
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Fig. 3. Wavelet packet entropy in the open eyes and closed eyes status respectively 

 
Fig. 4. Topographic map of mean wavelet packet entropy in the open eyes and closed eyes 
status respectively (upper: open eyes, lower: closed eyes) 

5   Conclusion 

This paper presents an effective method, which is based on the multi-resolution de-
composition with wavelet packet design, to analyze the clinical EEG signals. The 
experimental results show that the wavelet packet decomposition can effectively dis-
tinguish each rhythm of EEG signal, and both the wavelet packet energy and wavelet 
packet entropy can be used to effectively measure the complexity of the EEG signal. 
Due to the better matching in time-frequency characteristics of EEG signal, our 
method, compared with the Wavelet method, is more flexible and accurate for the 
designing of specific filter banks and the detecting of different EEG rhythms. We can 
also see that our method can be used as a new way for analyzing other kinds of medi-
cal signals in practice. 
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A New Practical Method on Hydrological Calculation 
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Abstract. Artificial Neural Networks (ANN) deal with information through  
interactions among neurons (or nodes), approximating the mapping between in-
puts and outputs based on non-linear functional composition. They have the ad-
vantages of self-learning, self-organizing, and self-adapting. It is practical to 
use ANN technology to carry out hydrologic calculations. To this end, this note 
has fundamentally set up a system of calculation and analysis based on ANN 
technology, given an example of application with good results. It shows that 
ANN technology is a relatively effective way of solving problems in hydrologic 
calculation. 

Keywords: Artificial neural networks, BP algorithm, Hydrologic calculation. 

1   Introduction 

In hydrologic calculation, it is common to set up mathematical models or draw related 
graphs based on existing data. Hence, it involves issues of pattern recognition [1]. 
There is, however, no satisfactory mathematical model )(xfy =  that would fix hydro-
logic elements [2,3]. Since the newly developed technology of Artificial Neural  
Networks (ANN for short) has advantages of self-learning, self-organizing, and self-
adapting [4], there are many successful applications of it on pattern recognition [5,6]. 
Therefore, based on the principle and method of ANN [7], we study some related 
issues of hydrologic calculation in this note. 

2   Method 

An ANN is a complex network that consists of many simple neural cells [8]. It is 
roughly modeled on the human brain. It has a parallel distribution information proc-
essing device and can approximate the mapping between input and output by compo-
sitions of nonlinear functions [9]. It does not require any design of mathematical 
models. It can learn solely based on experience; process various fuzzy, nonlinear, 
noisy data through neuron simulation, memory, and association; and process calcula-
tion analysis using the method of self-adapting pattern recognition [10]. 

ANN algorithms include Hebbian, Delta, Kohonen, and BP [4]. The BP algorithm 
(Error Back Propagation) was presented in 1985 by Rumelhart and his PDP team. It 
realized Minsky’s thought on multilayer neural networks. A typical multilayer-feed-
forward neural network consists of a number of neurons that are connected together, 
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usually arranged in layers. Its first layer is the input layer. Its final layer is the output 
layer. All other layers are hidden layers, which contain the neurons that do the real 
work. 

A neural network that uses the error back propagation algorithm is said to be a BP 
network, whose learning process consists of the feed-forward and feed-backward. 
Each sample signal in the feed-forward process is applied by the Sigmoid func-

tion )1/(1)( xexf −+=  before it is passed to next layer. The situation of neurons on 

each layer can only affect the situation of neurons on the next layer. If the output layer 
does not produce the desired value, then the errors will be fed back from the outputs 
to the inputs through the network, and the weights of nodes in each layer will be 
changed along the way. The algorithm repeats in this way until the error values are 
sufficiently small. 

Let m be the number of layers, m
jy  denote the output from the node j in the layer 

m, jj xy =0  denote the input at node j, m
ijW  be the weight of connection between node 

I and node j, and m
jθ  be the threshold at the node j in the layer m. The BP network is 

training as follows: 
(1) Initialize each weight and threshold to a random value in )1,1(− . 

(2) Select a pair of data ),( kk Tx  from the training data and substitute inputs into 
the input layer such that 

k
ii xy =0          （for i） (1) 

Where k denotes the number of iterations. 
(3) Pass the signal forward by using the formula: 
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i

m
j

m
i

m
ij

m
j

m
j yWFsFy θ  (2) 

The calculation processes the output at each node j from the first layer through the last 
layer until it completes. Where F(s) is the Sigmoid function. 

(4) Calculate the error for each node j in the output layer as follows: 
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Where the error is obtained by the difference of the actual output value and the de-
sired target value. 

(5) Calculate the error for each node j in each hidden layer as follows: 
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The error is obtained by feeding back errors layer by layer, where .1,,1, L−= mmm  
(6) Change the weights and thresholds backward layer by layer: 
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Where t is the number of iterations; η is the learning rate ( )1,0(∈η ); α is the momen-

tum value ( )1,0(∈α . 
(7) Go to step (2), start the next iteration, repeat (2) through (7) until the network 

error 

∑∑ −=
k j

m
j

k
j yTE 2/)( 2  (7) 

is sufficiently small as expected. 
Once the network completes its training, its weights and thresholds are determined. 

Thus, we can start a calculation analysis. 

3   Result 

We demonstrate an application of the ANN technology in hydrologic calculation in 
this section by examining the peak stage [11] at the Shi-Gou station in Sui-Jiang, 
China as shown in Table 1. 

Let SH  be the peak stage recorded at the Shi-Gou station. Then SH  can be ex-

pressed as 

),,( PHHfH TGS =   

Where GH  denotes the peak stage recorded at the Gu-Shui station, which is the upper 

reaches of the Shi-Gou station; TH  denotes the peak stage at the Shi-Gou station 

recorded at the same time as GH ; P is the precipitation of space interval. Since 

TG HH , , and P are the inputs while SH is the output, there are three nodes in the 

input layer and one node in the output layer. It follows from Kolmogorov’s law that 
there are eight nodes in the hidden layer. Hence, the ANN in our hydrologic calcula-
tion has the topological structure (3, 8, 1). 

In order to speed up the convergence, let us normalize the original data ix  as fol-

lows 

)/()( minmaxmin
' xxxxx ii −−=  (8) 

Where minmax , xx denote the maximal value and the minimal value of the flood series, 

respectively. Thus, each ]1,0[' ∈ix . 

We can input '
ix  into the input layer of the BP algorithm and select training data to 

start the training and learning process. We choose the learning rate η= 0.85 and the 
momentum value α= 0.60. In order to test the BP algorithm after each training and 
learning, we take the first thirteen flood series as the training samples, and the last 
three flood series as the testing samples. After one hundred thousand times of training 
and learning from the training samples, the network error E = 0.003, which is less 
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than expected error; thus, the BP algorithm is convergent. It is clear as shown in Table 

1 that the imitation is very good since the average error e  of the series is only about 
0.07 meters and the maximal error maxe of the series is only about 0.19 meters. 

Since the trained network has imitated and memorized the functional relationship 
between input and output, it can be used to determine the flood stage. It is obvious as 
shown in Table 1 that the result of tests for the three flood series is good since the 
prediction errors are less than 1%. 

Table 1. Peak stage at the Shi-Gou stations and result of its calculation (unit: m) 

 Order HG HT P(mm) HS Output Fit value Error 
 1 36.90 14.84 102 16.92 0.9804 16.83 -0.09 
 2 29.12 12.44 23 12.72 0.1125 12.83 0.11 
 3 29.93 11.50 52 13.06 0.1446 12.98 -0.08 

Training 4 31.40 12.98 63 14.08 0.4119 14.21 0.13 
 5 31.51 12.76 88 14.29 0.4277 14.28 -0.01 
 6 31.80 14.39 67 14.72 0.5174 14.70 -0.02 
 7 30.05 13.10 70 13.60 0.2823 13.61 0.01 
 8 29.82 12.58 52 13.44 0.2116 13.29 -0.15 
 9 28.64 12.59 122 12.85 0.1165 12.85 0.00 

sample 10 28.89 10.89 37 12.37 0.0200 12.40 0.03 
 11 28.54 11.71 64 12.31 0.0420 12.50 0.19 
 12 29.78 12.16 31 13.11 0.1629 13.06 -0.05 
 13 28.94 11.77 22 12.56 0.0543 12.56 0.00 

Testing 14 30.26 12.34 44 13.36 0.2416 13.42 0.06 
 15 30.22 13.15 72 13.70 0.3136 13.76 0.06 

sample 16 32.19 14.68 136 15.44 0.6597 15.35 -0.09 

4   Discussion 

4.1   ANN’s Application in Hydrologic Calculations 

As mentioned at the beginning, it is hard to find a function f that would express the 
relationship between a dependent variable y and an independent variable x of hydro-
logic elements such that )(xfy = , even in the simplest case like the relation between 
the discharge Q and the stage H. On the other hand, we have seen that the greatest 
advantage of an ANN is that it does not need a mathematical model. It can imitate and 
memorize any complex relationship between inputs and outputs by training and learn-
ing upon historical data, and carry out the calculation analysis by association. There-
fore, many issues (including forecast) in hydrologic calculation can be analyzed by 
using ANN technology. The main issues are as follows: 

(1) Calculation of discharge-stage. Where the input variable is the stage, the output 
variable is the discharge. 

(2) Forecast of the propagation time of flood peak with multiple factors. Where 
factors may include the simultaneous discharge of lower reaches, the difference of 
discharges of upper reaches, the precipitation of space interval, the backwater of 
lower reaches, and the discharge of multiple tributaries, these factors are input vari-
ables. The output variable is the propagation time of flood peak. 
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(3) Forecast of the precipitation-runoff with multiple factors. Where the input vari-
ables include the rainfall at each single station ),,2,1( niPi L= , the average of areal 

rainfall, the earlier stage affecting rainfall aP , the water storage 0W  of drainage basin 

prior rain, the duration of rainfall T, the intensity of rainfall, the evaporation in the 
interval of precipitation, and the initial discharge 0Q , the output variable is the runoff. 

(4) Flood routing through reservoir. Where the input variables include the precipi-
tation within a time interval at each single station ),,2,1( niPi L= , the average of 

areal rainfall within a time interval, the average of discharge into reservoir within a 
time interval, and the initial dam stage of a time interval, the output variable is either 
the dam stage at the end of a time interval or the average of discharge out of reservoir 
within a time interval. 

(5) Calculation of the largest flood of different drainage basin areas. Where the in-
put variable is the area of a drainage basin, the output variable is the largest peak 
discharge of an actual survey. 

(6) Calculation of hydrologic data extension of a design station. Where input vari-
ables are the annual rainfall, the annual runoff, the modulus of annual flow, and so on, 
of a reference station, the output variable is the annual runoff of a design station. 

In addition, there are many other issues, such as the forecast of low flow with mul-
tiple factors, the forecast of melted snow runoff, the ice-condition forecast, the fore-
cast of tidal river stages, the medium and long term hydrologic forecast, the relation 
between the point rainfall and the areal rainfall, the flood peak-volume relation, the 
discharge-sediment relation, the unit sediment-section sediment relation, the natural 
annual runoff restoration and so on, that can also be analyzed by using the ANN tech-
nology. To that end, we collected a large number of data and carried out calculations. 
It turns out that the results are generally satisfactory as long as we select proper pa-
rameters. Therefore, we believe that the ANN technology has a bright future of appli-
cations in hydrologic calculations [12]. 

4.2   Selection of Parameters 

(1) The selection of the number of nodes for the hidden layer. 
In 1989, Robert Hecht and Nielson proved that a continuous function on any closed 
interval can be approximated by a BP network with one hidden layer, thus, a BP net-
work with three layers can carry out any mapping from n-dimensional space to m-
dimensional space. Thus, we have adopted a three-layer BP network with single hidden 
layer in our calculation. It follows from the Kolmogorov’s theorem that the number of 
nodes in the hidden layer is at least 2n + 1, where n is the number of nodes in the input 
layer. Since n = 3, the number of nodes in the hidden layer is at least 7. Considering the 
accuracy, we determined that the number of nodes for the hidden layer is 8 
 

(2) The selection of the momentum value 

In order to improve the network training speed, a momentum value a∈(0,1) is 
added in the formula that is used to modify the weights. The momentum takes into 
account the extent to which a particular weight was changed on the previous iteration. 
When the value of a is equal to 0, the change of weights is obtained via the method of 
gradient descent. When the value of a is equal to 1, the change of weights is set to 
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equal to the change on the previous iteration such that the part of the change gener-
ated by the method of gradient descent is ignored. Therefore, when the value of a is 
increased, it will help to find the set of weights that provides the best performance of 
the network. In our case, we choose the value of 0.60 for the momentum a. 
 

(3) The selection of the learning rate 
It is very important to choose a proper value of the learning rate η during the 

course of training the network. The value of the learning rate η is a positive number 
below 1, and which should not be too high. When the value of η is too high, it may 
result in an unstable state. On the other hand, if the value of η is too small, it may take 
long time to complete the course of training the network. The bigger of the value of η, 
the faster of the modification of the weights will be. Therefore, we may choose a large 
value of η provided that it will not cause any instability of the performance. In our 
case, we choose the value of 0.85 for the learning rate η. 

5   Conclusion 

Although it is often impossible to find a specific function for the relation between a 
dependent variable and an independent variable in hydrologic elements, the ANN 
technology can provide us an alternative solution for such a hard issue. It deals with 
information through interactions among neurons (or nodes), and approximates the 
mapping between inputs and outputs based on the non-linear functional composition. 
It has the advantages of self-learning, self-organizing, and self-adapting. Therefore, it 
is practical to use the ANN technology to carry out hydrologic calculations. Our cal-
culation results have confirmed that. 

The error in our example (see Table 1) is only between 0.44% and 0.58%, which is 
certainly good enough for a hydrologic forecast. However, it will be very difficult to 
achieve the same accuracy if we use the traditional approach [11]. Furthermore, the 
ANN technology allows us to have multi-variables in both input and output layers.  
This is very important for hydrologic calculations since the stage, discharge, and other 
hydrological variables are often functions of many influential variables. 

This note, aiming at the issues in hydrologic calculation, has preliminarily set up a 
system of calculation and analysis based on ANN technology. We have developed 
applied functional software along with our research. This is a new attempt in hydro-
logic calculation. If we combine it with other algorithms, there is no doubt that we 
will be able to improve the accuracy and level of the hydrologic calculation. 
 

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China (No. 40771044). 

References 

1. Acharya, U.R., Bhat, P.S.: Classification of Heart Rate Data Using Artificial Neural Net-
work and Fuzzy Equivalence Relation. Pattern Recognition 36, 61–68 (2003) 

2. Mukhopadhyay, A.: Application of Visual, Statistical and Artificial Neural Network 
Methods in the Differentiation of Water from the Exploited Aquifers in Kuwait. Hydro-
geology Journal 11, 343–356 (2003) 



 A New Practical Method on Hydrological Calculation 35 

3. Wilby, R.L., Abrahart, R.J., Dawson, C.W.: Detection of Conceptual Model Rainfall–
Runoff Processes Inside an Artificial Neural Network. Hydrological Sciences Journal 48, 
163–181 (2003) 

4. Ertay, T., Çekyay, B.: Integrated Clustering Modeling with Backpropagation Neutral Net-
work for Efficient Customer Relationship Management. In: Ruan, D., et al. (eds.) Intelli-
gent Data Mining: Techniques and Applications, pp. 355–373. Springer, Heidelberg (2006) 

5. Konstantin, L., Norman, G.L.: Application of an Artificial Neural Network Simulation for 
Top-Of-Atmosphere Radiative Flux Estimation from CERES. Journal of Atmospheric and 
Oceanic Technology 20, 1749–1757 (2003) 

6. Marina, C., Alfredo, S., Paolo, A.: Artificial Neural Network Approach to Flood Forecast-
ing in the River Arno. Hydrological Sciences Journal 48, 381–398 (2003) 

7. Zhou, J.C., Zhou, Q.S., Han, P.Y.: Artificial Neural Network–The Realization of the Sixth 
Generation Computer, pp. 47–51. Scientific Popularization Publisher (1993) 

8. Lippmann, R.P.: An Introduction to Computing With Neural Nets. IEEE ASSP Maga-
zine 4, 4–22 (1987) 

9. Chat, S., Abdullah, K.: Estimation of All-Terminal Network Reliability Using an Artificial 
Neural Network. Computers and Operations Research 29, 849–868 (2002) 

10. Brion, G.M., Lingireddy, S.: Artificial Neural Network Modeling: A Summary of Success-
ful Applications Relative to Microbial Water Quality. Water Science and Technology 47, 
235–240 (2003) 

11. Li, H.L., Li, L.L., Yan, J.F.: Hydrologic Forecast, pp. 12–13. China Waterpower Press 
(1979) 

12. Reed, S., Schaake, J., Zhang, Z.: A Distributed Hydrologic Model and Threshold Fre-
quency-Based Method for Flash Flood Forecasting at Ungauged Locations. Journal of Hy-
drology 337, 402–420 (2007) 

 



Bernoulli Neural Network with Weights Directly
Determined and with the Number of Hidden-

Layer Neurons Automatically Determined

Yunong Zhang and Gongqin Ruan

School of Information Science and Technology, Sun Yat-sen University
Guangzhou 510275, China

zhynong@mail.sysu.edu.cn, ynzhang@ieee.org

Abstract. Conventional back-propagation (BP) neural networks have
some inherent weaknesses such as slow convergence and local-minima
existence. Based on the polynomial interpolation and approximation
theory, a special type of feedforward neural-network is constructed in
this paper with hidden-layer neurons activated by Bernoulli polynomi-
als. Different from conventional BP and gradient-based training algo-
rithms, a weights-direct-determination (WDD) method is proposed for
the Bernoulli neural network (BNN) as well, which determines the neural-
network weights directly (just in one general step), without a lengthy
iterative BP-training procedure. Moreover, by analyzing the relationship
between BNN performance and its different number of hidden-layer neu-
rons, a structure-automatic-determination (SAD) algorithm is further
proposed, which could obtain the optimal number of hidden-layer neu-
rons in a constructed Bernoulli neural network in the sense of achieving
the highest learning-accuracy for a specific data problem or target func-
tion/system. Computer-simulations further substantiate the efficacy of
such a Bernoulli neural network and its deterministic algorithms.

Keywords: Bernoulli polynomials, Feedforward neural networks,
Weights direct determination, Structure automatic determination, Hid-
den layer.

1 Introduction

Artificial neural networks have become a useful tool in dealing with various
scientific and engineering problems such as system design and control [1,2,3,4],
image processing [5], and robot inverse-kinematics [4,6] due to their remarkable
advantages such as parallelism, distributed storage and computation, adaptive-
learning ability. Among the most important neural-network models, BP neural
networks have been widely investigated and also applied to many practical fields
[7,8]. But the inherent weaknesses still exist in BP-type neural networks and
their algorithms (including those improved variants), such as, slow convergence
of iterative training, local-minima existence of solution, and uncertainties in the
optimal number of hidden-layer neurons [8].
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Different from algorithmic improvements about the BP iterative-training pro-
cedure, by our successful experience [1,9,10], adopting linearly-independent or
orthogonal activation functions to construct the neural network might be a much
better choice. In this paper, based on the polynomial interpolation and approxi-
mation theory [11,12], we further try enhancing the neural-network performance
by proposing a so-called Bernoulli neural network. This special neural network
has a three-layer structure as well, but with hidden-layer neurons activated by
Bernoulli polynomials. More importantly, in order to avoid the usually-lengthy
iterative-training procedure (which is mostly based on gradient and BP meth-
ods), a pseudoinverse-based weights-direct-determination method is derived for
the Bernoulli neural network, which can determine the theoretically optimal
weights directly (just in one step).

Furthermore, as we all know possibly, selecting the number of hidden-layer
neurons is an important and difficult issue because it may affect the overall
performance of neural networks very much. Specifically speaking, fewer hidden
neurons may not achieve a satisfactory performance, whereas too many hidden-
layer neurons may lead to a higher complexity of circuit-implementation, soft-
ware computation and even an over-fitting phenomenon [8,10]. By observing
the relationship between BNN performance and hidden-layer-neurons’ number,
a structure-automatic-determination method/algorithm is proposed further in
this paper for Bernoulli neural network. Specifically, it exploits the weighs-direct-
determination method at its every trial and generates finally the optimal number
of hidden-layer neurons. Via the WDD and SAD algorithms, the highest accu-
racy of learning can be achieved by the Bernoulli neural network for a specific
data system or target function approximation. Computer-simulation results sub-
stantiate the superiority of the Bernoulli neural network and its algorithms.

2 Neural-Network Model and Theoretical Basis

In this section, we propose the Bernoulli neural network (or termed, Bernoulli
polynomial neural network) firstly, and then present some important definitions
and theorems which guarantee its approximation ability.

2.1 Model Structure

Fig. 1 shows the proposed model of Bernoulli neural network, which, in the
hidden layer, has n neurons activated by a group of degree-increasing Bernoulli
polynomials φj(x), j = 0, 1, · · · , n − 1. The BNN input-layer or output-layer
each has one neuron activated by simple linear function f(x) = x. Moreover,
the weights between input-layer and hidden-layer neurons are all fixed to be 1,
whereas the weights between hidden-layer and output-layer neurons, denoted as
wj , j = 0, 1, · · · , n − 1, are to be decided or adjusted. In addition, all neuronal
thresholds are fixed to be nil. These settings could simplify the neural-network
structure design, circuit implementation and computational complexity. More
importantly, even so, the approximation ability of the Bernoulli neural network
can still be theoretically guaranteed.
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φ0(x) = 1
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(
n
k

)
φk(x)/n

...

Fig. 1. A new neural network with hidden neurons activated by Bernoulli polynomials

2.2 Theoretical Basis

About the Bernoulli neural network proposed in Subsection 2.1, people may
wonder whether it works. Now we show its theoretical basis. As we know [13,14],
Bernoulli polynomials are quite important in various expansion and approxima-
tion formulas with many applications in combinatorics and number theory.

Firstly, as noticed, there are a variety of different expressions for Bernoulli
polynomials. In this paper, we present a simple recurrence relation of Bernoulli
polynomials for the facility of such a neural-network construction. In [14], the
Bernoulli polynomials are defined via a matrix-determinant approach, and then,
by simplifying it, the stable recurrence expression of Bernoulli polynomials can
be shown as follows with φ0(x) = 1:

φj(x) = xj − 1
j + 1

j−1∑
k=0

((
j + 1

k

)
φk(x)

)
, with

(
j + 1

k

)
:=

(j + 1)!
k!(j + 1 − k)!

, (1)

where φj(x) denotes a Bernoulli polynomial of degree j = 1, 2, 3, · · · , n, · · · , with
its first few analytic expressions given in Fig. 1 as well as in the Appendix.

Similar to the fundamental idea appearing in our previous work [1,9,10], the fi-
nal approximation mathematical essence of such a Bernoulli-neural-network con-
struction can be viewed as a procedure of constructing a generalized polynomial
function so as to interpolate or approximate an unknown target function/system
using a given set of sample data. When approximating an (unknown) objective
function ϕ(x), from Fig. 1, the relation between input- and output-neurons of
Bernoulli neural network can be exactly expressed as

y = φ(x) = w0φ0(x) + w1φ1(x) + · · · + wn−1φn−1(x), (2)

of which the learning and approximating abilities can be guaranteed by the fol-
lowing definition and theorem [note that ϕ(x) is also termed target function].
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Definition 1 [9,10,15,16]. Assume that ϕ(x), φj(x) ∈ C[a, b], j = 0, 1, · · · , n −
1 (in words, target function ϕ(x) and the jth polynomial function φj(x) of
polynomial-function sequence {φj(x)}n−1

j=0 are continuous over the closed inter-
val [a, b]), and that {φj(x)}n−1

j=0 is a set of linearly independent polynomial-
functions. For given weighting-function ρ(x) on interval [a, b], appropriate co-
efficients w0, w1, · · · , wn−1 can be chosen for the generalized polynomial φ(x) =∑n−1

j=0 wjφj(x) so as to minimize
∫ b

a
(ϕ(x)−φ(x))2ρ(x) dx. Then, φ(x) is termed

the least-square approximation of ϕ(x) with respect to ρ(x) over interval [a, b].

Theorem 1 [9,10,15,16]. For ϕ(x) ∈ C[a, b], its least-square approximation
function φ(x) could exist uniquely, of which the coefficients (in other words,
the neural-network weights shown in Fig. 1), w0, w1, · · · , wn−1, are solvable.

3 BNN Weights-Direct-Determination

From the description of the above Bernoulli-neural-network structure, it can
be viewed as a special type of BP neural networks, which can still adopt BP
algorithms as its iterative-training rule. However, if a BP algorithm is employed,
it may take much time (or even infinite time) to converge to a solution under a
user-specified accuracy of learning (e.g., 10−18 in the ensuing simulation-study of
ours). As mentioned above, for the Bernoulli neural network, its weights can be
determined directly (i.e., via the so-called weights-direct-determination method),
instead of a lengthy BP iterative-training procedure. Now we show it as follows.

By taking (xi, γi := ϕ(xi))|mi=1 as the given training-sample pairs, we can
define the batch-processing error (BPE) function E for BNN as below:

E =
1
2

m∑
i=1

(
γi −

n−1∑
p=0

wpφp(xi)

)2

. (3)

Then we have the following theorem about the BNN weights-direct-determination
method (with proof similar to [9] but omitted in view of space limitation).

Theorem 2. Let superscript T denote the transpose of a matrix or vector. As for
the Bernoulli neural network depicted in Fig. 1, let us define its weights vector
w, target-output vector γ, and input-activation-matrix X respectively as

w =

⎡⎢⎢⎢⎣
w0

w1

...
wn−1

⎤⎥⎥⎥⎦ , γ =

⎡⎢⎢⎢⎣
γ1

γ2

...
γm

⎤⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎣
φ0(x1) φ1(x1) . . . φn−1(x1)
φ0(x2) φ1(x2) . . . φn−1(x2)

...
...

. . .
...

φ0(xm) φ1(xm) . . . φn−1(xm)

⎤⎥⎥⎥⎦ ∈ Rm×n.

Then, with superscript + denoting the pseudoinverse of a matrix, the steady-state
weights vector of the Bernoulli neural network can be determined directly as

w = X+γ := (XT X)−1XT γ, (4)

which is optimal in the sense of minimizing the batch-processing error E in (3).
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Fig. 2. Approximation error of BNN versus its number of hidden-layer neurons

BNN Structure-Automatic-Determination Algorithm
Input: Training-sample pairs (xi, γi)|mi=1

Output: The optimal number of hidden neurons, n
——————————————————————
Initialize the loop index q = 2
Initialize MinE=E to be a very large value (e.g., 1010)
Initialize the optimal number n = 1
Construct Bernoulli polynomial φ0(x) = 1
While E �MinE or n == q − 2,

• Construct Bernoulli polynomial φq−1(x)
• Calculate the neural-network weights using the

weights-direct-determination method (4)
• Calculate the resultant BNN learning error E
• If E <MinE,

MinE ← E
n ← q

End
• q ← q + 1

End

Fig. 3. Algorithmic description of structure-automatic-determination (SAD) method
which decides the optimal number of hidden-layer neurons in Bernoulli neural network

4 BNN Structure-Automatic-Determination

It might be well known that the number of hidden-layer neurons has an im-
portant influence on the performance of neural networks, but currently there is
still no deterministic theory which handles this issue. As an attempt to develop
a suitable algorithm for determining the optimal number of hidden-layer neu-
rons in Bernoulli neural network, we firstly observe and analyze the relationship
between BNN performance and the hidden-neurons’ number via the approxi-
mation examples of a variety of target functions. For example, Fig. 2 shows
the BNN-approximation error (specifically, E/m) of the following three tested
target-functions versus the number of BNN hidden-layer neurons:
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Calculate the neural-network weights

n == q − 2 ?

Initialize

E �MinE or No

No

Yes

Yes

Set the (q − 1)th Bernoulli polynomial

Calculate the corresponding error E

E <MinE ?

MinE← E and n ← q

q ← (q + 1)

Quit

Fig. 4. Program flowchart of BNN structure-automatic-determination method

ϕ(x) = ex cos(3πx), (5)
ϕ(x) = sin(6x)/cos(x) − x, (6)

ϕ(x) = xex2
+ cos(3πx), (7)

which are out of the twelve target functions we have tested (but no other tests
are presented in this paper due to space limitation and results’ similarity). From
Fig. 2 and other testing results, we observe that the BNN performance has a
relatively consistent trend with respect to the number of hidden-neurons (which
increases from 2 to 30), no matter what target function is tested. That is, at the
beginning, the BPE defined in (3) would generally decrease over the increase of
the hidden-neurons’ number. In addition, the BPE-decreasing procedure will not
terminate until it reaches the optimal number of hidden-layer neurons (at this
point BPE is the smallest). After that, as the number n increases, the BPE will go
up generally. So, we could search the optimal number of hidden-layer neurons by
increasing n one by one, in addition to using the aforementioned weights-direct-
determination method. The structure-automatic-determination algorithm could
thus be developed and presented in Figs. 3 and 4.

In addition, it is worth mentioning that during the search procedure through
increasing the number of hidden-layer neurons, the BPE error E calculated at
the current loop (with a larger value of the number of hidden-layer neurons, q)
might become larger than (or equal to) that at the previous loop (e.g., with a
smaller value of the number of hidden-layer neurons, q−1). The key point of the
proposed SAD algorithm is to deal with such a situation. From our simulation
results (e.g., Fig. 2), it is observed that, for (almost) all tested target-functions,
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Table 1. Learning and approximation results of the proposed Bernoulli neural network

Function Optimal number Runtime Average error of Average error of
# n (second) training, E/m testing, E/m

Target (5) 23 0.062 2.44 × 10−14 2.40 × 10−14

Target (6) 19 0.042 5.08 × 10−18 5.02 × 10−18

Target (7) 23 0.060 3.62 × 10−14 3.38 × 10−14
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Fig. 5. Approximation results of Bernoulli neural net with WDD and SAD algorithms

if q−1 is not the true optimal-number of hidden-layer neurons, the BPE error E
with q + 1 hidden-neurons will become less than that with q − 1 hidden-neurons
(although the BPE error E with q hidden-neurons is larger than that with q − 1
hidden-neurons). Moreover, as from our simulative observation, if the errors E
with q + 1 and q hidden-neurons are both larger than that with q − 1 hidden-
neurons, we can say quite definitely that q−1 is the optimal number n of hidden-
layer neurons of the Bernoulli neural network for that specific approximation
task (xi, γi)|mi=1. As q starts from 2 and increases, such a structure-automatic-
determination algorithm depicted in Figs. 3 and 4 continues to search the optimal
number of hidden-layer neurons until the above objective is achieved.

5 Computer-Simulation Verification

For the purpose of testing, verifying and illustrating the efficacy of this novel
Bernoulli neural network and its algorithms, the mentioned three target-functions
in Section 4 [i.e., in (5)-(7)] are employed here for the simulation study. Let us
take and sample uniformly over the interval [−1.0, 1.0] with gap-size 0.01 to gen-
erate the related data-sets {(xi, γi), i = 1, 2, · · · , 201} (i.e., m = 201). Then, the
Bernoulli neural network is simulated with its WDD and SAD algorithms, and the
numerical results are shown comparatively in Table 1, Figs. 5 and 6.

Moreover, it is worth pointing out that, with the optimal number of hidden-
layer neurons as in Table 1 (e.g., in its last row), the Bernoulli neural network
can achieve the smallest BPE error E for that specific function-approximation
task, which implies that its performance is deterministically the best.
More importantly, by using the proposed weights-direct-determination and
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Fig. 6. Approximation error of Bernoulli neural net with WDD and SAD algorithms

structure-automatic-determination methods (instead of using iterative BP-
training algorithms based on the well-known gradient-descent method
[2,5,7,8,9]), the constructed Bernoulli neural network can find the optimal num-
ber of hidden-neurons and achieve the best performance in very short time (e.g.,
within 0.7s; see the third column of Table 1). Besides, the average errors of
training and testing are both very tiny, which are shown in the rightmost two
columns of Table 1 as well as in Fig. 6 so that we see little difference between
the expected target output (denoted by blue dashed curves) and the neural-
network output (denoted by black asterisk curves). This might reveal the ex-
cellent approximation ability of Bernoulli neural network trained by WDD and
SAD algorithms [8,9,10]. Before ending this section, it is worth mentioning that,
after training, we select 200 untrained points (with boundary-points unconsid-
ered [17]) to test the generalization ability of the Bernoulli neural network,
and the results are excellent which are shown in the last column of Table 1.

6 Conclusions

To remedy the weaknesses of conventional BP neural networks, a novel type of
forward neural network is constructed by using the linearly-independent
Bernoulli polynomials to be the hidden-layer activation functions. Different from
using the conventional gradient-based methods [2,5,7,8,9] for BP iterative-
training algorithms, we propose a pseudoinverse-based weights-direct
-determination (WDD) method [9,10], which could now calculate the neural-
network weights directly (just in one step and with no more lengthy/
time-consuming BP iterative training procedure). Moreover, based on the
weights-direct-determination method, a structure-automatic-determination al-
gorithm is further proposed for the neural network, which could determine the
optimal number of hidden-layer neurons much more effectively, rapidly and de-
terministically. Theoretical analysis and simulation results have both substanti-
ated the efficacy and superiority of the proposed Bernoulli neural network and
algorithms.
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Appendix: The 5th through 20th Bernoulli Polynomials
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Abstract. Applying white noise analysis theory, an extension of the
stochastic dynamical system involving generalized Brownian function-
als and anticipating diffusion coefficient is proposed, moreover, as it has
been shown in the proof of theorem 3.1 that the Picard’s iteration works
rather well in the U -functional method in the extended system.

Keywords: White noise calculus; U -functional; Generalized Brownian
functional; Wick product.

1 Introduction

Usually, a stochastic dynamical system may be viewed as a stochastic differential
equation where some of the coefficients are subject to white noise perturbations.
Perhaps the most celebrated example is the diffusion system formulated by the
Ito type stochastic deferential equation as below:

dXt = b(t, Xt)dt + σ(t, Xt)dBt, (1)

where Bt = B(t, ω) denotes “white noise”(i.e. Brownnian motion), which repre-
sents random fluctuations due to changes in the environment.

Quite often, however, the nature of the noise is not “white” but biased in some
sense. Applying Hida’s white noise analysis theory as a framework, in this article,
we set up a new model which extended the system of (1.1). In our extended
stochastic system, not only the noise is not need to be “white”( in fact, it may
be any generalized Brownian functional), but also the diffusion coefficient is not
need to be non-anticipating. As well as, we point out that in the U -functional
method the Picard’s iteration works rather well.

2 White Noise Spaces

Since white noise is so fundamental for our construction, it is necessary to recall
some basic facts about Hida’s white noise calculus and one can refer to [1-3] for
some more details.
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Let S(R) be the Schwartz space of real-valued rapidly decreasing functions
on R, Its dual space S′(R) consists of the tempered distributions. Then we have
get the following Gel’fand triple:

S(R) ⊂ L2(R) ⊂ S′(R).

Let µ be the standard Gaussian measure on S′(R), i.e. its characteristic func-
tion is given by ∫

S′(R)

ei<x,ξ>dµ(x) = e−
1
2 |ξ|22 , ξ ∈ S(R),

where < ·, · > is the pairing of S′(R) and S(R), and | · |2 is the norm of L2(R).
We call (S′(R), µ) the white noise space.

Denote (L2) = L2(R), for any p ≥ 0, define the Sobolev space as bellow:

(S)p =
{

ϕ ∈ (L2) : ‖ϕ‖2,p = ‖Γ (A)pϕ‖2 <∞
}

,

where A = −( d
dx )2 + x2 + 1 and Γ (A) is the operator of second quantization

of A. Let (S)∗p be the dual space of (S)p, and (S)∗ be the inductive limit of
{(S)∗p : p ≥ 0}, (S) be the projective limit of {(S)p : p ≥ 0}. We have the
following continuous inclusion maps:

(S) ⊂ (S)p ⊂ (L2) ⊂ (S)∗p ⊂ (S)∗, p ≥ 0.

We will call (S) the space of test functionals and (S)∗ the space of Hida distri-
butions(or generalized Brownian functional).

For any ϕ ∈ (L2), the following S-transform was introduced by Hida(1980):

S[ϕ](ξ) = e−
1
2 |ξ|22

∫
S′(R)

e<x,ξ>ϕ(x)dµ(x), ξ ∈ S(R).

Noticing, for any ξ ∈ S(R), exp(< ·, ξ >) ∈ (S), we can extend the S-transform
to (S)∗. We will call this extension the U -transform. For any Φ ∈ (S)∗, its
U -functional is defined to be

U [Φ](ξ) = e−
1
2 |ξ|22 � Φ, e<·,ξ> �, ξ ∈ S(R),

where � ·, · � is the pairing of (S)∗ and (S). We can define the Wick product
Φ � Ψ of two Hida distributions Φ and Ψ as the Hida distribution with the U -
functional given by

U [Φ � Ψ ](ξ) = U [Φ](ξ) · U [Ψ ](ξ), ξ ∈ S(R).

For any ϕ ∈ (L2), the Hida derivative ϑtϕ of ϕ is defined as

ϑtϕ = S−1 δ

δξ(t)
Sϕ, ϕ ∈ (L2),
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where t ∈ R and δ
δξ(t) is the Frchet derivative. Denote ϑ∗

t the adjoint operator
of ϑt, the following integration is called Hitsuda-Skorohod integration:∫ t

0

ϑ∗
t ϕ(s)ds, ϕ ∈ L2(R, (L2)).

where ϕ(t) is not need to be non-anticipating.

3 Hitsuda-Skorohod Type Model with Anticipating
Diffusion

Lemma 1. [2] Suppose ϕ(t) is non-anticipating and E(
∫ 1

0
ϕ(t)2dt) <∞. Then∫ 1

0

ϕ(t)dB(t) =
∫ 1

0

ϑ∗
t ϕ(t)dt. (2)

Remark. The left hand side of (2) is Ito integral. Lemma 1 shows that the
Hitsuda-Skorohod integral is an extension of Ito integral and the integrand func-
tion in the right hand side is not need to be non-anticipating.

In the sense of Hitsuda-Skorohod integral, the model (1) can be extended as
the following, where the diffusion is not need to be non-anticipating.

dM∗(t, ω)
dt

= f(t, M∗(t, ω)) + ϑ∗
t σ(t, M∗(t, ω)) with M∗(0, ω) = M∗

0 . (3)

Equivalently, (3) can be written as below:

M∗(t, ω) = M∗
0 +

∫ t

0

f(s, M∗(s, ω))ds +
∫ t

0

ϑ∗
sσ(s, M∗(s, ω))ds. (4)

We will point out that in the U -functional method, the Picard’s iteration
works rather well for the model (4).

Theorem 1. In model (4), let f, σ : [0, 1] × (S)∗ → (S)∗ satisfy the following
conditions:

(i) For any x ∈ R and ξ ∈ S(R), we have that∫ 1

0

|U [f(t, x)](ξ)|dt <∞,

∫ 1

0

|U [σ(t, x)](ξ)|dt <∞.

(ii) For any Φ ∈ (S)∗, there exist some p ≥ 1 such that f(t, Φ), σ(t, Φ) ∈ (S)∗p,
for all t ∈ [0, 1].

(iii) There exist constants C1, C2 > 0 such that for any Φ1, Φ2 ∈ (S)∗, ξ ∈
S(R) and t ∈ [0, 1], we have

|U [f(t, Φ1)](ξ)− U [f(t, Φ2)](ξ)|2 ≤ C2
1 |U [Φ1](ξ) − U [Φ2](ξ)|2,

|U [σ(t, Φ1)](ξ)− U [σ(t, Φ2)](ξ)|2 ≤ C2
1 |U [Φ1](ξ)− U [Φ2](ξ)|2.
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Then there exists uniquely a weak solution of the integral equation (4) in the
space (S)∗ of generalized Brownian functionals.

Proof. At first, we prove the uniqueness. Suppose that both M∗
t and M̃∗

t in (S)∗

are the solutions of (4). Denote Ft and F̃t are the U -functionals of M∗
t and M̃∗

t ,
respectively. From the Lipschitz condition of (iii), we have that

|Ft(ξ)− F̃t(ξ)| ≤
∣∣∣∣ ∫ t

0

U [f(s, M∗
s )](ξ)ds −

∫ t

0

U [f(s, M̃∗
s )](ξ)ds

∣∣∣∣
+
∣∣∣∣ ∫ t

0

ξ(s)U [σ(s, M∗
s )](ξ)ds −

∫ t

0

ξ(s)U [σ(s, M̃∗
s )](ξ)ds

∣∣∣∣
≤ C1

∫ t

0

|U [M∗
s ](ξ) − U [M̃∗

s ](ξ)|ds

+ C2|ξ|∞
∫ t

0

|U [M∗
s ](ξ)− U [M̃∗

s ](ξ)|ds

= (C1 + C2|ξ|∞)
∫ t

0

|Fs(ξ)− F̃s(ξ)|ds.

where |ξ|∞ = sup |ξ(t)| : 0 ≤ t ≤ 1. By Gronwall’s inequality, we have Ft(ξ) =
F̃t(ξ) for any ξ ∈ S(R), This means that M∗

t = M̃∗
t . Now we define

M
∗(0)
t = M∗

0 , M
∗(n+1)
t = M∗

0 +
∫ t

0

f(s, M∗(n)
s )ds+

∫ t

0

ϑ∗
sσ(s, M∗(n)

s )ds, n ≥ 0.

Denote F
(n)
t the U -functional of M

∗(n)
t , then

F
(0)
t = M∗

0 ,

F
(n+1)
t (ξ) = M∗

0 +
∫ t

0

U [f(s, M∗(n)
s )](ξ)ds+

∫ t

0

ξ(s)U [σ(s, M∗(n)
s )](ξ)ds, n ≥ 0.

From Lipschitz condition (iii), we have

|F (n+1)
t (ξ) − F

(n)
t (ξ)| ≤ (C1 + C2|ξ|∞)

∫ t

0

|F (n)
t1 (ξ)− F

(n−1)
t1 (ξ)|dt1.

So, for any t ∈ [0, 1] and ξ ∈ S(R), we have

|F (n+1)
t (ξ)− F

(n)
t (ξ)|

≤ (C1 + C2|ξ|∞)n

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

|F (1)
tn

(ξ)− F
(0)
tn

(ξ)|dtndtn−1 · · ·dt1

≤(n!)−1(C1+C2|ξ|∞)ntn
(∫ 1

0

|U [f(s, M∗
0 )](ξ)|ds+|ξ|∞

∫ 1

0

|U [σ(s, M∗
0 )](ξ)|ds

)
.

Consequently,

sup
0≤t≤1

|F (n+1)
t (ξ)− F

(n)
t (ξ)|

≤ (n!)−1(C1 + C2|ξ|∞)n

(∫ 1

0

|U [f(s, M∗
0 )](ξ)|ds + |ξ|∞

∫ 1

0

|U [σ(s, M∗
0 )](ξ)|ds

)
.
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By condition (i), we get that {F (n)
t (ξ) : n ≥ 0} is convergent uniformly on [0, 1]

for any ξ ∈ S(R). Set Ft(ξ) = limn→∞ F
(n)
t (ξ) and note that

F
(n)
t (ξ) = e−

1
2 |ξ|22 �M∗(n), e<·,ξ> � .

So
lim

n→∞�M
∗(n)
t , e<·,ξ> �= Ft(ξ)e−

1
2 |ξ|22 .

Since span{e<·,ξ> : ξ ∈ S(R)} is dense in (S), then we have proved that
{M∗(n)

t : n ≥ 0} is convergent uniformly in a dense subspace of (S).
On the other hand, from condition (ii), there exist constants D1, D2 > 0, such

that
|F ∗(n)

t (ξ)| ≤ D1exp(D2|ξ|2,p),

this means that there exist constants q > 0 and L > 0, such that

‖M∗(n)
t ‖2,−q ≤ L, ∀t ∈ [0, 1], n ≥ 0,

where ‖ · ‖2,−q is the norm on Sobolev space (S)∗q . Then {M∗(n)
t : n ≥ 0} is

convergent weakly in (S)∗ with limit M∗
t , that is

lim
n→∞�M

∗(n)
t , ϕ�=�M∗

t , ϕ�, ϕ ∈ S(R),

or
Ft(ξ) = e−

1
2 |ξ|22 �M∗

t , e<·,ξ> � ϕ ∈ S(R).

This means that Ft is the U -functional of M∗
t and we have

Ft(ξ) = M∗
0 +

∫ t

0

U [f(s, M∗
s )](ξ)ds +

∫ t

0

ξ(s)U [σ(s, M∗
s )](ξ)ds.

That is

M∗
t = M∗

0 +
∫ t

0

f(s, M∗
s )ds +

∫ t

0

ϑ∗
sσ(s, M∗

s )ds.

4 Model Involving Generalized White Noise Functional

Theorem 2. Let Ψ ∈ (S)∗, then ϑ∗
t Ψ = B′(t) � Ψ , where B(t, ω) =< ω, I[0,t] >,

t ≥ 0, ω ∈ S′(R) is Brownian motion, B′(t) is the Hida derivative of B(t), � is
the Wick production.

Proof. For any Φ1, Φ2 ∈ (S)∗, ξ ∈ S(R), we have

U [Φ1 � Φ2](ξ) = U [Φ1](ξ) · U [Φ2](ξ).

Then
U [B′(t) � Ψ ](ξ) = U [B′(t)](ξ) · U [Ψ ](ξ).
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Note that U [B′(t)](ξ) = ξ(t), and then

U [B′(t) � Ψ ](ξ) = ξ(t) · U [Ψ ](ξ), ξ ∈ S(R).

On the other hand,

U [ϑ∗
t Ψ ] = ξ(t) · U [Ψ ](ξ), ξ ∈ S(R).

Consequently,
U [ϑ∗

t Ψ ] = U [B′(t) � Ψ ](ξ) ξ ∈ S(R).

That is ϑ∗
t Ψ = B′(t) � Ψ .

From Theorem 2, we have ϑ∗
t σ(s, M∗(s)) = B′(s) � σ(s, M∗(s)), this means

that (4) is equal to

M∗(t) = M∗
0 +

∫ t

0

f(s, M∗(s))ds +
∫ t

0

B′(s) � σ(s, M∗(s))ds. (5)

Note that B′(t) ∈ (S)∗, for any generalized white noise functional θ(t) ∈ (S)∗,
the integral

∫ t

0
θ(s)�σ(s, M∗(s))ds makes sense. Then the model can be extended

as the following form:

M∗(t) = M∗
0 +

∫ t

0

f(s, M∗(s))ds +
∫ t

0

θ(s) � σ(s, M∗(s))ds. (6)

Remark. Since θ(s) in model (6) may be any generalized white noise functional,
so the white noise which results in the random perturbations is not need to be
“white” in our extended system.

Similarly, we can prove the following result.

Theorem 3. In model (6), suppose that f and σ satisfy the conditions (i)-(iii)
in theorem 1 and θ : [0, 1]→ (S)∗ satisfy:

(A) sup0≤t≤1 |U [θ(t)]|(ξ) <∞, ξ ∈ S(R);
(B) There exists q ≥ 1, such that for all 0 ≤ t ≤ 1, θ(t) ∈ (S)∗q .
Then there exist uniquely a weak solution of the integral equation (6) in the

space (S)∗.
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Abstract. A novel approach using Hidden Markov Model (HMM) for
the task of finding prices of products on internet sites is proposed in this
paper. The proposed Information Extraction System based on HMM
(IESHMM) utilizes HMM for its capability to process temporal informa-
tion. The proposed IESHMM first processes web pages that are returned
from search engines and then extracts specific fields such as prices, de-
scriptions, locations, images of products, and other information of inter-
est. The proposed IESHMM is evaluated with real-world problems and
compared with a conventional method. The results show that the pro-
posed IESHMM outperforms the other method by 22.9 % and 37.2% in
terms of average recall and average precision, respectively.

1 Introduction

Information extraction can be defined as a process of filling fields in a database by
automatically extracting information or knowledge from unstructured or semi-
structured documents. Web pages are not well structured and there is no schema
to describe the contents of web pages. Models can be largely categorized into
three classes for information extraction (IE): dictionary-based models[1], rule-
based models[2], and statistics-based models [3]. When compared with many
other techniques used in statistics-based methods, the Hidden Markov Model
(HMM) has a strong theoretical foundation with a well-established training al-
gorithm and HMM can process data quite robustly. In fact, HMMs have been
successfully applied to information extraction problems including various speech
recognition tasks. The HMM implemented by Leek [3] was intricately designed
for the task of extracting (gene name and chromosome location) pairs from
scientific abstracts in the medical domain. The success of a HMM lies in its
dependence on parameter estimation algorithms that allows training of data-
dependent parameters.

The process of extracting information from the result pages yielded by a
search engine is termed as web information extraction. Earlier studies relied on
training and human assistance or generating extraction rules for web pages. Re-
cently, several automated or nearly automated IE methods have been proposed

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 52–59, 2009.
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as follows: Product extraction from the Web (PEWEB) [6], Object mining and
extraction system (OMINI) [8] and Information extraction based on Pattern Dis-
covery (IEPAD) [7]. IEPAD parses the HTML content of the web pages into a
string and then uses a Patricia(PAT) tree with some heuristics to find the can-
didate patterns. The best pattern can then be chosen by the human user. Thus,
IEPAD is a near-automated extraction method. This method shows a limited
performance due to limitations of the PAT tree. OMINI, meanwhile, builds a tag
tree from an input web page, and then applies some heuristics to extract a sub-
tree that may contain the data records of interest. A separator that is found by
another set of heuristics is used to segment the sub-tree into data records. The
separator contains only one HTML tag. However, it is insufficient to separate
the data region to extract the data record. Rather than building a HTML tree
as in the other approaches, PEWEB takes advantage of entropy measurement to
identify a product region containing potential products. The product description
results are the sub-tree node that has a high entropy ratio.

In this paper, we propose an Information Extraction System based on HMM,
called IESHMM, to extract prices of goods on the internet. From a large number
of web pages relevant to prices of goods appearing on the internet, the proposed
approach can help to extract the prices of goods of interest with maximal accu-
racy. When the numerous prices on web pages regarding a good of interest can
be transformed into structured data and stored in a database, users will be able
to obtain the information accurately.

The remainder of this paper is organized as follows: A brief review of HMM
is presented in Section 2. Section 3 presents the proposed IESHMM. Section 4
describes an actual implementation of IESHMM and experiments involving a
practical price extraction problem and presents results including comparisons
with a conventional PEWEB algorithm. Finally, Section 5 concludes the paper.

2 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model in which the system
is assumed to be a Markov process with unknown parameters and the hidden
parameters are found from the observable parameters. In a HMM, the state is
not directly visible, but variables influenced by the state are visible. Each state
has a probability distribution. HMMs are especially useful for their applications
in temporal pattern recognition including speech recognition.

A discrete output, a first order HMM, is a finite state automaton and can
be represented by a 5-tuple {S, V, Π , A, B} where S is a set of values for the
hidden states, S = {s1...sN}, N is the total number of possible states; V is a set
of values for the observations V = {v1...vN}, M is the total number of possible
observation values; Π is a set of initial probabilities for all the states, Π = {πi},
i = 1, 2, ..., N; A is a mapping defining the probabilities of each state transition
A = {P (q → q′)} ;and B is a mapping defining the emission probability of each
observation value on each state, B = {P (q ↑ σ)} [10].
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There are three basic problems to solve for a HMM:

– Problem 1: Given the observation sequence, O = O1O2...OT , and a model,
λ = (A, B, Π), how to efficiently compute P (O |λ), the probability of the
observation sequence, given the model.

– Problem 2: Given the observation sequence, O = O1O2...OT , and a model,
λ = (A, B, Π), how to choose a corresponding state sequence, Q = q1q2...qT ,
which is optimal to generate the observation sequence. The optimal measure
can be the maximum likelihood.

– Problem 3: How to adjust the parameters λ = (A, B, Π) to maximize the
likelihood of all observation sequences.

In this paper, we mainly focus on Problem 3 for training model parameters
and Problem 2 for extracting data records.

3 Information Extraction System Based on HMM

The proposed IESHMM shown in Fig. 1 consists of five components such as
Page retrieval, Segmentation and Parser, Segment filter, Observation creator,
and Extractor.

The input of the proposed IESHMM is the URLs of a search engine’s interface,
which contains the names of the product types. The output of the system is the
list of extracted slots of each product: name, price, image, and URL. Usually a
web page is a HTML document that contains a sequence of tag delimited data
elements. The HTML segment tree is built by the nested blocks of the HTML
tags in the web page. A segment is a group of elements and is used as a unit

Fig. 1. Overview of the proposed information extraction system
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Fig. 2. A HTML document and the corresponding segment tree

in our model. Four major segments are paragraph, table, list, and heading. A
HTML document is the largest segment. An example of a HTML page and the
corresponding segment tree is shown in Fig. 2. The product region is identified
by finding the existence of multiple similar nodes of a tag node with the following
properties:

– All nodes have the same parent.
– The nodes are adjacent.
– The node contains the name of the product or the currency units.

The segment filter decides which segment belongs to the product segments. The
adjacent segments containing product names, description, images, and prices are
then grouped into a larger segment for the observation creator. For the purpose of
IE, a segment is represented as an input observation for a trained HMM. Each type
of product has a different HMM, which has the same HMM structure but different
initial and transition probabilities. Extracted slots are modelled by target states.
The most probable state token is then found by using the Viterbi algorithm [10].
The HMM employed in this approach is used to extract multiple slots simultane-
ously while the HMM adopted in [9] uses a separate HMM for each slot.

In order to train the HMM model for each product of interest ( for example,
laptop, USB flash drive, web camera, and computer mouse), observations that
consist of 100 HTML pages obtained by the returns from a commercial search
engine are used as a training data set. The maximum likelihood (ML) algorithm
is generally used to label the training data and the Baum-Welch algorithm is used
for partially labelled or unlabelled training data. Three parameters are required
in the training process: the initial probability π, the transition probability matrix
A, and the emission probability matrix B.

πi =
I (i)

N∑
j=1

I (j)
, 1 ≤ i ≤ N. (1)
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Fig. 3. A trained HMM for extracting usb flash drive problem

where I(·) is the initial probability that a sequence starts from a specific state
and N is the number of states included in the model.

Each element aij in the transition probability matrix A is defined as follows:

aij =
Ci,j

N∑
k=1

Ci,k

, 1 ≤ i, j ≤ N, (2)

where Ci,j is the number of transitions that transmit from state S(i) to state
S(j).

The emission probability matrix element bj(Vk) is defined as follows:

bj (Vk) =
Ej (Vk)

M∑
i=1

Ej (Vi)
, 1 ≤ j ≤ N, 1 ≤ k ≤M, (3)

where Ej(Vk) is the number of times that one token Vk is emitted at specific
S(j).

The trained HMM used in extracting “ usb flash drive” problem is illustrated
in Fig. 3. The emission probability of one observation is the sum of emission
probabilities of each token in the block. That is,

bj (Ot) =
K∑

k=1

bj (Otk), (4)

where K is the number tokens in the observation.
The Viterbi algorithm is then applied to find the state sequence of the maximal

probability that matches the observation block sequence.

4 Experiments and Results

In this section, we demonstrate the performance of the proposed IESHMM using
real world data in comparison with a conventional system, PEWEB, which is
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a state-of-art web information extraction system based on HTML tag structure
analysis.

The data set for training each product contains observations of 100 URLs
returned from a general-purpose search engine, Google, and the next 100 URLs
are prepared for testing. Some typical web sites with sufficient information about
product features and prices are listed in Table 1 while other web sites with irrele-
vant features are omitted. The trained HMM used in the performance evaluation
includes 8 states for labeling.

4.1 Measurement for Performance Evaluation

The performances are evaluated in terms of the precision and recall [4], which
are widely used to evaluate information retrieval and extraction systems. These
are defined as follows:

Precision =
CE

EO
, Recall =

CE

CO
,

where CE is the total number of correctly extracted observations, EO is the
total number of extracted observations on the page, and CO is the total number
of correct observations (target observations). Precision defines the correctness
of the data records identified while recall is the percentage of the relevant data
records identified from the web page.

4.2 Performance Evaluation

The proposed IESHMM is evaluated and compared with PEWEB [5] on a real-
world problem. In PEWEB, a product description or a data record is considered
as a block containing both the product information and the noisy information.
This implies that it contains not only useful information such as : name, manufac-
turer, price, images, and descriptions, but also advertisements, links, navigation
components, etc. In some cases, an extracted data record contains two different
products. Thus, a genuine data record can not be properly produced from the
extraction. That is, it may not be advisable to save a genuine data record from
the extraction in separate slots in the database for later use. Unlike PEWEB,
the proposed IESHMM can handle the web pages deeper, because it is able to
extract the specific field of the data record: image, name, price, and URL without
including noisy objects.

Table 1 illustrates results of the performance comparison between the pro-
posed IESHMM and PEWEB. A total of 18 web sites containing different for-
mats and product information are evaluated in this experiments. In Table 1,
column 2 lists the URL of each site. Due to long URLs of most pages, some
details are omitted. The listed web pages are returned from a commercial search
engine, Google, and the web pages include sufficient information about product
features including prices, images, and descriptions regarding the specific prod-
ucts such as usb flash drive, laptop, web camera, computer mouse, etc. In our
experiments, some products related to computers are used as sample queries to
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Table 1. Performance Comparison between IESHMM and PEWEB

No. web sites Product IESHMM PEWEB
Rtn Correct Rtn Correct

1 www.flash-memory-store.com 21 16 16 26 20
2 www.tigerdirect.com 19 16 16 11 2
3 www.supermediastore.com 32 30 28 38 29
4 www.usbflashdrivestore.com 25 24 24 27 24
5 www.buy.com 15 14 14 9 0
6 www.ecost.com 25 22 22 25 25
7 www.overstock.com 11 10 10 14 10
8 usbflashstore.com 25 24 24 27 25
9 shopping.aol.com 16 16 16 9 7
10 www.pricespider.com 10 10 10 15 0
11 www.usanotebook.com 27 21 21 28 27
12 www.dealtime.com 21 17 17 16 5
13 www.geeks.com 28 12 12 55 28
14 www.nextag.com 11 10 10 15 0
15 www.kenzo.com 16 13 13 20 16
16 www.mysimon.com 25 21 21 0 0
17 www.pricewatch.com 15 15 15 33 15
18 computing.kelkoo.co.uk 20 17 17 5 5

Total 362 308 306 378 238
Recall(Rc) and Precision(Pr) Rc : 84.5% Rc : 65.7%

Pr : 99.3% Pr : 62.1%

evaluate the performance of information extraction systems. Column 3 shows
the number of target products available in the corresponding URL. Columns 4
and 5 are the number of extracted products and correctly extracted products of
the proposed IESHMM, respectively. The next 2 columns are the results of the
PEWEB system.

As shown in Table 1, the average recall obtained by the proposed IESHMM
is 84.5% while recall of 65.7% is obtained by PEWEB. The improvement of
IESHMM over PEWEB in terms of the average recall is 18.8%. With respect to
the extraction precision, the proposed IESHMM proves to be a more powerful
tool for the information extraction. The average precision obtained by the pro-
posed IESHMM is 99.3% while precision of 62.1% is obtained by PEWEB. The
improvement of IESHMM over PEWEB in the average precision is 37.2%.

5 Conclusion

In this paper, a novel and effective information extraction method using HMM
to extract product prices from internet is proposed. This method can correctly
identify the data region containing a product record. When a data region con-
sists of only one data record, most of the conventional algorithms fail to correctly
identify the data region. Furthermore, most web pages fail when one or more
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advertisements separate the series of data records to two or more data records.
The proposed IESHMM works correctly in both of the above cases. A vital ad-
vantage of the proposed IESHMM method is that the extracted data record is
put into a suitable collection format that can be easily stored in a relational
database. This collection data can be further used for various knowledge dis-
covery applications. The proposed IESHMM method overcomes the drawbacks
of the conventional PEWEB in processing HTML contents. Experiments show
that the proposed IESHMM outperforms the PEWEB method significantly in
terms of precision and recall.
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Abstract. The major problem of existing intrusion detection using neural  
network models is recognition of new attacks and low accuracy. The paper de-
scribes an intrusion detection method based on workflow feature definition ac-
cording to KDD cup 99 types with feed forward BP neural network. The work-
flow can define new attacks sequence to help BP neural network recognize new 
attacks. The method takes network traffic data to analyze and classify the be-
haviors of the authorized users and recognize the possible attacks. The experi-
ment results show that the design is effective.  

Keywords: IDS, BP, Neural Network, Workflow.    

1   Introduction 

Network intrusion detection is an important area in computer security in recent years. 
It is difficult for most of the currently available network security techniques to cope 
with the dynamic and increasingly complex nature of the attacks on distributed com-
puter systems. Intrusion Detection System (IDS) still faces some challenges such as 
low detection rates, high false alarm rates and requirement of heavy computational 
power. The major problem of existing models is recognition of new attacks, low accu-
racy and system adaptability. 

To overcome these difficulties, there are lots of techniques for intrusion detection 
by Neural Networks. Intrusion detection system using evolutionary neural networks 
can predict attacks in a network environment [2]. Strategy of dynamic change learn-
ing rate value in BP neural network improves the learning rate in BP network [3]. 
Fuzzy adaptive resonance theory neural network and rule heuristics are used to build a 
model of intrusion detection in database security management [4]. Intelligent methods 
for IDS are hot spots in the field of network security. The genetic neural network 
based on the genetic algorithm is applied in IDS [5]. The method of recognition of 
attack class combines principal component neural networks with multilayer  
perceptrons [6]. Intrusion detection system based on self-organizing maps and back 
propagation network is used for visualizing and classifying intrusion [7]. Innovative 
machine of learning algorithm utilizes semi-parametric learning model and adaptive 
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boosting techniques to reduce learning bias and generalization variance in difficult 
classification [8]. Feature selection is important for intrusion detection system. There 
are some methods of identifying intrusion and normal pertinent features and evaluat-
ing the applicability of these features [9]. Multilayer perceptions for classification of 
network intrusion detection data are characterized by skewed class distributions. In-
vestigated methods include oversampling, under sampling and generating artificial 
data records [10]. 

This paper describes an intrusion detection method based on workflow feature 
definition with feed forward BP neural network. The workflow can define new attacks 
sequence to help BP neural network to recognize new attacks. The method takes net-
work traffic data to analyze and classify the behaviors of the authorized users and 
recognize the possible attacks.  

2   Dataset Description  

2.1   Attack Types from KDD 99 

Many researchers use the datasets in the KDD Cup 99 intrusion detection competi-
tion to evaluate machine learning techniques. The KDD Cup 99 intrusion detection 
datasets are based on the 1998 DARPA initiative. The 1998 DARPA Intrusion De-
tection Evaluation Program was prepared and managed by MIT Lincoln Labs. They 
set up an environment to acquire nine weeks of raw TCP dump data for a local-area 
network simulating a true Air Force environment and peppering it with multiple 
attacks. Additional machines are used to generate traffic and a sniffer that records 
all network traffic using the TCP dump format. The simulation runs for seven 
weeks. 

A connection is a sequence of TCP packets starting and ending at some well de-
fined times, between which data flows to and from a source IP address to a target IP 
address under some well defined protocol.  Each connection is labeled as either nor-
mal, or as an attack, with exactly one specific attack type. The traffic is made up by 
normal connections and attacks that fall into one of five categories:  

Probing: surveillance and other probing, preparing the attack, for example: ping 
sweeping, port scan, probing the FTP, SMTP, HTTP service ICMP scanning and 
so on. 

Denial of Service (DOS): clogs up so much memory on the target system that can-
not serve its users, for example: ping of death, teardrop attacks, SYN-Flood attacks, 
Smurf attacks, UDP-Flood attacks, Distributed DOS attacks and so on.  

Remote to Local (R2L): unauthorized access from a remote machine, for example: 
guessing password, restarting your computer, downloading your files, control your 
computer and so on. 

User to Root (U2R): unauthorized access to local super user (root) privileges, for 
example: buffer overflow attacks, rootkit Trojan and so on. 

Other Type: including unknown attack types and reserved attack types. The train-
ing attack type is shown as table 1: 
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Table 1. Training attack types with unknown feature from KDD cup 99 

DOS R2L U2R Probing Other Type 

back ftp_write buffer_overflow ipsweep mobile attack 
land guess_passwd loadmodule nmap new attack 

neptune imap perl portsweep unknown attack 
pod multihop rootkit satan reserved attack 

smurf phf    
teardrop spy    

 warezclient    
 warezmaster    

2.2   Input Vectors with Workflow Feature Definition 

The BP algorithm needs a set of examples of network behaviour. Where vector P is an 
input to the network. 

( )11,11 log bpIWsiga +=  (1) 

The output vector is represented by a in equation 1. The p is multiplied by the ma-

trix weight w to form wp and added by bias b . The transfer function is logsig. 

The length of input vector P is 64 bits. The vector P includes four parts as follows: 
State: record invader attack state, for example: TCP, UDP, ICMP, 

SYN_RECEIVED, ESTABLISHED, packet size and so on.  
Intention: recording invader intention action, maybe not happen actually and 

maybe will really happened, for example: download, key record, upload, inserting 
remote thread and so on. 

Workflow: recording invader’s actually attack steps. It must be happened, for ex-
ample: attack_ID with prior pointer and next pointer. The workflow is multi structure 
with double-link node. 

Error Message: recording computer’s error message caused by invader to help IDS 
find potential invade, for example: network unreachable, host unreachable, time ex-
ceed and so on. The input vector P is shown as table 2: 

Table 2. Input vectors according to attack workflow feature definition 

State(16bits) Intention (16bits) Workflow(16bits) Error message(16bits) 

TCP/UDP/ICMP Download intention attack head  Network unreachable 
syn_received Key record intention Prior attack pointer Host unreachable 
established Upload intention Attack_ID_1  Proto unreachable 

packet size Insert thread  next attack pointer Source route failed 

packet sequence Register Table Prior attack pointer Source host isolated 

port  IDT hooking Attack_ID_2  Time exceed 
address type SSDT hooking next attack pointer Bad length 
Other state Other intention Other workflow Other error message 
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2.3   Attack Workflow Feature Definition Analysis with Windows Workflow  

The workflow structure is a double-linked list. The structure is helpful when you want 
to build the attack event sequence. It's easily to find the prior attack event or next 
attack event while you locate one of the attack events. You can also build binary tree 
structure or crossing double-linked list. Different structures indicate different type 
attack. When the input vectors can give accurate description of attack event, the neu-
ral network can get high recognize percentage. 

We use Windows Workflow Foundation (WF) to help us analysis the workflow at-
tack feature definition. WF is part of the .NET Framework 3.5 for Visual Studio 2008. 
WF makes it possible, and for many workflow scenarios, even easy to create robust, 
manageable workflow-based applications. 

WF allows you to create two different types of workflows: sequential, and state 
machine. Sequential workflows provide a structured series of steps in which one ac-
tivity leads to another, and steps generally occur immediately one after another. State 
machine workflows provide a set of states; transitions between the states define the 
behavior. In general, state machine workflows react to events which move the work-
flow’s current activity from one state to another. 

We can choose sequential or state machine workflow project to analysis the attack 
workflow feature definition. Make sure the relationship between the state and feature. 
The accurate attack workflow feature definition can improve recognize efficiency of 
neural network.  

2.4   Target Vectors of Feed Forward BP 

Vector T is the corresponding target output. As each input is applied to the network, 
the network output is compared to the target.  

The target T has 26 vectors according to training attack types.This element was 
used during training as the target output of the neural network. The target vector is 
26-demension column vector. Each vector T ranges from zero to one. When the corre-
sponding bit value is one, it indicates the target attack type would happen.  

The vector T is defined as follows: 
Target_DOS_back    = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]T  
Target_DOS_land    = [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]T  
Target_DOS_neptune = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]T  
The other target attack vectors can be done in the same way. 

3   Training Procedure with Feed Forward BP Network in IDS 

3.1   Architecture of Feed Forward BP in IDS  

The architecture of Feed Forward BP is three-layer structure. It’s train function is 
traingdx and perform function is sse. 

BP_IDS_net=newff(minmax(P),[10,26],{'logsig','logsig'},'traingdx'); 
The feed forward BP neural network architecture is shown as Figure 1. 
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Fig. 1. Two-layer feed forward BP network architecture 

3.2   Training Neural Network with Corrected Attack Dataset  

The BP neural network was trained with the input data. When the generated output 
results don’t satisfy the target output result, adjust the error from the distortion of 
target output.  

We import KDD Cup 99 correct data set to SQLserver2005, use business intelli-
gent development visual studio to build analysis services. After analysis of the cor-
rected data, we build our own corrected attack set according to predefined train attack 
types and target vectors. The corrected attack data set comes from national research 
centre of anti computer intrusion and virus defence. The number of attack records is 
twenty thousand items.  

The quality of corrected attack set influence greatly the accurate target vectors rec-
ognize. We retrain or stop training the network depending on this error value. Once 
the training is over, we store the knowledge it acquired. When the train is over, we 
can detect the abnormal behaviour. The output will express the whether the input 
pattern is normal behaviour or not. 

The algorithm should adjust the network parameters in order to minimize the sum 
square error. The italic letter t is target value and a is output value in equation 2. 
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3.3   Training Network with Test Attack Dataset 

The test data of KDD Cup 99 has two data sets. One is complete dataset with 406M, 
the other amount database is 10 percent of the complete database about 42.6M. Be-
cause we use another corrected database different from KDD Cup 99, we can’t use the 
test dataset as training data. But we modify our test attack data set according to the 
test data structure of KDD Cup 99. 

In order to simulate the real attack, we insert noise data into the corrected attack 
dataset. The noise average value set to zero. The noise mean square error ranges from 
0 to 4. We use different noise datasets to simulate different attack. The relationship 
between the noise level and recognition errors percentage of IDS is shown as figure 2.  

Real lines indicate that the recognition neural network is trained by corrected  
attack dataset and test attack dataset with noise data. Broken lines show that the rec-
ognition neural network is only trained by single corrected attack dataset. The multi-
training method can decrease the recognition errors percentage. 
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Fig. 2. The relationship between the noise level and percentage of recognition errors 

4   Results Analysis 

The BP neural network has 64 bits input vectors which indicate different attack fea-
ture workflow. We changed these input vectors into double values. The double values 
are show as the first graph in figure 3.  

The network should been trained and tested using different data sets. It is trained 
with corrected behaviours and test behaviours with some noise. The noise data is 
produced by random function which is shown as the second graph in figure 3. After 
being trained, the network can distinguish intruders including attack behaviours users 
and normal behaviours.  

The target vectors have output values 0 or 1 in the 26 output bits. Each one stands 
for different attack types from KDD cup 99 dataset. The output is shown as the third 
graph of figure 3.  

The fourth graph of the figure 3 indicates that the recognition neural network is 
trained by corrected attack dataset and test attack dataset with noise data. When the 
noisy level increase, the recognition errors percentage can grow correspondingly. 
When the noise level approach zero, the recognition percentage will improve 
greatly.  
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Fig. 3. Results of BP neural network for intrusion detection 

5   Conclusions 

BP neural networks with work flow features can be applied in IDS. The network can 
classify normal and abnormal attacks on intrusion detection system by training and 
learning. The noise level has influence on the recognition percentage. If it satisfies 
precise corrected dataset with attack workflow feature and low noise level, the results 
will be quite perfect. However, it’s difficulty to create perfect training test dataset. 
Even the users have wonderful dataset, which does not mean the network can find all 
kinds of network intrusion attack. Our research on virus using rootkit technology 
describes that it’s a long way for anti-virus software or operating system, even the 
neural network, to find all unknown attack. Further research might be carried out to 
build a system with other types of work flow features. Moreover, a combination of 
more than one type of neural networks and features from malicious code can achieve 
better results. 
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Abstract. Researches on neuron response to external stimulation will
provide useful insights into neural mechanism of learning and cognitive
function of the brain. In this article, a neuron described by Hodgkin-
Huxley model receives periodic spike-train inputs. The responses to in-
puts with various frequencies and synaptic conductivities are simulated.
The results show that mode-locking response pattern is the main type of
response to periodic inputs, which is consistent with general knowledge.
The mode-locking patterns as the function of the frequency and synap-
tic conductivity are given and characteristics of mode-locking boundaries
are analyzed. Furthermore, how input frequency and synaptic conduc-
tivity influence HH neuron response is in detail explained respectively.

Keywords: Hodgkin-Huxley neuron, spike-train inputs, mode-locking,
synaptic conductivity.

1 Introduction

The Hodgkin-Huxley neuron, which was first derived as a model of the squid
giant axon, shows typical dynamics of a real neuron[1]. Since the model was pro-
posed, the response patterns of HH neuron under specific inputs have received
much attention and lots of relevant researches have been completed[2-7]. Some
researchers investigated the response patterns and the related bifurcation struc-
ture of the neurons stimulated by constant or periodic currents. For instance,
Lee and Kim found mode-locking and chaotic response patterns with sinusoidal
current inputs[3]. Huber and Braun discussed the dynamical behaviors with ex-
ternal chaotic random inputs[4]. However, A real neuron of the brain receives
synaptic current transmitted by synapse instead of constant or sinusoidal cur-
rent. It has been pointed out that long-term changes in the transmission proper-
ties of synapses provide a physiological substrate for learning and memory[5]. So
researches on dynamic characteristics of a HH neuron response to synaptic cur-
rents will provide useful insights into neural mechanism of learning and memory.
Some corresponding researches have been accomplished from this perspective.
Hasegawa analyzed response patterns with different kinds of spike-train inputs
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and offered the range of input periods and synaptic conductivities for mode-
locking patterns[8]. In this paper, more detailed simulations with some differ-
ent settings are implemented and a more accurate parameter ranges are given.
Specifically speaking, the mode-locking patterns as the function of the frequency
and synaptic conductivity are given and characteristics of mode-locking bound-
aries are analyzed. Furthermore, how input frequency and synaptic conductivity
influence HH neuron response are in detail explained respectively.

2 Method

We consider a simple system with a neuron and a synapse as Hasegawa has
discussed. The neuron is described by the HH model, whereas the synapse is
described by the synaptic model of Destexhe et al which is different to the
model of Hasegawa[8-9]. when periodic spike-train inputs are applied to the
synapse, a corresponding synaptic currents are transmitted to the HH neuron.
We will investigate the response patterns of the HH Neuron to inputs with
various frequencies and synaptic conductivities.

HH model is given as follows

C
dV

dt
= −gNam

3h(V − ENa)− gKn4(V − EK)− gL(V − VL)− Isyn (1)

where V is the membrane potential while Isyn is the synaptic current. The
other parameters are: C = 1µF/cm2, ENa = 50mV , EK = −77mV , EL =
−54.387mV , gNa = 120mS/cm2, gK = 36mS/cm2, gL = 0.3mS/cm2. Details of
the HH model can be found in Refs[1].

The spike-train inputs can be given as a train of delta functions,

Ui(t) =
∑
n=1

δ(t− tin) (2)

where tin is the time of the nth spike. For a periodic spike-train input, the period
of Ti can be represented by Ti = tin+1 − tin.

The synaptic current model is different from the model of Hasegawa. The
synaptic current is given as

Isyn = gsynr(V − Esyn) (3)

where gsyn is synaptic conductivity, the parameter r is the proportion of open ion
channels, and Esyn is the synaptic reversal potential. For an excitatory synapse,
Esyn = 0. The parameter r, different from the alpha function model of Hasegawa,
is described as

dr

dt
=
{

αTmax(1− r) − βr, tin ≤ t < tin + τ
−βr, tin + τ ≤ t < tin+1

(4)

where the parameters α = 1.1mM−1mS−1, β = 0.19mS−1, Tmax = 1mM ,
τ = 1ms. Details of the synaptic current can be found in Refs[9].
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The HH neuron is regarded as firing when the membrane potential V > 0mV .
The mth firing time of the output spike-train is represented by tom. If the HH
neuron fires more than twice, the output ISI (interspike interval) can be defined
as Tom = tom+1 − tom. So the average ISI of the spike-train output can be
expressed by

µo =
q−1∑
m=1

Tom/(q − 1) = (Toq − To1)/(q − 1) (5)

where q is the number of the spikes and q ≥ 2. if q < 2, then µo → ∞, which
means that the HH neuron doesn’t respond to the input persistently.

The simulation starts from 100ms and lasts 2000ms. Runge-Kutta method is
adopted and the step length is set as 0.01ms.

3 Results

For convenience, we define the input frequency fi = 1/Ti and output frequency
fo = 1/µo. In this section, how the fo reacts to the parameter fi and gsyn will
be analyzed.

3.1 Three Types of Response Pattern

To characterize response pattern, we define the ratio of output to input frequency
k = fo/fi, representing the average number of spikes per period of spike-train in-
put. According to the value of k, the response of HH neuron under periodic spike-
train inputs can be roughly classified into three types, mode-locking pattern,
irregular firing pattern and nonpersistent firing pattern. If the ratio k = n/m
where n and m are positive integers, the response is classified into mode-locking
pattern. Whereas if the k 
= n/m, the response is classified into irregular firing
pattern. For nonpersistent firing pattern, the k is almost 0. Two typical mode-
locking response patterns and an irregular firing pattern are shown in Fig.1. The
input frequencies are the same while the synaptic conductivities are different.
The mode-locking response pattern of 1/1 will appear if synaptic conductivity
gsyn = 120µS/cm2, while the pattern of 1/2 will appear if gsyn = 92µS/cm2.
The neuron will respond with irregular firing pattern if gsyn = 95µS/cm2.

The responses to periodic spike-train inputs with various frequencies and
synaptic conductivities are numerically explored and the ratio k is calculated.
The input frequencies range from 10Hz to 200 Hz and synaptic conductivity
range from 50µS/cm2 to 250µS/cm2. The ratio k = 1 when synaptic conductiv-
ity gsyn = 250µS/cm2 and input frequency fi = 10Hz. Then with the decreasing
of gsyn and increasing of fi, k decreases from 1 to 0. When gsyn is low enough,
nonpersistent firing pattern with k = 0 will appear no matter how high fi is.
According to the calculated value of k, the main form of k is k = 1/m with
m = 1, 2, 3, representing the mode-locking of 1/1, 1/2 and 1/3 respectively. The
response patterns of k 
= 1/m should be classified into the irregular firing pat-
terns. So it can be concluded that the mode-locking pattern is the main type of
response to periodic spike-train inputs.
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Fig. 1. The two typical mode-locking response patterns and an irregular firing pattern
to periodic spike-train inputs with frequency fi = 59Hz. Ui is the periodic spike-
train input, V 1 is 1/1 mode-locking response pattern with gsyn = 120µS/cm2, V 2 is
1/2 mode-locking pattern with gsyn = 92µS/cm2, V 3 is irregular firing pattern with
gsyn = 95µS/cm2.

3.2 Characteristics of the Pattern Boundary Curves

To show the features of HH neuron response, it is useful to give the parameter
ranges of input frequency and synaptic conductivity for each response pattern.
So we depict the boundary curves of 1/1, 1/2 and 1/3 mode-locking and non-
persistent firing pattern in the parameter space of fi − gsyn as given in Fig. 2.
The boundary curves divide the parameter space into the mode-locking and non-
persistent firing regions, and the irregular firing regions locate between them.

Let’s consider the characteristics of the boundary curve for nonpersistent fir-
ing pattern firstly. For excitatory synapse, the higher synaptic conductivity is,
the easier the postsynaptic neuron get fired. So the HH neuron can fire per-
sistently only if gsyn is more than a minimal value, which can be defined as
gsyn, representing the boundary of nonpersistent firing pattern. The gsyn as a
function of the input frequency fi can be seen in Fig.2. When input frequency
fi < 50Hz, the gsyn ≈ 82µS/cm2. When fi > 50Hz, the gsyn rises mainly and de-
creases occasionally as input frequency increases. For example, the gsyn increase
to 251µS/cm2 when fi is 200Hz.

Then consider the characteristics of the boundary curves for mode-locking
patterns. There are three kinds of mode-locking regions in the parameter space
of fi−gsyn, the mode-locking of 1/1, 1/2 and 1/3. It can be seen from Fig. 2 that
the upper boundary curve of the mode-locking of 1/2 and 1/3 are all upward
smoothly. It is interesting that the lower boundary curve of 1/1, 1/2 and 1/3 are
all mainly upward with short uplift segment. Take the mode-locking of 1/2 for
example, as input frequency increases, it goes upward at first, then it falls down
a little, at last it goes upward again.
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Fig. 2. The 2-dimensional phase diagram of the ratio of k in the parameter space of
fi − gsyn. The parameter regions labeled 1/1, 1/2 and 1/3 is corresponding to 1/1,
1/2 and 1/3 mode-locking pattern respectively, the regions labeled * is corresponding
to irregular firing pattern, and the region labeled # is corresponding to nonpersistent
firing pattern.

3.3 How Input Frequency Influences the Response

The phase diagram of the ratio k show how input frequency influences the re-
sponse of a HH neuron with synaptic conductivity given. For example, with
gsyn = 200µS/cm2, when input frequency increases from 10Hz to 200Hz, the
response pattern is the mode-locking of 1/1, to 1/2 and then to 1/3. The dif-
ferent mode-locking response patterns mean the influence of input frequency
is nonlinear. It indicates that when a neurons is supplied with low frequency,
the neuron inclines to transfer the signal completely; when supplied with high
frequency, the neuron may compress the signal. It is especially interesting that
bigger input frequency incur fewer spikes output. For example, when the input
frequency is 68Hz, the mode-locking is 1/1 meaning one spike input will recur
one spike output, so the output spikes 68 times each 1000ms. When the input
frequency increase to 86Hz, the mode-locking is 1/2 meaning two spikes input
will recur one spike output, so the output spikes only 43 times each 1000ms.

3.4 How Synaptic Conductivity Influences the Response

As we have known, synaptic conductivity determine transmission property of
synapse, so the impact of synaptic conductivity on response pattern of a neuron
to given inputs is especially important. From Fig. 2, it can be seen that there are
more than one mode-locking response patterns as synaptic conductivity varies
with input frequency given. For example, given spike-train input with frequency
70Hz, when gsyn decrease from 250µS/cm2 to 220µS/cm2, the ratio of output
to input frequency k is 1/1, representing that the output frequency maintains
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70Hz instead drops continuously. With gsyn decreasing further, the HH neuron
shows irregular firing pattern. When gsyn decreases to 146µS/cm2, the response
pattern becomes the mode of 1/2 until gsyn is 95µS/cm2. After that, the HH
neuron fire irregularly again. At last, the HH neuron can not fire persistently
when the gsyn is less than 88µS/cm2. It is evident that synaptic conductiv-
ity have no impact on response of a neuron within one mode-locking pattern,
while the impact will be dramatic and discontinuous from one to another mode-
locking pattern. Contrary to the situation of direct current input where the
average output frequency changes gradually with synaptic conductivity varying,
the average output frequency changes discontinuously under periodic spike-train
inputs.

4 Conclusion

The response patterns of a HH neuron with periodic spike-train inputs are simu-
lated. The results show that a HH neuron will respond mainly in a mode-locking
way. The mode-locking patterns as the function of input frequency and synaptic
conductivity are given and characteristics of mode-locking boundaries are inves-
tigated. Furthermore, how input frequency and synaptic conductivity influence
the response is in detail explained respectively.

How a HH neuron responds to inputs with different frequencies is analyzed.
Generally, when a neurons is supplied with low frequency input such as 50Hz,
the neuron respond in 1/1 locked mode, which inclines to transfer the input sig-
nal completely. When supplied with higher frequency input, the neuron will
respond in 1/2 or 1/3 locked mode, which may compress the input signal.
The results might provide useful sights into signal transmission in neural
network.

How synaptic conductivity influences the response of a HH neuron to inputs
with given frequency is analyzed. There are more than one mode-locking response
patterns as synaptic conductivity varies, representing that synaptic conductiv-
ity has no impact on the response within one mode-locking pattern while the
impacts are dramatic and discontinuous from one to another mode-locking pat-
tern. Since synaptic conductivity determines transmission properties of synapse
and the long-term changes in synaptic properties provide a physiological sub-
strate for learning and memory, the results are useful for understanding learning
process.

The mode-locking response pattern is quite common and plays an important
role in synchronization, which deserves further investigation[10].
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Abstract. In this paper, we propose a neural network algorithm—multi-
start stochastic competitive Hopfield neural network (MS-SCHNN) for the
p-median problem. The proposed algorithm combines two mechanisms to
improve neural network’s performance. First, it introduces stochastic dy-
namics into the competitive Hopfield neural network (CHNN) to help the
network escape from local minima. Second, it adopts multi-start strategy
to further improve the performance of SCHNN. Experimental results on a
series of benchmark problems show that MS-SCHNN outperforms previ-
ous neural network algorithms for the p-median problem.

Keywords: p-median, competitive Hopfield neural network, stochastic
dynamics, multi-start strategy.

1 Introduction

Given a set N of n demand nodes, the objective of the p-median problem is to
select a subset F with p facilities (median nodes), where F ⊂ N , such that the
total distance from the remaining nodes in {N − F} to its closest facility in F is
minimized [1]. This problem has been proven to be NP-hard by Kariv and Hakimi
[2]. So far, many sophisticate heuristics techniques have been proposed for solving
the p-median problem, including constructive algorithms, local search procedures,
mathematical programming and metaheuristic methods, such as tabu search (TS),
variable neighborhood search (VNS), simulated annealing (SA), hybrid heuristic
algorithms and so on (details can be found in the review [3]).

Since Hopfield and Tank [4] proposed a Hopfield neural network (HNN) for
solving traveling salesman problem, it have been widely used for classical com-
binatorial optimization problems, such as assignment problems, constraint satis-
faction problems, clustering problems, graph problems, etc [5]. The HNN consists
of numerous interconnected neurons, and uses a gradient descent method. This
gradient method only needs simple computational requirements, thus can poten-
tially lead to rapid solutions for implementing complex computation. Therefore,
HNN can be directly implemented in analog hardware easily due to simple com-
putational requirements and the intrinsic parallel structure.

Domı́nguez and Muñoz [6] firstly proposed a two-layer Hopfield neural net-
work for the p-median problem based on two types of decision variables. In
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the two-layer neural model, they organized the network in disjoint groups and
adopted the competitive rule, thus proposed the neural algorithms based on the
group-parallel dynamics and the layer-parallel dynamics (called NA-G and NA-
L respectively)[6]. In order to improve the the performance of NA-L, they also
adopted a scattering strategy to maximize the initial facilities’ dispersion, and
propose NA-L+ [6]. Noted that this maximizing dispersion problem is similar
to the maximum diversity problem (MDP), which is proved to be a NP-hard
problem [7]. Simulation results showed that the performance of NA-L+ was bet-
ter than that of VNS. However, the algorithms based on the two-layer neural
model [6] have no mechanism to overcome the local minima problem of neural
networks.

In this paper, we first propose a stochastic competitive HNN (SCHNN) by
introducing stochastic dynamics into the two-layer competitive HNN (CHNN)
to help the network escape from local minima. Then, in order to further improve
the performance of SCHNN, we adopt the multi-start strategy in the SCHNN to
propose a new neural network algorithm, called multi-start stochastic competi-
tive Hopfield neural network (MS-SCHNN) in this paper. The simulation results
on the benchmark instances show that MS-SCHNN can remarkably improve the
two-layer neural model and outperform previous neural network algorithms in
Ref.[6] for the p-median problem.

2 Two-Layer CHNN for the p-Median Problem

The p-median problem is a combinatorial optimization problem, where the fea-
sible solutions are yielded by selecting p facilities to minimize the sum of the
weighted distance from the demand nodes and its closest facility.

An integer programming formulation for the discrete p-median problem is
given by ReVelle and Swain [8], but the formulation has n2 variables and n2 + 1
constraints. In addition, the constraint of preventing demand points from being
assigned to an unopened facility is an obstacle to apply the neural network [3].
Due to these insufficiencies of this model, Domı́nguez and Muñoz proposed a
two-layer neural model for the p-median problem with 2np variables and n + p
constraints [6]. The new model of the problem is shown as follows:

Minimize
n∑

i=1

n∑
j=1

p∑
q=1

dijxiqyjq. (1)

Subject to
p∑

q=1

xiq = 1, i = 1, . . . , n, (2)

n∑
j=1

yjq = 1, q = 1, . . . , p, (3)

where n is the considered number of demand points, p is the number of facilities,
dij is the distance between the demand point i and the facility j. In this model,
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these are two types of variables: xiq (allocation variables) and yjq (location
variables), and their definitions are as follows:

xiq =
{

1 if i is assigned to the cluster q,
0 otherwise,

yjq =
{

1 if j is the center of the cluster q,
0 otherwise.

Noted constraints (2) and (3) are much simpler to guarantee that one point
associates to only one cluster and there is only one facility in each cluster re-
spectively.

In order to make sure the solution validity and avoid parameter tuning prob-
lem, they divided the neural network into n + p groups based on the two con-
straints and introduced the competitive rule into the new model [6]. Thus, a
competitive HNN (CHNN) for the p-median problem is proposed, and the en-
ergy function is reduced to

E =
n∑

i=1

n∑
j=1

p∑
q=1

dijxiqyjq. (4)

The input function of the neurons is calculated as follows:

hxiq(k) = −
n∑

j=1

dijyjq(k), (5)

hyjq(k) = −
n∑

i=1

dijxiq(k), (6)

where k is the iteration time, hxiq and hyjq denote the activation potential of
allocation neuron xiq and location neuron yjq respectively. And the output of
the neuron is defined as follows:

xiq(k + 1) =

{
1 if hxiq(k) = max

1≤j≤n
{hxjq(k)},

0 otherwise,
(7)

yjq(k + 1) =

{
1 if hyjq(k) = max

1≤i≤n
{hyiq(k)},

0 otherwise.
(8)

3 MS-SCHNN for the p-Median Problem

In the previous section, a two-layer CHNN for the p-median problem is proposed.
However, theneural networkmodelhasnomechanism to escape from localminima.
In this section, by incorporating the stochastic dynamics into the model, we first
propose a stochastic CHNN (SCHNN) that permits temporary energy ascent to
help the CHNN escape from local minima. Then, in order to further improve the
performance of the SCHNN, we introduce the multi-start strategy into the SCHNN
to develop a multi-start SCHNN (MS-SCHNN) for the p-median problem.
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3.1 SCHNN

In SCHNN, we introduced the stochastic hill-climbing dynamics strategy [9] to
overcome the local minima, thus the input functions of the neurons are modified
as follows:

hxiq(k) = α(t) · (−
n∑

j=1

dijyjq(k)), (9)

hyjq (k) = α(t) · (−
n∑

i=1

dijxiq(k)), (10)

where t is the updating step number, donates that all the neurons are being up-
dated at tth step. α(t) is a random multiplier, given by α(t) = random(h(t), 1). In
α(t), h(t) = 1−T · e−t/λ, and T is the factor of controlling the stochastic dynam-
ics range. The random multiplier α(t) controlling the value hxiq(k) and hyjq(k)
in Eq.(9) and Eq.(10), can be regarded as a random scaling parameter for them.
Therefore, it can make the stochastic decision on which neuron within the same
group to be fire according to Eq.(7) and Eq.(8). This stochastic dynamics can con-
tribute to the blocking of continuous firings and encourage other neurons to be
eventually fired, and ultimately assist the system to escape from a fixed point or
a local minimum [10]. During the search process, the stochastic dynamics is grad-
ually vanishing. When α(t) = 1, stochastic dynamics vanishes and the whole dy-
namics of the SCHNN is the same as that of the original CHNN [13].

From the above analysis, the dynamics of SCHNN, differs from the optimal
dynamics of the original CHNN, can provide a mechanism for hill climbing by
varying the direction of neuron motion.

3.2 MS-SCHNN

The intensification and diversification are the very important mechanism to de-
termine the performance of a metaheuristic, thus the right balance between them
is crucial for the algorithm [11]. Therefore, we introduce the multi-start strategy
into SCHNN and propose MS-SCHNN algorithm.

In the SCHNN, the stochastic dynamics vanishes gradually and the system
finally reaches a stable state. Thus, the balance between intensification and diver-
sification is fixed or only changed into one direction, i.e., continuously decreasing
diversification and increasing intensification. In order to further improve the per-
formance of the SCHNN, the balance between intensification and diversification
should rather be dynamical. Therefore, a multi-start strategy is introduced into
the SCHNN. The multi-start strategy super-imposed on the SCHNN is charac-
terized by alternating phases of cooling and reheating the stochastic dynamics,
thus provides a means to achieve an effective dynamic or oscillating balance be-
tween intensification and diversification during the search. The MS-SCHNN for
the p-median problem can be summarized as follows:
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Fig. 1. A schematic diagram for h(t) changes over Descents in the multi-start algo-
rithm (where T = T · StartTFactor, StartTFactor < 1)

Algorithm—MS-SCHNN:

1. Initialize:
1.1 Initialize the neurons in allocation and location layers (random around

zero);
1.2 Determine the activation potential of the neurons in each groups using

Eq.(7) or (8); initialize the best-so-far solution gb by using Eq.(4);
1.3 set the parameters: T , λ, maxiterations, Descents, StartTFactor;

2. MS-SCHNN phases: /*multi-start strategy*/
FOR i = 1 to Descents do
2.1 Update the neurons in the two-layer stochastic competitive neural net-

work
t = 0;
REPEAT /*SCHNN procedures */
2.1.1 Update all the neurons in the allocation layer using Eq.(9) and

(7);
2.1.2 Update all the neurons in the location layer using Eq.(10) and (8);
2.1.3 Calculate the energy using Eq.(4) and update the gb;
2.1.4 t = t + 1;
UNTIL (the energy stable or t > maxiterations)

2.2 Set the current solution as a new starting point for the next search;
2.3 Set T = T ∗ StartTFactor;
END FOR

3. Output the best solution gb.

In the MS-SCHNN, the stochastic dynamics anneals gradually and vanishes fi-
nally during one descent neural search, and reheated by restarting the next search
process. When the stochastic dynamics vanished completely, the proposed algo-
rithm is equivalence to NA-L.

Fig.1 is a schematic diagram to show how the h(t) changes over Descents in
the multi-start algorithm. In the MS-SCHNN, the SCHNN performs multiple
descent processes starting from different initial T values with the solution found
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in the previous processes. Note that the first SCHNN search starts with a random
solution using higher T value than that of the subsequent SCHNN process. The
decreasing of T can guarantee that the restarting search is biased to only the
promising regions and the search is gradually converged around the good solution
by performing several SCHNN processes.

Therefore, by combining the stochastic dynamics and multi-start strategy,
MS-SCHNN can provide an efficient mechanism for restarting the search for
better solutions.

4 Simulation Results and Discussions

In order to test the performance of our algorithm, simulations were implemented
on 40 benchmark p-median problems in the ORLIB [12]. We carried out the
simulation experiments in Pentium IV 2.4GHz computer with 512Mb, which
is similar to Ref.[6]. Every instance was run 50 times with different randomly
generated initial neuron states, and then recorded the best solution and the CPU
time for comparison.

According to the preliminary tests, we find that a large number of SCHNN
restarting with a short run of each SCHNN search can obtain better solutions.
In this parameters setting strategy, the parameter λ is set to be a small value.
Since this strategy provides a means to achieve an effective dynamic balance be-
tween intensification and diversification, it can not only alleviate the sensitivity
of λ, but also greatly improve the search performance. Based on the prelimi-
nary tests, the parameters for each instance are set as follows: T = 2, λ = 15,
maxiterations = 20, Descents = 50, StartTFactor = 0.99.

Table 1 gives the results obtained by MS-SCHNN, NA-G and NA-L for the small
scale problems. Since the ORLIB instances are benchmark problems, results of the
NA-L andNA-Gare directly fromtheRef.[6]. The%ERRORdenotes the rate of de-
viation between the best solution found by the algorithms and the optimum value.
Simulation results show MS-SCHNN can getmuch better solutions for all the 10 in-
stances than the NA-G and NA-L, but at the cost of significantly more CPU time.
This is due to that most CPU time of MS-SCHNN is mainly used in stochastic
search to improve the algorithm’s performance. However, it is acceptable for the
small scale problems in practice and it can be alleviated by implementing in paral-
lel computing environment owing to the neural networks’ parallel structure.

The experiment results suggest that MS-SCHNN can significantly improve
the performance of the two-layer neural model within reasonable computation
time. The reasons why MS-SCHNN is significantly superior to NA-G and NA-L
are: (1) the stochastic strategy of SCHNN provides a strategy to help the net-
work escape from local minima; (2) the proposed algorithm provides an efficient
restarting search by using the solution found in the previous iteration as the
next’ s initial solution, differs from NA-L and NA-G with randomize initial next
solutions for each iteration.

The comparison tests betweenNA-L+andMS-SCHNN for theORLIB instances
are also carried out. Unlike MS-SCHNN, NA-L+ uses a scattering strategy to
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Table 1. Comparison of MS-SCHNN, NA-G and NA-L for 10 ORLIB instances

Instance Opt. Best Median Cost %ERROR CPU time
NA-G NA-L MS-S-

CHNN
NA-G NA-L MS-S-

CHNN
NA-G NA-L MS-S-

CHNN
pmed01 5819 5821 5819 5819 0.03 0.00 0.00 0.84 0.01 4.1
pmed02 4093 4300 4248 4093 5.06 3.79 0.00 1.61 0.01 8.2
pmed03 4250 4276 4278 4250 0.61 0.66 0.00 0.84 0.01 7.5
pmed04 3034 3205 3238 3034 5.64 6.72 0.00 2.91 0.02 14.0
pmed05 1355 1633 1570 1363 20.52 15.87 0.59 1.67 0.02 22.1
pmed06 7824 7867 7995 7824 0.55 2.19 0.00 1.56 0.01 19.3
pmed07 5631 5862 5819 5631 4.10 3.34 0.00 3.05 0.02 33.9
pmed08 4445 4955 4928 4446 11.47 10.87 0.02 4.21 0.02 71.6
pmed09 2734 3179 3179 2761 16.28 13.24 0.99 7.96 0.05 119.2
pmed10 1255 1840 1840 1273 46.61 27.25 1.43 9.71 0.05 171

Table 2. Comparison of MS-SCHNN and NA-L+ for the ORLIB instances

Instance (n,p) Opt. Best Median Cost %ERROR
NA-L+ MS-SCHNN NA-L+ MS-SCHNN

pmed05 (100,33) 1355 1359 1363 0.30 0.59
pmed08 (200,20) 4445 4448 4446 0.07 0.02
pmed09 (200,40) 2734 2751 2761 0.62 0.99
pmed10 (200,67) 1255 1264 1273 0.72 1.43
pmed14 (300, 60) 2968 2983 2982 0.51 0.47
pmed15 (300, 100) 1729 1751 1768 1.27 2.26
pmed18 (400, 40) 4809 4811 4810 0.04 0.02
pmed19 (400, 80) 2845 2863 2872 0.63 0.95
pmed20 (400, 133) 1789 1815 1807 1.45 1.01
pmed23 (500, 50) 4619 4624 4623 0.11 0.09
pmed24 (500, 100) 2961 2986 2977 0.84 0.55
pmed25 (500, 167) 1828 1865 1906 2.02 4.27
pmed28 (600, 60) 4498 4508 4505 0.22 0.16
pmed29 (600, 120) 3033 3060 3096 0.89 2.08
pmed30 (600, 200) 1989 2016 2039 1.36 2.51
pmed33 (700, 70) 4700 4706 4706 0.13 0.13
pmed34 (700, 140) 3013 3038 3044 0.83 1.03
pmed37 (800, 80) 5057 5071 5065 0.28 0.16
pmed40 (900, 90) 5128 5155 5150 0.53 0.43

improve the performance of neural network. This strategy can generate good ini-
tial solutions by maximizing the facilities’ dispersion. Results of the NA-L+ are
also directly from the Ref.[6]. Table 2 summarizes the comparative results for the
test instances. In this table, we eliminate the instances which both algorithms got
the optimum value for simplicity. From Table 2, we can find that MS-SCHNN ob-
tains the same number of optimum value as NA-L+ (21 out of 40), and gets better
solution than NA-L+ in 9 instances, while worse than NA-L+ in 9 instances. It sug-
gests that MS-SCHNN is competitive with NA-L+ in the quality of solution.
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Fig. 2. Comparison of the CPU time of MS-SCHNN and NA-L+ for the instances in
Table 2

Fig.2 shows the comparison of the CPU time. From the figure, MS-SCHNN
spends approximately the same time as the NA-L+ for the small scale problems,
but much less for the large scale problems, especially for the largest instance.
The reason of this phenomenon maybe that NA-L+ uses the scattering strategy
to construct an initial solution by maximizing the facilities’ dispersion. However,
the maximizing dispersion problem is similar to the maximum diversity problem
(MDP), which is proved to be a NP-hard problem [7]. Therefore, NA-L+’s initial
strategy spends much more time in getting the good initial solution, and increases
the difficulty to implement in practice. Clearly Fig.2 states MS-SCHNN displays
more scalability than NA-L+ for large scale problems. Moreover, MS-SCHNN
can be implemented in practice much easily than NA-L+.

In summary, we can conclude that the performance of neural network can be
improved efficiently by introducing stochastic dynamics and multi-start strategy
into the neural model, and MS-SCHNN can more effectively and efficiently solve
the p-median problem than other neural network algorithms in Ref.[6] (NA-G,
NA-L and NA-L+).

5 Conclusions

In this paper, multi-start stochastic competitive Hopfield neural network (MS-
SCHNN) is proposed for the p-median problem. MS-SCHNN introduces stochas-
tic dynamics and multi-start strategy into the two-layer neural model to improve
the performance of neural network. Simulation results show that MS-SCHNN
can significantly improve the two-layer neural model and outperforms previous
neural network algorithms for the p-median problem. In the future, we will ap-
ply MS-SCHNN to solve other combinatorial optimization problems, such as
frequency assignment problem (FAP) [14], clustering problems [15], etc.
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Abstract. The sparse coding method is formulated as an information
theoretic optimization problem. The rate distortion theory leads to an
objective functional which can be interpreted as an information theo-
retic formulation of the sparse coding. Viewing as an entropy minimiza-
tion problem, the rate distortion theory and consequently the sparse
coding are extended to discriminative variants. As a concrete example
of this information theoretic sparse coding, a discriminative non-linear
sparse coding algorithm with neural networks is proposed. Experimental
results of gender classification by face images show that the discrimina-
tive sparse coding is more robust to noise, compared to the conventional
method which directly uses images as inputs to a linear support vector
machine.

Keywords: Rate Distortion Theory, Sparse Coding, Neural Network,
Gender Classification.

1 Introduction

One of the major focuses of information theory and machine learning research is
to extract essential information from data by means of computational and sta-
tistical methods. In most cases, compact representations of the information are
considered of value. For example, data compression methods [1] explore effective
coding of the original data, that is, encoding scheme using as few bits (or other
information carrier unit) as possible while maintaining the similarity between
the original data and decoded data within a certain allowable distortion level.
Sparse coding methods [2] which originate from visual perception mechanisms in
brain, try to reconstruct an input signal by a sparse combination of bases chosen
from a large number of bases in a dictionary. In these theories, data compression
and sparse coding, complexity of the representation is regarded as

– rate (description length for each datum),
– sparseness (the number of active bases used in actual representation),

respectively. In each theory, these complexity is minimized under some con-
straints on the following accuracy. Data compression methods try to maintain
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the original data structure (probability distribution of the source) with short de-
scription length. The accuracy is measured by decompression errors in the case
of lossless compression, or differences between the original and the compressed
data in the case of lossy compression. Sparse coding methods also try to min-
imize data reconstruction errors, while maintaining the number of active bases
under a predefined level.

In this paper, we explore the information theoretic approach to the sparse
coding, that is, we try to describe the sparse coding from the viewpoint of the
rate distortion theory [3]. We then consider to extend the rate distortion, and
consequently the sparse coding, to have discriminative ability. This extension is
similar to the correspondence between the principal component analysis (PCA)
and the Fisher discriminant analysis (FDA), both of which are based on the
variance of given data. PCA finds axes of projections which conserve the vari-
ance of the original data as much as possible. In other words, it minimizes a
reconstruction error of the original data in a lower dimensional subspace (e.g.,
feature space). As a supervised classification method based on the variance, FDA
is the most famous one. FDA finds an axis of a projection which maximizes the
ratio of the between-class variance to the within-class variance. The data pro-
jection to the axis leads to a good separation between different classes. From
the information theoretic viewpoint, the notion of “variance” is replaced by “en-
tropy”. We propose a discriminative rate distortion theory or a discriminative
sparse coding method which tries to encode the data or to extract the feature
suitable for the classification task. As a concrete embodiment of this notion,
we will show an example of discriminative sparse coding with neural networks,
formalized as an optimization problem of the information theoretic objective
functional.

The rest of this paper is organized as follows. In section 2, we briefly describe
the rate distortion theory. In section 3, the sparse coding and its information
theoretic interpretation are introduced. The rate distortion theory and the in-
formation theoretic sparse coding are extended to discriminative variants in sec-
tion 4. In section 5, we propose combined neural networks for data reconstruction
and classification as a concrete example of our discriminative sparse coding. A
result of a simple experiment for gender classification by face images is shown
in section 6.

2 Rate Distortion Theory

The rate distortion theory [3] provides theoretical foundations for lossy data
compression. Let x ∈ Rn be an input valuable and z ∈ Rm be its compressed
(encoded) expression. We use upper cases X, Z to represent the corresponding
random variables henceforth. Given a distortion function d : Rn×Rm → R and
a distortion upper limit D, the rate distortion problem is formally stated as an
optimization problem with respect to the conditional probability p(Z|X):

min
p(Z|X)

I(X ; Z) subject to E[d(X, Z)] ≤ D, (1)
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where I(X ; Z) is the mutual information between X and Z, and expectation
in E[d(X, Z)] is taken with respect to the joint distribution p(X, Z). Intuitively
speaking, the distortion d(x, z) is an error measure for representing the data x
by the decoded data from z. The mutual information I(X ; Z) is a measure of
the information shared by the variables X and Z. Taking the meaning of these
two measurements into consideration, the rate distortion theory is understood
as an optimization problem which effectively extracts important information Z
from the data X as much as possible, under the constraint that the loss of the
information is limited to a certain level.

The rate distortion optimization problem of (1) can also be expressed in a
trade-off form:

min
p(Z|X)

I(X ; Z) + βE[d(X, Z)], (2)

where β is a positive trade-off parameter.

3 Sparse Coding

The sparse coding is a method of reconstructing signals by a small number of
activated bases. In general, the total number of the bases is very large, but each
signal is reconstructed by a combination of a relatively small number of the
bases. We denote a set of bases {bi}mi=1 by a matrix B = {b1, . . . , bm} ∈ Rn×m,
where n is the dimension of the input signal and m is the number of bases. The
main purpose of the sparse coding is to find a set of bases {bi}mi=1 which can
reconstruct signals from an information source with small errors with a small
number of bases actually used. We write the coefficients of the bases by a vector
z ∈ Rm and the reconstructed signal by x̂ := Bz. One of the formalization of
this sparse coding objective is as follows:

min
B

E[d(X, Z)] subject to E[ ||Z||pp] ≤ T, (3)

where || · ||p stands for p-norm and T is a predetermined sparseness parameter.
The distortion measure d(x, z) is usually defined as d(x, z) := ||x −Bz||2. Note
that the coefficient vector z ∈ Rm is also interpreted as a feature vector of the
input signal x. A set of bases B is searched so that the (expected) reconstruction
error is minimized (see [4] for an example of the specific algorithms).

3.1 Information Theoretic Formalization of the Sparse Coding

Viewing from the information theoretic perspective, we can find a correspon-
dence between the rate distortion theory and the sparse coding. The small
reconstruction error naturally corresponds to the small distortion when the
distortion function is defined as d(x, z) = ||x − Bz||2. The sparseness of the
representation (E[||Z||pp] ≤ T ) corresponds to the small rate (min I(X ; Z)). In
fact, when we suppose the distribution of z to be the generalized Gaussian1

1 when we let p = 2, the generalized Gaussian distribution becomes the usual Gaussian
distribution.
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with zero mean whose density is given by p(z) = C1 exp(−||z/α||pp), where C1 =
(2Γ (1 + 1/p)α)−1, the Shannon (joint) entropy H(Z) := −∑z∈Rm p(z) log p(z)
is equal to E[ ||Z||pp] up to constant. Intuitively speaking, in the information
theoretic literature, the sparseness condition E[||Z||pp] ≤ T is interpreted as
the condition that the joint entropy of the coefficients H(Z) is under a cer-
tain value. Thus the sparse coding (3) is essentially equivalent to the dual
formulation of the rate distortion theory, which finds a coding scheme within
a given rate such that the expected distortion between the source x and the
decoded data from z is minimized. To avoid the primal and dual distinction, we
adopt the trade-off parameter β in the same way in (2). Then the sparse coding
is formulated as

min
p(Z|X)

H(Z) + βE[d(X, Z)]. (4)

When we consider the deterministic coding scheme x → z, then I(X ; Z) =
H(Z) − H(Z|X) = H(Z) holds. In this case, the correspondence between the
rate distortion and the sparse coding becomes clearer. In general, the objective
functional of the rate distortion theory (2) is upper bounded by the objective
functional of the sparse coding (4) because I(X ; Z) = H(Z)−H(Z|X) ≤ H(Z),
and they are equivalent when the coding scheme is deterministic.

4 Discriminative Variants of the Rate Distortion Theory

We now consider to extend the rate distortion theory and consequently the sparse
coding to the class discriminative data compression or feature extraction tech-
nique. The objective functional of the rate distortion problem (2) consists of two
distinct terms. The first term I(X ; Z) concerns the rate of the compression, and
the second term βE[d(X, Z)] concerns the distortion between the original and
the compressed data. One way to make the rate distortion to have discrimina-
tive ability is adding class information to the distortion term, which is known as
the information bottleneck method [5]. In the rate distortion theory, the original
data x sometimes contains unimportant information, and one should dedicate
to keep the class label information y rather than x itself. The information bot-
tleneck method formulates such problems. For input data x with class y, the
objective functional is represented as

min
p(Z|X)

I(X ; Z)− βI(Y ; Z), (5)

where β is a trade-off parameter for the compression rate and the class in-
formation preservation. When we use a Kullback-Leibler divergence DKL as d
to measure the discrepancy between class conditional distributions p(Y |X) and
p(Y |Z), the functional of the information bottleneck method is naturally induced
from that of the rate distortion theory because,
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EX,Z [DKL(p(Y |X)||p(Y |Z))] =
∑
x,z

p(x, z)
∑

y

p(y|x) log
p(y|x)
p(y|z)

=
∑
x,y,z

p(x, y, z) log
p(y|x)
p(y|z)

= H(Y |Z)−H(Y |X) + H(Y )−H(Y )
= I(X ; Y )− I(Y ; Z),

where we used Markov chain property Z ← X → Y , that is, p(Y |X, Z) =
p(Y |X). From this relationship, I(X ; Z)+βE[d(X, Z)] = βI(X ; Y )+{I(X ; Z)−
βI(Y ; Z)} holds. Noting that I(X ; Y ) is irrelevant to the minimization, we see
the equivalence of two theories:

min
p(Z|X)

I(X ; Z) + βE[DKL(p(Y |X)||p(Y |Z))]⇔ min
p(Z|X)

I(X ; Z)− βI(Y ; Z).

Another view of the information bottleneck method is an information theoretic
formalization of data clustering. It constructs clusters maintaining the similarity
of the data within the same cluster as much as possible. However, it does not
contains the reconstruction error term explicitly, so it is not suitable for the
discriminative variant of the sparse coding discussed here.

Now we add the class label information to the rate concerning term in (2)
instead of the distortion concerning term to get the optimization problem:

min I(X ; Z|Y ) + βE[d(X, Z)].

Then, we derive a novel discriminative variant of the rate distortion theory. The
objective functional we derive here is more intuitive as a modification of the
original rate distortion theory, which combines separability criterion and small
reconstruction error criterion together. We first condition the rate term I(X ; Z)
by Y , and rewrite it as follows:

I(X ; Z|Y ) = H(X |Y ) + H(Z|Y )−H(X, Z|Y ).

From the Markov chain property Z ← X → Y , we get

H(X, Z|Y ) = −H(Y ) + H(X, Z) + H(Y |X, Z) = −H(Y ) + H(X, Z) + H(Y |X)
= −H(Y ) + {H(X) + H(Z|X)}+ {H(X, Y )−H(X)}
= −H(Y ) + H(Z|X) + H(X, Y ) = H(Z|X) + H(X |Y ).

Then we get the equality

I(X ; Z|Y ) = H(X |Y ) + H(Z|Y )− {H(Z|X) + H(X |Y )}
= H(Z|Y )−H(Z|X).

When we suppose H(Z|X) � 0 again, the rate distortion theory or the sparse
coding method in discriminative setting can be formulated as follows:

min
p(Z|X)

H(Z|Y ) + βE[d(X, Z)]. (6)
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We write this objective functional with respect to p(Z|X) as

Lrd := H(Z|Y ) + βE[d(X, Z)] (7)

henceforth. Note that formally, the objective functional Lrd is obtained by re-
placing the entropy term H(Z) in the information theoretic formalization of the
sparse coding (4) by the conditional entropy of Z given Y , H(Z|Y ), and it seems
natural as a discriminative extension.

5 Non-linear Sparse Coding with Neural Networks

In many applications, linear combinations of bases are not enough to repre-
sent fine information of input signals. To overcome the limitations of the linear
methods and to get flexible representation power, we consider a non-linear sparse
coding model with neural networks (three-layered perceptrons). We will give dis-
criminative ability to this non-linear sparse coding model by applying the results
derived in the previous section.

Model Description
We consider non-linear maps f : x→ z and g : z → x̂, which correspond to the
feature extraction map x �→ z and the signal reconstruction map z �→ Bz = x̂ in
the linear sparse coding, respectively. As a realization of these non-linear maps,
we adopt a combination of two neural networks, the one for approximating the
feature extraction function f , and the other for the reconstruction function g
(Fig. 1). The input of the first neural network (NNf henceforth) is the origi-
nal signal x. The output vector z = (z1, · · · , zm) of NNf is restricted to range
[0, 1]m, where m is the number of units in the output layer of NNf . This output
vector z is used as a feature vector for classification task. Also, the vector z is
given to the second neural network (NNg) as an input. The output of the NNg

is considered as the reconstructed signal x̂.

NN Learning Procedure
To describe a procedure for minimizing the objective functional Lrd, we first
need the definition of the distortion E[d(X, Z)] and the conditional entropy

Fig. 1. A schematic diagram of the combined neural networks and SVM
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H(Z|Y ) in our model. We define the distortion function d : (x, z) → d(x, z) by
the squared difference of the input data vector x and the reconstructed data
vector x̂ = g(z). Then the distortion term is explicitly written as E[d(X, Z)] =
1
N

∑
x ||x− x̂||2, where N is the number of the training data and the summation∑

x is taken over all the training data. There may be various definitions of
entropy of the neural network. We simply define the entropy of the feature vectors
H(Z) = − 1

m

∑m
j=1

∑
z∈Rm pj(z) log pj(z), where pj(z) is a distribution of the j-

th element of the feature vector. To calculate this entropy, we need to estimate
the distribution of each element of the feature vector, which is prohibitive for on-
line neural network training. Hence, we introduce a probabilistic interpretation
of the input vector of NNg as an approximation method. Since the output vector
z of NNf is restricted to range [0, 1]m, we let the j-th unit of the input layer of
NNg become 1 with probability zj , which is the value of the unit of the output
layer of NNf , and become 0 with probability 1−zj. That is, input values to each
input unit of NNg is distributed with a Bernoulli distribution with a parameter
zj. With this approximation, we can calculate the entropy of the j-th element
of the feature vector z as h(zj) = −zj log zj − (1 − zj) log(1 − zj). For the sake
of simplicity, we will consider only two-class discrimination tasks henceforth. In
order to calculate the conditional entropy of Z given Y , we add two extra bits to
the input layer of NNf . In the training phase, these extra bits are set to (0, 1)
or (1, 0) according to the class label of each input. After training the neutral
networks, these extra bits are set to (0, 0).

As an usual rate distortion theory, the objective functional Lrd is iteratively
minimized. For the minimization of the distortion term, we consider the combina-
tion of the NNf and NNg as one neural network, and used the conventional er-
ror back-propagation algorithm. For the minimization of the conditional entropy
term, we only trained the first neural network NNf by the back-propagation. We
iterate the back-propagation procedure for both terms 2, 000 times in our exper-
iments. Note that the minimization of the conditional entropy may increase the
error, and vice verse. When we fix the number of iteration, the reconstruction ac-
curacy by this model may be inferior to that of the same neural networks without
entropy minimization. Our intention here is, however, not the accurate data re-
construction but the classification using reconstructive features. The sparse cod-
ing is often used for denoising images [6]. Thus the main virtue of the classification
with sparse, reconstructive features is its expected robustness for the noise in in-
put data. We exemplify the robustness of the proposed method in the next section.

Classification Procedure
We briefly explain the procedure of two class classification using the output vector
z as an input vector for a support vector machine (SVM) with a linear kernel. We
suppose here that the two neural networks NNf and NNg are already trained.
The training data used to train the neural networks are transformed to the feature
vectors, and used to train the SVM. In the test phase, test data are transformed
to the feature vectors by trained NNf and classified by the trained SVM.
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Fig. 2. Examples of the face images from the FERET database

6 Experimental Result

We demonstrate the effectiveness of our method with experiments using FERET
face database [7]. The FERET database contains gender information for some of
the images. We used 1000 face images from the FERET database, 500 male and
500 female images represented in pgm 256 level gray scale format. We divided it
in 5 disjoint subsets for validation. Each subset contains 90 male and 90 female
images as the training set, and 10 male and 10 female images as the classification
accuracy test set. Each face image is cropped to contain only face region and
normalized to have the same eye coordinates. The original images are downsized
to 21×12 pixels, the same size adopted by an earlier study that used the FERET
database [8]. We show example images in Fig. 2. The combined neural networks
are trained by the procedure denoted in the previous section using the training
data sets. The numbers of units in the first network NNf are 252,100,200 for
the input, the hidden, and the output layer, respectively. The numbers of units
in the second network NNg are 200,100,252. We note that while the number of
the output unit of NNf , which corresponds to the size of the bases in the sparse
coding literature, is less than the input size 252, the bases is still over-complete.
This is because the effective dimension of the input data which is estimated by
the principal component analysis is about 1102.

Inputting the training and test images, we can extract feature vectors for
training and testing any classifier. There are some researches to discriminate
gender from face images, and the method using a SVM is one of the most accurate
one [8]. They used 21×12-pixel face images from the FERET database as feature
vectors and input to a SVM. They used the RBF kernel for the SVM. However,
we just use a linear kernel in order to confirm the usefulness of the extracted
feature vector z.

As we mentioned above, classification using sparse reconstructive features are
expected to be robust to noises. To see the robustness to the noise, we made
two sets of noised test data by replacing 10% and 20% of pixels in each image

2 With only about 110 largest eigenvalues, the cumulative proportion of power
achieved more than 99%.
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Table 1. Error rates of gender classification for the FERET database

FERET
noise level 0% 10% 20%
NNs & SVM 0.140(±0.082) 0.210(±0.042) 0.280(±0.027)
SVM 0.130(±0.045) 0.280(±0.084) 0.320(±0.104)

with random natural numbers between 0 to 255, respectively. We trained neural
networks using noiseless training data, and extract features for the noiseless,
10 % noised, and 20 % noised test data respectively. The error rates of gender
classification by our non-linear discriminative sparse coding denoted as “NNs
& SVM” and the SVM with a linear kernel denoted as “SVM” are shown in
Table 1. For the experiments with the FERET data, we show the mean and one
standard deviation of 5-fold validation. From the result of these experiments, we
see that the gender classification accuracy of the proposed method is comparative
to that of the SVM with a linear kernel. Furthermore, it is notable that the
accuracy of the proposed method shows only little degradation of classification
accuracy in the presence of noises in test data, while the conventional method is
rapidly degraded. From this experiment, we conclude that we can acquire feature
vectors with the proposed algorithm that are effective for the classification task,
especially when the test data are corrupted by noise.

7 Concluding Remarks

The main contribution of this paper is to present a novel formalization of the
discriminative variant of the rate distortion theory. This discriminative rate dis-
tortion theory is more suitable for data reconstruction than the information
bottleneck method, and motivated us to argue the information theoretic per-
spective of the sparse coding and its discriminative variants. We formalized an
objective functional for the discriminative sparse coding from the viewpoint of
the rate distortion theory, and embodied this concept using neural networks. We
discussed that there will be at least two approaches to make the rate distortion
theory to be discriminative. Adding the class label information to the distortion
term is known as the information bottleneck method, and extensively studied
mainly by Tishby and his coworkers. To our knowledge, however, another ap-
proach which we proposed in this paper have not explored yet, and remains to
be investigated further.

In the gender classification experiment, we trained the combined neural net-
works by minimizing the reconstruction error and the class conditional entropy
of the feature vectors. From the classification result, we see that the feature vec-
tor is effective for discriminating gender. This result suggests that minimizing
the discriminative objective functional leads to a good feature vector, and it is
equivalent to find a good kernel for the inner product based classifiers. Kernel
learning using information theoretic criteria for classification is another direc-
tion of our future work. Though the neural network is flexible and able to realize
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various non-linear transformations, we need large amount of data and time to
train in general. We think other algebraic implementations of the discriminative
sparse coding are possible, and the study on this direction is ongoing.
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Abstract. We propose a simple yet effective theoretical model for the evolution-
ary threshold public goods game with binary contributions (the fair personal share
or nothing), incorporating the effect of collective risk. We distinguish two distinct
public goods games according to whether to return the contributions when the tar-
get is not collected. For the two cases, in order to study the impact of collective
risk on cooperation, we analyze dynamics of the population which can be repre-
sented by the replicator equations. It shows that high rate of loss can enhance the
emergence of social cooperation and the provision of public goods. Furthermore,
other elements also can promote the cooperation, such as large initial endowment
and small threshold. Interestingly, for large group size, it has a positive impact
on cooperation in the case of returning the donation amount, whereas a negative
impact in the case of no return.

1 Introduction

Cooperation is essential to the development of human and animal societies [1,2]. How-
ever, everyone faces the temptation to defect as cooperator benefits others with a cost
to itself. Why social cooperative behavior can emerge in the collective action stays in
the central position in the field of evolutionary game theory [3,4]. A classical metaphor
investigating this social problem is public goods game (PGG) [5], which concentrates
on the origin of cooperation in the conflict between individual interest and collective in-
terest. PGG is played in interaction groups, in which each cooperator contributes to the
public pool with a cost to itself while each defector contributes nothing. Then, the pub-
lic goods are distributed equally among all the individuals. As cooperators are always
prone to exploitation by defectors, how to maintain cooperation? Recently, plenty of
mechanisms, for example, repeated interactions, direct reciprocity, punishment [6,7,8],
spatially structured populations [9,10] and voluntary participation in social interactions
[11,12] have been proposed to promote the cooperation.

In absence of all the above mechanisms, we present a new one, collective risk, which
might be encountered when the provision of public goods fails [13]. We introduce
a target for PGG. The public goods can be provided only if the target is completed
[14,15,16]. In this case, the private goods of individuals are at stake with a certain
probability if the target is not reached. This mechanism is substantially different from
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the above referred ones as it is based on the incentive to avoid a loss but not to ob-
tain a gain. Motivated by this new mechanism, we propose a model of PGG incor-
porating the effect of the collective risk to study the evolution of social cooperation
theoretically.

Consider a well-mixed infinite population. From time to time, an interacting group
of N agents is chosen at random among the whole population. Each of these N agents
is provided with a fixed endowment W. Within such a group, there is a task to be done,
for example, constructing a dam or building a defence. In order to complete the target, a
final contribution T mainly from donating is required. For simplicity, we restrict partic-
ipants to binary contributions (the fair personal share, T/N, or nothing, 0). Each player
can choose to donate (cooperate) or not (defect). If the final target is achieved, the dam
or the defence can be constructed and the private goods of each individual is prevented
from losing. Cooperators can keep whatever is left in their private account, W − T/N,
and defectors own the whole endowment W. If the target is not completed, the dam or
the defence cannot be built and the risk happens with probability p (0 ≤ p ≤ 1). In
this situation, two distinct scenarios are distinguished according to whether to return
the donation amount or not. For both of the two cases, once the danger occurs, all par-
ticipants including cooperators and defectors lose their whole private goods. Whereas
the danger does not happen, in the case of returning the contribution, both defectors and
cooperators own the whole endowment W; while in the case of no return, cooperators
can hold what they had not invested in their private account, W − T/N, and defectors
can keep the whole endowment W. Hence, cooperation does not dominate defection.
Due to this disadvantage of cooperation, whether or not social cooperation can emerge
in some instances? To answer this question, we analyze the evolutionary population
dynamics using the replicator equation [17,18]. We find that high risk rate can readily
promote the emergence of social cooperative behavior. In addition, large initial endow-
ment and small final target can advance cooperation, respectively. Most interestingly,
we find a group size paradox: large group size enhances the emergence of cooperation
in the situation of returning the contribution, but inhibits that in the other situation of
no return.

The paper is organized as follows. For the case of returning the donation amount, the
model with collective risk is introduced and discussed in Sec. 2. In Sec. 3, for the case of
no return, the corresponding model is introduced and investigated. Finally, conclusions
are drawn in Sec. 4

2 Population Dynamics: Returning the Contribution

First, we consider a simple situation that the donation amount will be returned if the
final goal is not completed. We suppose that the cooperator chooses to donate the fair
personal share T/N and the defector donates nothing. In this case, the target T can be
reached in the limiting of all donating. Note that the initial endowment W needs to be
larger than T/N (otherwise, the public goods can never be provided). The remainder
in the private account of a cooperator and a defector in a group consisting of n many
cooperators and N − n many defectors are given by
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PC(n) =

⎧⎪⎪⎨⎪⎪⎩ W − T
N
, n = N

(1 − p)W , 0 < n < N
(1)

and

PD(n) = (1 − p)W, 0 ≤ n < N. (2)

Based on the remainder, if the danger happens with certainty (p = 1), cooperation
dominates defection; while if the danger never happens (p = 0), both cooperation and
defection are the best choice for each participant. The strategy profile of all defection is
always a stable Nash equilibrium irrespective of the risk rate.

In order to study the evolutionary behavior of the repeated game, we apply the repli-
cator dynamics. Denote the fraction of cooperators by x and that of defectors by y.
There is straightforward x+ y = 1. The time evolution of this system is governed by the
following differential equations {

ẋ = x( fC − f̄ )
ẏ = y( fD − f̄ )

(3)

where fC is the expected remainder for a cooperator in a group of N players and fD is
that for a defector, f̄ = x fC + y fD is the average remainder in the population.

In the well-mixed population, a group of N agents is chosen randomly, resulting in a
random population composition. For a given cooperator, the probability to find him in
an N persons group consisting of j other cooperators and N − 1 − j defectors is(

N − 1
j

)
x jyN−1− j.

In this case, the expected remainder in the private account for a cooperator is

fC =
N−1∑
j=0

(
N − 1

j

)
x jyN−1− jPC( j + 1). (4)

Similarly, a given defector finds him in a group composed of j many cooperators and
N − 1− many other defectors with the same probability(

N − 1
j

)
x jyN−1− j.

Thus, the expected remainder for a defector is

fD =

N−1∑
j=0

(
N − 1

j

)
x jyN−1− jPD( j). (5)

Substituting equation x + y = 1 and using

N−1∑
j=0

(
N − 1

j

)
x j(1 − x)N−1− j = 1,
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Eq. (4) and (5) can be transformed into

fC = (1 − p)W + xN−1(pW − T
N

)

fD = (1 − p)W. (6)

Further substituting x + y = 1 into the first equation of Eq. (3), the dynamics of x(t) is
given by

ẋ = x(1 − x)( fC − fD) = xN(1 − x)(pW − T
N

). (7)

Let the right of Eq. (7) equal zero, we get only two fixed points of the population, x = 0
and x = 1. Note that under the condition of pW − T/N > 0, the fraction x increases
monotonously in the interval 0 < x < 1. Hence, if a small perturbation is added to
the fixed point x = 0, the fraction x tends to another fixed point x = 1. It shows that
equilibrium x = 0 is an unstable fixed point. Similarly, if pW < T/N, the fraction x
decreases monotonously in the interval 0 < x < 1. When we add a small perturbation
to the equilibrium x = 0, the fraction x goes back to x = 0 immediately. The fixed point
x = 0 is stable in this case (see Table 1). In order to judge the stability of the other
equilibrium x = 1, we analyze the Jacobian of Eq. (7) which is given by

J = NxN−1(1 − x)(pW − T
N

) − xN(pW − T
N

).

Substituting x = 1 into the Jacobian, we obtain

J(x = 1) = −(pW − T
N

).

If pW > T/N, the Jacobian is always below zero, leading to a stable fixed point x = 1,
otherwise, it is unstable fixed point (see Table 1).

Thus, the condition pW > T/N can lead to all donation, maintaining cooperation.
Moreover, increasing the risk rate p, the group size N and the initial endowment W, re-
spectively, and decreasing the target T , can make the inequality pW > T/N be satisfied
more easily. Under the influence of these measures, the population is easier to reach the
state of all cooperation, as the equilibrium x = 1 is stable whereas x = 0 is unstable.
Therefore, in this case, high risk rate, large group size, big initial endowment as well as
small target sum can promote the cooperation.

Table 1. Stability of equilibria in the case of returning the contribution

p > T
NW p < T

NW

x = 0 unstable stable
x = 1 stable unstable
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3 Population Dynamics: Not Returning the Contribution

If the contribution is not returned when the final goal is not achieved, the situation is
more complex than that discussed above. We also assume that the donator contributes
T/N while the defector donates nothing. The public goods can be provided if and only
if all participants cooperate. In this case, the remainder in the private account of a co-
operator and a defector in a group consisting of n many cooperators and N − n many
defectors are given by

PC(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W − T

N
, n = N

(1 − p)(W − T
N

) , 0 < n < N

and
PD(n) = (1 − p)W, 0 ≤ n < N.

Based on the remainder, it is found that if the danger happens with certainty (p =
1), they are better off donating than defecting. If the danger never happens (p = 0),
defection is the best choice. However, if the danger happens with an nonzero and non-
one probability, some individuals want to save their interests by cooperating, whereas
the others are willing to gamble for the danger. If the donation amount exceeds the
expected loss arising from the risk, i.e., T/N > pW (p < T/(NW)), defection dominates
cooperation. The strategy profile of all defection is the unique Nash equilibrium. If
T/N < pW (p > T/(NW)), everyone is better off if the public goods is provided than
not. The ”all cooperation” set of strategies is a Nash equilibrium as no one can increase
his gains by changing his own strategy while the others stay the same. However, it is
an unstable equilibrium because once one player changes his strategy, the remaining
players can increase their expected gains by altering their strategies. These changes
lead to another Nash equilibrium, the profile of ”all defection”.

The above discussion is about the one-shot game. Now, we investigate the evolution-
ary behavior of the repeated game using the replicator dynamics. Analogously to the
calculations in Sec. 2, the expected remainder in the private account for a cooperator
and a defector is, respectively, given by

fC =
N−1∑
j=0

(
N − 1

j

)
x jyN−1− jPC( j + 1)

= (1 − p)(W − T
N

) + xN−1 p(W − T
N

),

fD =

N−1∑
j=0

(
N − 1

j

)
x jyN−1− jPD( j)

= (1 − p)W.

Accordingly, the replicator dynamics in the case of no return is derived as

ẋ = x(1 − x)( fC − fD) (8)

= x(1 − x)[xN−1 p(W − T
N

) − T
N

(1 − p)].
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Its Jacobian is written by

J = (1 − 2x)[xN−1 p(W − T
N

) − T
N

(1 − p)] + xN−1(1 − x)(N − 1)p(W − T
N

). (9)

We focus on the steady state which the system evolves to after the transient behavior.
Let ẋ = 0, we get all fixed points of the system whose stability is dependent on the
value of the risk rate p. Hence, we distinguish three situations as follows.

(1) If p = 0, Eq. (8) reduces to

ẋ = −T
N

x(1 − x).

This system has only two boundary fixed points, x = 0 and x = 1. Its Jacobian is
J = − T

N (1 − 2x). At x = 0, the Jacobian becomes J(x = 0) = −T/N < 0, leading to a
stable equilibrium. At x = 1, the Jacobian is J(x = 1) = T/N > 0, leading to an unstable
equilibrium. In this case, the population system converges to the state of all defectors.
No one wants to contribute his savings to avoid an impossible risk.

(2) If p = 1, Eq. (8) reduces to

ẋ = (W − T
N

)xN(1 − x).

There are also only two boundary fixed points x = 0 and x = 1. It is worth noting that
the initial endowment W is needed to exceed the donation amount T/N. The fraction x
is an increasing function of t in the interval 0 < x < 1 irrespective of the initial state as
ẋ > 0 is always satisfied. Departure of the trajectory from the point x = 0 shows that
x = 0 is an unstable equilibrium. For the equilibrium x = 1, the Jacobian is

J(x = 1) = −(W − T
N

) < 0.

Thus, the fixed point x = 1 is stable, leading to extinction of defectors. We can find that
all individuals in this population choose to donate eventually. In fact, if the danger hap-
pens with certainty, the best response for each individual is to donate unconditionally.

(3) If 0 < p < 1, we also obtain two boundary fixed points x = 0 and x = 1 from
ẋ = 0. For the point x = 0, Eq. (9) becomes

J(x = 0) = −T
N

(1 − p) < 0.

It determines that the equilibrium x = 0 is a stable boundary fixed point. For the equi-
librium x = 1, the Jacobian is

J(x = 1) =
T
N
− pW.

It is below zero under the condition of p > T/(NW) and exceeds zero in the case of p <
T/(NW). Thus, the boundary fixed point x = 1 is a stable equilibrium if p > T/(NW),
while an unstable equilibrium, otherwise. That is to say, if the expected loss is larger
than the donation amount, everyone is likely to donate and the population may be full
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of cooperators. Whereas if the expected loss is smaller than the donation amount, no
one want to cooperate as they think it is not worthy to protect their savings by donating
much more amount.

In addition, it should be illuminated that for p < T/(NW), there is no interior equi-
librium and for p > T/(NW), there is only one in the interval (0,1). In order to show
this, we set

F(x) = xN−1 p(W − T
N

) − T
N

(1 − p).

The partial derivative of F(x) with respect to x is

F′(x) = (N − 1)xN−2 p(W − T/N) > 0.

The polynomial F(x) is an increasing function of the fraction x. It is worth noting that

F(0) = −T
N

(1 − p) < 0

and

F(1) = p(W − T
N

) − T
N

(1 − p).

In the case of p < T/(NW), the result that no root of F(x) exists in the interval (0,1)
is derived from F(1) < 0 (see Fig. 1). While if p > T/(NW), inequalities F(1) > 0,
F(0) < 0 leads to only one root in (0, 1). Let F(x) = 0, we obtain the unique interior
fixed point as

x∗ = N−1

√
T
N

(1 − p)/[p(W − T
N

)].

At the interior equilibrium x∗, the Jacobian is

J(x = x∗) =
T
N

(1 − x∗)(1 − p)(N − 1) > 0,

leading to an unstable equilibrium.
To sum up, the collective risk brings in a rich dynamics (see Table 2). When there

is no risk (p = 0), the population is full of defectors ultimately irrespective of the ini-
tial state. This phenomenon where defection dominates cooperation persists until the
expected loss equals the donation amount (p = T/(NW)). With further increase of
the risk rate, the evolutionary dynamics transforms to defector and cooperator bistable
(T/(NW) < p < 1). In this situation, both of strategy ”cooperation” as well as ”defec-
tion” are the best response for each individual. Which state the population approaches
to eventually depends on the initial state. Furthermore, when the risk happens with cer-
tainty (p = 1), cooperator dominates defector and defector vanishes. The population is
composed of all donators (Fig. 2).

Moreover, in the case of p > T/(NW), the states x = 0 and x = 1 are both stable
nodes. Which state the system evolves to eventually depends on which attraction basin
the initial state is located. The interior equilibrium x∗ separates the attraction basins of
x = 0 and x = 1. If the initial state meets x0 < x∗, the system ends up with all individuals
donating nothing, otherwise, each individual chooses to donate the fair share. Hence,
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Fig. 1. The difference between the expected remainder of cooperators and defectors F(x) as a
function of the fraction of cooperators. If p > T/(NW), there is only one interior fixed point in
the interval (0,1), whereas no interior equilibrium, otherwise.

Table 2. Stability of equilibria in the case of no return

0 < p < 1
p = 0 p = 1

p < T
NW p > T

NW

x = 0 stable unstable stable stable
x∗ — — — unstable
x = 1 unstable stable unstable stable

(a) (b) (c)

Fig. 2. Evolutionary dynamics under the change of the risk rate p. Filled and open circles rep-
resent the stable and the unstable fixed points, respectively. Arrows indicate the evolutionary
direction. (a) If 0 ≤ p < T/(NW), defection dominates cooperation;(b) If T/(NW) < p < 1,
cooperation and defection are bistable; (c) If p = 1, cooperation dominates defection.

decreasing the equilibrium x∗ broadens the attraction basin of x = 1, making it easier to
reach the state of all cooperators and promoting the emergence of cooperation.

Observing x∗ = N−1

√
T
N

(p−1 − 1)/(W − T
N

), we find that the interior equilibrium x∗ is

a decreasing function of the risk rate p. Therefore, increasing the risk rate reduces the
attraction basin of all defection, meanwhile, broadens that of all donating. Cooperation
is favored when the risk rate is high. This result agrees well with the fact in our soci-
ety. The higher the risk rate, the more the donators, the higher the probability that the
population reaches the target sum.
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Similarly, the attraction basin of state x = 0 is shortened with the increase of the

endowment W according to x∗ = N−1

√
T
N

(1 − p)/[p(W − T
N

)], and the decrease of the

final target T derived from x∗ = N−1

√
(1 − p)/[p(

NW
T
− 1)]. Hence, it is easier for the

population to be full of donators with larger endowment and smaller target sum. In fact,
the larger the remainder left in the personal account, the higher the aspiration to avoid
risk, the larger the probability to reach the state of all cooperation.

Besides, noticeably, when the group size N tends to infinite, the interior equilibrium
x∗ is

lim
N→∞ x∗ = lim

N→∞
N−1

√
T (1 − p)

p(WN − T )
=

limN→∞ N−1
√

T (1 − p)

limN→∞ N−1
√

p(WN − T )
= 1.

It indicates that for sufficiently large group size, the attraction basin of the state x = 1
is approximate to zero. Thus, large group size has a negative impact on the emergence
of cooperation in the case of no return.

Actually, this result does not contradict the conclusion in Sec. 2. In the above sec-
tion, increasing the group size decreases the donation amount. It is easier to satisfy the
condition that the expected loss is larger than the donation amount, encouraging par-
ticipants to cooperate. Whereas in Sec. 3, increasing the group size N means that the
number of donators needed for the final target is raised. So it becomes harder to meet the
number, decreasing the probability to reach the threshold. Too many failure of the target
depresses the cooperative behavior. Accordingly, in Sec. 3, large group size hinders the
emergence of cooperation.

4 Conclusions

In summary, we have proposed an evolutionary public goods game with threshold incor-
porating the effects of collective risk, which mimics the characteristics of the collective-
risk social dilemma. Compared with the most studied mechanisms [8,10], risk is an
original factor introduced in the public goods game. Because the provisions of public
goods in the other models are always based on the gains from the public goods, whereas
provision of public goods in our model stems from avoiding the loss attributed to the
collective risk, meanwhile, participants receive no income. We distinguish two types
of public goods game according to whether to return the contributions when the final
target is not reached. In both of the two cases, we found that if the rate of loss p is
less than T/(NW), the contribution to the public goods exceeds the expected loss. In
this situation, there is no incentive to cooperate. The population evolves to the state of
all defectors. If p > T/(NW), the expected loss exceeds the donation amount, all co-
operation is the final state in the case of returning the contribution. While in the case
of no return, the two strategies, donating the fair share and defecting, are bistable. For
the two cases, probability to reach the state of all cooperators enhances as p increases.
It is worth noting that in the case of no return, with the increase of the risk rate p, a
rich population dynamics appears. Scenarios of defection dominance, defection as well
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as cooperation bistable, and cooperation dominance occur successively. In addition, we
also found cooperation can be significantly enhanced by large initial endowment and
small target sum. Interestingly, group size plays an opposite role in cooperation in the
two cases. In the case of returning the donation amount, large group size raises the
probability to reach the state of all cooperators; while in the other case, large group size
suppresses the emergence of cooperation.
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Abstract. A novel method based Full Bayesian Model for Neural Network（
FBMNN）to study the statistical dependency of wavelet coefficients is pre-
sented. To overcome the ignorance of the relationship between wavelet coeffi-
cients, we introduce the FBMNN to model joint probability density distribution 
(JPDF) of Child and Parent wavelet coefficients. According to the characteris-
tics of the suggested FBMNN-JPDF model, its parameters are estimated by re-
versible jump MCMC (rjMCMC) algorithm. Finally, a practical application on 
denoising image by using the FBMNN-JPDF model is demonstrated and the re-
sult shows that the suggested method can express wavelet coefficients depend-
ency efficiently. 

1   Introduction 

The prior distribution of the wavelet coefficients plays an important role in image 
processing based Bayesian method in wavelet domains. In the past years, many au-
thors use the Gaussian functions, Laplacian and mixture Gaussian model to analysis 
the statistical characteristics of wavelet coefficients. However, most of them focus on 
independent scale while the relationship between the scales is ignored. Recently, 
M.S.Crouse proposed hidden Markov model (HMM) to study the relationship be-
tween the scales[1]. 

In this paper, we present that dependency of the wavelet coefficients is studied by 
the JPDF of Child and Parent wavelet coefficients, furthermore, the JPDF is approxi-
mated by the FBMNN. As we all know, artificial neural networks (ANN) are power-
ful nonlinear approximation tools, which rely on structured combination of many 
parameterized basis function to perform regression, classification and density estima-
tion. They can approximate any continuous function arbitrarily well as the number of 
neurons increased without bound. In addition, they have been successfully applied to 
many and varied fields, including speech recognition, financial modeling and medical 
diagnosis. But it is difficult to estimate the common ANN parameters, especially for 
the number of the basis functions. So, we propose that FBMNN introduced by 
C.Andrieu[2] is used to model the JPDF for its efficiency in parameters estimation 
than the common ANN.  



 Statistical Dependency of Image Wavelet Coefficients 105 

The remainder of the paper is organized as follows: firstly, we present the princi-
ples of the FBMNN. Secondly, we study the JPDF of Child and Parent wavelet  
coefficients, subsequently, we formalize the FBMNN-JPDF model and rjMCMC 
algorithm is derived to deal with the suggested model. Thirdly, the performance of the 
suggested model is illustrated by denoising image. Finally, some conclusions are 
drawn in conclusion section. 

2   FBMNN  

Many physical processes may be described by the following nonlinear, multivariate 
input-output ANN mapping: 

L2,1,0kxb))k(Dirc1(||)x(||a tt
Tk

0j jtjt =+++−−=∑ =
ny βµφ ,          (1) 

where d
t Rx ∈ corresponds to a group of d-dimensions input variables, c

t Ry ∈ to the 

c-dimensions target variables, )(Dirc •  is Dirac Function, |||| • denotes an Euclidean 

distance metric, )(ρφ denotes basis function, d
j R∈µ denotes the j-th RBF center for 

a model with k RBFs, c
j Ra ∈ the j-th RBF amplitude , cRb ∈ and cRR d ×∈β  are 

linear regression parameters. The noise sequence tn is assumed to be zero-mean and 
2
tσ -variance white Gaussian.  

For convenience, Eq.(1) is expressed in vector-matrix form: 

nDy += ++ c:1,kd1:1d:N,1:1d:1,k:1 )x,( αμ                                                                  (2) 

Given the data set },{ yx , our objective is to estimate the unknown NN parameters: the 

number k of RBFs and their parameters },,{ ::,::,:
2
c1d1k1c1m1 σµαθ = . 

There are many approaches to reach the objective. Here, considering the Bayesian 
inference of k, θ ,C.Andrieu setup a natural hierarchical structure called FBMNN 

[4].According to FBMNN, Eq.(2) can be expressed efficiently by introducing hyper-

parameters },{ 2δψ Λ= , here ),(Gama~ 22

2
δδ βαδ Inverse )0,2( 22 >= δδ βα  and 

~Λ )1)(,5.0(Gama 21,21 <<+ εεεε . So, Bayesian inference of k,θ  conditioned on the 

data set },{ yx  is: 

),,,,),,,,,),|,,,, ,::,::,::
22

k1m1
22

k1m1
22

k1m1 ,k(px,k|y(pyx,k(p)y,x|,,k(p δσµαδσµαδσµαψθ ΛΛ∝Λ= . (3) 

Eq.(3) integrates with respect to m1:α (Gaussian distribution) and with respect to 
2σ (inverse Gamma distribution) to obtain the posterior: ),|,,,: yx,k(p 2

k1 δµ Λ . 

In a word, We can firstly use the standard methods such as: ML, MAP ,MCMC or 
rjMCMC to estimate the parameters: ,:k1,k µ ,then compute the coefficients m1:α by 

least squares according to Eq.(2) and use the conventional estimation of the variance 

to get the White Gaussian noise 2σ . 
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3   FBMNN-JPDF Model 

3.1   JPDF of Nature Image  

Researches show that the PDF of nature image intensity is similarity. Based on lots of 
experiments, we find that the JPDF of the nature image’s Child and Parent wavelet 
coefficients has also similarity. Fig.2 (b) is illustrated the similar characteristics. The 
JPDF is reached by the following steps: firstly, the nature image ),( nmf is decom-

posed (Fig.2(a)) by Mallat Pyramid[3], 

++= ∑ ∑∑
=

M

j lk
ljkjlk

H
j

lk
lMkMlk

d
M nmfDnmfAnmf

1 ,
,,,

,
,,, )]()(.)[()]()(.)[(),( ψφφφ

∑ ∑∑ ∑
==

+
M

j lk
ljKjlk

D
j

M

j lk
ljKjlk

V
j nmfDnmfD

1 ,
,,,

1 ,
,,, )]()(.)[()]()(.)[( ψψφψ        (4) 

Then, calculate the JPDF of Parent and Child wavelet components.  

3.2   JPDF Based FBMNN 

Considering the features of JPDF: statistical similarity and nonlinearity, We introduce 
the FBMNN model described as section 2 to model the relationship of the vertical 
wavelet coefficients between Child and Parent. that is: 

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

=

=+++−=∑ =

2:1,:1t

1,:1t

tt
Tk

1j jtjt

][x

)],([

2,1kxb||)x(||a

N
PC

N
PC

VV

VVpy

ny Lβµφ

   ,                                (5) 

where 1,2 == cd , the number of RBFs is from 1 to maxk ( )1(max +−= dNk ),  
CV , PV denote the vertical wavelet coefficients of Child and Parent respectively, and 

),( PC VVp denotes the values of JPDF. So, the parameters of the suggested JPDF- 

FBMNN can visualize with a directed acyclic graphical model(DAGM) as shown in 
Fig.1  

 

Fig. 1. DAGM for the JPDF- FBMNN 
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3.3   Parameters Estimation with rjMCMC Algorithm  

The estimation of the joint posterior distribution Eq.(5), where k is unknown, is very 
complex by the Bayesian computation. So, we use the reversible jump MCMC 
(rjMCMC) which has been introduced by Green[4] and this algorithm is capable of 
jumping between subspace of different dimensions. For our problem, the following 
moves have been slected: 

1) grow/decrease the network: Birth of a new RBF and Death of an existing RBF. 
2) local adjustment: Merge a RBF with its closest neighbor RBF and Split a RBF into 
two neighbors. 
3) update the RBF centers. 
The main steps of the algorithm are as follows: 

initialization: set )0(2
k1 },k{ δµ ,,,: Λ  

Loop i 
(1) uniformly sample u at [0,1] 
(2) if (u<grow/decrease probability),then Birth/death 
of a new RBF move 
     Else if  (u<local adjustment probability),then 
Merge/Split of a new RBF move 
     Else Update the RBF centers  
End if  

  (3)Do m1:α and 2σ samples 

End loop 

4   Simulation and Result 

In the MATLAB6.5,we choose the probabilities of the suggested moves: birth, death, 
merge, split and update to satisfy the following constraints: 1) kkkkk usmdb ++++  

]1,25.0[∈ for all max1 kk ≤≤ ; 2) 0=km ,that is merge move is not permitted for 

k=1; 3) 0== kk sb ,the birth and split are not allowed for maxkk = ; 4)except the 

cased:1)~3),we adopt the =ks }
)(

)1(
,1min{25.0

kp

kp
bk

+
= . min25.011 == ++ kk dm  

}
)(

)1(
,1{

kp

kp +
, where )(kp is the prior probability of model. 

In our simulation, )(ρφ is chosen to be Gaussian )(exp)( 2λρρφ −= ,We use the 

400 observations of the nature image wavelet coefficients data set{ CV , PV }to train 

our model. Fig.2 (b) shows the 3D plots of the training data from empirical JPDF and 
Fig.2 (c) is the simulated JPDF by the suggested method after 3000 iterations. The 
RMSE of this method is %25.0 less than that of mixture Gaussian method[6]. 
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                             (a)                                                (b)                                        (c) 

Fig. 2. (a) Mallat Pyramid (M=2) of “cameraman” by “db4” wavelet function; (b) empirical 
JPDF data; (c) simulated JPDF 

Further, we use the result to denoise a image.Suppose a nature image f is noised 

by i.i.d. gaussian noise n with zero mean, the noisy image g is nfg += . In the 

orthogonal wavelet domain, nwy +=  where, y , w and n is the orthogonal wavelet 

coefficients of g , f and n  respectively. 

Let },{ 21 yyy = , },{ 21 www = , },{ 21 nnn = , CVw =1 , PVw =2 , and y1,y2,n1,n2 

denote observed image wavelet coefficients and noise wavelet coefficients respec-
tively. With the help of Bi-variate Bayes rules and Poster Expected estimation algo-
rithm[5], the estimator of the original image wavelet coefficients is: 

)]()([)],|,([
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where )(
2

1
⎥
⎦

⎤
⎢
⎣

⎡
w

w
p is the approximated PDF by Eq.5 and =⎥
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p )

2

)(
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2

1
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2
1

2
1

2
n

nn

σσ
+−

,  

2
nσ means noise square derivation. 

Giving a nature image 1024*1024 "remote image” Fig.3 (a) and the observed noisy 
image Fig.3 (b). In “db4” wavelet domain, the suggested method result is Fig.3 (d) in 
contrast to Wiener method result in Fig.3 (c). We can see the suggested method can 
get good visual feelings. 

 

Fig. 3. (a) original image; (b) noisy image(SNR=3.33dB); (c) Wiener ; (d) the suggested 
method 
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In addition, the performances by SNR and RMSE criterion are compared between 
the Wiener method and the suggested method, when the noisy image SNR is 0.36dB, 
the suggested method improves the performance over Wiener by 4.25dB in SNR and 
12.8% in RMSE. With the change of the SNR of the noisy image, the performance is 
different; when SNR is lower than 6dB, the suggested method’s performance im-
proves greatly; On the other hand, when the SNR is higher than 15dB, the suggested 
method’s performance is less efficient than Wiener method. 

5   Conclusion 

We introduce the FBMNN to model nature image’s JPDF of Child and Parent wavelet 
coefficients. This method overcomes the ignorance of the relationship between the 
wavelets coefficients and improves the performance of prior distribution. Following 
the procedure of modeling the JPDF-FBMNN, we do a practical application to share 
the efficiency of the suggested model.  
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Abstract. Statistical Learning Theory on uncertainty space is investigated. The 
definitions of empirical risk functional, expected risk functional and empirical 
risk minimization principle on uncertainty space are introduced. Based on these 
concepts, the bounds on the rate of uniform convergence of learning process are 
given, which estimate the value of achieved risk for the function minimizing the 
empirical risk and the difference between the value of achieved risk and the 
value of minimal possible risk for a given set of functions.   

Keywords: Uncertain measure, Expected risk functional, Empirical risk func-
tional, Empirical risk minimization principle, Bounds of the rate of uniform 
convergence. 

1   Introduction 

Statistical Learning Theory (SLT) [1-3] was introduced by Vapnik et al., concerning 
itself mainly the statistic principles when samples are limited. SLT provides a new 
framework for some general learning problems, the key idea is to study the generali-
zation abilities of learning machine through controlling the learning machine's capac-
ity. Based on this theory, a novel pattern recognition method - Support Vector Ma-
chine (SVM) was provided. Comparing to the machine learning methods in the past, 
SLT and SVM show great advantages. Many scholars have begun to pay attention to 
the academic field [1-10], it is believed that SLT and SVM are becoming a new hot 
area in the field of machine learning [4-10]. 

The bounds on the rate of uniform convergence of learning process are important 
parts of the SLT. They determine the generalization abilities of learning machine by 
using the empirical risk minimization principle (ERM), and are important foundation 
for analyzing the performance of learning machine and developing new learning algo-
rithms. By estimating the bounds, we can get the relationship between empirical risk 
and actual risk in ERM, thus we can study the generalization abilities of the learning 
machine. 

Despite SLT shows good characters in dealing with learning problems in the case 
of the small samples, there are still some disadvantages such as the fact that SLT is 

                                                           
∗ Corresponding author. 
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established on probability space. As we all know, the condition of additivity of prob-
ability is very strong, sometimes it can not be satisfied in practical application. Addi-
tivity was challenged by non- additivity like theory of capacities by Choquet [11] and 
fuzzy measure theory by Sugeno [12]. In order to deal with general uncertainty, Liu 
founded uncertainty theory [13], Uncertain theory provides the commonness of prob-
ability theory, credibility theory and chance theory. 

In this paper, the research of SLT is extended to uncertainty space, by using uncer-
tain measure – a kind of non-additive measure, the bounds on the rate of uniform 
convergence of learning process and the relation between the bounds and the capacity 
of the set of functions are given and proved. 

2   Preliminaries 

In this section, we review some basic notions, which will be of interest in the ensuing 
investigation. The reader can refer to [13,14] for further detail. 

Let Γ be a nonempty set, and let L be aσ -algebra over Γ . Each element Λ ∈ L is 
called an event. In order to present an axiomatic definition of uncertain measure, it is 
necessary to assign to each event Λ a number M { Λ }which indicates the level 
that Λ will occur. In order to ensure that the number M { Λ }has certain mathematical 
properties, Liu [14] proposed the following four axioms. 

Axiom 1.（Normality）M { Γ } =1. 

Axiom 2.（Monotonicity）M { 1Λ } ≤ M { 2Λ }whenever 1 2⊂Λ Λ . 

Axiom 3.（Self-Duality）M { Λ } + { cΛ } =1 for any event Λ . 

Axiom 4.（Countable Subadditivity）For every countable sequence of events{ iΛ }, 
we have 

( )
11

i i
ii

∞

=

∞⎧ ⎫⎪ ⎪ ≤Λ Λ⎨ ⎬
⎪ ⎪=⎩ ⎭

∑UM { M . 

Definition 1. [14] The set function M is called an uncertain measure if it satisfies the 
normality, monotonicity, self-duality, countable subadditivity axioms. The triplet 
( , , )Γ L M is called an uncertainty space. 

Throughout this paper, unless otherwise stated, ( , , )Γ L M is an uncertainty space. 
 
Definition 2. [14] An uncertain variableξ is a measurable function from an uncer-

tainty space to the set of real number, i.e., for any Borel set B of real numbers, the set 

{ } { }( )B Bξ γ ξ γ∈ = ∈ Γ ∈  

is an event. 
 

Definition 3. [14] The uncertainty distribution [ ]: 0,1RΦ → of an uncertain vari-

ableξ is defined by 

( ){ }( )x xγ ξ γΦ = ∈ Γ ≤M . 
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Definition 4. [14] The uncertainty density function [ ]: 0,Rφ → +∞ of an uncertain 

variableξ is a function such that 

( ) ( )
x

x y dyφ
−∞

Φ = ∫  

( ) 1y dyφ
+∞

−∞
=∫  

where Φ is the uncertainty distribution ofξ . 
 
Definition 5. [14] Letξ be an uncertain variable. Then the expected value of ξ is de-

fined by 
0

0
[ ] { } { }E r dr r drξ ξ ξ

+∞

−∞
= ≥ − ≤∫ ∫M M  

provided that at least one of the two integrals is finite. 
 
Proposition 1. [14] Let ξ be an uncertain variable whose uncertainty density func-

tionφ exists. If the Lebesgue integral  

( )x x dxφ
+∞

−∞∫  

is finite, then we have  

[ ] ( )E x x dxξ φ
+∞

−∞
= ∫ . 

 
Proposition 2. [14] Letξ be an uncertain variable with finite expected value. Then for 

any real number a and b , we have 
[ ] [ ]E a b aE bξ ξ+ = + . 

 
Definition 6. [14] The uncertain variables 1 2, , , nξ ξ ξL are said to be independent if  

1 1

( ) [ ( )]
n n

i ii i
i i

E Ef fξ ξ
= =

⎡ ⎤ =⎢ ⎥
⎣ ⎦
∑ ∑  

for any measurable functions 1 2, , , nf f fL provided that the expected values exist and 

are finite. 
 
Proposition 3. [14] Ifξ andη are independent uncertain variables with finite expected 

values, then we have  

[ ][ ] [ ]E a b aE bEξ η ξ ξ+ = +  

for any real numbers a and b . 
 
Definition 7. [14] The uncertain variables ξ andη are identically distributed if  

{ } { }B Bξ η∈ = ∈M M  

for any Borel set B of real numbers. 
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3   Main Results  

In this part, consider a function set concluding N indicator functions ( ), kQ z α  

1, 2, ,k N= L , where 1 2, , lz z zL are independent and identically distributed samples.  
 

Definition 8. Let ( )zΦ be the distribution function of uncertainty random variable z . 

Then on the uncertainty space, expected risk functional and empirical risk functional 
are defined by 

                                                    ( ) ( ),u E Q zR α α= ⎡ ⎤⎣ ⎦                                              (1) 

                                                 ( ) ( )
1

1
,

l

uemp i
i

R Q z
l

α α
=

= ∑                                             (2) 

Definition 9. (Empirical Risk Minimization Principle) Let ( )0,Q z α minimize the ex-

pected risk， ( ), lQ z α minimize the empirical risk. We take ( ), lQ z α as an approxima-

tion of ( )0,Q z α . The principle of how to solve uncertain risk minimization problem is 

called Empirical Risk Minimization Principle on uncertainty spaces (UERM). 
In this section we discuss the rate of convergence of learning process，mainly 

discuss two questions: 
        1. What actual risk ( )lR α is provided by the function ( ), lQ z α that achieves 

minimal risk ( )emp lR α ?  

2. How close is this risk to the minimal possible ( )inf Rα α ,α ∈ Λ , for a given 

set of functions? 
In the following we will give the answers of these two questions. 

 

Theorem 1.（Hoeffding inequality）Let the uncertain variable sequence 1 2, , , nξ ξ ξL  

be independent, and
1

n

n i
i

S ξ
=

=∑ . Then for any 0λ > , 0t > and 0p > , we have 

( ){ } ( )( )n np S E Spt
n nS E S t e E eλλ −− ⎡ ⎤− ≥ ≤ ⎣ ⎦M . 

Proof. We can get it by the property of uncertain variable and Markov inequality [14]. 
 

Remark 1. We get the same result as in probability space, credibility space, and 
chance space for Theorem 1, when 1p = . 
 

Theorem 2. Let ξ be an uncertain variable whose expected value is 0, and [ ],a bξ ∈ . 

Then for any 0λ > , we have 
( )22 8b aE e eλλξ −⎡ ⎤ ≤⎣ ⎦ . 

 

Proof. By the property that power function is convex, we have 

b aa b
e e e

b a b a
λξ λ λξ ξ− −≤ +

− −
. 
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Taking expected value on both sides, we get 

( ) ( )( ) ( ) ( )( )1
a b

b a b a pbe ae
E e p pe e e u

b a

λ λ
λ λλξ φ− − −−≤ = − + =

−
 

where ( ) ( ) ( )ln 1 , ,u a
u p pe up u b a p

b a
φ λ= − + − = − = −

−
. 

We know ( ) ( )'0 0 0φ φ= = , meanwhile 

( ) ( )
( )( )

''
2

1 1

41

u

u

p p e
u

p p e
φ

−

−

−
= ≤

+ −
. 

By Taylor expansion, for [ ]0,uθ ∈ , we have 

( ) ( ) ( ) ( ) ( )222 2
' ''0 0

2 8 8

b au u
u u

λ
φ φ φ φ θ

−
= + + ≤ = . 

Thus                        
( )22 8b aE e eλλξ −⎡ ⎤ ≤⎣ ⎦ . 

Theorem 3. Let [ , ],  1, 2, ,i i ia b i nξ ∈ = L be uncertain variables which are bounded. 

If 1 2, ..., nξ ξ ξ are independent, then for any 0t > , 0p > we have 

( ){ }
( )

2 2

2
1

2
exp

n

n n
i i i

p t
S E S t

b a=

⎛ ⎞−⎜ ⎟− ≥ ≤
⎜ ⎟−⎝ ⎠
∑M . 

( ){ }
( )

2 2

2
1

2
exp

n

n n
i i i

p t
S E S t

b a=

⎛ ⎞−⎜ ⎟− ≤ − ≤
⎜ ⎟−⎝ ⎠
∑M . 

Proof. Combining Theorem 1 and Theorem 2, we have 

                          ( ){ } ( )22 2

1

exp
8

n
i i

n n
i

p b a
S E S t pt

λ
λ

=

⎛ ⎞−
⎜ ⎟− ≥ ≤ − +
⎜ ⎟
⎝ ⎠

∑M                    (3) 

Let 

( )2

1

4
n

i i
i

pt

b a
λ

=

=
−∑

. 

Minimizing the right side of (3), we have 

( ){ }
( )

2 2

2
1

2
exp

n

n n
i i i

p t
S E S t

b a=

⎛ ⎞−⎜ ⎟− ≥ ≤
⎜ ⎟−⎝ ⎠
∑M . 

Similarly, we have 
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( ){ }
( )

2 2

2
1

2
exp

n

n n
i i i

p t
S E S t

b a=

⎛ ⎞−⎜ ⎟− ≤ − ≤
⎜ ⎟−⎝ ⎠
∑M . 

The theorem is proved. 
 

Applying Theorem 3 to the model that is discussed, we have 

                                  ( ) ( )( ){ } { }2 2exp 2empR R p lα α ε ε− > < −M                             (4) 

                                  ( ) ( )( ){ } { }2 2exp 2empR R p lα α ε ε− > < −M                            (5) 

where 1i ib a− = , l is the number of the set of functions. 

Theorem 4. Let ( ), kQ z α , 1, 2, ,k N= L be a set of indicator functions. Then for 

any 0p > , the inequality 

                                       ( ) ( ) 1 ln ln

2k emp k

N
R R

p l

ηα α −− ≤                                     (6) 

holds with uncertain measure at least1 η− . 

Proof.               ( ) ( )( ){ }
1

k emp k
k N

sup R Rα α ε
≤ ≤

− >M  

( ) ( )( )
1

N

k emp k
k

R Rα α ε
=

⎧ ⎫≤ − >⎨ ⎬
⎩ ⎭
UM  

( ) ( ){ }
1

N

k emp k
k

R Rα α ε
=

≤ − >∑M  

                                                         { }2 2exp 2N p lε≤ −                                              (7) 

Let 
0 1η< ≤ . 

{ }2 2exp 2N p lε η− = . 

Solving ε , we have 

1 ln ln

2

N

p l

ηε −= . 

Then (7) is written by 

( ) ( )( ){ }
1

1k emp k
k N

sup R Rα α ε η
≤ ≤

− ≤ ≥ −M . 

For the set of functions ( ), , 1, 2, ,kQ z k Nα = L , inequality 

( ) ( ) 1 ln ln

2k emp k

N
R R

p l

ηα α −− ≤ . 

holds with uncertain measure at least1 η− . The theorem is proved.  
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Let ( )( )0
,

k
Q z α be the function that minimizes the expected risk, ( )( ), k lQ z α be the func-

tion that minimizes the empirical risk, (6) is true for all functions in the set，also 

holds true for the function ( )( ), k lQ z α . 

Therefore, the following inequality holds with uncertain measure at least1 η− . 

                                   ( )( ) ( )( ) 1 ln ln

2empk l k l

N
R R

p l

ηα α −− ≤                                    (8) 

This inequality answers the first question: What actual risk ( )lR α is provided by the 

function ( ), lQ z α that achieves minimal risk ( )emp lR α ?  

Theorem 5. For any 0p > , inequality 

                            ( )( ) ( )( )0

1 ln ln ln

2 2k l k

N
R R

p l l

η ηα α
⎛ ⎞− −− ≤ +⎜ ⎟⎜ ⎟
⎝ ⎠

                         (9) 

holds with uncertain measure at least1 2η− . 

Proof. For the function ( )( )0
,

k
Q z α which minimizes the expected risk, the following 

inequality holds 

( )( ) ( )( ){ } { }2 2
0 0 exp 2emp k kR R p lα α ε ε− > ≤ −M . 

This inequality means that the following inequality holds with uncertain measure at 
least1 η− . 

                                     ( )( ) ( )( )0 0

1 ln

2emp k kR R
p l

ηα α −− ≤                                       (10) 

Because ( )( ), k lQ z α is the function that minimizes the empirical risk, the inequality 

( )( ) ( )( )0 0emp empk k lR Rα α− ≥ . 

holds. Combining this inequality and formulas (8), (10) then the following inequality 

( )( ) ( )( )0

1 ln ln ln

2 2k l k

N
R R

p l l

η ηα α
⎛ ⎞− −− ≤ +⎜ ⎟⎜ ⎟
⎝ ⎠

 

holds with uncertain measure at least1 2η− . Theorem 2 is proved. 
 

Theorem 5 gives the answer to the second question at the first of this section: How 
close is this risk to the minimal possible ( )inf Rα α ,α ∈ Λ , for given set of functions? 

Remark 2. We get the same result as in probability space, credibility space, and 
chance space from Theorem 3 to Theorem 5, when 1p = . 

4   Conclusions 

In this paper, we provide the bounds on the rate of uniform convergence of learning 
process on uncertainty space which is broader than probability space, chance space 
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and credibility space. Further investigations might focus on such fundamental issues 
as structural risk minimization, VC dimension theory and address the applied aspects 
such as support vector machines on uncertainty space. 
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Abstract. This study attempts to propose an adaptive growing quantization ap-
proach for one-dimensional cerebellar model articulation controller (1D 
CMAC) network.  Even though the target function is unknown in advance, the 
learning error can be still acquired and then is utilized to determine whether the 
input space needs to be repartitioned or not.  Once the input space is determined 
to be repartitioned, some new knots are inserted for further quantization, and 
then the number of the states is increased.  Therefore, the proposed approach 
not only possesses the adaptive quantization ability in the input space, but also 
has the growing feature in the number of the states.  Beside, the linear interpola-
tion scheme is applied to calculate the CMAC output for simultaneously  
improving the generalization ability and reducing the memory requirement.  
Simulation results show that the proposed approach not only has the adaptive 
quantization ability, but also can achieve a better learning accuracy and a faster 
convergence speed. 

Keywords: Cerebellar model articulation controller, Adaptive quantization, 
Pseudo-inverse, Linear interpolation. 

1   Introduction 

The cerebellar model articulation controller (CMAC) network, proposed by Albus [1, 
2], is a kind of supervised neural network inspired by the human cerebellum. This 
network learns input-output mappings based on the premise that similar inputs should 
produce similar outputs. Therefore, unlike multi-layer feedforward networks, CMAC 
networks store information locally. Owing to its fast learning speed, good generaliza-
tion ability and ease of implementation by hardware, the CMAC network has been 
successfully applied in many applications such as control problem, signal processing 
and pattern recognition [3-5]. Other previous researches concerning about CMAC 
network have focused mainly on developing the CMAC learning algorithms [6, 7], 
improving the CMAC topology [8, 9], and selecting the learning parameters [10, 11]. 

This study attempts to propose an adaptive growing quantization approach for 1D 
CMAC network. Learning starts with a conventional 1D CMAC using low resolution 
and equal-sized quantization. The learned information is employed to evaluate 
whether the input space needs to be repartitioned or not. Once the input space is de-
termined to be repartitioned, some new knots are inserted into the input space for 
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further quantization, where the locations of those newly inserted knots are placed 
according to the learned information. Inserting new knots also causes some increase 
in the number of states. Such a mechanism enables the CMAC not only to possess the 
“adaptive” quantization ability in the input space, but also to have the “growing” 
feature in the number of the states. Since Albus’ CMAC uses a binary basis function 
as association memory selection vector in the learning and recall processes, the output 
is constant within each quantized state. That is the main reason to result in the gener-
alization error of CMAC. Without using B-Spline or Gaussian function as the basis 
function to smoothen the CMAC output [8], the study applies the linear interpolation 
scheme to the recall process of Albus’ CMAC for improving the learning accuracy. 

Any newly inserted knot will cause some variations in the block division of CMAC 
such as the number of states, the entire memory size and the association memory 
index. Hence, that CMAC must be retrained again for attaining a high learning per-
formance. Such a retraining process may be done several times during the adaptive 
growth process and then makes the proposed method become very inefficient. In 
order to achieve the purpose of fast learning speed, this study also proposes an aver-
age method to generate some virtual training patterns from the given training dataset.  
Once every virtual training target is determined, the memory contents, which could 
minimize the quadratic error, can be obtained by the pseudo-inverse scheme.  By this 
way, a CMAC requires only one training step to obtain the learned information of 
memory contents. After very adaptive growth step, if necessary, the virtual training 
patterns must be updated according to the newly quantized space. 

2   Preliminaries 

In a CMAC network, each state variable is quantized and the problem space is divided 
into discrete states [1, 2]. A vector of quantized input values specifies a discrete state 
and is used to generate addresses for retrieving information from memory elements 
for this state.  The basic structure of CMAC is depicted in Fig. 1. In the figure, the 
association memory A is obtained from the input space S, the associated data stored in 
the memory cell W are yielded in accordance with each input state. The CMAC sums 
the mapped data up as its output and feeds the error between the actual and desired 
outputs back to the memory cell equally. The mathematical expression of 1D CMAC 
is stated as follows. 

Assume that the input space S is quantized into Ns states and every state utilizes Ne 
memory units to store the corresponding memory contents.  By this way, the entire 
memory size is Nb = Ns + Ne − 1. See Fig. 2(b) for example, the input space is equally 
divided into 5 states and every state utilizes 3 memory cells to store its information. 
Therefore, the entire memory size is 7. The stored data yk (the actual output of the 
CMAC) for the state sk is the sum of stored contents of all addressed blocks and can 
be expressed as 
 

 ,1 ,∑ === bN
b bbk

T
kk way wa  (1) 
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where wb, b = 1, 2, 3, …, Nb, is the memory content of the bth block, w = [w1, w2, …, 

bNw ]T, ak,b is the association index indicating whether the bth block is addressed by 

the state sk, and ]...,,,[ ,2,1, bNkkk
T
k aaa=a . Since each state addresses exactly Ne 

blocks, only those addressed ak,b’s are 1, and the others are 0. The CMAC uses a su-
pervised learning method to adjust the memory contents during each learning cycle. 
Its updating rule can be described as 
 

 )],(ˆ[)()1( ty
N

tt T
kkk

e

waaww −+=+ η
  ...,3,2,1=t  (2) 

 
where w(t+1) is the stored value of the bth block at time t+1, w(t) is the one at previ-
ous time t, η is the learning rate, kŷ  is the desired value for the state sk, and 

)(ˆ ty T
kk wa−  is the error for the state sk.  Note that only the addressed blocks are up-

dated.  On the other hand, the analytical solution of w is 
 

 ,ŷAw +∗ =  (3) 

 

where 1)( −+ = TT AAAA  is the pseudo-inverse of the association matrix A formed 

from the association vector ak, k = 1, 2, 3, …, Ns, as row vector, and  
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Fig. 1. Block diagram of CMAC 

 

Fig. 2. State growing process 
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,ˆ[ˆ 1yT =y  ]ˆ...,,ˆ2 sNyy . That is to say, the updating rule (2) could converge to w* if the  

learning rate is properly selected [12]. 

3   Adaptive Growing Quantization 

Two main assumptions of the proposed approach are stated as follows.  One is that 
the input space is limited in a certain region, but the number of states Ns is allowed to 
gradually increase at every adaptive growth step.  The other is that each state is dis-
tributively stored in Ne memory elements, i.e., a complete block covers exactly Ne 
adjacent states, where Ne is constant. 

3.1   Virtual Training Patterns 

Assume that there are Np given patterns (xj, dj) generated from an target function f(x), 
where dj = f(xj) and j = 1, 2, …, Np.  Generally speaking, Np >> Ns.  The input points 
(x-values) could be randomly or uniformly distributed in the input space [xL, xU], 
where xL and xU represent the lower and upper bound, respectively.  As the input 
space is quantized into Ns states, there exist Ns+1 knots, denoted by qi, i = 0, 1, 2, …, 
Ns, to partition the space as shown in Fig. 2.  Moreover, the input xj belongs to the 
state sk if and only if qk−1 < xj ≤ qk.  Without lost of generality, it is assumed that each 
state contains at least one input. 

Define ),( kk dx  as the virtual training pattern for the state sk, where 
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and N(sk) represents the number of training inputs belonging to sk.  In the above defi-

nition, kx  and kd  represent the virtual training input and the corresponding desired 

output, respectively.  It is obvious that there are exactly Ns virtual training patterns 
and no two distinct training inputs, say ix  and jx , ji ≠ , are associated with the 

same state.  On the other hand, these virtual training patterns not only allow a CMAC 
to be trained by a few samples, but also could avoid the learning interference [7] dur-
ing the training process. 

3.2   Adaptive Growing Process 

The proposed adaptive growing process starts with a CMAC whose input space is 
uniformly quantized into several states, e.g., Ns = 4 in Fig. 2(a).  Once all virtual train-
ing patterns are generated by (4) and (5), the memory contents w can be obtained by 

the pseudo-inverse scheme (3) if let kk dy =ˆ  for all k’s.  When the input xj is applied 

to the trained CMAC, the corresponding output obtained from (1) will satisfy that 
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y(xj) = yk if xj ∈ sk.  As can be seen, the generalization error due to the input xj is dj − 
yk.  This study adopts two strategies to reduce the generalization error caused by quan-
tization.  The first one is applied the linear interpolation scheme to the recall process 
of Albus’ CMAC as follows. 
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where 1 < k < Ns. 

The second one is the proposed adaptive quantization scheme as described as fol-
lows.  Define the root mean squared error (RMSE) for the state sk, termed the state 
error hereafter, as 
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Those states with larger state error must be further quantized to minimize the gener-
alization error caused by quantization. The evaluation criterion is that a state, say sk, 
needs to be repartitioned if es(sk) ≥ ρ, where ρ is a predefined repartition threshold. 
Since qk−1 ≤ kx  ≤ qk, inserting the point kx  into the interval [qk−1, qk] could divide that 

interval into two parts.  Hence, the newly inserted knot for the state sk in this study is 
directly assigned as the point kx  and it can divide the state sk into two new states as 

depicted in Fig. 2(b). If there are more than one state which must be repartitioned at 
the same time, each associated interval must be inserted a corresponding new knot for 
re-quantization. To do so, the proposed approach could simultaneously attain the 
purposes of adaptive quantization and state growth. Even though the target function is 
unknown, the proposed adaptive quantization approach can be still performed by the 
above evaluation criterion. 

The adaptive growing process will stop when a specified performance measure or a 
pre-specified maximum number of states (or epochs) is reached. To sum up, the algo-
rithm of the proposed adaptive growing quantization can be described as follows. 
1) Start with a CMAC whose input space is uniformly quantized into several states. 
2) Generate the virtual training patterns by (4) and (5). 
3) Obtain the memory contents by the pseudo-inverse scheme (3). 
4) Calculate the CMAC output for each virtual training input by (1). 
5) Use the linear interpolation scheme (6) to find all the actual outputs. 
6) Compute all state errors by (7). 
7) Insert a new knot into the state with state error larger than the repartition thresh-

old.  If there are more than one state which must be repartitioned, each associated 
interval must be inserted a corresponding new knot. 

8) Repeat steps 2-7 until a stopping criterion is fulfilled. 
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3.3   Convergence Analysis 

At each state growth step, the memory contents are obtained by the pseudo-inverse 
scheme (3).  Since Eq. (3) is the analytic solution of (2), the memory contents w* 
could minimize the quadratic error [12]: 
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Herein the convergence analysis focuses on showing that the quadratic error is 
gradually decreased as the number of states is gradually increased.  That is, ∆E 
= E(t+1) − E(t) ≤ 0, where E(t) represents the quadratic error at the tth  
epoch. 

It can be seen from (6) that the CMAC response is a piecewise linear approxi-
mation of the target function f(x).  See Fig. 3(a) for example.  The broken line y(t) 
shows a possible piecewise linear approximation of f(x) in the interval ],[ 11 +− kk xx  

at the tth epoch, where the black squares represent the virtual target values as 
defined in (5).  Assume that the state sk is evaluated to be repartitioned.  While 
the new knot kx  is inserted into the state sk, that state is divided into two states 

covered by ],[ 1 kk xq −  and ],[ kk qx , respectively.  Subsequently, the original virtual 

target value kd  is replaced by two new ones Ld  and Rd  marked by the black 

triangles in the figure. Since f(x) is concave upward, kL dd ≤  and kR dd ≤ .  There-

fore, inserting a new knot could push the piecewise linear approximation toward 
the target function f(x) as the solid line y(t+1) in Fig. 3(a).  The fact also reveals 
that 
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where the term A1+A2 represents the area of the region bounded by y(t) and y(t+1) 
on the interval ],[ 11 +− kk xx .  This also means that the approximation error is re-

duced by the amount of A1+A2.  Hence ∆E ≤ 0 holds for the concave upward case.  

If f(x) is concave downward (i.e., kL dd ≥  and kR dd ≥ ), the fact that ∆E ≤ 0 is 

also true. 

Fig. 3(b) shows that case of f(x) being increasing, i.e., kL dd ≤  and kR dd ≥ .  

While the new knot kx  is inserted into the state sk, the approximation error is also 

reduced by the amount of A1+A2 as shown in the figure.  Hence ∆E ≤ 0 holds.  Analo-
gously, ∆E ≤ 0 is also true for the decreasing case.  To sum up, the quadratic error is 
gradually decreased as the number of states is gradually increased.  This completes 
the convergence analysis. 
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(a) Case I: concave upward ( kL dd ≤  and kR dd ≤ ) 

 
(b) Case II: increase ( kL dd ≤  and kR dd ≥ ) 

 

Fig. 3. Piecewise linear approximation of f(x) 

4   Simulation Results 

Consider a 1D CMAC network trained to generate a target function f(x) = 1 + e−x ⋅ 
sin(3x), x ∈ [0.0, 10.0].  There are 201 training patterns, generated from f(x), whose 
input points (x-values) are uniformly distributed in the input space.  In this example, 
each state is distributively stored in three memory elements, i.e., Ne = 3 and the input 
space is initially quantized into five states.  Besides, the repartition threshold is ρ = 
0.01.  The plot of the RMSE for the first several epochs is given in Fig. 4, in which 
the number shown indicates the number of states used at this epoch.  The CMAC with 
output linear interpolation is converged at the 6th epoch with 30 memory elements 
and RMSE of 0.0045, whereas the one without linear interpolation, i.e., the CMAC 
outputs are directly obtained from (1), is at the 7th epoch with 62 memory elements 
and RMSE of 0.0038.  In the figure, one more epoch for each case is to show the 
corresponding learning result is actually converged.  As can be seen, in both cases, the 
RMSE is gradually reduced as the number of states is gradually increased.  However, 
the former is superior to the latter in both the convergence speed and the memory 



 Adaptive Growing Quantization for 1D CMAC Network 125 

requirement.  In fact, the memory requirement of the proposed approach is just half of 
that of the conventional method. 

Fig. 5 shows the generalization results for both cases with 1001 verification pat-
terns whose input points are also uniformly distributed in the input space.  The 
RMSEs with and without output linear interpolation are 0.0058 and 0.0087, respec-
tively.  This also reveals that applying the linear interpolation scheme to the recall 
process could effectively reduce the output error with less memory requirement 
whether the patterns are trained or not.  In Fig. 5, the black dots on the x-axis repre-
sent the knots generated by the proposed approach.  The larger the degree of variation 
in the target function, the more the knots.  It is obvious that most of knots are located 
in the interval [0.0, 2.0] (see the top figure).  Since the degree of variation in the in-
terval [4.0, 10.0] is nearly zero (see the bottom figure), no new knot is inserted into 
that interval.  The results could show that the proposed approach has the adaptive 
quantization ability. 

Fig. 6 shows the learning results of the proposed quantization approach with the 
on-line adaptive quantization method [13].  In the on-line adaptive quantization 
method, the input space is initially quantized into 40 states and the CMAC is trained 
with the learning rate η of 0.1 and the generalization size Ne of 3.  The corresponding 
learning result is converged at the 245th epoch with 36 memory elements (34 states) 
and RMSE of 0.0101.  The RMSE of the generalization result for the above 1001 test 
patterns is 0.0239.  Besides, the black dots on the x-axis of Fig. 6 represent the knots 
generated by the on-line adaptive quantization method.  Although the on-line  
quantization method also could adaptively quantize the input space, the proposed 
quantization approach still outperforms the on-line adaptive quantization method in 
the learning performance and the generalization ability. 

 

 
 

Fig. 4. RMSE and number of states for each epoch 
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Fig. 5. Generalization results of 1D AG-CMAC 
 

 
 

Fig. 6. Comparison of adaptive growing quantization with on-line adaptive quantization 

5   Conclusions 

This study proposed an adaptive growing quantization approach for 1D CMAC net-
work.  With the help of the pseudo-inverse scheme, each adaptive growth step CMAC 
requires only a single training cycle.  The RMSE of each state is used to evaluate 
which state needs to be repartitioned or not.  Even though the target function is un-
known in advance, all state errors can be acquired according to the learned informa-
tion.  Once a state is determined to be repartitioned, a new knot is inserted into the 
corresponding interval.  Therefore, the number of states is gradually increased during 
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the adaptive growing process.  Beside, the linear interpolation scheme is applied to 
calculate the CMAC output for simultaneously improving the generalization ability 
and reducing the memory requirement.  Simulation results for a nonlinear function 
show that the proposed approach not only has the adaptive quantization ability, but 
also can achieve a better learning accuracy and a faster convergence speed. 

Acknowledgments 

This work was supported by the National Science Council, Taiwan, Republic of 
China, under Grant NSC 97-2221-E-262-009. 

References 

1. Albus, J.S.: A New Approach to Manipulator Control: The Cerebellar Model Articulation 
Controller (CMAC). J. Dyn. Syst., Meas., Contr., Trans. ASME. 97(3), 220–227 (1975) 

2. Albus, J.S.: Data Storage in the Cerebellar Model Articulation Controller (CMAC). J. Dyn. 
Syst., Meas., Contr., Trans. ASME. 97(3), 228–233 (1975) 

3. Yeh, M.F.: Single-input CMAC Control System. Neurocomputing 70, 2638–2644 (2007) 
4. Glanz, F.H., Miller, W.T., Kraft, L.G.: An Overview of the CMAC Neural Network. In: 

Proc. 1991 IEEE Neural Netw. Ocean Eng., Washington, DC, pp. 301–308 (1991) 
5. Tao, T., Lu, H.C., Hung, T.H.: The CA-CMAC for Downsampling Image Data sSize in the 

Compressive Dain. In: Proc. 2002 IEEE Int. Conf. Syst., Man and Cybern, Hammamet, 
Tunisia, vol. 5 (2002) 

6. Cotter, N.E., Guillerm, T.J.: The CMAC and A Theorem of Kolmogorov. Neural Netw. 5, 
221–228 (1991) 

7. Thompson, D.E., Kwon, S.: Neighborhood Sequential and Random Training Techniques 
for CMAC. IEEE Trans. Neural Netw. 6(1), 196–202 (1995) 

8. Lee, H.M., Chen, C.M., Lu, Y.F.: A Self-organizing HCMAC Neural-network Classifier. 
IEEE Trans. Neural Netw. 14(1), 15–27 (2003) 

9. Jan, J.C., Hung, S.L.: High-order MS_CMAC Neural Network. IEEE Trans. Neural 
Netw. 12(3), 598–603 (2001) 

10. Kim, H., Lin, C.S.: Use of Adaptive Resolution for Better CMAC Learning. In: 1992 Int. 
Joint Conf. Neural Netw., Baltimore, MD, vol. 1, pp. 517–522 (1992) 

11. Lin, C.S., Kim, H.: Selection of Learning Parameters for CMAC-based Adaptive Critic 
Learning. IEEE Trans. Neural Netw. 6(3), 642–647 (1995) 

12. Horváth, G., Szabó, T.: Kernel CMAC with Improved Capability. IEEE Trans. Syst., Man, 
Cybern., B. 37(1), 124–138 (2007) 

13. Yeh, M.F., Lu, H.C.: On-line Adaptive Quantization Input Space in CMAC Neural Net-
work. In: Proc. 2002 IEEE Int. Conf. Syst., Man and Cybern., Hammamet, Tunisia, vol. 4, 
pp. 336–341 (2002) 

 



Qualitative Analysis of General Discrete-Time
Recurrent Neural Networks with Impulses

Xinquan Zhao

Information School, Zhongnan University of Economics & Law,
Wuhan 430074, China

Abstract. In this article, the qualitative analysis of general discrete-
time recurrent neural networks with impulses is discussed. First, a suf-
ficient condition and a sufficient and necessary condition for existence
and uniqueness of the equilibrium point of this neural networks are given
with the help of degree theory; second, some sufficient rules for the global
exponential stability of this neural networks are obtained by using Lya-
punov function; finally the instability of the equilibrium is studied.
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1 Introduction

The subject of artificial neural networks has become one of the important tech-
nical tools for solving a variety of problems in various scientific disciplines. From
a view of mathematics, an artificial neural network corresponds to a nonlinear
transformation of some inputs into certain outputs. Among the many types of
neural networks proposed and studied in the literature, the several discrete-time
recurrent neural networks[1-7]described by difference equations have become an
important one due to its potential for applications in associative memory, pat-
tern recognition, optimization, model identification, signal processing, etc. The
dynamical characteristics of the network are assumed to be governed by the
dynamics of the following system of difference equation[8]

x(n + 1) = Dx(n) + Aσ(Bx(n) + I). (1)

where n is a positive integer, x=(x1, x2, · · ·xm)T ∈Rm, D=diag(d1, d2, · · · , dm),
|di| < 1, I = (I1, I2, · · · , Im)T ∈ Rm, A = diag(a1, a2, · · · , am), ai 
= 0, B =
(bij) ∈ Rm×m, Iidenotes a constant external input current to the ith neuron,
σ(x) = (σ1(x1), σ2(x2), · · · , σm(xm))T , σi(xi) = 2−1(|xi + 1| − |xi − 1|).

When the D = 0, A = E, the model becomes BSB model[1-4], so this model
has more generalization.

Dynamical systems are often classified into two categories of either continuous-
time[9-11] or discrete-time systems. Recently there has been a somewhat a new
category of dynamical systems, which is neither purely continuous-time nor

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 128–137, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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purely discrete-time ones; these are called dynamical systems with impulses [12–
15].This third category of dynamical systems display a combination of character-
istics of both the continuous-time and discrete-time systems. The development
of the impulsive dynamical systems has proceeded along two distinct lines. The
continuous-time dynamical systems with impulsive have been studied commend-
ably, but the discussion of the discrete-time dynamical systems with impulsive
is inchoate. It has been researched widely and deeply, because of the important
effect of the model of the discrete-time neural networks with impulses described
by difference equations in the pattern recognition and image processing, etc.

Now we consider the system (1) subjected to certain impulsive state displace-
ments at fixed moments of time:⎧⎪⎪⎨⎪⎪⎩

x(n + 1) = Dx(n) + Af(x(n) + I)
x(n0) = x0 ∈ Rn

li(xi(nk)) = xi(nk + 1)− xi(nk), i = 1, 2, · · · , m, k = 1, 2, 3, · · ·
n0 < n1 < · · · < nk →∞ as k →∞

. (2)

By a solution of (2), we meanx = {x1, x2, · · · , xm}T ∈ Rm;the impulsive func-
tions lk(·) : R −→ R are assumed to be discrete, f(x, I) : Rm ×Rm → Rm.

In the following, the qualitative analysis of a discrete-time recurrent neural
networks with impulses is discussed. First, a sufficient and a necessary conditions
for existence and uniqueness of the equilibrium point of this neural networks is
given by the theory of topologic degree[8], where the degree theory of nonlinear
analysis is used; second, some sufficient rules for the global exponential stability
of this neural networks are obtained by using Lyapunov function; finally the
instability of the equilibrium is studied.

2 The Existence of the Equilibria of Discrete-time
Systems

The results of this section are obtained in [8]. Here, we introduce the good results
and methods causing people’s interesting and recommending. Let

h(x, I) = (E −D)x−Af(x + I),

then the equilibrium point of (1) is equal to the solution of the equationh(x, I) =
0. Here, the description of the theory of topologic degree is given: suppose that
Ω ⊂ Rmis a bounded open set, Ω̄ is its closure, and ∂Ω is its boundary such that
his a mapping, h : Ω̄ → Rm.If h(∂Ω) 
= 0, then, foe 0, the integral value funtion
d(h, Ω, 0) denotes the degree of the function hon Ω, H(λ, x) ∈ C(J × Ω, Rn)is
homotopy, J ∈ [0, 1].

Theorem 1. For every I =(I1, I2, · · · , Im)T ∈Rm, ‖f(x, I)‖ ≤ L, or ‖f(x, I)‖ ≤
L ‖x‖α , 0 ≤ α ≤ 1, there is R0 that is enough large such that

d(h(x, I), U(R0), 0) = d(x, U(R0), 0) = 1. (3)

Namely, there is at least a solution of h(x, I) = 0 in the U(R0), so there is at
least an equilibrium point of (1).
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Proof. For every I = (I1, I2, · · · , Im)T ∈ Rm, making

H(λ, x) � λh(x, I) + (1 − λ)x, (4)

and d = max di, then ∀x ∈ ∂U(R0)(namely‖x‖ = R0), have

xT H(λ, x) ≥ (1− d)R2
0 −

m∑
i=1

aixifi(xi + Ii).

(1) If ‖f(x, I)‖ ≤ L, R0 > (1− d)−1L ‖A‖ , for ∀λ ∈ J

xT H(λ, x) ≥ (1− d)R2
0 −

m∑
i=1

Li |ai| |xi| ≥ (1− d)R2
0 − L ‖A‖R0 > 0

(2) If 0 ≤ α < 1, R0 >
(
(1 − d)−1L ‖A‖) 1

1−α , for ∀λ ∈ J ,

xT H(λ, x) ≥ (1− d)R2
0 −

m∑
i=1

Li |ai|x1+α
i ≥ (1− d)R2

0 − L ‖A‖R1+α
0 > 0;

(3) If α = 1, 1− d− L ‖A‖ > 0, for ∀λ ∈ J ,

xT H(λ, x) ≥ (1− d)R2
0 −

m∑
i=1

Li |ai|x2
i ≥ (1 − d− L ‖A‖)R2

0 > 0.

Here ‖A‖ is a spectral norm of A. Hence∀λ ∈ J, xT H(λ, x) 
= 0, by homotopy
invariability,

d(H(1, x), U(R0), 0) = d(H(0, x), U(R0), 0).

Namely (3) is right, the result of the theorem has been gotten.

Theorem 2. For every I = (I1, I2, · · · , Im)T ∈ Rm, a sufficient condition for
uniqueness of the equilibrium point of (1) is

a−1
i (1− di) 
= ∆fi/∆xi, i = 1, 2, · · · , m. (5)

Proof. Now we are going to prove this uniqueness of the equilibrium point of
(1), by reduction to absurdity. If a−1

i (1 − di) 
= ∆fi/∆xi, i = 1, 2, · · · , m, there
are two equilibrium points of (1) x 
= y, then

(E −D)(x− y)−A[f(x + I)− f(y + I)] = 0.⎛⎜⎜⎝
a−1
1 (1− d1)

a−1
2 (1− d2)
· · ·
a−1

m (1− dn)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
[f1(x1 + I1)− f1(y1 + I1)]/ (x1 − y1)
[f2(x2 + I2)− f(y2 + I2)]/ (x2 − y2)
· · ·
[f3(x3 + I3)− f3(y3 + I3)]/ (xm − ym)

⎞⎟⎟⎠ .

Well than

a−1
i (1− di) = (xi − yi)

−1 [fi(xi + Ii)− fi(yi + Ii)] = ∆fi/∆xi, i = 1, 2, · · · , m,

illogicality. The sufficient condition (1) has been completed.
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3 Globally Exponential Stability of the Equilibrium of
Discrete-Time Systems

In this section, we derive sufficient conditions for the globally exponential sta-
bility of the equilibrium of a system when the system is subjected to impul-
sive displacements. In particular we consider the stability of equilibrium of the
discrete-time impulsive system (1). Fist two principal definitions and one con-
clusion are delivered:

1. If there are two positive definite matricesA, Q, such thatAT PA−P = −Q,
we say thatAis stable.

2. If there are a positive diagonal matrixPand a positive definite matrixQsuch
that AT PA− P = −Q, we say thatAis diagonal stable.

3. Let |A| = (|aij |)n×n, by we have
ρ (|A|) < 1⇔ |A|is stable⇔ |A|is diagonal stabal⇔ E − |A|is a M-matrix

⇔ E −A ∈ P ⇒ E −A ∈ P,

Ais diagonal stable⇒ E −A ∈ P (see [19,20,21] ). (4)
We can simplify the above system as follows: Suppose x∗is a equilibrium point

of (1), we let yi(n) ≡ xi(n) − x∗
i , i = 1, 2, 3, · · · , m, F (y(n)) = f((y(n) + x∗) +

I)− f(x∗ + I)
and note that the yi(·)are governed by⎧⎪⎪⎨⎪⎪⎩

y(n + 1) = Dy(n) + AF (y(n))
y(n0) = x0 − x∗ = y0 ∈ Rn

li(yi(nk)) = yi(nk + 1)− yi(nk), i = 1, 2, · · · , m, k = 1, 2, 3, · · ·
n0 < n1 < · · · < nk →∞ as k →∞

. (6)

where F (y(n)) = f (y(n) + x∗ + I) − f(x∗ + I). Obviously, y = 0is a trivial
equilibrium point of (5), to study the stability of an equilibrium point of (1)
is equal to study the stability of a trivial equilibrium point of (5), also for an
arbitrary positive diagonal matrixP , we have

Theorem 3. Suppose that |Fi(y)| ≤ Li |yi| , i = 1, 2, · · · , n, and

(1)1 > |di|+ Li |ai| , i = 1, 2, · · · , n, or max
1≤i≤m

[1− |di| − Li |ai|] > 0;

(2) The impulsive operators Iik(yi(nk)) satisfy

Iik (yi(nk)) = −rik (yi(nk)− x∗
i ) , 0 < rik < 2, i = 1, 2, · · · , m, k ∈ Z+,

then the solution of (5) is globally exponential stable.

Proof. Consider a Lyapunov function V1(y) = V1(y(·))defined by

V1(y) = V1(y(·)) =
m∑

i=1

|yi(·)| =
m∑

i=1

|xi(·)− x∗
i |. (7)
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Obviously,V1(y) ≥ 0 and V1(0) = 0, V1(y) → +∞as‖yi(·)‖ → +∞. We find the
change ∆+V1(y)along the solution of (5)given by

∆+V1(y) ≤ − min
1≤i≤m

(1− |di| − Li |ai|)
m∑

i=1

|yi(n)| = −α1V1(y). (8)

Using the inequality er ≥ 1− r(r > 0), mathematical induction and (8), we get

V1(y(n)) ≤ V1(y(n− 1))e−α1 ≤ V1(y(n− 2))e−2α1 ≤ · · · ≤ V1(y(0))e−nα1 . (9)

It follows that on each n = 0, 1, 2, · · · , V (·)is exponential descending. Also

V1(y(nk + 1)) ≤
m∑

i=1

|xi(nk)− x∗
i | = V1(y(nk)), k ∈ Z+. (10)

We may make the Lyapunov functionV2(y) = V2(y(·)) = max
1≤i≤m

|yi(·)|, and

obviously,V2(y) ≥ 0 and V2(0) = 0,asV2(y) → +∞, the change ∆+V2(y)along
the solution of (5) is

∆+V2(y) ≤ −
(

max
1≤i≤m

[1− |di| − Li |ai|]
)

max
1≤i≤m

|yi(n)| = −α2V2(y). (11)

Using the inequality e−r ≥ 1 − r(r > 0), mathematical induction and (11), we
get

V2(y(n)) ≤ V2(y(n− 1))e−α2 ≤ V2(y(n− 2))e−2α2 ≤ · · · ≤ V2(y(0))e−nα2 . (12)

V2(y(nk + 1)) ≤ max
1≤i≤m

|xi(nk)− x∗
i | = V2(y(nk)), k ∈ Z+. (13)

This completes the proof of the globally exponential stability of the solution of
the system (5).

Theorem 4. Suppose that the |D| + |A| |B| is stable, and further that the im-
pulsive operators Iik(yi(nk))satisfy

|Ii (yi(nk))| ≤ C |xi(nk)− x∗
i | , i = 1, 2, · · · , m, k ∈ Z+,

then the solution of (2) is globally exponential stable.

Proof. If that the |D| + |A| |B| is stable, then we can deduce the one and only
equilibrium point of (1) and there are positive diagonal matrixP1and positive
definite matrixQ1, such that

(|D|+ |A| |B|)T
P1 (|D|+ |A| |B|)− P1 = −Q1, (14)

by (4) and Theorem2. Constructing the Lyapunov functionV3(y) = V3(y(·)) =
yT P1y, and obviously, V3(y) ≥ 0 and V3(0) = 0,asV3(y) → +∞, the change
∆+V3(y)along the solution of (5) is

∆+V3(y)≤|y(n)|T
[
|D|P1 |D|−P1 + 2 |D|P1 |A| |B|+ |B|T |A|P1 |A| |B|

]
|y(n)|

=−α3V3(y). (15)
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Hence

V3(y(n)) ≤ V3(y(n− 1))e−α3 ≤ V3(y(n− 2))e−3α3 ≤ · · · ≤ V3(y(0))e−nα3 ,

and as before

V3(y(nk+1)) ≤ (1+C)
m∑

i=1

p1i (xi(nk)− x∗
i )

2 = (1+C)V3(y(nk)), k ∈ Z+. (16)

This enough proves the conclusion of the theorem.

Corollary 1. Suppose that the f(y)is a monotonically increasing function
min

1≤i≤m

[(
1− d2

i

)− 2i |aidi|Li − a2
i d

+
i L2

i

]
> 0, the orther conditions are the same

as the Theoerm 4, the solutionx∗of (2) is globally exponential stable.

Proof. By (15) and proving process of the Theorem4, we have

∆+V3(y) ≤
m∑

i=1

(
d2

i − 1
)
piy

2
i (n) + 2

m∑
i=1

|aidi|Lipiy
2
i (n) +

m∑
i=1

a2
i d

+
i piL

2
i y

2
i (n)

≤ − min
1≤i≤m

[(
1− d2

i

)− 2i |aidi|Li − a2
i d

+
i L2

i

] m∑
i=1

piy
2
i (n)

= −α4V3 (y(n)) .

The conclusion has been gotten effortless.

As we known, the positive solutions of a dynamical system is more useful than
the others usually. Now we are going to discuss the stability of the positive
solution of the system (2).

Corollary 2. If the fi(yi), i = 1, 2, · · · , m are monotone increasing functions,
yi(·) > 0, i = 1, 2, · · · , m, min

1≤i≤m

[(
1− d2

i

)− 2i (aidi)
+

Li − a2
i d

+
i L2

i

]
> 0, and

the orther conditions are the same as the Theoerm 4, the solutionx∗of (2) is
globally exponential stable.

Proof. By (15) and proving process of the theorem4, we have

∆+V3(y) ≤
m∑

i=1

(
d2

i − 1
)
piy

2
i (n) + 2

m∑
i=1

(aidi)
+

Lipiy
2
i (n) +

m∑
i=1

a2
i d

+
i piL

2
i y

2
i (n)

≤ − min
1≤i≤m

[(
1− d2

i

)− 2i (aidi)
+

Li − a2
i d

+
i L2

i

] m∑
i=1

piy
2
i (n)

= −α5V3 (y(n)) .

The corollary2 will been proved easily.

The next theorem represents a generalization of Theorem 4.
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Theorem 5. Assume that the (E − |D|)−1 ABis diagonal stabal, and the im-
pulsive operators Iik(yi(nk))satisfy

|Ii (yi(nk))| ≤ eβnk |xi(nk)− x∗
i | = eβnk |yi(nk)| , i = 1, 2, · · · , n, k ∈ Z+,

β < α6, then the solution of (2) is globally exponential stable.

Proof. Suppose the condition of the theorem be satisfied, if that the (E − |D|)−1

AB is diagonal stabal, then we can deduce the only equilibrium point of (1) and
there are positive diagonal matrixP ∗and positive definite matrixQ2, such that

LA (E − |D|)−1
P ∗ (E − |D|)−1

AL− P ∗ = −Q2. (17)

Making the Lyapunov function V4(y) = V4(y(·)) = yT P2y as the theorem 4, here

P2 = P ∗ (E − |D|)−1 = diag(P21, P22, · · · , P2n).

The change ∆+V4(y)along the solution of (5) is

∆+V4(y) = y(n)T (DP2D − P2) y(n) + 2y(n)T DP2 (AF (y(n)))

+ (AF (y(n)))T P2AF (y(n)) (18)

Let G = (g1, g2, · · · , gm) , G−1 = (g1, g2, · · · , gm)−1, where

gi =
{ |di| (1− |di|) , di 
= 0

0, di = 0 , g−1
i =

{ |di| (1− |di|)−1
, di 
= 0

0, di = 0
, (19)

thus we have

2yT ADP2F (y) = 2
m∑

i=1

yidiP2iaiFi(yi) ≤ yT
(
GDP2D + G−1LAP2AL

)
y. (20)

It follows that

∆+V4(y) ≤ yT
[
(E + G)DP2D − P2 + (E + G−1)LAP2AL

]
y

≤ −λmin (Q2) ‖y‖2 ≤ −λmin (Q2) /λmax (P2) V4(y(n))
= −α6V4(y(n)). (21)

Hence

V4(y(n)) ≤ V4(y(n− 1))e−α6 ≤ V4(y(n− 2))e−3α6 ≤ · · · ≤ V4(y(0))e−nα6 ,

and as before

V4(y(nk + 1)) =
m∑

i=1

p2
i (xi(nk + 1)− xi(nk) + xi(nk)− x∗

i )
2

≤ (1 + eβnk)e−νnkV 1−ν
4 (y(nk)), k ∈ Z+, 0 < β < ν < α6.(22)

This completes proof of the theorem.

Remark. In above theorems, the three impulsive operators Iik(yi(nk))are com-
mutative.
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4 Instability of Equilibrium of Systems with Impulses

Criteria for instability of equilibria of this neural networks with impulses have
not been systematically investigated in the current literature. Here are some new
and simple conditions fore such instability.

Theorem 6. Suppose that if either of the following conditions holds

|di| − Li |ai| > 1, i = 1, 2, · · · , n, or min
1≤i≤m

(|di| − Li |ai|) > 1,

then the solution of (5) is unstable.

Proof. Suppose y(n) 
= 0, we find the change ∆+V1(y) > 0, along the solution
of (5) given by

∆+V1(y) ≥
m∑

i=1

{|di| |yi(n)| − (Li |ai|+ 1) |yi(n)|}

=
m∑

i=1

(|di| − Li |ai| − 1) |yi(n)| > 0.

We can see the change ∆+V2(y)along the solution of (5) is

∆+V2(y) ≥ max
1≤i≤m

[|diyi(n)| − Li |ai| |yi(n)|]− max
1≤i≤m

|yi(n)|
≥ min

1≤i≤m
[|di| − Li |ai|] max

1≤i≤m
|yi(n)| − max

1≤i≤m
|yi(n)| .

=
[

min
1≤i≤m

(|di| − Li |ai|)− 1
]

max
1≤i≤m

|yi(n)| > 0.

The conclusion of the theorm6 is proved.

Theorem 7. Suppose that if either of the following conditions holds

(1) |di| − Li |ai| = 1, i = 1, 2, · · · , n, and|Ii (yi(nk))| ≥ 2 |xi(nk)− x∗
i |;

(2) min
1≤i≤m

(|di| − Li |ai|) = 1, max
1≤i≤m

|Ii (yi(nk))| ≥ 2 max
1≤i≤m

|xi(nk)− x∗
i |

then the equilibrium statex∗of systems (2) is unstable.

Proof. Suppose condition (1) holds, forn 
= nk, by Theorem6, one has ∆+V1(y)
≥ 0, and. forn = nk, k ∈ Z+, has

V5(y(nk + 1)) ≥
m∑

i=1

|Ii (yi(nk))| −
m∑

i=1

|xi(nk)− x∗
i |

≥ (2− 1)
l∑

i=1

|xi(nk)− x∗
i | = V5(y(nk)), k ∈ Z+.

Next, suppose condition (2) holds, similarly, we haveV6(y) ≥ 0, forn 
= nk, and
for n = nk, k ∈ Z+, have

V6(y(nk + 1)) ≥ max
1≤i≤m

|Ii (yi(nk))| − max
1≤i≤m

|xi(nk)− x∗
i |

≥ (2 − 1) max
1≤i≤m

|xi(nk)− x∗
i | = V6(y(nk)), k ∈ Z+.
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Implying that the system trajectory escapes to+∞along a path, hence the equi-
librium x∗of (3.2) is unstable. This completes proof of the theorem..
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Abstract. Movement of the intelligent beings is various, which is divided into 
two major types: the rhythmic movement and the non-rhythmic movement. The 
generation of the rhythmic movement uncertain is induced by the responding 
signals of the peripheral neural receivers, but is generated spontaneously by the 
central pattern generator (CPG). CPG not only can generate the rhythmic 
movement, but also can change the frequency and pattern of movement. This 
paper is based on the revised CPG neural network model which has relation 
with the movement of legs. We carry on a series of computer number analysis 
and imitation to further elaborate many characteristics of the rhythmic move-
ment. The research results show that three greatest characteristics of the rhyth-
mic movement respectively are: rhythm, coordination and variety. The paper 
further reveals the biological properties of gait movement on the intelligent be-
ings and the characteristics of various rhythmic movements.  

Keywords: The rhythmic movement, Central pattern generator (CPG), Rhythm, 
Coordination, Variety. 

1   Introduction 

For the animals, the most familiar locomotion is rhythmic movement, the rhythm is a 
periodic movement which has the symmetry of time and space, such as walking, run-
ning, jumping，swimming, flying and breath, chew etc.. Most of the biologists think, 
the rhythmic movement is irrelevant to consciousness, however, they think it is a 
spontaneous behavior generated by the lower neural central system. The rhythmic 
movement is a kind of time-space motor pattern, which is generated and controlled by 
the central pattern generator. The central pattern generator is located on spinal cord 
(vertebrates) or on the neural nods between chest and belly (invertebrates). The 
rhythmic movement has regular manifestations and dynamic characteristics, such as 
high stability and adaptability. It is a perfect combination between simplicity and 
practicality. 

CPG is a local oscillation network which is constitute of inter-neurons. It can gen-
erate a stable the phase interlocked relationship by reciprocal inhibition between neu-
rons, and it can excite related parts of the body to generate periodic rhythm movement 
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by self-oscillation. The synaptic connections of neurons in the CPG have plasticity, so 
the CPG neural network can reflect various output ways in order to control animals to 
realize different movement patterns [1]. 

2   Mathematical Model of CPG 

The animal’s movement control system is a complicated network, including central 
nervous system, receptor, sensory organ and skeleton-muscle executive system, as 
shown in Fig.1. Among them, the CPG in the spinal cord is a center control unit, it 
can generate rhythm signals to control effectors to realize movement. The advanced 
central nervous system (brain, cerebellum) can sent out movement instructions to 
control the beginning and end of rhythmic movement, and can integrate some signals 
to monitor movement, such as central feedback information from CPG, propriocep-
tive information, visual information etc.. By the biological reflex mechanism, the 
feedback information from proprioceptor can coordinate relations among CPG, envi-
ronment and essence to regulate the output signals of CPG. The whole control system 
is a hierarchical modular feedback control system, which can maintain the stability of 
rhythmic movement and the adaptability to real-time changes of external complicated 
environment [2]. 

 

Fig. 1. The control network of the rhythmic movement on animals 

For the humans, the human walking is typical rhythmic movement. CPG model in 
this paper is built on the base of the structure model of the muscle-skeleton system 
and reciprocal inhibition neural network theory. This kind of neural network model is 
an application of the interdisciplinary research between biology and biomechanics [3]. 

The behavior and dynamic characteristics of CPG can be described or imitated in 
various methods. From engineering point of views, CPG neural circuit can be regarded 
as a distribute system which consists of inter-coupling nonlinear oscillators. Depending 
on phase coupling, it can generate different rhythm signals. However, by changing the 
coupling relations between oscillators, it can generate time-space sequence signals with 
different phase relationships, for the purpose of realizing various motion patterns. 
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Fig. 2. The leg CPG model 

 

According to simplified three-joint muscle model on leg [4,5] and CPG structure 
model based on the neural oscillator theory [6,7], this paper will further show the 
kinematics characteristics of human gait movement and biological significance of 
various movement properties. Here, the CPG model is shown as follows: 

The mathematical model can be written as: 
1

1 2 12

0

i i i t ij i
i jf

i i i

i i i

X X K r Y Le    i, j , , ,
K

T Y                                                                                   
Y f ( X ) max( X , )

τ βν ω

ν ν
≠

= − − + + + =∑

= − +
= =

& L

& （1）
 

Here,
f tK ,K  respectively are rhythm sensory gain and tonic input gain, i, j repre-

sent the 1th-12th neuron,
iX represents the states of the i th oscillator--indicates two 

states of muscles: flexor and extensor,
iν represents the adaptability of muscles in the 

recovery process, ijω is the weight for connections among twelve neurons of two 

legs,τ is the state constant,T is the adaptability constant, some details appear in refer-

ences[3,6,7]。 
The motor patterns generated by above-mentioned CPG model act on three-joint 

muscle groups on human legs, and by controlling movements of the leg muscles, it 
can show a lot of characteristics of the rhythmic movement. 

3   Simulation Study on Gait Rhythm Movement 

3.1   There Are Rhythmic and Coordinate on the Animal’s Movement (Take 
Constant Input as an Example) 

Through proper adjustment to parameters of the CPG model [3,6,7], a stable pattern 
of rhythmic movement can be obtained. Adjusting to the state constant τ and the 
adaptability constantT , it can make the output patterns of the model to reach the 
desired frequency. 

In the Matlab environment, taking numerical simulation to the equation (1), the 
output patterns not only has rhythm (Fig. 3a), but also satisfies the coordination of the 
gait movement (Fig. 3b). 
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Fig. 3. The outputs of CPG during rhythmic walking. (a The rhythm characteristic of the leg 

movement; b The harmonized characteristic of the leg movement, the locked out-of-phase). 

In Fig.3 it is clear to see that the muscle movement patterns of the corresponding 
parts are generated with a certain frequency and similar shape. Comparing the phases 
of the rhythmic motor patterns on two legs, it is obvious to find that the muscle 
movement patterns between the contralateral corresponding parts have an out-of-
phase relationship.  

3.2   The Animals’ Rhythm Movement Has Variety 

To the rhythmic movement, the animals can not only generate a certain motor rhythm 
but also change their speeds and movement patterns in a certain scope. Some animals 
not only can change the frequency of the rhythmic movement, meanwhile, they can 
change the patterns of the rhythmic movement themselves, which embodies the vari-
ety of the rhythmic movement. For example, for quadruped, there are four gait types 
at least: walking, jogging, hiking and running; For insects, there are two gait types at 
least: walking and jumping; For biped, the variety of gait movement still exists--
running, jumping, striding, pacing, sliding, and so on, there are further richer variety 
than another animals. According to the request of the motion velocity, the animals can 
choose the proper gait to achieve optimal energy consumption [8], which is applied in 
the robot motion control system. For the CPG model, an important aspect on the 
rhythmic movement is that, the motor patterns can be changed by changing the 
strength of the electrical stimulation signals. However, for the CPG mechanism, be-
sides the interpretation of the local oscillation network, yet, it is not clear to under-
stand the mechanism on changing its frequency and patterns [9]. 

Gait conversion is the regulation of CPG network outputs in some way to generate 
some time-space sequence signals with different phase relationships, for the purpose 
of controlling multiped or biped to generate different movement patterns, which ex-
actly shows the variety of the gait movement. Then, we will research the variety of 
the rhythmic movement by analyzing each parameter of the model: 

(1) The variety of the movement frequency and pattern 
Based on our previous research [3], there are the following characteristics on 

each parameter of the CPG model: 
a) The value of compulsory input signal r determines the amplitude of the 

rhythmic movement. 
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b) The state constant τ and the time constant T determine the frequency and 
shape of the rhythmic motor patterns. 

c) The weight ijω includes three types: one is the weight for connections between 

the neurons in a same joint position, another is the weight for connections between the 
neurons in the different joints position of ipsilaterala leg, the last is the weight for 
connections between the neurons of the contralateral legs. The selection of weight for 
connections will directly influence the rhythm and coordination of rhythmic move-
ment generated by CPG model. 

d) The parameter β and the variable
iν reflect the muscle adaptation on the recov-

ery process. 
According to the influence degree of each parameter of CPG mathematics model, 

the gait patterns with various frequencies can be realized by changing CPG network 
itself. The detailed method is to regulate each parameter, which will generate various 
patterns. The basic structure diagrams of these patterns are similar to Fig.3. Here, we 
don’t make detailed analysis. 

(2) The variety of the input signals 

Biological research shows, CPG network can couple with external input signals to 
deliver input patterns, so the outputs of the network can be regulated by changing 
input signal in order to realize gait conversion [1]. The neural mechanisms of the 
rhythmic movement is irrelevant to the advanced neural central on brain, but in the 
conversion process of rhythmic movement brain plays a regulation role, for which we 
are trying to use numerical simulation to exhibit different rhythmic movement types: 
First, the spontaneous rhythmic movement which generated from spinal cord is in-
vested, then the rhythmic movement under the regulation of the cerebral cortex sig-
nals is invested. 

For the rhythmic movement, by making the lower neural system self-oscillation, 
the motor control system which generated from spinal cord can spontaneously gen-
erate neural signals [9]. It is considered that these neural signals are from some 
internal-stimulations, in fact, internal-stimulation can be regarded as the constant 
input signal of CPG model. When the rhythm of the gait movement is changed, the 
brain can set out some directions which indicate that the motor rhythm has been 
changed. However, to the limb movement, the input signal generated by cerebral 
cortex mostly exists in the form of the sine wave [10]. In order to deeply understand 
the characteristics of various rhythmic movements, we compare the rhythmic 
movement of the different tonic inputs with the rhythmic movement under the regu-
lation of neural signals. 

a) The rhythmic movement with constant input signals 

The patterns of the rhythmic movement with constant input signals have been 
given in the Fig.3. In addition, in this paper what is interested in is: 

i) Comparing simulation results with the different values of constant input  
signals  

For the different constant input signals r , the corresponding output 1Y of the model 
has many variety, some details appear in Fig.4 (Taking the output 1Y of CPG generated 
by different input signals as an example). 
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Fig. 4. Comparing the output value y1 when r=1 and r=2 

In Fig.4, it shows that, for different constant input signals r, the patterns of the out-
put signals of CPG model almost are same (The frequency is exactly same.), what is 
different is that the amplitude of the rhythmic movement and there is a time differ-
ence ∆t on the required time generating a stable rhythmic movement. An important 
result is got, that is, the rhythmic movement generated by the CPG system in the role 
of the spontaneous neural signals, with different constant input signals caused by self-
oscillation, has different regulation time. If the values of the constant input signals get 
bigger, the rhythmic movement will not only increase the amplitude of the rhythm, 
but also there is a lag time. This phenomenon indicates that, due to the increase of 
input energy (the increase internal stimulation, r=2), the energy of the rhythmic 
movement in the musculoskeletal system will also increase, which is reflects as the 
enhanced amplitude strength of the rhythmic movement. However, the value of con-
stant input signals is relatively small before internal stimulation increases (r=1). 
Comparing with the stronger energy in the musculoskeletal system when internal 
stimulation increases, the original energy is smaller. Therefore, the increase of the 
amplitude energy is at the cost of the lag time in the starting time of the rhythm. For 
example, for human and animals, there is a lag time in the process of speeding up 
when running and uniform motion, or else do not need the acceleration. 

ii) The output patterns with the constant input signals changing suddenly. 

In Fig.5, it shows that，when the constant input signal changes suddenly from 1 to 
2, the amplitude of periodic patterns of CPG output signals will change accordingly. 
The input signal changes suddenly if the pattern of the CPG output signals is in a state 
of excitement, then the output signals also will change immediately. The total time of 
the excited time of the CPG outputs before the input signal changes suddenly and the 
excited time of the outputs after changing suddenly is the same as the excited time 
without changing suddenly (about 0.5s). Some details appear in Fig.5 (Comparing the 
output signal 2Y of CPG after changing suddenly in Fig.5). After the input signal 

changes suddenly, if the CPG’s output patterns get back to the new state of rhythmic 
movement, it needs a certain delay time. In Fig.4 the biological significance of the 
delay time has been explained in detail. It should be emphasized that, in Fig.5 it 
shows clearly that the changes of the constant input signal do not change the rhythm 
frequency of the CPG output signals. It is still a cycle T≈1s. The exciting time and the  
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Fig. 5. The output patterns of CPG when the constant input signals changing suddenly 

suppression time of the output signals respectively are about 0.5s. It indicates that the 
rhythmic movement on biped has symmetry and the out-of-phase relationship. It re-
flects high coordination and consistency of the gait movement.  

iii) CPG output signals with the constant input signals from changing suddenly 
to getting back to the original state  

 

Fig. 6. CPG output signals with the constant input signals from changing suddenly to getting 

back to the original state 

In Fig.6, it shows that，the input signal changes suddenly when the rhythm pattern 
of signals is a state of excitement, CPG output signals will also change suddenly (see 
the dots in Fig.6), that is, the output signals change in an instant. At the same time, the 
amplitude of the output patterns directly relates to the value of the input signal after 
changing suddenly, and it seems to be irrelevant to the value of the input signal before 
changing suddenly. After changing suddenly, the output signals can get back to the 
original rhythm patterns. This phenomenon indicates that the changes of the gait 
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rhythm patterns are determined by the property of the input signal. Because the  
characteristic of skeleton-muscle is that, if the stimulation frequency gets higher, the 
tension arising from muscle will be stronger [11].For the output patterns, whose per-
formance is the increasing amplitude of the rhythmic movements, and the increase is 
very large. This kind of rhythm output patterns changes with the changes of the input 
signal, which reflects the characteristic of the rhythmic movement in the case that the 
human gait rhythmic movement is effected by external environment.  

b) The rhythmic movement with the sine input signal 

For the sine input signal, it cannot change the rhythm and coordination of CPG 
output patterns, just to change the basic shape of rhythmic movement. 

     

   r=1+sin(2*π*t)                Fig. 7. CPG output signals when the input signal is sine wave 

In Fig.7, it shows the CPG output patterns in the role of the sine input signal. It can 
be seen clearly that, the output patterns of CPG in the role of the sine input signal and 
the ones in the role of the constant signal are different, but there are still the rhythm 
(Fig.7a) and the coordination (Fig.7b).It seems that the rhythm period of CPG output 
patterns with the sine input signal is longer than the one with the constant input sig-
nal, the cycle is T> 1s. Comprehensibly, the exciting time of the cells in the role of 
the motor cortex signals is longer than the exciting time in the role of self-stimulated 
signal. 

In the following figure, it shows that the CPG output patterns in the case that the 
input signal is from the constant to the sine wave then recover to the original con-
stant. We try to explore the influence and the regulation of neurons in the brain's 
motor cortex to the rhythmic movement in the process of the normal rhythmic 
movement. 

The sine input signal also will not change the frequency of CPG output patterns (a 
period is about 1s, the exciting time and the suppression time respectively are 0.5s).It 
is emphasized that, the input signal changes from the constant signal to the sine signal 
when the CPG output is in a state of excitement, the total time of the excited time of 
the CPG outputs before the input signal changes suddenly and the excited time of the 
outputs after changing suddenly is longer than the excited time without changing 
suddenly (t> 0.5s), which is different from the case of the self-stimulated sig-
nal(comparing Fig.5 with Fig.9). 
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Fig. 8. The CPG output patterns with the input signal from the constant to the sine wave re-
cover to the original constant 

 

Fig. 9. Comparing the CPG output y1 when the input signal from the constant to the sine wave 
recover to the original constant to the output y1 with the constant input signal 

According to above stimulation results, it can be known that, for the CPG model, 
when the input signal is the constant or sine signal, if the input signal is changed, the 
frequency of the output signals cannot change, just is that the amplitude of the result-
ing patterns occurs changes. Carrying on the computer simulation in the case of hav-
ing noise, it is found that the rhythm and the coordination of the CPG output signals 
still are not influenced [3]. However, the recovery time of CPG output signals with 
sine input signal (simulating the role of neurons in the motor cortex) is longer than the 
one with the constant input signal(simulating the role of the cell self-stimulated sig-
nals), which agrees with the facts. That is, the regulation time of the rhythmic gait 
movement effected by the feedback signals from brain is longer than the regulation 
time of the rhythmic movement itself in the case of conditioned reflex. The numerical 
results prove that, the motion control system which generated from spinal cord gener-
ally is realized by conditioned reflex, for the command system of the cerebral cortex 
cannot or do not need to respond in time. In the mechanics structure of the  
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musculoskeletal system, the system monitors the movement of the limbs by the spinal 
control center. For humans and animals, in the nature world it takes an evolution for 
millions of years to achieve a most reasonable control strategy, which can release the 
nervous system from the complicated control to deal with more senior control tasks--
such as path planning, obstacle avoidance, and making decision etc.--which can re-
duce the burden of neural computation [1]. This control strategy has given rise to the 
attention of researchers who research the walking robot, for the control strategy has 
great significance in the aspect of reducing energy consumption and others, and based 
on this theory a series of passive dynamic robots have been worked out [8]. The gait 
rhythmic movement in the participation of the cerebral cortex nerve signals is a kind 
of more advanced and more complex movement, which needs more feedback signals 
and neural computations. So the delay time is necessary for restoring stable gait 
rhythm. 

4   Conclusions 

By the computer simulation and numerical analysis, based on CPG model which 
simulates human gait movement, this paper shows the characteristics and biology 
results of the rhythmic gait movement as follows: 

1) The human rhythmic gait movement is divided into: the spontaneous gait 
movement and the gait movement with the regulation of the central nervous system. 
Their response times and regulation modes are different. For these two types of gait 
movements which present different control patterns, the rhythm of the human gait 
movement is various. Besides presenting rhythm, various patterns of rhythmic move-
ment also present symmetry and out-of-phase relationship, which reflect the high 
coordination and consistency of gait movement. 

2) The rhythmic gait movement generated spontaneously by CPG system in the 
role of different constant input signals will need different regulation time to reach 
stable rhythm output patterns. If the values of the constant input signals get bigger, 
there is a time delay in the starting time of the rhythm and the amplitude of rhythm 
will also be increased. Generally speaking, the increase of the amplitude energy on 
the rhythmic movement of intelligent beings is at the cost of a time lag of the starting 
time of the rhythm. 

3) The result of reference [8] has been proven by numerical simulation. That is, 
the characterization of the skeleton-muscle is that, if the stimulation frequency gets 
higher, the tension arising from muscle will be stronger. This is because that the val-
ues of the input signal which indicates the strength of the internal stimulation can 
change the rhythmic gait pattern. For the output pattern, the amplitude of the rhythmic 
movement will increase suddenly when the internal stimulation increases. The rhythm 
output patterns change with the changes of the input signal, which reflects the charac-
teristic of the human gait rhythmic movement when is effected by external environ-
ment. 

4) By numerical simulation, it has been proven, the responding time of the 
rhythmic gait movement in the role of the movement control system which generated 
from spinal cord, is faster than the one in the regulation of the central nervous system. 
This is in line with the neurobiology experiment results [11]. 
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In the aspect of the control mechanism of CPG the new theories and new methods 
for the robot's movement control are proposed, whose application is to improve the 
robot's movement performance and the adaptation to environment, and to provide 
helps for solving the problems on the walking of the biped robot. More and more 
scientists and engineers are interested in the simulation studies of human gait move-
ment, and the analysis of the human gait rhythm still need more thorough researches. 
In the future, we will continue to study the stability of gait and the influence of exter-
nal feedback to walking, so as to make these researches closer to the facts, which is 
significant for the development of the walking robot and the rehabilitation of the 
physically disabled. 
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Abstract. PSO (particle swarm optimization) algorithm is apt to slow down and 
prematurity during the evolutionary anaphase. Besides, the algorithm of BP 
neural network also encounters some problems such as slowness in constrin-
gency, longer training time and so on. Aimed at these phenomena, PSO algo-
rithm can be improved in two aspects: reinforcing the diversity of particles and 
avoiding the prematurity of particle swarm, therefore the algorithm of particle 
swarm neural network based on improved algorithm is presented here. Finally, 
this algorithm is applied to the recognition of hyper-spectral altered rock, which 
overcomes the disadvantage of local minimization for BP algorithm, and trained 
network shows great generalization ability. The instance indicates that im-
proved PSO-BP algorithm is effective in the recognition of hyper-spectral al-
tered rock. 

Keywords: Particle swarm optimization, Neural network, Pattern recognition, 
Altered rocks. 

1   Introduction 

Due to its capability of self-study, self-structure, fault – tolerance and simulation of 
nonlinear relation, neural network is suitable to resolve the problem of complicated 
pattern classification. Hornik[1] adopted three-layer feed-forward neural network of 
Sigmoid response function to simulate complex nonlinear relation, but the key point 
of realizing above capability is to train neural network sufficiently. Therefore, training 
algorithm has decisive effect on the performance of pattern classification of neural 
network. Although BP algorithm is the most pervasive among neural network training 
algorithms, it depends on the selection of initial weights because of the dependency 
on gradient descent, which causes the slowness in constringency and tends to plunge 
into local optimization. The limitation of BP results in disagreement and inscrutability 
of the output of the trained neural network, which brings about reduce of reliability of 
pattern classification. 

Based on swarm intelligent theory, PSO can intelligently guide optimized search 
by swarm generated by cooperation and competition among particles [2]. It is a rising 
random global optimized algorithm, which is successfully applied to many practices, 
such as optimization of nonlinear function [3], voltage stability control [4], dynamic 
object optimization [5] and so on. Wang Suihua [6] improves the ability of avoiding 
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local extremum in PSO by mending the basic model, and five tests based on norm 
function revealed that improved algorithm is better than basic PSO and inertia weight 
model PSO [6].  

This paper combines PSO and BP to generate a new PSO-BP training algorithm 
which integrates both advantages in it. By combining the global optimization ability 
in PSO and instructed search idea in BP, the algorithm accelerates constringency and 
avoids local constringency, and trained network represents great generalization 
power. The results of the experiment shows that, PSO-BP is effective neural network 
training algorithm, which reaches the purpose of altered rock recognition by opti-
mized network and can be used to deal with the problem of pattern classification. 

2   A New PSO-BP Algorithm of Neural Network Training 

2.1   The Principle of PSO-BP Algorithm in Training Neural Network 

The chief application of PSO in artificial neural network is to optimize the weight of 
ANN. That is to substitute traditional learning algorithm by PSO. When using PSO to 
train neural network, the spatial location of particle corresponds to all link weights 
and thresholds of neural network, and the error sum of square of exact output and 
expected output of network is used as fitness value. And PSO is used to search opti-
mized particle location, that means optimized weight and threshold of neural network, 
to make the error sum of square of network output be minimum. PSO-BP algorithm 
firstly updates speed and location of PSO for once, then learns BP for once, and then 
repeates like that until satisfying the expected error requirement. 

2.2   Improved PSO 

According to the standard PSO presented by Shi and Eberhart in 1998 [3,7], its math-
ematic description is: Suppose the dimension of search space is D, the total number of 
particle in swarm is N, the location of particle i is expressed as vector Xi=(x1, x2, …, 

xd), and the flight speed is described as vector Vi＝(v1, v2, …, vd), and the optimized 
location in the flight of particle i (the location has optimized is marked as pbest, and 
optimized individual of all N individuals, that is global optimized individual is 
marked as gbest. After the two extremums (pbest and gbest) is attained, particle up-
dates its speed and location by the following formula: 

)(())(() 21 iiiiii xgbestrandcxpbestrandcvv −××+−××+×= ω  (1) 

iii vxx +=  (2) 

Here, rand() is a random number between 0 and 1, c1 and c2 is learning factor, ù is 
inertia factor, non-minus. If ù is larger, global optimization ability is stronger, and 
local optimization is weaker. 

(1) is composed of three parts. The first one is previous velocity of the particle. It 
represents the self-confidence in the current state of their own movement, which  
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conducts inertia movement according to their own rate. The second is about cognitive 
part. It stands for the thinking about the particle itself and encouraging it flying to the 
best position which it has ever found. The third is social part. It stands for the infor-
mation sharing and mutual cooperation among the particle and encouraging it flying 
to the best position which the particle group has ever found. 

In the particle group algorithm, c1, c2 are two positive constants, called cognitive 
and social parameter respectively. In the population-based optimization methods, it 
always hopes that the individuals in the initial stage can wander through the entire 
optimizing search space, without early trapped into the local optima. Meanwhile, in 
the end stage of the algorithm it improves the velocity and accuracy of convergence 
and effectively finds the global optimum[8]. In the initial stage, it has better to have a 
large “cognitive” part and a small “social” part for the benefit of the whole algorithm 
search in the optimization space and to improve the velocity and accuracy of conver-
gence. So, take c1 and c2 as follows: 

atgtatt fffc /)(41 −×=  (3) 

tt cc 12 4 −=  (4) 
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Where, t is for the current iteration algebra, fat is the average fitness of the current 
generation, fgt is the current global optimum location of the gbest fitness. So (1) can 
be improved as: 
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When the group fitness variance is less than the value of the convergence precision 
square, and the difference between the current global optimum particle gbest fitness 
and the particle theory optimal fitness value or the best experience value is less than 
the value of precision when convergence, it notes convergence algorithm and the 
overall situation was not optimal solution, that is to say, it gets a premature conver-
gence. Therefore, it needs to conduct mutation for PSO in order to make the particles 
escape local optimum and goes with further search in the other regions. The mutation 
method is: when the particle group trapped into premature convergence, or fitting 
with the variation conditions, a velocity-changed mutation operator can be applied to 
break the original gathering status. Taking a fresh start in the solution space for fur-
ther search can be to conduct mutation in the velocity of the particle group. Equation 
(6) is updated as: 
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Where, δ is a sign value. It is 0 or 1, by default 0, When the particles is trapped into a 
premature convergence, δ is set to 1.ìmeans the current extent about mutation operator 
impact to current velocity. Its value is: 
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Here: ft is the best theory value or the best experience value. 

2.3   Hybrid PSO-BP Neural Network Training Algorithm Steps 

①Initialize a group of particles for the size N, including the initial position and the 
initial velocity. 
②Initialize pbest and gbest. The initial location of the particles is set as pbest and 

that of the smallest fitness particles is set as gbest. 
③Evaluate the desired fitness values for all the particles. Compare the evaluated 

fitness value of each particle with its Pbest. If current value is better than pbest, then 
set the current location as the pbest location. Furthermore, if current value is better 
than gbest, then reset gbest to the current index in the particle array. 
④Loop termination when reaching the largest evolution algebra G, or (and) the ex-

tremum gbest in the whole group meeting the scheduled minimum fitness value. 
⑤The best preserved and the worst removal. Preserve the overall extreme gbest 

until the smaller overall value of extreme value appears. The largest Fitness value will 
be removed in order to make the search solution toward the optimal direction. 
⑥Change the velocity and location of the particle according to (1) and (3). 
⑦Decode the space location vectors of the particle into the network connection 

weights and threshold values. It use BP algorithm to learn neural network and re-
coding the weights and threshold values. And then turn to step ③. 

3   Application Example 

3.1   The Selection of Neural Network Training Samples 

Altered rock spectral data by field survey are used to train and identify samples for 
the network. The measuring instrument is ASD FieldSpec FR spectroradiometer with 
the spectral range of 350 -2500nm. When the spectral range is from 350nm 
to1000nm, the spectral resolution is 3nm, while from 1000nm to 2500nm, the spectral 
resolution is 10nm. Many profiles crossing the whole mining area are studied with the 
measuring points set every 100 meters. And more than 200 spectral data documents 
are obtained at last. 

Take the sample spectrum of illite, chlorite, gypsum and kaolinite for analysis 
(shown in Fig. 1). 
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Fig. 1. Spectral curve of illite, chlorite, gypsum and kaolinite 

Fig.1 shows that the characteristic peak of the above four altered rocks centralized 
on the interval of 1220-2500nm, thus the 128 paths can be used as the input of the 
neural network. In this way, the high spectrum feature information is made full use of 
on the one hand and the input number of neural network decreases, simplifying the 
scale of the network on the other hand. The output of illite, chlorite, gypsum and 
kaolinite are respectively set as [0 0], [0 1], [1 0 ], [1 1]. The corresponding con-
structed neural network holds three-layer structure, 128 input neurons and 2 output 
neurons. For the confirmation of neuron number of hidden layer, the following 
method can be adopted. 

amkh ++=  (9) 

Where h is the cell number of the hidden layer, k is cell number of the input layer, m 
is the cell number of the output layer, a is a constant among [1, 10]. Through repeated 
experimenting and dynamically adjusting the node number of the hidden layer, the 
neuron number of the hidden layer is confirmed as 16. 

3.2   Result Analysis 

When using the mixed PSO-BP algorithm to train the above established neural net-
work, the parameters are respectively set as: N=30, G=3000, lr=0.01, Vmax=0.5,  ùini＝

0.9, ùend＝0.4, minfitness=0.01. In the end of running, the current algebrag=106, min-
fitness=0.0092, elapsed_time=23.610426s, and the training error (minfitness) curve is 
shown as Fig.2. In order to compare conveniently, Fig.3 shows the training error 
curve of the BP algorithm. Here, max_epoch=6000, err_goal=0.01, lr=0.01, 
elapsed_time=513.073500 s.             
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Fig. 2. Network error of mixed PSO-BP 
Algorithm 

Fig. 3. Network error of BP Algorithm 

The above comparison shows that using BP algorithm to train the weights of neural 
network, the local minimum is reached in advance when the square error sum con-
verged to 0.9656 at the step of 300, thereafter the value doesn’t converge even at the 
maximum step of 6000. BP algorithm falls into local minimum very easily, and it is 
even more so when the network structure is complex and the training samples are in 
great number and dimension. While the mixed PSO-BP algorithm has the ability of 
global optimization, can avoid local minimum and even converge quickly with the 
training error requirement can be satisfied only when g=106 and 
elapsed_time=23.610426s.  

The result is shown as Fig.4 and Fig.5 by identifying the training samples.  

  

Fig. 4. The recognised result of chlorite
and kaolinite 

Fig. 5. The recognised result of illite 
and gypsum 
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4   Conclusion  

The improved and mixed PSO-BP algorithm integrates the strong macroscopic search 
property of PSO algorithm and the instructive search idea of BP algorithm, and exerts 
the advantages to avoid local minimum problem which easily appeared in BP algo-
rithm and increase the convergence speed. Identifying the sample set by using the 
training network, the identification correct rate is 82%, which illustrates that the neu-
ral network trained by the improved and mixed PSO-BP algorithm holds great gener-
alization ability. The example shows that it is effective by applying the improved and 
mixed PSO-BP algorithm in the identification of altered rocks. 
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Abstract. In this paper, we develop a new design strategy of Radial Basis Func-
tion (RBF) neural network and provide a comprehensive design methodology and 
algorithmic setup supporting its development. The architecture of the network is 
fully reflective of the structure encountered in the training data which are granu-
lated with the aid of clustering techniques. More specifically, the output space is 
granulated with use of FCM clustering while the information granules in the mul-
tidimensional input space are formed by using a so-called context-based Fuzzy C-
Means which takes into account the structure being already formed in the output 
space. A series of numeric studies exploiting synthetic data and data from the Ma-
chine Learning Repository provide a detailed insight into the nature of the algo-
rithm and its parameters as well as offer some comparative analysis.  

Keywords: Context-based Fuzzy C-Means, Radial Basis Function (RBF), Neu-
ral network, FCM clustering, machine Learning data. 

1   Introduction 

Given the simple topological structure and universal approximation ability, radial 
basis function (RBF) neural networks have been widely studied and applied to many 
categories of problems such as those arising in pattern recognition, signal processing, 
time series prediction, and nonlinear system modeling and control, cf. [1-6]. Since the 
very inception of this concept in neurocomputing, we can witness a number of inter-
esting and useful expansions of the generic topology of such neural networks. In this 
study, we view RBF neural networks as predominantly data driven constructs whose 
processing is based upon an effective usage of experimental data through a prudent 
process of information granulation. Our ultimate objective is to offer a comprehensive 
design methodology of neural networks by (a) using fuzzy granulation realized by 
means of a specialized, output variable - oriented machinery of fuzzy clustering [7], 
(b) considering number of clusters for each context which reflects a nature of the 
input space by context-based FCM clustering [8], [9], and (c) realizing functional 
links of the neuron present in the output layer of the network. 
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2   Algorithm of Fuzzy Granular Computing 

2.1   Fuzzy C-Means Clustering 

The FCM clustering has been applied to a variety of areas, including image and data 
preprocessing for system modeling [10].  

Let x1, x2, …, xN be n-dimensional patterns defined in the space of inputs, xk∈Rn, 
As usual, the basic objective function (performance index) of the original FCM 
method is defined as a sum of squared errors 
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With U=[uik] denotes a partition matrix, U∈U, and “c” stands for the number of the 
clusters. The parameter “m” used above “m”>1 is often referred to as a fuzzification 
coefficient. U denotes a family c×N partition matrix, namely 
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Formally, the optimization problem is expressed in the form 
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The prototypes of the clusters are obtained in the form of the weighted average of the 
individual inputs 
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2.2   Context-Based Fuzzy C-Means Clustering 

The context-based FCM clustering [8], [9] attempts to reflect upon the output variable 
while clustering the remaining data. This means that we first agree upon some granu-
lation of the output variable of the model and afterwards produce some information 
granules being, in fact, induced by the successive fuzzy sets already formed for the 
output variable [8]. The conditional aspect of the clustering mechanism is introduced 
into the algorithm by taking into consideration the conditioning variable assuming the 
values f1, f2, …, fN for the corresponding patterns. More specifically, fk describes a 
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level of involvement of xk in the constructed clusters. We admit fk to be distributed 
additively across the entries of the k-th column of the partition matrix meaning that 

∑
=

=
c

1i
kik fu , k=1, 2, …, N. (6) 

We can also request that the maximum of membership values within the correspond-
ing column equals fk, 

kik
c1,2,...,i

fumax =
=

, k=1, 2, …, N. (7) 

In this study, we confine ourselves to the first method of the distribution of the con-
text values. Bearing this in mind, let us modify the requirements to be met by the 
original partition matrices and define the new family of matrices 
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Note that the standard normalization condition in Eq. (2) is replaced by the involve-
ment (conditioning) constraint. The optimization problem is now reformulated ac-
cordingly [8]. 
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Again the minimization of the objective function is carried out iteratively where the 
partition matrix is updated accordingly, 
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(10) 

The computations of the prototypes are the same as for the original FCM method. 
Moreover, the convergence conditions for the method are the same as thoroughly 
discussed for the original FCM algorithm [7]. 

3   The Topology of the RBF Neural Network 

In this section, we highlight the main structural features of the RBF neural network. 
The network dwells on the concept of context-based clustering method. The fuzzy 
partitions formed for all variables gives rise to the topology as visualized in Figure 1. 
In particular, this structure consists of two clusters for each context.  
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Fig. 1. The overall structure of the RBF neural network 

The network has a single hidden layer composed on a basis of the receptive fields 
built through the use of the proposed algorithm. The local model used here constitutes 
a linear regression built around the information granules formed in the input and out-
put space which implies the following expression of the model. 
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where, yij is the modal value of the i-th context and j-th cluster. 
The overall output of the network is computed by taking a weighted average of all 
local models 
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Parameter optimization of the local models is completed by solving a standard Mean 
Square Error (MSE) problem.  
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4   Experimental Studies 

4.1   Synthetic One-Dimensional Data 

We consider a single-variable nonlinear function of the following form 

x)5sin(10x)3sin(30x)sin(60y π.π.π. ++=  (14) 
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Where the input x is defined in the space X=[-1, 1]. Using (14), 200 pairs of input-
output data have been generated. The entire dataset is split randomly into a training 
dataset (being a 60% of the overall data set) while the rest of the data is used as a 
testing data. To assess an impact of the varying granularity of information, we carried 
out experiments for the number of contexts varying in-between 2 to 5. 

Table 1 summarizes the performance of each context of the proposed model as op-
timal combinations of the number of initial clusters(c) used for each context. 

Table 1. Values of the performance index for the synthetic-one dimensional data; PI-
performacne index for the training data. EPI-performance index for the testing data. 

(a) Values of the PI 
Number of contexts (p) Number of clus-

ters (c) 2 3 4 5 

2 0.0084 ± 7.7e-4 0.0045 ± 6.2e-4 0.0024 ± 5.3e-4 7.70e-4 ± 5.1e-4 
3 0.0051 ± 7.2e-4 0.0026 ± 3.6e-4 0.0011 ± 3.4e-4 4.70e-4 ± 1.8e-4 
4 0.0013 ± 2.4e-4 0.0008 ± 2.0e-4 0.0004 ± 9.8e-5 1.30e-4 ± 1.1e-5 

5 0.0005 ± 1.1e-4 0.0002 ± 6.5e-5 1.08e-4 ± 2.8e-5 5.44e-5 ± 1.6e-5 
6 0.0002 ± 7.4e-5 0.0001 ± 2.6e-5 4.50e-5 ± 1.5e-5 1.71e-5 ± 6.8e-6 

(b) Values of the EPI 

Number of contexts (p) Number of clus-
ters (c) 2 3 4 5 

2 0.0164 ± 0.004 0.0281 ± 0.014 0.1156 ± 0.177 0.0758 ± 0.068 
3 0.1222 ± 0.257 0.2100 ± 0.311 0.6547 ± 0.692 0.5889 ± 0.630 
4 0.0835 ± 0.089 0.2941 ± 0.260 0.5090 ± 0.298 2.5968 ± 7.037 
5 0.3640 ± 0.306 0.3468 ± 0.150 0.4895 ± 0.278 0.4701 ± 0.173 
6 0.3077 ± 0.212 0.9894 ± 0.709 0.4783 ± 0.245 0.6036 ± 0.269 
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(a) training data                                         (b) testing data 

Fig. 2. Scatter plots of model output vs. original output (p=2, c=2) 
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Figure 2 visualizes the approximation and generalization capabilities of the 
network when the m=2.0, the number of the contexts was set up to 2 and the 
number of the clusters per context was equal to 2 (here PI=0.0072, EPI=0.0125). 

Table 2 presents the performance of the proposed model vis-à-vis other RBF neural 
networks. RBF NN I is a standard RBF neural network with the receptive fields 
whose centers are formed using the FCM algorithm while the values of the connec-
tions of the output linear neuron are estimated with the use of the standard least 
square error method. 

The spreads of the receptive fields are equal to 1 while the receptive fields them-
selves are Gaussian function. The second version of the network, denoted here by 
RBF NN II, is a standard RBF neural network with the receptive fields formed by 
the FCM algorithm. Furthermore the outputs of receptive fields for the given input 
x are taken as the membership value of x in the corresponding clusters. The weights 
of the output neuron are estimated in the same way as it was completed for the RBF 
NN I. 

Table 2. Comparative analysis of the performance of selected model 

Performance index 
Model 

Number of nodes in 
the hidden layer PI EPI 

RBFNN I 5 0.0378 ± 0.002 0.0402 ± 0.004 
RBFNN II 5 0.0522 ± 0.005 0.0565 ± 0.009 

4 (p=2, c=2) 0.0084 ± 7.7e-4 0.0164 ± 0.004 
Proposed model 

6 (p=2, c=3) 0.0045 ± 6.2e-4 0.0281 ± 0.014 

Table 3. Performance index of the proposed model 

(a) Training data 
Number of contexts (p) Number of clus-

ters (c) 2 3 4 5 

2 2.1433 ± 0.092 1.1359 ± 0.081 0.7551 ± 0.064 0.5653 ± 0.042 
3 2.1392 ± 0.116 1.1286 ± 0.059 0.7087 ± 0.030 0.4964 ± 0.048 

4 2.0917 ± 0.065 1.0676 ± 0.085 0.6926 ± 0.044 0.4715 ± 0.057 
5 2.0494 ± 0.079 1.0997 ± 0.028 0.6678 ± 0.063 0.4532 ± 0.046 
6 2.0611 ± 0.097 1.0443 ± 0.062 0.6592 ± 0.032 0.4220 ± 0.050 

(b) Testing data 

Number of contexts (p) Number of clus-
ters (c) 2 3 4 5 

2 2.5311 ± 0.184 1.4745 ± 0.194 1.0036 ± 0.149 0.6721 ± 0.084 
3 2.5159 ± 0.213 1.4281 ± 0.177 1.2802 ± 0.303 0.9338 ± 0.227 
4 2.7316 ± 0.297 1.9684 ± 0.473 1.4184 ± 0.225 1.0518 ± 0.384 
5 2.9612 ± 0.228 1.9545 ± 0.388 1.5174 ± 0.367 1.2214 ± 0.266 
6 3.4652 ± 0.907 2.2551 ± 0.638 1.5624 ± 0.244 1.5978 ± 0.279 
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4.2   Machine Learning Data 

We consider the well-known abalone data coming from Machine Learning repository 
(http://archive.ics.uci.edu/ml/datasets/Abalone).  

Table 3 summarizes the optimal performance expressed in terms of the number of 
contexts and the number of clusters.  

The number of contexts impacts the performance of the network as shown in Fig-
ure 3. Their increase leads to the reduction of error for the training set while there is a 
different tendency for the testing set where we note a certain optimal number of the 
contexts which is due to possible memorization effect. 

Table 4 summarizes the performance of the proposed model vis-à-vis other models 
that is RBF NN I and RBF NN II. We note that we have achieved substantial im-
provement over the two versions of the RBF NNs. 
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Fig. 3. Performance index vis-à-vis number of contexts 

Table 4. Comparative analysis of the performance of selected model 

Performance index 
Model 

Number of nodes in 
the hidden layer PI EPI 

RBFNN I 10 7.207 ± 0.301 7.763 ± 0.290 
RBFNN II 10 6.893 ± 0.186 7.512 ± 0.292 

10 (p=5, c=2) 0.565 ± 0.0042 0.672 ± 0.084 
Proposed model 

15 (p=5, c=3) 0.496 ± 0.048 0.933 ± 0.227 

5   Concluding Remarks 

In this study, we have proposed a new architecture of radial basis function neural 
networks which dwells upon an effective use of experimental data through a prudent 
process of information granulation. The information granules are developed using a 
certain context-driven version of the Fuzzy C-Means. This specialized clustering 
environment emphasizes the role of contexts-fuzzy sets defined in the output space in 
the formation of the information granules in the input space. The functional character 
of the network comes with local models that are inherently associated with the modal 
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values of the fuzzy sets of contexts and the prototypes of the fuzzy clusters formed in 
the input space. 

Along with the experiments embracing the number of commonly encountered ar-
chitectures of RBF neural networks, we arrived at the quantification of the perform-
ance of the introduced network.  
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Abstract. In this brief, the authors firstly introduce a complex stochas-
tic dynamical network model. Secondly, the existence and uniqueness
of solution of this stochastic complex dynamical network is identified,
furthermore, the authors investigate this stochastic complex dynamical
network’s synchronization in probability and give out two synchroniza-
tion theorems of this network. Two detail examples are given to verify
the theoretical analysis, and numerical simulations verify that the two
synchronization theorems are effective.

Keywords: Index Terms–Stochastic dynamical network, Synchroniza-
tion, Time varying, Time invariant.

1 Introduction

In recent years, the stability of stochastic systems[1-4] has been a focal subject
for research due to the uncertainties that exist in the real system, at the same
time, an area of particular interest has been the stability and synchronization of
stochastic complex dynamical network. To the best of our knowledge, however,
there are few works about the stability and synchronization of stochastic com-
plex dynamical network. Actually, chaotic synchronization control and dynamics
of stochastic complex dynamical networks [5]-[14] has attracted interesting at-
tention.

Recently, Wang and Chen [12] introduced a simple uniform scale free dynam-
ical network model, and Lü and Chen [13][14] further introduced a more general
time-varying dynamical network model, and investigate its synchronization prop-
erties. Although their model reflects the complexity from the network structure,
it is only a determined dynamical network with the different coupling strength
for all connections. In reality, complex networks are more likely affected by ex-
ternal perturbations which in many cases are of great uncertainties and hence
may be treated as random noise from the circumstance of network nodes, and
other probabilistic causes. Moreover, in real-world complex networks, particu-
larly communication network, random noise influence can’t be neglected. There-
fore, in this brief, we attempt to introduce a more general complex stochastic
dynamical network model which contain the complex network models introduced
by Wang and Chen [12] and Lü and Chen [13][14], and further investigate this

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 164–174, 2009.
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stochastic complex dynamical network’s synchronization in probability. Based
on mild conditions, we prove that this stochastic complex dynamical network
has an unique solution, and give out the probabilistic synchronization theorem
of a time-varying or time-invariant stochastic complex dynamical network. Two
detail examples and numerical simulation demonstrate the results obtained in
this brief.

2 Stochastic Complex Dynamical Network Model

In this section, we introduce a general stochastic complex dynamical network
model and several mathematical preliminaries.

2.1 Mathematical Preliminaries

Consider a nonlinear stochastic dynamical system

dX(t)
dt

= F (X(t), t) + G(X(t), t)dw(t), t ∈ [t0, T ] (1)

where suppose that w(t) = (w1(t), w2(t), ..., wd(t)) is a d-dimension Brownian
motion defined on a complete probability space (Ω,F , P ) with a natural filtra-
tion {Ft}t≥0 generated by {w(s) : 0 ≤ s ≤ t}, where Ω associates with the
canonical space generated by w(t), and denote F the associated σ-algebra gen-
erated by w(t) with the probability measure P . Here, the white noise dwi(t) is
independent of dwj(t) if i 
= j, and G(X(t), t) : R+ × Rd → Rd×d is called the
noised intensity function matrix.

Lemma 1. [16] Let F (X(t), t) and G(X(t), t) be continuous and X0 be a bounded
Rd-valued Ft0-measurable random variable. Assume that there exists a continuous
increasing concave function κ : R+ → R+ such that∫ ∞

0

du

κ(u)
=∞, (2)

and for all X, Y ∈ Rd, t0 ≤ t ≤ T

‖F (X(t), t)− F (Y (t), t)‖2 ∨ ‖G(X(t), t)−G(Y (t), t)‖2 ≤ κ(‖X − Y ‖2). (3)

Then the equation (1) has a unique solution X(t). Moreover, the Caratheodory
approximate solutions Xn(t) converge to X(t) in the following sense

lim
n→∞E( sup

t0≤t≤T
‖Xn(t)−X(t)‖2) = 0. (4)

Lemma 2. [16] Assume that there exists a function V ∈ C2,1(Rd× [t0,∞) : R+

and constants p > 0 , c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all X 
= 0 and t ≥ t0,

c1‖X‖p ≤ V (X, t), (5)
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LV (X, t) ≤ c2V (X, t), (6)

c3V
2(X, t) ≤ ‖VX(X, t)g(X, t)‖2. (7)

Then
lim

t→∞ sup
1
t

log ‖X(t; t0, X0)‖ ≤ −c3 − 2c2

2p
a.s. (8)

for all X(t0) ∈ Rd. In particular, if c3 > 2c2, then the trivial solution of (9) is
almost surely exponentially stable.

2.2 Stochastic Complex Dynamical Network Model

Consider a stochastic dynamical network consisting of N linearly and diffusively
coupled identical nodes, with each node being an n-dimensional dynamical sys-
tem. The proposed general stochastic dynamical network is described by

dXi

dt
= f(Xi, t) +

N∑
j=1

cij(t)A(t)(Xj −Xi) + g(Xi, t)dw, i = 1, · · · , N, (9)

where Xi = (xi1, xi2, ..., xid)T ∈ Rd is the state variable of node i, w(t) =
(w1(t), w2(t), ..., wd(t)) is a d-dimension Brownian motion, A(t) = (akl(t))d×d ∈
Rd×d is the inner-coupling matrix of the network at time t, C(t) = (cij(t))N×N

is the coupling configuration matrix representing the coupling strength and the
topological structure of the network at time t, in which cij(t) is defined as follows:
If there is a connection from node i to node j(j 
= i) at time t, , then cij(t) 
= 0;
otherwise, cij(t) = 0(j 
= i) and

cij(t) = cji(t), i, j = 1, 2, ..., N, (10)

condition (10) show that the coupling configuration matrix is symmetrical. More-
over, assume that A(t), C(t) are normal bounded. That is, there exist two pos-
itive real number K1, K2 such that

‖A(t)‖ ≤ K1, ‖C(t)‖ ≤ K2. (11)

Suppose that stochastic dynamical network (9) is connected in the sense that
there are no isolate clusters, that is, C(t) is irreducible.

Remark 1. Compare to Lü and Chen’s [13, 14] network model, our network
model don’t need the diagonal elements of matrix C(t) satisfy

cii(t) = −
N∑

j=1,j 	=i

cij(t), i = 1, 2, ..., N. (12)

Moreover, we consider that some stochastic noises affect the deterministic com-
plex dynamical networks (9).
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When g(Xi, t) = 0, stochastic network (9) becomes a determined time-varying
dynamical network

dXi

dt
= f(Xi, t) +

N∑
j=1

cij(t)A(t)(Xj −Xi), i = 1, 2, ..., N (13)

Obviously, the network (13) is a deterministic time-varying complex dynamical
network of Lü and Chen[13, 14]. Moreover, when g(Xi, t) = 0, A(t), C(t) are
constant matrices, stochastic complex dynamical network (9) becomes a deter-
ministic time-invariant dynamical network

dXi

dt
= f(Xi, t) +

N∑
j=1

cijA(Xj −Xi), i = 1, 2, ..., N, (14)

where C is a 0 − 1 matrix and A is a 0 − 1 diagonal matrix, is a special case
of stochastic network (13) and the simple uniform dynamical network of Wang
and Chen[13]. Therefore, our proposed stochastic complex dynamical network
(9) include determined complex dynamical network being introduced by Lü and
Chen[13, 14] and Wang and Chen[12].

2.3 Existence and Uniqueness of Solution of Stochastic Complex
Dynamical Network Model

Theorem 1. Let f(X(t), t) and g(X(t), t) be continuous and X0 be a bounded
Rd-valued Ft0-measurable random variable. Assume that there exists N contin-
uous increasing concave function κ : R+ → R+ such that and for all X, Y ∈ Rd,
t0 ≤ t ≤ T

‖f(X(t), t)− f(Y (t), t)‖2
∨‖g(X(t), t)− g(Y (t), t)‖2 ≤ κ(‖X − Y ‖2). (15)

Then the stochastic complex dynamical network (9) has a unique solution X(t).
Moreover, the Caratheodory approximate solutions Xn(t) converge to X(t) in the
following sense

lim
n→∞E( sup

t0≤t≤T
‖Xn(t)−X(t)‖2) = 0. (16)

Proof. Let

F (Xi, t) = f(Xi, t) +
N∑

j=1

cij(t)A(t)(Xj −Xi),

G(Xi, t) = g(Xi, t). It follows from the assumption (11) that

‖cij(t)A(t)‖ ≤ K1K2 (i, j = 1, 2, ..., N), (17)
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moreover, using the symmetric (10) of the coupling configuration matrix, condi-
tion (15) as well as (17) one can derive that

‖F (Xi(t), t)− F (X ′
i(t), t)‖2

= ‖f(Xi(t), t)− f(X ′
i(t), t) + (

N∑
i=1

cij(t)A(t))(X ′
i −Xi)‖2

≤ 2‖f(Xi(t), t) − f(X ′
i(t), t)‖2 + 2‖(

N∑
i=1

cij(t)A(t))‖2‖X ′
i −Xi‖2

≤ 2κ(‖X ′
i −Xi‖2) + 2K2

1K2
2‖X ′

i −Xi‖2. (18)

Set κ′(u) = 2[κ(u) + K2
1K2

2u], since κ(u) is a continuous increasing concave
functions, so κ′(u) is also a continuous increasing concave function. And it follows
from (18) that

‖F (Xi(t), t)− F (X ′
i(t), t)‖2 ≤ κ′(‖X ′

i −Xi‖2), (19)

combining with (15) we can derive that

‖F (Xi(t), t)− F (X ′
i(t), t)‖2

∨‖G(Xi(t), t)−G(X ′
i(t), t)‖2 ≤ κ′(‖Xi −X ′

i‖2). (20)

Besides, since κ(u) is concave and continuous increasing, there must exist a
positive number a such that

κ(u) ≤ a(1 + u) on u ≥ 0. (21)

Then using (20) we can derive that∫ ∞

0

du

κ′(u)
≥
∫ ∞

0

du

2[a(1 + u) + K2
1K2

2u]
≥ ∞. (22)

Therefore, these conditions (2), (3) of Lemma 2.1 are fulfilled. Applying Lemma
2.1 to stochastic complex dynamical network (9), Theorem 2.4 is complete. �

3 Synchronization Realization of Stochastic Complex
Dynamical Network

In this section, we will establish synchronization realization for stochastic com-
plex dynamical network (9) in probability.

Hypothesis 1 (H1). Assume that the coupling configuration matrix C(t) =
(cij(t))N×N satisfy the following conditions: If there is a connection from node
i to node j(j 
= i) at time t, , then cij(t) 
= 0 and cij(t) = a(t); otherwise,
cij(t) = 0 (j 
= i).
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Hypothesis 2 (H2). Assume that f(X, t), g(X, t) are linear with respect to
X ∈ Rd, that is, for any real numbers α, β and X, Y ∈ Rd

f(αX + βY, t) = αf(X, t) + βf(Y, t) (23)
g(αX + βY, t) = αg(X, t) + βg(Y, t). (24)

Now, we consider synchronization realization for stochastic complex dynam-
ical network (9). For two different fixed nodes i and j in network, we consider
their error state

eij(t) = Xi −Xj, (25)
it follows from (9), (25), and (23) that

deij(t)
dt

= f(eij(t), t)−Na(t)A(t)eij(t) + g(eij(t), t)dw, i, j = 1, ..., N, (26)

where (26) is a nonlinear stochastic dynamical system for the error state eij(t).
Using Theorem 2.4 we easily see that nonlinear stochastic dynamical system (26)
has an unique solution.
Definition 1. Nonlinear stochastic dynamical system (26) is said to be globally
asymptotically stable in probability if for any given condition such that

P{limt→∞‖eij(t)‖ = 0} = 1, i, j = 1, 2, ..., N. (27)

Definition 2. If nonlinear stochastic dynamical system (26) is globally asymp-
totically stable in probability, then stochastic complex dynamical networks (9) is
said to realize synchronization in probability.

3.1 Synchronization of Time-Varying Stochastic Dynamical
Networks

We set g(eij(t), t) = (D1, D2, ..., Dm)T eij(t) and w(t) = (w1(t), w2(t), ..., wm(t)),
then g(eij(t), t) is a linear functional with respect to eij(t),

g(eij(t), t)dw =
m∑

i=1

Dieij(t)dwi.

If (H1) and (H2) hold, then the nonlinear stochastic dynamical system (26) can
be written as

deij(t)
dt

= f(eij(t), t)−Na(t)A(t)eij(t) +
m∑

k=1

Dkeij(t)dwk, i, j = 1, ..., N.(28)

Theorem 2. Assume that there are two constants λ > 0 and ι ≥ 0 such that
m∑

k=1

‖Dieij(t)‖2 ≤ λ‖eij(t)‖2 and

m∑
k=1

‖eij(t)T Dieij(t)‖2 ≥ ι‖eij(t)‖4 (29)

for all eij(t) ∈ Rd. Then
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lim
t→∞ sup

1
t

log ‖eij(t; t0, eij(t0))‖

≤ −[ι− ( lim
t→∞ ‖f‖+ NK1K2 +

λ

2
)] a.s. (30)

for all eij(t0) ∈ Rd. In particular, if ι > limt→∞ ‖f‖+NK1K2+λ
2 , then the trivial

solution of (28) is almost surely exponentially stable, and the time-invariant
stochastic dynamical complex networks (9) is synchronization in probability.

Proof. Since f(eij(t), t) is linear with respect to eij(t) and continuous, so f(eij(t),
t) is a continuous linear functional with respect to eij(t), therefore,

‖f(eij(t), t)‖ ≤ ‖f‖‖eij(t)‖ for all eij(t) ∈ Rd, (31)

where ‖f‖ is the norm of the linear function f(eij(t), t) and also is a function
with respect to t. Using (31) and ‖Na(t)A(t)eij(t)‖ ≤ NK1K2 we can derive
that

‖f(eij(t), t) + Na(t)A(t)eij(t)‖ ≤ (‖f‖+ NK1K2)‖(eij(t)‖. (32)

Let Lyapunov function V (eij(t), t) = ‖eij(t)‖2. Then

LV (eij(t), t) = 2eT
ijf(eij(t), t) +

m∑
k=1

‖Dieij(t)‖2 ≤ (2‖f‖+ λ)‖eij‖2. (33)

Moreover, with g(eij(t), t) = (D1, D2, ..., Dm)T eij(t),

‖Veij (eij(t), t)g(eij(t), t)‖2 =
m∑

k=1

‖eij(t)T Dieij(t)‖2 ≥ ι‖eij(t)‖4. (34)

An application of Lemma 2.2 yields the desired assertion (30), we further see
that if ι > limt→∞ ‖f‖+ NK1K2 + λ

2 ,

lim
t→∞ ‖eij(t; t0, eij(t0))‖ = 0 a.s., (35)

then using Definition 3.1 and (35) we see easily that nonlinear stochastic dynam-
ical system (28) is globally asymptotically stable in probability, furthermore, by
Definition 3.2 we see that the time-invariant stochastic dynamical complex net-
works (9) is synchronization realization in probability. �
Example 1. Let Di = σiI (1 ≤ i ≤ m), where I is the d × d identity matrix
and σi is a constant. Furthermore, assume that

‖f(eij(t), t)‖ ≤ K‖eij(t)‖ for all (eij , t) ∈ Rd ×R+. (36)

In this case, the nonlinear stochastic dynamical system (28) becomes

deij(t)
dt

=f(eij(t), t)−Na(t)A(t)eij(t)+
m∑

k=1

σkeij(t)dwk, i, j = 1, · · · , N. (37)
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Moreover,
m∑

k=1

‖Dkeij(t)‖2 =
m∑

k=1

σ2
k‖eij(t)‖2, i, j = 1, · · · , N (38)

and
m∑

k=1

‖eij(t)T Dkeij(t)‖2 =
m∑

k=1

σ2
k‖eij(t)‖4, i, j = 1, · · · , N. (39)

By Theorem 3.3, the trivial solution of the nonlinear stochastic dynamical system
(35) has the property

lim
t→∞ sup

1
t

log ‖eij(t))‖ ≤ −[
1
2

m∑
k=1

σ2
k − (K + NK1K2)]

a.s. i, j = 1, · · · , N. (40)

Therefore, the trivial solution of the nonlinear stochastic dynamical system (37)
is almost surely exponentially stable provided 1

2

∑m
k=1 σ2

k > K + NK1K2, and
the time-invariant stochastic dynamical complex networks (9) realize synchro-
nization in probability. �
Remark 2. The foregoing example shown that if the deterministic complex dy-
namical network

dXi

dt
= f(Xi, t) +

N∑
j=1

cij(t)A(t)(Xj −Xi), i = 1, 2, ..., N (41)

is unstable, then we add a strong enough stochastic noise g(Xi, t)dw to the
deterministic complex dynamical networks (37), such that networks (37) realize
synchronization.

Remark 3. From 1
2

∑m
k=1 σ2

k > K +NK1K2, we see easily that if the node num-
ber of the deterministic complex dynamical network (37) N is more larger, then
the stochastic noise g(Xi, t)dw must be strong enough, the deterministic complex
dynamical networks (37) can realize synchronization.

3.2 Synchronization of Time-Invariant Stochastic Dynamical
Networks

In this narrow sense, if we consider the synchronization of time-invariant stochas-
tic dynamical networks, then the more detail and accurate results will be ob-
tained.

Hypothesis 3 (H3). Assume that the inner-coupling matrix and coupling
configuration matrix of the network (9) are time-invariant, that is, A(t) = A
and a(t) = a, and further suppose f(eij(t), t) = f(t), g(eij(t), t) = g(t).

If (H3) holds, then the nonlinear stochastic dynamical system (26) can be
written as

deij(t) = [−NaAeij(t) + f(t)]dt + g(t)dw(t), i, j = 1, · · · , N, (42)
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where
A ∈ Rd×d, f : R+ → Rd, g : R+ → Rd×m.

Theorem 3. Assume that the nonlinear stochastic dynamical system (40) with
initial value X(t0) = X0 ∈ Rd, satisfies that there is also a pair of positive
constants β1 and λ1 such that

‖f(t)‖2 ∨ ‖g(t)‖2 ≤ β1e
−λ1t for t ≥ 0. (43)

(i)If a > 0 and the eigenvalues of A have negative real parts, then the time-
invariant stochastic dynamical networks (9) is synchronization in probability.
(ii)If a < 0 and the eigenvalues of A have positive real parts, then the time-
invariant stochastic dynamical networks (9) is synchronization in probability.

Proof. Since the eigenvalues of A have real parts, this is equivalent to that there
is a pair of constants β2(β2 > 0) and λ2 such that

‖eaNAt‖2 ≤ β2e
−aNλ2t for t ≥ 0. (44)

Using the result of Mao’s book (refer to [16] 141-143), we can derive that

lim
t→∞ sup

1
t

log ‖X(t)‖ ≤ −λ1 ∧ aNλ2

2
a.s. (45)

(i) When a > 0 and the eigenvalues of A have negative real parts −λ2 < 0, the
solution of nonlinear stochastic dynamical system (40) tend to zero exponentially
in mean square and almost surely as well. Then the time-invariant stochastic
dynamical networks (9) is synchronization in probability.
(i) When a < 0 and the eigenvalues of A have positive real parts −λ2 > 0, the
solution of nonlinear stochastic dynamical system (40) tend to zero exponentially
in mean square and almost surely as well. Then the time-invariant stochastic
dynamical networks (9) is synchronization in probability. �
Example 2. Consider the following time-invariant stochastic complex dynamical
networks with N nodes{

dXi+r

dt =
∑N

k=1 aA(Xk −Xi+r) + ( i+r
t+1 , i−r

t+1 )T e−t + i+r
t2+1e−tdw(t)

dXi

dt =
∑N

k=1 aA(Xk −Xi) + ( i+ r
2

t+1 ,
i− r

2
t+1 )T e−t + i

t2+1e−tdw(t),

where i = 1, · · · , N, r = 1, ..., N − i, Xk ∈ R2, k = 1, ..., N , then the response
error system as following

deii+r(t) = [−aNAeii+r(t) + (
r

2t + 2
,
−r

2t + 2
)T e−t]dt +

r

t2 + 1
e−tdw(t),

i = 1, · · · , N, r = 1, ..., N − i. (46)

‖( r

2t + 2
,
−r

2t + 2
)T e−t‖2 ∨ ‖ r

t2 + 1
e−t‖2

= [
r2

2(t + 1)2
∨ r2

(t2 + 1)2
]e−2t < r2e−2t. (47)
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Fig. 1. Transient behavior of eii+r(t), eii+r(0) = 1, r = 8, a = 1

(i) Let

A =

(
3
√

2− 5
√

5
3 −√2 + 2

√
5

3
15√
2
− 5
√

5 − 5√
2

+ 2
√

5

)

then the matrix A has two eigenvalues
√

5
3 ,

√
2

2 , the matrix A has positive real
part −λ2 =

√
5

3 . When a < 0, substituting λ1 = 2 and λ2 = −
√

5
3 into (45) we

can obtain that

lim
t→∞ sup

1
t

log ‖X(t)‖ ≤ −1 ∧
√

5aN

6
< 0 a.s., (48)

using theorem 3.6 we see that this time-invariant stochastic dynamical networks
is synchronization in probability.

(ii) Let

A =

(
−3
√

2 + 5
√

5
3

√
2− 2

√
5

3

− 15√
2

+ 5
√

5 5√
2
− 2
√

5

)
then the matrix A has two eigenvalues , the matrix A has negative real part
−λ2 = −

√
5

3 . When a > 0, substituting λ1 = 2 and λ2 =
√

5
3 into (45) we can

obtain that

lim
t→∞ sup

1
t

log ‖X(t)‖ ≤ −(1 ∧
√

5aN

6
) < 0 a.s., (49)

using theorem 3.6 we see that this time-invariant stochastic dynamical networks
is synchronization in probability. �

4 Conclusions

We have introduced a general stochastic complex dynamical network model and
presented this network solution’s existence and uniqueness theorem, further-
more, we give out two synchronization theorems of this network. Two detail
examples demonstrate that synchronization theorems of this time-varying or
time-invariant network are all effective, and numerical simulations verify these
results.
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11. Erdös, P., Réyi, A.: On the evolution of random graphs, Publ. Math. Inst. Hung.

Acad. Sci. 5, 17–60 (1959)
12. Wang, X., Chen, G.: Complex network: small-world, scale-free, and beyond. IEEE

Circuits Syst. Mag. 3, 6–20 (2003)
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Abstract. This paper presents a novel approach to the regression prob-
lem using bagging of complementary neural networks (CMTNN). A bag-
ging technique is applied to an ensemble of pairs of feed-forward back-
propagation neural networks created to predict degrees of truth and fal-
sity values. In our approach, uncertainties in the prediction of the truth
and falsity values are quantified based on the difference among all the
predicted truth values and the difference among all the predicted falsity
values in the ensemble, respectively. An aggregation technique based on
uncertainty values is proposed. This study is realized to the problem of
porosity prediction in well log data analysis. The results obtained from
our approach are compared to results obtained from three existing bag-
ging models. These three models are an ensemble of feed-forward back-
propagation neural networks, an ensemble of general regression neural
networks, and an ensemble of support vector machines. We found that
our approach improves performance compared to those three existing
models that apply a simple averaging technique based on only the truth
porosity values in the ensemble.

1 Introduction

An ensemble of accurate and diverse neural networks was found to provide bet-
ter results and less error than a single neural network [1]. However, it was found
that a diverse ensemble of less accurate classifiers outperforms an ensemble of
more accurate classifiers but with less diversity [2]. Diversity can be described
as “disagreement” of the classifiers [3]. Disagreement of the neural networks can
be created based on varying parameter values such as varying different initial
weights, different number of hidden nodes, or different number of input features.
Furthermore, varying training data in different manners is another technique
to create diverse neural networks. Two well known techniques based on vary-
ing training data are bagging and boosting. Bagging is based on bootstrap re-
sampling which provides diversity by randomly resampling the original training
data into several training sets [4]. Boosting provides diversity based on itera-
tively learning classifiers with each respect to a training set created based on the
performance of the previous classifier [5].

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 175–184, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In our previous papers [6,7], an ensemble of pairs of complementary neural net-
works trained for binary classification was found to provide better performance
than a single pair of complementary neural networks and a single neural network.
Bagging was used to provide diversity by manipulation of the input data whereas
a pair of complementary neural networks was used to provide diversity based on
the output data. Each pair of neural networks consists of the truth neural network
trained to predict degree of the truth values and the falsity neural network trained
to predict degree of the falsity values. The falsity value is supposed to be comple-
ment to the truth value for each input pattern. As uncertainty of type vagueness
can occur since the boundary between the predicted truth and predicted falsity
values is not sharp, the uncertainty values can be computed from the difference
between the truth and falsity values. The predicted results together with their un-
certainty values can be used to provide a better binary classification compared to
the traditional technique of the binary classification based on only a single neural
network providing only the truth values. Moreover, it is known that an ensemble of
pairs of complementary neural networks was found to provide better results than
a single pair of neural networks.

In this paper, an ensemble of pairs of complementary neural networks is
trained to solve the regression problem. A novel aggregation technique is pro-
posed based on uncertainty of type vagueness occurred in the ensemble. Vague-
ness deals with the concept of boundaries which cannot be defined precisely [8].
Instead of considering vagueness based on the boundary between each pair of the
truth and falsity values, vagueness in the prediction of the truth and falsity val-
ues are considered separately. The precise truth value cannot be obtained from
each ensemble component. Also, the precise falsity value cannot be defined from
all components in the ensemble. Our proposed technique is realized to the prob-
lem of porosity prediction from well log data. Porosity is one of the important
rock properties in reservoir engineering. Well logs are measured along the depth
of a well using electrical, physical, and radioactive devices. There are several
techniques used to estimate the porosity such as backpropagation neural net-
works [9], probabilistic neural networks [10], ensemble of neural networks [11],
and support vector machines (SVM) [12]. However, only few works deal with
uncertainty in the porosity prediction.

The rest of this paper is organized as follows. Section 2 explains our proposed
techniques used for the prediction and quantification of uncertainty. Section 3
describes the data set and results of our experiments. Conclusions and future
work are presented in Section 4.

2 Ensemble of Complementary Neural Networks
(CMTNN) Based on Bagging Technique

In general, an ensemble of neural networks can be created in two steps: training
several diverse neural networks and aggregating the outputs obtained from the
ensemble of networks. In this paper, diverse neural networks are created based on
the manipulation of both input and output data. Bagging is applied to manage
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diversity based on input data whereas diversity based on output data deals with
a pair of complement target outputs used to train a pair of neural networks. The
bagging algorithm uses bootstrap resampling to generate multiple training sets in
which each generated training set is created by random selection of input patterns
from the original training set with replacement. Each generated training set con-
tains the same number of training patterns as the original data set. Therefore, m
generated training sets are created and applied to m components in the ensemble.

In order to handle diversity based on output data, each component in an
ensemble consists of a pair of neural networks named the truth neural network
and the falsity neural network. The truth neural network is trained to predict
degree of the truth values whereas the falsity neural network is trained to predict
degree of falsity values. In this paper, all pairs of the truth and falsity neural
networks have the same architecture, that is, the same number of neurons in
each layer, the same initial weight, and the same parameters setting. Both truth
and falsity networks in each ensemble component apply the same generated
training set. The difference between both neural networks is that the falsity
network applies the complement of target outputs used in the truth network.
For example, if the target value of the truth network is 0.7 then the target value
of the same input pattern for the falsity network is set to 0.3.

After the truth and falsity values are predicted, the next step is to aggregate
the outputs. Two aggregation techniques are explained in this paper. The first
technique is similar to the simple averaging used for the classification in our
previous paper[6], but we apply it to the regression problem in this paper. The
second technique is a novel aggregation technique proposed in this study. Let
Tj(xi) and Fj(xi) be the truth and falsity values predicted for the input pattern
i of the component j, where j = 1, 2, 3, ..., m. Both techniques can be described
below.

1. Equal weight averaging
For each input pattern, m truth values are averaged and m falsity values
are averaged. The average truth value and the complement of the average
falsity value for each input pattern are combined using a simple averaging
method. Let Tavg(xi) be an average truth value for the input pattern xi. Let
Favg(xi) be an average falsity value for the input pattern xi. The combined
output O(xi) can be computed as the following.

O(xi) =
Tavg(xi) + (1− Favg(xi))

2
(1)

Tavg(xi) =

∑m
j=1 Tj(xi)

m
(2)

Favg(xi) =

∑m
j=1 Fj(xi)

m
(3)
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2. Dynamic weight averaging
In this technique, uncertainty of type vagueness is considered. From the ex-
periment, m components provide m different truth values and m different
falsity values. Hence, the predicted truth value obtained from each compo-
nent is not sharp. Also, the predicted falsity value is not sharp. They are not
sharp in the sense that each network component cannot provide the precise
predicted value. The boundary of the truth and falsity values are vague. In
this paper, the vagueness of the truth value is computed as the average of
the absolute pairwise difference among all the truth values for each input
pattern. Also, the vagueness of the falsity value is computed as the aver-
age of the absolute pairwise difference among all the falsity values for each
input pattern. Let VT(xi) be an average vagueness of the truth values of
the input pattern xi. Let VF(xi) be an average vagueness of the falsity val-
ues of the input pattern xi. Both vagueness values are used to weight the
combination between the predicted truth and falsity values. The weight for
the truth values is computed as the complement of the VT(xi). The weight
for the falsity value is calculated as the complement of the VF(xi). These
two types of weight are considered as the certainty in the prediction. In this
study, we consider the certainty for predicting the falsity value is equal to
the certainty for predicting the non-falsity value, which is the complement of
the falsity value. Let WT(xi) be the weight for the truth value, and WF(xi)
be the weight for the falsity value. The dynamic averaging output O(xi) can
be calculated as follows.

O(xi) = (WT(xi)× Tavg(xi))+
(WF(xi)× (1− Favg(xi)))

(4)

WT(xi) =
1− VT(xi)

(1− VT(xi)) + (1 − VF(xi))
(5)

WF(xi) =
1− VF(xi)

(1− VT(xi)) + (1− VF(xi))
(6)

VT(xi) =

∑m
k,h=1 |Tk(xi)− Th(xi)|

m(m− 1)/2
; k 
= h (7)

VF(xi) =

∑m
k,h=1 |Fk(xi)− Fh(xi)|

m(m− 1)/2
; k 
= h (8)
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3 Experiments

3.1 Data Set

In this paper, we deal with porosity prediction from well log data collected from
real and practical data in the oil and gas industry. The data set is taken from
four wells which are available in a real reservoir. The actual well locations lie
approximately on a straight line with the following order: Well 3, Well 1, Well
2 and Well 4. The well logs used in this experiment are gamma ray (GR), deep
resistivity (RDEV), shallow resistivity (RMEV), flushed zone resistivity (RXO),
bulk density (RHOB), neutron porosity (NPHI), photoelectric factor (PEF), and
sonic travel time (DT). This experiment aims to create an estimator in order
to predict porosity (PHI) from these eight well logs. The well logs are recorded
from different wells at various depths. All variables are normalized within the
range of [0, 1]. In our data set, 269 data obtained from wells 1, 3, and 4 are used
for training and 105 data obtained from well 2 are used for testing.

3.2 Experimental Methodology and Results

An ensemble created in this study consists of thirty components. Thirty gener-
ated training data sets are then created based on bootstrap resampling. Hence,
each generated training set is used as input for each component in the ensem-
ble. For the complementary neural network (CMTNN) ensmebles, the truth and
falsity networks are created based on feed-forward backpropagation neural net-
works (BPNN). All thirty pairs of neural networks have the same architecture.
This experiment deals with eight input features listed in section 3.1. Hence, each
network composes of eight input units, one hidden layer constituting of sixteen
neurons, and a single output unit. However, the falsity network is trained using
the complement of the target output values used to train the truth network. In
order to aggregate the output, two proposed aggregation techniques described
in the previous section are applied.

In this paper, we do not consider the optimization of the individual predic-
tors but concentrate only on the improvement of the combined prediction. Hence,
twenty CMTNN ensembles are created. Twenty different groups of thirty boot-
strap resampled training sets are then set up and applied to twenty CMTNN
ensembles. Twenty results of the mean square error (MSE) obtained from our
proposed techniques are compared in table 1 to those obtained by applying
the existing simple averaging technique that uses only the truth value of a sin-
gle backpropagation neural network (BPNN) instead of a pair of networks in
each ensemble component. Furthermore, our results are also compared to the
results obtained from other ensemble models which are general regression neu-
ral network (GRNN), support vector machine (SVM) with linear, polynomial,
and radial basis function (RBF) kernels. For SVM, mySVM [13] is used in the
experiment in this study. These ensemble models are created based on the same
generated training sets used to train twenty CMTNN ensembles. The compar-
ison of the mean square error (MSE) among the proposed CMTNN ensembles
and those ensemble models are also shown in table 1.
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Table 1. The comparison among the mean square error (MSE) obtained from the
proposed averaging techniques based on CMTNN ensembles and the simple averaging
techniques based on SVM ensembles, GRNN ensembles, and BPNN ensembles for the
test set of well log data

SVM SVM SVM GRNN BPNN CMTNN CMTNN
Ensemble linear poly RBF Eq. weight Dy. weight

(MSE) (MSE) (MSE) (MSE) (MSE) (MSE) (MSE)
1 0.0286 0.0278 0.0327 0.0194 0.0518 0.0139 0.0131
2 0.0288 0.0272 0.0325 0.0186 0.0378 0.0134 0.0130
3 0.0285 0.0266 0.0326 0.0183 0.0253 0.0121 0.0120
4 0.0285 0.0279 0.0325 0.0197 0.0426 0.0136 0.0131
5 0.0283 0.0276 0.0325 0.0185 0.0329 0.0128 0.0127
6 0.0286 0.0287 0.0325 0.0185 0.0336 0.0126 0.0124
7 0.0278 0.0265 0.0324 0.0178 0.0471 0.0141 0.0135
8 0.0294 0.0266 0.0325 0.0187 0.0578 0.0160 0.0151
9 0.0279 0.0272 0.0325 0.0188 0.0377 0.0134 0.0130
10 0.0283 0.0269 0.0326 0.0196 0.0296 0.0121 0.0120
11 0.0278 0.0285 0.0325 0.0188 0.0585 0.0155 0.0147
12 0.0285 0.0275 0.0324 0.0193 0.0452 0.0130 0.0126
13 0.0286 0.0294 0.0327 0.0186 0.0516 0.0150 0.0145
14 0.0284 0.0265 0.0326 0.0194 0.0289 0.0116 0.0115
15 0.0284 0.0271 0.0323 0.0185 0.0546 0.0151 0.0144
16 0.0290 0.0266 0.0327 0.0180 0.0417 0.0127 0.0124
17 0.0283 0.0267 0.0324 0.0197 0.0258 0.0118 0.0118
18 0.0282 0.0275 0.0324 0.0186 0.0321 0.0128 0.0126
19 0.0288 0.0301 0.0325 0.0186 0.0396 0.0133 0.0129
20 0.0295 0.0277 0.0325 0.0190 0.0289 0.0120 0.0118

Avg 0.0285 0.0275 0.0327 0.0188 0.0402 0.0133 0.0130

The average MSE obtained from the existing simple averaging technique based
on BPNN ensembles, GRNN ensembles, and SVM ensembles with linear, poly-
nomial, and RBF kernels are 0.0402, 0.0188, 0.0285, 0.0275, and 0.0327, re-
spectively. The average MSE obtained from the equal weight averaging and the
dynamic weight averaging techniques based on CMTNN ensembles are 0.0133
and 0.0130, respectively. The results show that our both proposed techniques
outperform the simple averaging technique that uses only the truth values in
the ensemble of BPNN, GRNN, and SVM. The percent improvement of our
techniques compared to the existing techniques can be shown in table 2. We
found that the percent improvement of the dynamic weight averaging technique
based on CMTNN ensembles compared to the simple averaging technique based
on BPNN ensembles, GRNN ensembles, SVM ensembles with linear, polynomial,
and RBF kernels are 67.74%, 31.18%, 54.55%, 52.94%, and 60.17%, respectively.
Furthermore, the dynamic weight averaging technique is found to provide bet-
ter performance than the equal weight averaging technique based on CMTNN
ensembles in which the percent improvement is 2.9271.
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Table 2. The percent improvement of the use of dynamic weight averaging based
on CMTNN ensembles compared to BPNN ensembles, GRNN ensembles, and SVM
ensembles with linear, polynomial, and radial basis function (RBF) kernels for the test
set of well log data

Ensemble
Improvement in percentage with the use of dynamic weight averaging

SVM SVM SVM GRNN BPNN
linear poly RBF

1 54.15 52.69 59.83 32.33 74.65
2 54.79 52.05 59.93 29.84 65.58
3 57.96 54.95 63.24 34.58 52.75
4 54.18 53.26 59.83 33.77 69.32
5 55.13 53.99 60.79 31.39 61.41
6 56.42 56.63 61.70 32.86 62.99
7 51.37 49.05 58.33 23.91 71.31
8 48.65 43.14 53.58 19.24 73.89
9 53.23 52.05 59.92 30.80 65.39
10 57.73 55.60 63.35 39.01 59.62
11 47.25 48.39 54.82 21.76 74.91
12 55.72 54.17 61.07 34.49 72.09
13 49.28 50.79 55.68 22.17 71.90
14 59.28 56.35 64.53 40.62 60.02
15 49.45 46.99 55.58 22.51 73.69
16 57.33 53.43 62.19 31.12 70.34
17 58.37 55.99 63.71 40.21 54.48
18 55.41 54.28 61.21 32.39 60.77
19 55.20 57.12 60.30 30.69 67.45
20 59.94 57.31 63.86 37.97 59.06

Avg 54.55 52.94 60.17 31.18 67.74
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Fig. 1. The comparison between results obtained from the equal weight averaging
technique based on CMTNN ensembles and the truth porosity values from BPNN
ensembles for the test set of well logs (Ensemble 14)
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Fig. 2. The comparison between results obtained from the dynamic weight averaging
technique based on CMTNN ensembles and the truth porosity values from BPNN
ensembles for the test set of well logs (Ensemble 14)
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Fig. 3. The comparison between results obtained from the equal weight averaging and
dynamic weight averaging based on CMTNN ensembles for the test set of well logs
(Ensemble 14)

From table 1, ensemble 14 provides the minimum MSE for the equal weight
averaging and the dynamic weight averaging techniques based on CMTNN en-
sembles, which are 0.0116 and 0.0115 respectively. Therefore, we found that not
only the average MSE obtained from twenty runs of the proposed techniques
have provided us with better performance compared to the existing techniques,
but individual runs obtained from the proposed techniques also provided better
accuracy result when compared to the existing techniques. Figure 1, 2, and 3
show the comparison among predicted porosity values obtained from our pro-
posed techniques based on CMTNN ensembles and the simple averaging tech-
nique based on BPNN ensembles for the test set of well logs from the ensemble
14. The vertical axis represents the porosity values whereas the horizontal axis
is the depth at which the input measurement were taken.
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4 Conclusion and Future Work

In this paper, an ensemble of pairs of neural networks named CMTNN ensem-
bles is used to solve a regression problem. The input patterns are derived from
the bagging technique whereas pairs of complementary outputs: the truth and
falsity values are predicted from pairs of complementary neural networks in an
ensemble. Uncertainties in the prediction of the truth and falsity values are con-
sidered as the difference among all the predicted truth values and the difference
among all the predicted falsity values, respectively. Uncertainty values are used
to enhance the prediction results. The proposed averaging techniques based on
CMTNN ensembles are compared to the simple averaging technique based on
BPNN ensemble, GRNN ensembles, and SVM ensembles. We found that the
results obtained from the proposed dynamic weight averaging technique provide
better performances than the results obtained from the proposed equal weight
averaging and the existing simple averaging techniques that uses only the truth
values in the ensemble. In the future, other types of uncertainty will be quanti-
fied and used to support the prediction of porosity values in the well log data
analysis problems.
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Abstract. In order to implement scientific development view and measure the 
effect of regional integration, the paper has constructed the evaluation index 
system for regional integration by means of the combined quantitative and 
qualitative analysis. Firstly, the paper illustrated the connotation, contents and 
significance of regional integration. Secondly, the paper put forward that the ef-
fect for regional integration is made of the presentation of the static, dynamic 
and external effects on system theory. Thirdly, the paper proposed the index 
system including the correlation degree, the degree of development gap and the 
development goal. Finally, it made an empirical analysis and made a conclusion 
for the recent problems and future development.  

Keywords: System Theory, Regional Integration, Index System, Resource-
Saving, Environment-Friendly. 

1   Introduction 

To carry out Scientific Development is a kind of systems engineering, which is related 
not only to every aspect of economic and social development, but also to economic and 
social activities as well as the complex relation of nature. The interaction among human 
beings, economic, social and natural environment is also involved. It requires that we 
should adopt systematic and scientific methods to analyze and solve problems. Mean-
while, it is a large system of research on economic and social development from multi-
factors, multilayer and multi-aspects. Systems science is to give an analysis on objective 
world from the prospects of relations between the part and the whole. 

At present, the proposal about city-circle overall corresponding reform and stimu-
lating regional communication within the city-circle, demands a fulfillment of scien-
tific development concept. According to the requirements of resource-saving and 
environment-friendly society, the resource-saving and ecology- protecting systematic 
mechanism, which offers a stimulus to the coordination among economic develop-
ment, population, resources and environment, needs come into being as soon as pos-
sible. It will explore a brand-new development road for regional integration. This 
road, different from the traditional industrialization and urbanization, will pave the 
way for scientific development and harmonious society. 
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There is still no general definition for “regional integration” in previous documents. 
From the prospect of System theory, regional integration refers to a complex system 
concerning the inter-function, inter-dependence and inter-restriction among social, 
economic and environmental factors in many sub-regions (This paper will focus on 
two sub-regions). In this sense, it includes various components ranging form micro to 
macro, static to dynamic, inner to outer, temporal to spatial and physical to mental. All 
these components compose the integrity of regional system by interaction and inter-
relation, which consists in a huge scale, multi-factors and a complex structure. 

Therefore, how to realize regional integration with the limitation of “two types of so-
ciety” is a huge and complex systematic project. Meanwhile, how to carry out regional 
integration scientifically under the guidance of Scientific Development View is a new 
challenge. However, there are no available theories and instruments for these problems.  

During the process of constructing “two types of society” and evaluating the ef-
fects of regional integration, it is urgently necessary to build up evaluation index 
system for regional integration to provide basic theories for corresponding govern-
mental policies. Besides, the evaluation index system shows great significance for 
exploring an regional integration mode which keeps in accordance with characteris-
tics of a city and for programming regional integration of the city-circle. 

2   Particularity of Constructing the Evaluation Index System for 
Regional Integration  

2.1   The Definition of Regional Integration 

In this paper, regional integration refers to the interaction between two or among 
more than two cities to achieve a clear assignment, a reasonable resource collocation 
and harmonious coordination on the whole, with the restriction of constructing two 
types of society and exploring a new industrialization and a new urbanization. 

Therefore, regional integration is a process that the economic development of sub-
region come to a fine and interactive state, in which sub-regions will achieve mutual-
opening, frequent economic communication and a reasonable assignment. In this way, 
regional economy can keep a steady and efficient increase. 

2.2   The Contents of Regional Integration 

According to the definition of regional integration, combined with current development 
of city-circle, the main content of regional integration can be described as follows: 

(1) The infrastructure integration. It mainly refers to high-speed and network, in-
cluding the construction of road, railway, water carriage and aviation. 

(2) The industrial development and layout integration. It mainly refers to a perfect 
industrial chain of related industries concerning labor division and cooperation, 
products matching, raw materials supply and technical service. Industrial dock-
ing which based on the development of industrial specialized labor division, in 
nature, is to achieve “competitive and cooperative” relation of regional econ-
omy, and aims to improve utilization of resources and retum of industries. In 
this way, a highly integrated regional economy will be realized. 
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(3) The market integration. It focuses on constructing a market consisting of capi-
tal, technology, communication, property rights, and human resources. Besides, 
it also requires to develop an integrated technical market, promote communica-
tion, network docking and resource co-share of personnel market, stimulate per-
sonnel market and labor market. Last but not least, a market with integrated 
property will come into being. 

(4) The urban-rural integration. It aims to realize a harmonious development in ur-
ban-rural region through innovating its development mechanism. 

The resources and ecology integration. Resources and ecology is a cross-regional 
problem. It proposes that we should adopt a reasonable exploration and utilization of 
cross-regional resources to boost the overall renovation of cross-regional pollution of 
rivers and lakes together with the construction of ecological system such as mountain, 
forest, marsh and so on. 

2.3   The Significance of Regional Integration 

(1) Every administrative region, like different organs making up a whole body, will 
cooperate and unite to achieve the aim of a prosperous, resource-saving and environ-
ment-friendly region. 

(2) Every docking sub-region is supposed to completment, service and offer support 
for one another with its own characteristics. Therefore, regional integration is inevi-
table. 
(3) Every sub-region will develop its own resource superiority, adapt industrial 

structure, enhance industrial complement and improve industrial arrangements. In this 
way, it will be favorable for saving resources, reducing cost and boosting regional 
productivity, scientific power, creativity, circulation and business. As it is, regional 
integration is practical and essential.  

3   The Qualitative Analysis of Evaluation Index 

According to 2, regional integration should be equipped with following four charac-
teristics with the aim of constructing “two types” society:  A closer relation among 
sub-regions; A reasonable regional assignment and cooperation; A narrower devel-
opment distance among sub-regions with certain limit; An efficient development of 
the whole docking region together with keeping the balance among economy, social 
and ecological development. This paper, based on Systems, will present the regional 
integration outcomes from static, dynamic and outer aspects. 

(1)The static characteristics of regional integration – the relation degree among 
sub-regions 

Based on the theories of Systems of relativity, which defines an interrelated and in-
teractive relation between each element within certain system or the relation between 
system and environment, there must be an interactive and inter-influential relation 
between two subsystems within a main system. On the contrary, the two are not possi-
ble to belong to the same main system. Therefore, the two subsystems may belong to 
the same main system only when they are with interrelated foundation and conditions. 
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Before regional integration is taken into consideration, there should be certain con-
ditions and foundation for the two sub-regions. The first one is a relatively near geo-
graphical location and transportation infrastructure, which is reasonable for regional 
integration. A convenient transportation will bring about advantages for markets and 
trades. This paper will describe the relation between sub-regions, which is the static 
performance for regional integration. 

(2)The dynamic characteristics of regional integration – the disparity among sub-
regions 

Based on the stability and dynamic state of a system, the movement of the subre-
gions or components will keep the whole system in a certain state, and this stable state 
is carried out by regulation. Meanwhile, the relation among every component of the 
system and the relation between system and environment is time function, in other 
words, it changes with the passing of time. 

According to the definition of regional integration in this paper, in the process of 
regional integration, the developmental disparity among sub-regions changed with 
time and within certain limits. Therefore, this paper depicted dynamic characteristics 
of regional integration based on the developmental disparity among sub-regions. 

This paper found out that the less disparity between sub-regions showed a better 
interaction between two sub-regions, which means a better regional integration. 

(3)The interior characteristics of regional integration – the coming results of re-
gional integration 

Based on the integrity of a system, the two sub-systems belonging to the same sys-
tem have a mutual influence on each other and relate to each other. In this way, the 
system will be equiped with some functions that belong to none of its sub-systems, 
which will result in an effect called “integrity is larger than the addition of all the 
parts.” That is to say, the improved function is the outer representation and the ulti-
mate aim of the coordinance among the sub-systems. The better the regional integra-
tion of two sub-regions is, the better the results will be, because region is also a sys-
tem. Therefore, this paper will depict the interior effects of regional integration 
through the results of regional integration. 

According to the introduction, the aim of regional integration is to fulfill scientific 
development view, build up a resource-saving, environmental friendly society and 
explore a new industrialized and urbanized road, which is also the standard for evalu-
ating the outer effects of regional integration. 

4   Constructing of the Evaluation Index System for Regional 
Integration 

According to its qualitative description and construction principles, evaluation index 
system of regional integration can be divided into three hierarchies: target hierarchy, 
criterion hierarchy and index hierarchy. The target hierarchy refers to the final effects 
of regional integration; Criterion hierarchy refers to three criterions including the 
association of sub-regions, the developmental disparity of sub-regions, and target 
level of regional integration; Index hierarchy includes some quantitative indexes, 
which keep in accordance with the requirements of each criterion. It is shown in the 
following figure: 
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Fig. 1. The evaluation index system for regional integration 

4.1   The Relation Index of Sub-regions 

There is a close relation between association index of sub-regions and the integrity of 
regional economy. The nature of the integrity of regional economy is a free flow of 
components among sub-regions and a free trade. A very important precondition is an 
open market and an environment of free investment and trade. Because of this, some 
scholars assumed that regional economy integrity is a process of market integrity. It is 
clear that the economic market association is a precondition for the integrity of re-
gional economy. Therefore, this paper will show the association degree of sub-regions 
and economic integrity by adopting market integrity. 

There are various methods to measure market integrity and market division, but 
many are not practical when measuring market integrity. Parsley and Wei adopted 
empirical study which took relative price variance VAR(Pi /Pj) as object. QIHan has 
also put Parsley and Wei’s research into his own empirical analysis and took relative 
price variance as a dynamic index for market integrity. Based on this, Glacier Theory, 
which is a strong theoretical foundation for Price Law, will make up for other meth-
ods to some extent. Therefore, this research adopted Price Law to measure the integ-
rity of regional market to show the association of sub-regions. 

Suppose Pt
i  ,P

t
j  was the price of certain goods at time t in two regions. Pt

i / P
t
j   was 

first difference of relative price,namely ln( Pt
i / P

t
j ) - ln( Pt-1

i / P
t-1

j ). The original data 
we used was chain index of goods retail price. At last, we chose the absolute value of 
relative price to measure variance, namely: 

    )/ln()/ln()/ln()/ln( 1111 −−−− −=−= t
j

t
j

t
i

t
i

t
j

t
i

t
j

t
i PPPPPPPPV                                 (1) 

It became narrow as time, reflecting the fluctuation of relative price became 
smaller and the obstacles in market integrity turned less. According to these, it is 
reasonable to deduce that market was equipped with association. Because retail price 
of goods is a comprehensive index, which will keep stable with a relatively long time, 
relative price variance V is considered as index of sub- regions association to measure 
static characteristics of regional integration level. 

4.2   The Developmental Disparity Index of Sub-Regions 

There are many ways to measure regional developmental disparity. This paper 
adopted Theil Index based on dynamic level of disparity between sub-regions and  
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Hui Lui’s evaluation analysis on evaluation measures for regional disparity. Theil 
analyzed the individual disparity based on the concepts of information quantity and 
entropy. Theil index could be used to measure regional disparity. The less disparity 
between sub-regions, the smaller the Theil index is and vice versa. The calculation 
formula is as follows:  

               ∑
=

=
n

i

iiitheil uyuypI

1

)/lg()/(    c=1                                          (2) 

                 ∑
=

=
n

i

iitheil uypI

1

)/lg(        c=0                                            (3) 

In these formulas, yi (i = 1, 2, 3,…, n) was GDP Per capita in sub-region i; u was 
GDP Per capita in all regions; pi was the proportion that sub-region took up in all 
regions; Parameter C was to measure the change of index changes. Generally speak-
ing, when c < 2, the change of corresponding index is flexible. (In this paper, c = 0) 

Table 1. The target index of regional integration 

Factors index calculation formula 

energy consumption per unit of 
GDP 

total energy consumption / area GDP 

water consumption per unit of 
GDP 

water consumption / area GDP 

Consumption of electricity per 
unit of GDP 

Consumption of electricity / area GDP 
Resource 

coal consumption per  
unit of GDP 

coal consumption  / area GDP 

the amount of waste water per 
ten thousand yuan industrial  

production value 

The amount of industrial waste water / 
industrial production value 

the amount of solid waste per ten 
thousand yuan industrial production 

value 

the amount of industrial solid waste / 
industrial production value 

Environment 

the amount of SO2 emission per 
ten thousand yuan industrial  

production value 

The amount of industrial SO2  
emission / industrial production value 

Industrial Added Value Rate Industrial Added Value / industrial 
output value 

whole-society-productivity Industrial Added Value / Average 
Number of Employment (person) 

The proportion of environmental 
protection input to GDP 

The funds of environmental protection 
/ area GDP 

Industrialization 

the proportion of manufacturing 
industry to GDP 

value-added of manufacturing  
industries / area GDP 

urbanization level the urban population / total population 

per capita gdp area GDP / total population 

GDP increase rate (Current GDP - previous GDP)/  
previous GDP 

Urbanization 

The proportion of value added of 
service industry to GDP 

value added of service industry / area 
GDP 
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4.3   The Target Index of Regional Integration 

The target index of regional integration in this paper is defined by its target restric-
tion. G, the comprehensive developmental level of regions, included resources, envi-
ronment, industrialization and urbanization. Table 1 showed calculation formula for 
each index. 

5   The Empirical Analysis of Regional Integration 

City Wuhan and city Huanggang in Hubei were the chosen sub-regions in this paper 
to test the rationality and efficiency of evaluation system of regional integration. In 
the calculation of V and Itheil, only the year 1985 to 2006 was taken into account con-
sidering the availability of data and long-time rationality of index. In calculation of G, 
the year 1995 to 2006 was taken into account, considering that some data was not 
available.  
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The relative price variance showed the relevance of sub-regions, representing the 
historical relation of regions, regional division and cooperation and static effects of 
resource allocation, which was shown in figure 2. Obviously, the line became nar-
rower with the change of time, and it reflected a smaller relative price fluctuation 
between city Wuhan and city Huanggang with fewer obstacles in market integrity. On 
the whole, the association level of city Wuhan and city Huanggang was improved and 
tended to be stable from the year 1985 to 2007 in spite of some fluctuation to some 
degree. Therefore, these two cities were equipped with conditions and foundation for 
regional integration. 

Theil index was to measure the dynamic changes of developmental disparity 
among sub-regions, which was shown in figure 3. Although there was a growing 
disparity between city Wuhan and city Huanggang, there were still few changes from 
the year 1994 to 2004, while relatively more changes in the year 2005 and 2006. 
Therefore, it is necessary to adopt some measures concerning industrial development 
and integration of layout to realize a better and faster development. 

When calculating the comprehensive development level, city Wuhan and city 
Huanggang were considered as one region. Each index in the whole region was calcu-
lated. Then, the smallest index (the smaller the better) was changed to the largest 
index (the larger, the better) to achieve the uniformization and standardization of 
indexes. Factor analysis was adopted to obtain resource saving, friendly environment, 
industrialization and urbanization in each year from the year 1995 to 2006. Then 
comprehensive development level G will be obtained by weighted average,in which 
the weight of each component was 0.25. The changes were as figure 4. The larger 
slope of the overall industrialization and urbanization between city Wuhan and city 
Huanggang showed a faster increase of development. 

6   Conclusions 

It is an important and great systems engineering problem concerning how to carry out 
regional integration efficiently in the process of constructing “two types” society. The 
first task is to establish evaluation index system of regional integration to measure its 
advantages and disadvantages and to provide theoretical foundation for regional inte-
gration. 

This paper began from the definition and significance to construct the outline of 
regional evaluation index system, which put forward that the effects of regional inte-
gration consisted of the static and dynamic characteristics of regional interior docking 
together with its outer effects. Then, from the methods of constructing index system, 
it showed that target was to measure the effects of regional integration, principle was 
made up from regional association, developmental disparity of sub-regions and the 
target of regional integration, which referred to relative price variance, Theil index 
and regional comprehensive development that three principles required. Besides, it 
also pointed out that comprehensive development was obtained by index system from 
four aspects: resource saving, environment friendly, new industrialization and new 
urbanization. At last, two neighboring cities within a province would be chosen as 
sub-regions, and did study on the index system to analyze regional evaluation index. 
In this way, it tested the efficiency and rationality evaluation index system.  
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As in our country, there is still a long way to go to construct evaluation index sys-
tem of regional integration. In this paper, index system was proposed initially, which 
was significant for measuring the effects of regional integration. However, since there 
was no combination with future changes of index system of practical case in this 
paper, the strategic analysis is the main task for the future research. 
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Abstract. In this paper, A type of integrating formula is constructed,
which requires function value at nodes without derivative. In addition,
the formula needs less calculation than the Trapezoidal Rule, but the
order of convergence is much better. Therefore a more effective .result is
obtained.
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1 Introduction

Numerical integration formulas contain interpolation integration formula and
Gaussian integration , but Gaussian integration has limitation. Although the
Trapezoidal Rule has no same limitation, the order of convergence is bad. In order
to obtain the better result, the authors substitute integrand with the Hermite
polynomial in the paper [3] and [4]. But the integration formula requires not
only the function value and first-order derivative at nodes, but also the second
derivative. Therefore, when the integrand is complex and the derivative is not
easy to calculate, the formula will have great limitation. In this paper, A type
of integrating formula is constructed, which requires function value at nodes
without derivative. And a more effective result is obtained.

2 Notations and Preliminaries

Let’s choose some positive integer n and break the interval [a, b] into equal n
pieces. The width of each piece is b−a

n , and the nodes are xk = a + kh, k =
0, · · · , n. Assume x k+1

2
= xk + h

2 , and in the interval [xk, xk+1], we can get the
zero degree interpolation polynomial p(x) = f(x k+1

2
) via (x k+1

2
, f(x k+1

2
)), and

the error of the zero degree interpolation polynomial is f(x)− p(x) = f
′
(η)(x−

x k+1
2

), where η ∈ (x, x k+1
2

). And in the [xk, xk+1], we calculate the integration

using the Rectangle Formula, i.e.
∫ b

a
f(x)dx ≈ ∫ b

a
p(x)dx = f(x k+1

2
)h. By the
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generalized mean value theorem of Algebra and differential mean value theorem,
we obtain the error:∫ b

a

f(x)dx − f(x k+1
2

)h =
∫ b

a

[f(x)− p(x])dx

=
∫ b

a

f
′
(η)(x − x k+1

2
)dx

=
∫ x k+1

2

xk

f
′
(η)(x − x k+1

2
)dx +

∫ xk+1

x k+1
2

f
′
(η)(x − x k+1

2
)dx

= f
′
(ξ1)

∫ x k+1
2

xk

(x− x k+1
2

)dx + f
′
(ξ2)

∫ xk+1

x k+1
2

(x− x k+1
2

)dx

= −h2

8
f

′
(ξ1) +

h2

8
f

′
(ξ2)

=
h2

8
f

′′
(ξk)(ξ2 − ξ1).

Where ξ1 ∈ (xk, xk+1), ξ2 ∈ (x k+1
2

, xk+1), ξk ∈ (ξ1, ξ2), for |ξ2− ξ1| < h, we have

|
∫ xk+1

xk

f(x)dx − hf(x k+1
2

)| ≤ h2

8
max

xk≤x≤xk+1
|f ′

(x)|. (1)

We calculate the approximation Ik of the integration by the Rectangle For-
mula in the sub-interval, and approximate the integration I =

∫ b

a f(x)dx with∑n−1
k=0 Ik, then we get the formula :

I(h) =
n−1∑
k=0

hf(x k+1
2

). (2)

By the formula (1), we deduce the error estimation of the formula (2):

|I − I(h)| = |
n−1∑
k=0

[
∫ xk+1

xk

f(x)dx − hf(x k+1
2

)]| ≤ h2

8
max

xk≤x≤xk+1
|f ′

(x)|

≤ b− a

8
h2 max

xk≤x≤xk+1
|f ′′

(x)|
In order to consider it’s remainder formula. we get the following Taylor ex-

pansion:

f(x) = f k+1
2

+ f
′
k+1
2

(x− xx k+1
2

) +
f

′′
k+1
2

2!
(x− xx k+1

2
)2 + · · · . (3)

Here f j
k+1
2

, j = 1, · · · , n denotes f j(x k+1
2

), j = 1, · · · , n, and in the interval

[xk, xk+1], we obtain the integration∫ xk+1

xk

f(x)dx = f k+1
2

h +
f

′′
k+1
2

3!
h3

22
+

f
(4)
k+1
2

5!
h5

24
+

f
(6)
k+1
2

3!
h7

26
+ · · ·
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and for all k sum from 0 to n− 1,

I = h
∑

f k+1
2

+
h3

3!× 22

∑
f

′′
k+1
2

+
h5

5!× 24

∑
f

(4)
k+1
2

+
h7

7!× 26

∑
f

(6)
k+1
2

+ · · · (4)

I = I(h) +
h3

3!× 22

∑
f

′′
k+1
2

+
h5

5!× 24

∑
f

(4)
k+1
2

+
h7

7!× 26

∑
f

(6)
k+1
2

+ · · · (5)

By the formula (4) and
∫ b

a f
′′
(x)dx = f

′
(b)− f

′
(a), we obtain

h
∑

f
′′
k+1
2

= f
′
(b)− f

′
(a)− h3

3!× 22

∑
f

(4)
k+1
2

+
h5

5!× 24

∑
f

(6)
k+1
2

+ · · ·

Substitute the above formula to (5), we thus have

I = I(h)+
h2

24
[f

′
(b)−f

′
(a)]− 7h5

360× 24

∑
f

(4)
k+1
2
− h7

5!× 7× 26

∑
f

(6)
k+1
2

+ · · · (6)

Using formula (4) to f (4)(x), we obtain

h
∑

f
(4)
k+1
2

= f
′′′

(b)− f
′′′

(a)− h3

3!× 22

∑
f

(6)
k+1
2

+ · · ·

And substitute the above formula to (6), we have

I = I(h)+
h2

24
[f

′
(b)−f

′
(a)]− 7h4

5760
[f

′′′
(b)−f

′′′
(a)]+

3!h7

5!× 126× 26

∑
f

(6)
k+1
2

+ · · ·

We repeat the above operation, and get

I = I(h) + b1h
2 + · · ·+ bkh2k + · · ·

Where bi, i = 1, 2, · · · is independent of h.

Theorem 1. Assume f(x) ∈ C∞[a, b], then I = I(h) + b1h
2 + · · ·+ bkh2k + · · · ,

where bi, i = 1, 2, · · · is independent of h, and b1 = 1
24 [f

′
(b) − f

′
(a)], b2 =

7
5670 [f

′′′
(b)− f

′′′
(a)], b3 = 31

967680 [f (5)(b)− f (5)(a)].
By Theorem 1, we can obtain the following three numerical formula calculat-

ing I =
∫ b

a f(x)dx:

I(1)(h) = I(h)− h2

24
[f

′
(a)− f

′
(b)] (7)

I(2)(h) = I(h)− h2

24
[f

′
(a)− f

′
(b)] +

7h4

5760
[f

′′′
(a)− f

′′′
(b)] (8)

I(2)(h) = I(h)−h2

24
[f

′
(a)−f

′
(b)]+

7h4

5760
[f

′′′
(a)−f

′′′
(b)]− 31h6

967680
[f (5)(a)−f (5)(b)]

(9)
Here, we respectively approximate to I =

∫ b

a f(x)dx with I(1)(h), I(2)(h) and
I(3)(h), which errors are o(h4), o(h6) and o(h8). By the errors, we know that the
order of convergence is good, but the first derivative, third derivative, and fifth
derivative must be calculated beforehand.
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3 The Integration Formula without Derivative

For f(x) ∈ C2k+1[a, b], we have Taylor expansion:

f(x + jh)− f(x) =
2k∑
i=1

f (i)

i!
(jh)i +

f (2k+1)(ξj)

(2k + 1)!
(jh)2k+1 (10)

Where j = 1, 2, · · · , 2k, ξj ∈ [x, xjh], and denotes ξj(x) = f(2k+1)(ξj )

(2k+1)! j2k+1, yi

= f (i)(x)hi, E = (ε1(x), · · · , ε2k(x))T , Y = (y1, · · · , y2k), f−
i = f(x + ih) −

f(x), F = (f−
1 , · · · , f−

2k), A = (aij)), aij = ij

j! , i, j = 1, 2, · · · , 2k, so the formula
(10) can be written to

F = AY + h2k+1E (11)

Theorem 2. In the formula (11) , the matrix A is nonsingular.

Proof:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2!

1
3! · · · 1

(2k)!

2 22

2!
23

3! · · · 22k

(2k)!

3 32

2!
33

3! · · · 32k

(2k)!

...
...

. . .
...

2k (2k)2

2!
(2k)3

3! · · · (2k)2k

(2k)!

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

So
det(A) = 2·3···2k

2!3!···(2k)!V andermode(1, 2, · · · , 2k) = 2·3···2k
2!3!···(2k)!

∏
1≤j≤i≤2k(i − j).

Because the inverse matrix of A exists, the matrix A is nonsingular. By the
formula (11), we obtain

F = A−1Y − h2k+1A−1E (12)

Where A−1 = (bij), and the formula (12) is written to
f i(x) =

∑2k
j=1 bij [f(x + jh)− f(x)]− h2k+1

∑2k
j=1 bijεj(x), i = 1, 2, · · · , 2k

Let x = a, and we have

f i(a)hi =
2k∑

j=1

bij [f(a + jh)− f(a)]− h2k+1
2k∑

j=1

bijεj(a) (13)

Let x = b, and substitute h with −h, we deduce

−f i(b)hi =
2k∑

j=1

bij [f(b− jh)− f(b)]− h2k+1
2k∑

j=1

bijεj(b) (14)

Adding the formula (13) to the formula (14), we get

hi[f i(a)− f i(b)] =
2k∑

j=1

bij [f(a + jh) + f(b− jh)]− [f(a)− f(b)]
2k∑

j=1

bij

+h2k+1
2k∑

j=1

bij [εj(b)− εj(a)] (15)
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1 For i = 1, k = 1, we obtain

A =
(

1 1
2!

2 22

2!

)
,

b11 = 2, b12 = − 1
2 . And by the formula (15), we have

h[f
′
(a)− f

′
(b)]

= −3
2
[f(a) + f(b)] + 2[f(a + h) + f(b− h)]− 1

2
[f(a + 2h) + f(b− 2h)] + o(h3)

By the above formula and formula (7), we get the first numerical integrating
formula without the derivative:

I1(h) = I(h)− h

48
[−3(f(a)+f(b))+4(f(a+h)+f(b+h))−(f(a+2h)+b(a+2h))]

(16)
The error is o(h4).
2 For k = 2, we have b11 = 4, b12 = −3, b13 = 4

3 , b13 = 4
3 , b14 = − 1

4 , b31 =
9, b32 = −12, b33 = 7, b34 = − 3

2 .
Where

A =

⎛⎜⎜⎜⎝
1 1

2!
1
3!

1
4!

2 22

2!
23

3!
24

4!

3 32

2!
33

3!
34

4!

4 42

2!
43

3!
44

4!

⎞⎟⎟⎟⎠
and when i = 1, we get

h[f
′
(a)− f

′
(b)]

= −25
12

[f(a) + f(b)] + 4[f(a + h) + f(b− h)]− 3[f(a + 2h) + f(b− 2h)]

+
4
3
[f(a + 3h) + b(b− 3h)]− 1

4
[f(a + 4h) + f(b− 4h)] + o(h5)

Let i = 3, by the (15), we obtain

h3[f
′′′

(a)− f
′′′

(b)]

= −5
2
[f(a) + f(b)] + 9[f(a + h) + f(b− h)]− 12[f(a + 2h) + f(b− 2h)]

+7[f(a + 3h) + b(b− 3h)]− 3
2
[f(a + 4h) + f(b− 4h)] + o(h5)

By the above formula and formula (8), we get the second numerical integrating
formula without the derivative:

I2(h)

= I(h) +
h

11520
[965(f(a) + f(b))− 1794(f(a + h) + f(b− h))
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+1272(f(a + 2h) + f(b− 2h))− 542(f(a + 3h) + b(b− 3h))
+99(f(a + 4h) + f(b− 4h))]

Where the error is o(h6).
3 By the above same method, let k = 3, and we obtain the third numerical

integrating formula having good accuracy.

I3(h)

= I(h) +
h

1935360
[183379(f(a) + f(b))− 416872(f(a + h) + f(b− h))

+472211(f(a + 2h) + f(b− 2h))− 395496(f(a + 3h) + b(b− 3h))
+21477(f(a + 4h) + f(b− 4h))− 67184(f(a + 5h) + f(b− 5h))
+9185(f(a + 6h) + f(b− 6h))]

Where the error is o(h8).

4 Numerical experimentation

Example. Calculate the integration
∫ π

2
0 sin xdx.

Solution: The exact value of the above integration is 1. Let T (h) denote the
integration approximation by the formula , and the integration interval is divided
by n equal parts . ε is the absolute error of the above methods. The result as
follows:

When the equal parts are 8, T (h) = 3.2148 · 10−3,
When the equal parts are 16, T (h) = 8.0331 · 10−4,
When the equal parts are 32, T (h) = 2.0080 · 10−4.
When the equal parts are 8, I(h) = 1.6018 · 10−3,
When the equal parts are 16, I(h) = 4.0170 · 10−4,
When the equal parts are 32, I(h) = 1.0040 · 10−4.
When the equal parts are 8, I1(h) = 1.5537 · 10−5,
When the equal parts are 16, I1(h) = 1.0781 · 10−6,
When the equal parts are 32, I1(h) = 7.0547 · 10−8.
When the equal parts are 8, I2(h) = 2.1600 · 10−7,
When the equal parts are 16, I2(h) = 4.5494 · 10−9,
When the equal parts are 32, I2(h) = 7.9492 · 10−11.
When the equal parts are 8, I3(h) = 2.9389 · 10−9,
When the equal parts are 16, I3(h) = 2.2646 · 10−11,
When the equal parts are 32, I3(h) = 1.0824 · 10−13.

So, the formula introduced in the paper has better accuracy than the Trape-
zoidal Formula, and the formal absolute error is half of the latter. Calculated
by the formulas (16),(17),(18), both the order of convergence and accuracy are
more accurate, so numerical result is more effective.
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Abstract. Since Nonlinear Integrals, such as the Choquet Integral and Sugeno 
Integrals, were proposed, how to get the Fuzzy Measure and confirm the unique 
solution became the hard problems. Some researchers can obtain the optimal 
solution for Fuzzy Measure using soft computing tools. When the Nonlinear In-
tegrals can be transformed to a linear equation with regards to Fuzzy Measure 
by Prof. Wang, we can apply the L1-norm regularization method to solve the 
linear equation system for one dataset and find a solution with the fewest non-
zero values. The solution with the fewest nonzero can show the degree of con-
tribution of some features or their combinations for decision. The experimental 
results show that the L1-norm regularization is helpful to the classifier based on 
Nonlinear Integrals. It can not only reduce the complexity of Nonlinear Integral 
but also keep the good performance of the model based on Nonlinear Integral. 
Meanwhile, we can dig out and understand the affection and meaning of the 
Fuzzy Measure better. 

Keywords: Nonlinear Integral, L1-Norm Regularization, Classification, 
LASSO. 

1   Introduction 

Nonlinear Integrals is known to have good results on classification and regression 
despite of the large computational complexity. Since Fuzzy Measure is introduced 
firstly by Sugeno [1], Nonlinear Integrals with respect to Fuzzy Measure had been 
proposed many versions by researchers and applied to classification and regression on 
real world data [2, 3, 4, 5]. In these methods, the Nonlinear Integrals are used as con-
fidence fusion tools. Given an object X={ nx,,x,x K21 }, for each class Ck, k=1,2,…m, 

a Fuzzy Measure is needed to fuse the n degrees of confidence for statement : ‘X 
belongs to class C’ based on the value of each xi, i=1,2,…,n.  

In all models [6, 7, 8, 9] with respect to Nonlinear Integrals, it is always a hard 
problem to confirm the Fuzzy Measure. The majority of researchers have used some 
soft computing tools to get optimal solutions. In this research, we use L1-norm regu-
larization method [10] to obtain a solution of Fuzzy Measure with the fewest nonzero 
values. It can not only reduce the complexity of Nonlinear Integral but also keep the 
good performance of the model based on Nonlinear Integral. Meanwhile, we can dig 
out and understand the affection and meaning of the Fuzzy Measure better. This paper 
is organized as follows. 
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In section 2, the fundamental concepts with respect to Fuzzy Measures and 
Nonlinear Integral are introduced. Section 3 introduces the transformation of Nonlin-
ear Integrals to linear equation. Then the main algorithm of Nonlinear Integrals for 
optimal solutions is presented in section 4. In next section describe the experimental 
results are showed and the detailed analyses are given. Finally, some conclusions are 
summarized. 

2   Fundamental Concepts and Classifier Model 

We are given a data set consisting of L  example records, called training set, where 
each record contains the value of a decisive attribute, Y , and the value of predictive 
attributes nx,,x,x K21 . Positive integer L  is the data size. The classifying attribute 

indicates the class to which each example belongs, and it is a categorical attribute 
with values coming from an unordered finite domain. The set of all possible values of 

the classifying attribute is denoted by mc,,c,cC K21= , where each kc , ,k 1=  m,,K2 , 

refers to a specified class. The feature attributes are numerical, and their values are 
described by an n-dimensional vector, ( )()()( 21 nx,f,x,fxf K ). The range of the vector, 

a subset of n-dimensional Euclidean space, is called the feature space. The jth observa-
tion consists of n feature attributes and the classifying attribute can be denoted by 

))(,),(),(( 21 jnjjj ,Yxfxfxf K , L,,,j   2 1 K= . Before introducing the model, we give out 

the fundamental concepts as follows. 

2.1   Fuzzy Measure 

Let nx,,x,xX K21= , be a nonempty finite set of feature attributes and )X(P  be the 

power set of X .  
 
Definition 2.1. A Fuzzy Measure [8], µ , is a mapping from )X(P  to )0[ ∞,  satisfying 
the following conditions: 

1) 0)( =φµ ; 

2) .XPA,BBµAµBA  )(),()( ∈∀≤⇒⊂  

To further understand the practical meaning of the Fuzzy Measure, let us consider the 
elements in a universal set X as a set of predictive attributes to predict a certain objec-
tive. Then, for each individual predictive attribute as well as each possible combina-
tion of the predictive attributes, a distinct value of a Fuzzy Measure is assigned to 
describe its influence to the objective. Due to the nonadditivity of the Fuzzy Measure, 
the influences of the predictive attributes to the objective are dependent such that the 
global contribution of them to the objective is not just the simple sum of their individ-
ual contributions. 
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Set function µ is nonadditive in general. If 1)( =Xµ , then µ  is said to be regular. 
The monotonicity and non-negativity of Fuzzy Measure are too restrictive for real 
applications. Thus, the signed Fuzzy Measure, which is a generalization of Fuzzy 
Measure, has been defined [15, 16] and applied. 
 
Definition 2.2. A set function )((X) +∞−∞→ ,:µ P is called a signed (non-monotonic) 
Fuzzy Measure provided that 0)( =∅µ . 
 

A signed Fuzzy Measure allows its value to be negative and frees monotonicity con-
straint. Thus, it is more flexible to describe the individual and joint contribution rates 
from the predictive attributes in a universal set towards some target.  

2.2   Nonlinear Integrals 

Definition 2.3. Let µ  be a non-monotonic Fuzzy Measure on )(XP  and f  be a real-
valued function on X . The Nonlinear Integral of f  with respect to µ  is obtained by 

dαFµdαXµFµfdµ αα ∫∫∫
∞

∞− +−=
0

0 )()]()([  (1) 

where { }αxfxFα ≥= )( , for any )( ∞−∞∈ ,α , is called the  fα  ofcut − . 

To calculate the value of the Nonlinear Integral of a given real-valued function f , 
usually the values of f , i.e., ,xfxfxf )(,),(),( n21 L  should be sorted in a nondecreas-

ing order so that )'()()( 21 nxf'xf'xf ≤≤≤ K , where )( 21 'x,'x,'x nK  is a certain permuta-

tion of )( 21 nx,x,x K . So the value of Nonlinear Integral can be obtained by  

, x'x'x'µx'fx'ffdµ n,.....i,ii

n

i
i })({)]()([ 11

1
+−

=
−=∑∫  where 0)( 0 ='xf  (2) 

The Nonlinear Integral is based on linear operators to deal with nonlinear space. 

3   Transformation of Nonlinear Integral  

To be convenient, Wang [11] proposed a new scheme to calculate the value of a 
Nonlinear Integral with real-valued integrand by the inner product of two ( 12 −n )-
dimension vectors as 

∑∫
−

=
=

12

1

n

j
jjµzfdµ  (3) 

where  

⎪
⎩

⎪
⎨

⎧ −−
= ∈∈

otherwise.                                                      0,

12 is or  zeron bigger tha isit  if  )()(min
)

2

1
0[)

2
()1

2

1
[)

2
(

;j,xfmaxxf
z

n
i

,
j

i:frc
i

,
j

i:frc
j ii

 

for 1221 −= n,,,j L  

(4) 
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with a convention that the maximum on the empty set is zero. Here, )
2

(
i

j
frc  denotes 

the fractional part of
i

j

2
. In the above formula, if we express j  in the binary 

form 11- jjj nn L , then { }1ji1
2

1

2

j
frc(i ii

==
⎭
⎬
⎫

⎩
⎨
⎧

∈ ),[)  and { }0ji
2

1
0

2

j
frc(i ii

==
⎭
⎬
⎫

⎩
⎨
⎧

∈ ),[) . 

A significant advantage of this new calculation scheme is that it can easily discover 
the coefficients matrix of a system of linear equations with the unknown variables µ  
when the Choquet integral is applied in further applications, such as regression and 
classification [7, 11, 12]. In those practical applications, values of the signed Fuzzy 
Measure are usually considered as unknown parameters which are to be estimated 
using the training data sets. The adoption of this new scheme make it convenient for 
using an algebraic method, such as the least square method, to estimate the value of 
µ , and furthermore, to reduce complexity of computation. 

After having this transformation, we can obtain the Fuzzy Measure for a known 
dataset by using L1-norm Regularization. 

4   Solutions of the Fuzzy Measure 

For determining the Fuzzy Measure, researchers have proposed many methods. In our 
past work, we used GA to learn the value of Fuzzy Measure for each concrete dataset. 
In this paper, we propose a new method based on L1-norm regularization. 

In many regression problem, the most popular function used is the Least Squares 
estimate, alternately referred to as minimizer of the residual sum of squared errors 

(RSS)[10]: 2

1 1
0 )(∑ ∑

= =
−−=

n

i

p

j
iiji ωxωyRSS . Regularization addresses the numerical insta-

bility of the matrix inversion and subsequently produces lower variance models. It is 
easy to see that the following penalized RSS function with respect to ω  and 0ω : 

∑∑ ∑
== =

+−−
p

j
j

n

i

p

j
iiji ωλωxωy

1

22

1 1
0 )( . This is referred to as L2 regularization. In order to sim-

plify the notation used, we reduce it to the following problem (in matrix notation): 
2

2

2

2
ωλyXω +− . While L2 regularization is an effective means of achieving numeri-

cal stability and increasing predictive performance, it can not address another impor-
tant problem with Least Squares estimates, parsimony of the model and interpretabil-
ity of the coefficient values. It does not encourage sparsity in some cases [13]. So a 
trend has been to replace L2-norm with an L1-norm recently. This L1 regularization 
has many of the beneficial properties of L2 regularization, but obtains sparse solutions 
that are more easily interpreted [10]. This property is what our algorithm wants. In 
Nonlinear Integrals, determining the Fuzzy Measure is the key procedure in the whole 
model. Fuzzy Measure represents the importance of features and the interaction de-
gree of features combined.  

We hope get a solution of Fuzzy Measure with the fewest nonzero values to find 
the most important features and feature combinations. Using L1-norm regularization, 
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we can minimize the following formula to reduce the size of nonzero in Fuzzy Meas-

ure: 
1

2

2

12

1
µλyµz

n

j
jj +−∑

−

=
. We can control the condensation compress degree for Fuzzy 

Measure by adjusting the parameter λ . Author of [14] proposed the Least Absolute 
Selection and Shrinkage Operator (LASSO) model based on Gauss-Seidel method. 
The obvious advantages of the Gauss-Seidel approach are its simplicity and its low 
iteration cost. We applied this kind of LASSO to solve the above L1-Norm problem. 
Finally, the optimal Fuzzy Measure can be obtained. 

5   Experiments and Analysis 

We applied our model for classification to several datasets selected from UCI reposi-
tory [17] which contains several biomedical data. They are 2-class datasets. The de-
tailed information is shown in Table 1. Two of these datasets, Wisconsin Prognostic 
Breast Cancer and Echocardiogram, have noisy data labeled as ?. We process the 
noise to be substituted by the most common value or mean value.  

Table 1. Description of Data sets 

Datasets Abbr. Examples Attributes Classes Reducts 
Monk1 Monk1 556 6 2 {1, 2, 4} 
Monk2 Monk2 601 6 2 {1, 2, 3, 4, 5, 6} 
Monk3 Monk3 554 6 2 {1, 2, 3, 4, 5, 6} 
Heart Hear 270 13 2 {1, 8, 13} 
Pima Pima 768 7 2 {2, 6, 8} 

Wisconsin Diagnostic Breast 
Cancer 

Wdbc 569 30 2 
{23, 24} 

Wisconsin Prognostic Breast 
Cancer 

Wpbc 699 9 2 
{3, 5, 6, 7} 

Echocardiogram Echo 132 13 2 {1, 3, 9} 
Australian Credit Approval Aust 690 15 2 {2, 4, 5} 

Table 2. The results of the data sets without reduct 

λDatasets Accuracy 
0 1 5 10 20 50 100 

Train 0.953 0.954 0.953 0.935 0.880 .765 0.516 Monk1 
Test 0.946 0.949 0.951 0.913 0.858 .750 0.501 
Train 0.992 0.993 0.993 0.988 0.910 0.684 0.657 Monk2 

Test 0.991 0.992 0.993 0.973 0.904 0.672 0.657 

Train 0.897 0.891 0.870 0.871 0.854 0.773 0.700 Monk3 

Test 0.855 0.854 0.859 0.858 0.844 0.773 0.700 
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We can see that the number of attributes of some datasets is rather large for 
Nonlinear Integrals to deal with. It will take very long time to learn the Fuzzy Meas-
ure. So the feature selection is a necessary step. Based on previous research, we adopt 
reduct in Rough Sets to process the data before classification. As we all known, there 
may be many reducts in Rough Sets for one database. We just pick out the one which 
have more overlap with that selected by Information gain Ranking method. The fea-
ture subsets selected are shown in Table 1. We can see the size of feature subsets from 
Rough Sets is greatly smaller than original one. This can greatly advance the effi-
ciency of Nonlinear Integrals because the time of learning the signed Fuzzy Measure 
is reduced greatly. 

We tested two sets experiments for original data and processed data with reduct 
separately. The results of the former one are shown in Table 2. We can see that the 
accuracy is decreasing as the value of λ is increasing. λ is the parameter for control-
ling the degree of compression for Fuzzy Measure. We set the value of λ as 0, 1, 5, 
10, 20, 50 and 100 respectively. The larger the value of λ is, the fewer the number of 
zero in solution is. The compressing the Fuzzy Measure simplify the computation of 
Nonlinear Integrals at the cost of performance. We can select an appropriate value for 
λ to balance the complexity and the performance. 

The Table 3 list the results of some data sets with reduct. These data have been 
processed once by feature selection. The features have been compressed to a small 
set. We can see that the accuracy of each data set have no too much fluctuation with 
different values of λ . It means that the compressing by controlling λ have the same 
affection as feature selection.  

Table 3. The results of the data sets with reduct 

λDatasets Accuracy 
0 1 5 10 20 50 100 

Train 0.953 0.953 0.953 0.953 0.953 0.953 0.953 Monk1 
Test 0.953 0.953 0.953 0.953 0.953 0.953 0.953 
Train 0.992 0.993 0.993 0.988 0.910 0.685 0.685 Monk2 
Test 0.991 0.993 0.993 0.975 0.906 0.673 0.673 
Train 0.897 0.890 0.870 0.871 0.854 0.773 0.773 Monk3 
Test 0.858 0.858 0.862 0.862 0.842 0.773 0.773 
Train 0.647 0.649 0.649 0.649 0.648 0.647 0.647 Pima 
Test 0.641 0.645 0.644 0.645 0.642 0.640 0.640 
Train 0.851 0.851 0.851 0.851 0.851 0.851 0.851 Wdbc 
Test 0.851 0.851 0.851 0.851 0.851 0.851 0.851 
Train 0.807 0.806 0.805 0.802 0.796 0.796 0.795 Wpbc 
Test 0.801 0.800 0.799 0.798 0.795 0.794 0.794 
Train 0.888 0.888 0.887 0.886 0.887 0.848 0.849 Echo 
Test 0.882 0.883 0.882 0.883 0.879 0.821 0.821 
Train 0.771 0.771 0.771 0.770 0.768 0.767 0.769 Heart 
Test 0.767 0.766 0.765 0.765 0.764 0.761 0.767 
Train 0.844 0.843 0.843 0.842 0.844 0.815 0.800 Aust 
Test 0.839 0.839 0.839 0.837 0.834 0.807 0.797 
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As for describing the interaction of features, we can observe the solution by L1-
Norm regularization method to acknowledge the trend and the regulation of Fuzzy 
Measure. We take the Monk2 as an example to introduce briefly relation of Fuzzy 
Measure and the control parameter λ . we can see that the number of nonzeros is 
decreasing as the value of λ increases. The order of each Fuzzy measure according to 
the value is not changed for each λ as long as it is not zero. When we select a value 
of λ to keep the balance of complexity and performance, those combinations of fea-
tures with nonzero value are the relative important for contributing to decision. For 
this example, when λ =5 and λ =10, the accuracies are highest on Training set and 
Testing set respectively. Apparently the latter is simpler than the former which shift 
some subsets with small values to be ignored. In the table, negative value means the 
effect of the subset to contribution is just negative, which will not affect the decision. 

6   Conclusions 

Due to the great number of Fuzzy Measures to be determined, the computational 
complexity of Nonlinear Integrals is very large. To finding the values of each Fuzzy 
Measure is a hard work for those huge data sets. In this paper, we use the L1-norm 
method to solve the problem of complexity. L1-norm method can obtain the solution 
with the relative fewest nonzero values. We can get the Fuzzy Measure with small 
size by compressing the solution using L1-norm regularization, which can reduce the 
complexity greatly without losing performance. Experimental results show that we 
can select one value of parameter λ  to keep a balance between complexity and per-
formance. The detailed values of Fuzzy Measure can be confirmed to describe the 
interaction of features with respect to contribution for decision by using L1-norm 
regularization. 

In the future work, we can learn the value of parameter λ  to control the L1-
norm’s operation using a cross-validate method.  
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Abstract. We investigate the correlation between temporal complexity of EEG 
signal and the underlining neural activities. Fractal geometry has been proved use-
ful in quantifying complexities of dynamical signals. Temporal fractal dimension 
of EEG signals provides a new neurophysiological measure. In order to better un-
derstand what the complexity measure reveals about the underling brain process, a 
further exploration on the neuronal generators of fractal geometry characteristics 
of EEG is conducted in this study. Our investigation suggests that the temporal 
fractal measure of EEG signals can be related to the activity diversity of neuronal 
population activities. The complexity measure also gives an indication on the 
change in synchronization state under certain mental conditions. These assump-
tions are supported by experimental evidence from the visual cortex and sensori-
motor cortex. This work helps give an interpretation of the obtained results of the 
temporal complexity analysis on EEG signals and may be useful in further inves-
tigating the covert steps of brain information processing. 

Keywords: Electroencephalography(EEG), Event-related potentials(ERPs), 
Temporal complexity, Fractal analysis, Event-related desynchronization (ERD). 

1   Introduction 

Electroencephalography (EEG) is the electrical signal recorded from the surface of 
the scalp, produced as a result of the synthesis of electric fields emitted by individual 
neurons in the neuronal mass activity. When appropriately processed, they have the 
potential to facilitate the understanding of brain mechanisms and neurocognitive 
processes [1]. For EEG signal processing, various data analysis techniques have been 
proposed, such as time-frequency analysis, event-related potentials (ERPs), event-
related desynchronization/synchronization (ERD/ERS), and so on. At the same time, 
the investigation on the nonlinear aspect of brain activities has also occupied numer-
ous researchers in the neuroscience field.  
                                                           
∗ Corresponding author. 
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As an effective tool for the characterization of nonlinear signals, deterministic 
chaos plays an important role. A straightforward method to distinguish different men-
tal states from recorded EEG signals through a dynamic perspective is to estimate 
nonlinear parameters of the dynamic system, like correlation dimension of the attrac-
tor, Lyapunov exponent, etc. These attractor-based methods mainly work based on the 
phase space reconstruction procedure according to Taken’s theorem [2]. These meas-
ures have been shown to be useful for differentiating dynamic properties of neuronal 
networks [3-5]. Babloyants and his co-researchers analyzed the EEG data of the hu-
man brain during the sleep cycle and suggested the existence of chaotic attractors for 
sleep stages two and four [6]. Significant differences have been reported in these 
nonlinear measures between different mental states [7, 8, 9].  

However, there have also been heated debates about the preconditions of these at-
tractor-based methods for EEG analysis [10]. There were experts who argued that 
some early ‘demonstrations’ of deterministic chaos based on weak experimental evi-
dence were accepted without sufficient analysis. They also presented their mathematic 
and neural physiologic evidence to show that it was not sufficient to prove that the 
EEG signal can represent the observation values of strange attractors [11, 12]. They 
did not support the attempts to identify strange attractors in brain signals and to meas-
ure their parameters. 

Regardless of the dispute about the existence of strange attractors in the behavior 
of the EEG signals, there is no doubt that the neurosciences should benefit greatly 
from nonlinear science. EEG signals are nonlinear in themselves. Recent advance-
ments in nonlinear science are expected to provide more insight into the underlining 
neural activities and thus further progress neuroscience research. Alternative methods 
have been developed in recent years for the analysis of neural activity. 

Fractal geometry has been proved useful in quantifying the complexity of dynami-
cal signals in biological systems [13-14]. Fractal analysis has also been successfully 
applied in quantifying the temporal complexity of dynamic fluctuations in time-series 
signals [15-17]. Thus the temporal fractal property provides a good measure for char-
acterizing the nonlinear behavior of the EEG signals as it describes their irregular 
shape. V. Cabukovski et al. developed a real-time method employing fractal character 
and gave their results in real-time EEG data analysis; Liu et al. found that the tempo-
ral fractal dimension of EEG signals during different physiological stages of a hand-
grip task showed different behaviors, and increased linearly with hand grip force 
during the movement and holding periods; Bashashati et al. used fractal dimension as 
a feature to build a biofeedback system in a brain computer interface system. These 
results strongly suggest that the morphological aspects of the EEG can shed light on 
the activity change of the neuronal population. 

The temporal geometrical property provides a promising way to explore the 
nonlinear characteristic of the EEG. It does not depend on the desired attractor. Be-
sides, it does not rely on phase space reconstruction, which is critical for attractor-
based measures such as correlation dimension and the largest Lyapunov exponent. 
Thus it provides an effective tool for measuring the neural activities in neuroscience 
research. However, it is still not totally clear what the complexity measure could pos-
sibly reveal about the underlining neural processing. In this paper, we further explore 
the correlations between the temporal complexity aspect of the EEG and the neuronal 
population activities. The neuronal generators of the fractal property of the EEG  
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signal are discussed. This work may help to give an interpretation of the obtained 
experimental results and facilitate investigating the mechanism of brain information 
processing. 

2   Methods 

Fractals are mathematical sets with a high degree of geometrical complexity that can 
model many natural phenomena. Fractal features represent the morphology of the 
signals. It has been well established that fractal analysis can effectively and quantita-
tively characterize the temporal complexity properties of a nonlinear signal [13-18]. 
The temporal fractal property can be evaluated in different ways. The Higuchi method 
gives a good approximation to the fractal dimension (FD), using the length of the 
irregular curve, from a small number of points [19]. This method is applicable and 
may be a better solution for fractal dimension estimation in the case of EEG data 
analysis, where the small number of points is the main limitation [15, 16]. It can be 
formulated as 

Given a discrete time series observations ( ) { (1), (2), , ( )}X n X X X N= L , a new 

time series m
kX can be constructed as 

; ( ), ( ), ( 2 ), , ( ), ( 1, 2, , )m

k
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X X m X m k X m k X m k m k
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where [ ] denotes the Gauss’s notation and both m  and k  are integers, indicating the 

initial time and the interval time, respectively. The length of the curve m
kX can be 

defined as follows, 
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The term 1/[( ) / ]N N m k k− − ⋅  represents the normalization factor for the 

curve length of the subset time series. 

The length of the curve for the time interval k , ( )L k , is defined as the average 

value over k  sets of ( )mL k , i.e.,  

1

( ) ( ) / .
k

m
m

L k L k k
=

⎡ ⎤=  ⎢ ⎥⎣ ⎦
∑  

If ( ) HDL k k −∝ , then the curve ( )X n is fractal with the dimension HD . 

The length of the optimal epoch, denoted by N in (1), needs to be decided when 
estimating the fractal dimension for EEG signals using the Higuchi method. A long 
epoch helps to get stable estimation for actual fractal dimension. In the meantime, 
long epochs are inevitably liable to submerge the subtle change in the fractal property 
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and thus reduce the temporal resolution of the analysis. So this is a case-dependant 
problem where the stability and temporal resolution should be balanced. Analysis has 
been conducted in [16] using fractal sets of the Henon map, the Modified Sierpinski 
triangle and the Weierstrass cosine function. They reported that an epoch size be-
tween 100 and 150 points is enough for a reliable estimation of the fractal dimension. 

3   Experiments 

3.1   Temporal FD and Alpha Blocking Phenomenon 

Neuronal networks can display different states of synchrony, with oscillations at dif-
ferent frequencies. An evident alpha rhythms synchronization phenomenon in the 
visual cortical area can be observed in the visual information processing [20, 21]. To 
explore the neuronal generators of the temporal complexity measure, we first con-
ducted visual cortex experiments to investigate how the fractal property will change 
with the alternating of different mental conditions.  

The EEG signal was recorded at electrode O1 in the occipital area according to the 
extended international 10-20 system, using an EEG machine provided by the Biosemi 
Company. The sampling rate was 1024Hz, and no filter was applied to the sampled 
data. Then the recorded single trial EEG signals were analyzed in our study. Obvious 
difference in the fractal property of the EEG was observed for close/open eyes condi-
tions. For illustration, the estimated fractal dimension can be 1.3823 and 1.6378, re-
spectively, for the two conditions as shown in Fig. 1. There is significant increase in 
signal complexity when the eyes opened. 

Fig. 2 shows the time course of the complexity of the single trial EEG signal using 
a sliding window scheme, where the window length is 2s and the step length is 0.1s. 
The character ‘O’ indicates the open-eyes periods and ‘C’ denotes closed-eyes peri-
ods. Significant and regular fluctuation can be observed while the two condition peri-
ods alternate. 

  

                                   (a)                                                                       (b) 

Fig. 1. Fractal analysis result for (a) closed-eyes conditions (b) open-eyes conditions 
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Fig. 2. Time course of the estimated temporal complexity measure 

A theoretical approach to brain function is based on Hebb's concept of cell assem-
blies [22]. According to this view, strongly coupled neuronal groups are the func-
tional units of the brain. The amplitude of oscillations is proportional to the number of 
synchronously active neural elements [23]. 

We can see obvious alpha rhythm synchronization phenomenon in the experimen-
tal result from Fig. 2 (A). This may imply that, according to the cell assembly theory, 
when the eyes close, more oscillating cell assemblies change their oscillation patterns 
to a predominant one, leading to great enhancement in the amplitude of the corre-
sponding frequency component. The appearance of predominant or governing factors 
in neural activity patterns makes EEG signals more regular in the morphological as-
pect and thus reduces its temporal complexity. So the estimated fractal dimension is 
relatively low as indicated by ‘A’ in the left subfigure of Fig. 2. In other words, a 
lower fractal dimension of EEG signal may relate to a decrease of the diversity of 
oscillation patterns of mass neuronal activities in the visual cortical area.  

On the other hand, when the eyes open, the task of processing large amount of vis-
ual information received may require more oscillating cell assemblies to change their 
oscillation patterns away from the preceding predominant one. It leads to the attenua-
tion or disappearance of the predominant factors in frequency spectrum, the energy is 
distributed more equally to various frequency components as illustrated in Fig.2 (B). 
This change eventually enhances the fractal property of the EEG signal as indicated 
by ‘B’ in the left subfigure of Fig. 2. The experimental results suggest that the tempo-
ral fractal properties of the EEG signal reflect effectively such changes in the oscilla-
tion diversity of neuronal populations.  

3.2   Temporal FD and ERD 

The event-related desynchronization/synchronization (ERD/ERS) is a high-frequency 
band-specific technique. Frequency specific changes of the ongoing EEG activity in 
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event-related phenomenon may consist either of decreases or increases of power in 
given frequency bands. This may be due to decrease or increase of the synchrony of 
the underlying neuronal populations. ERD/ERS offers useful information about the 
neural dynamics in processing mental tasks through frequency-specific monitoring of 
the brain oscillations [20].  

As suggested in the preceding visual cortex experiments, the temporal fractal di-
mension can effectively reflect the change in the diversity of the oscillation patterns 
of neural activities. If this assumption holds, the frequency-specific synchronization 
phenomena, revealed by the ERD/ERS method, should also come within the purview 
of temporal complexity measuring. Because ERD indicates decrease of the strength of 
a specific oscillation pattern, cell assembly oscillations change from this pattern to 
more diverse ones. This will give rise to a reorganizing process among the power of 
frequency components of the ongoing EEG and will thus affect the temporal com-
plexity measurement. 

To testify this hypothesis, we investigated the temporal FD properties in motor im-
agery (MI) tasks. Hand motor imagery lead to perturbations of the ongoing pericentral 
rhythm, demonstrating typical ERD/ERS phenomena. Cortical activation related to 
movement preparation and execution has been shown to desynchronize the mu 
rhythm and results in an event-related desynchronization (ERD). ERD in hand 
movement is more prominent over the contralateral sensorimotor areas during motor 
preparation and extends bilaterally after movement initiation [20, 25, 26]. 

The dataset we employed for analysis is the dataset Ⅳa of BCI competition Ⅲ. 
More detail about the experimental design and EEG recording can be found in [24]. 
Fig. 3 and Fig. 4 show the analysis results in right hand imagining task for subject al 
and ay in the datasets, respectively. The time courses of the power of 8-12Hz fre-
quency band are illustrated in Fig. 3 (a) and Fig. 4(a). They are percentage values 
relative to a baseline of -1s to 0s before the onset of the visual cue, which is indicated 
by the vertical line in the figures. Significant contralateral pre-movement mu ERD 
can be seen at electrode C3 for right hand imagination, as denoted by arrows.  
Fig. 3(b) and Fig. 4(b) display the averaged ERD spatial mappings of the right hand 
MI task, averaged between 1s-2s after the appearance of the visual cue. The promi-
nent ERD effects can be observed over the left sensorimotor areas for right hand MI 
tasks, as indicated by the white crosses. 

The preparation of movement induces a decrease in the power of mu band, repre-
sented by the ERD, over the motor cortex. In this process, more cell assemblies may 
change their oscillation patterns away from the preceding mu synchrony, resulting in 
an increase of the diversity of the neuronal population activities. This transformation 
should enhance the complexity of the signal according to our assumption. 

The time courses of the change in the temporal complexity property are shown in 
Fig. 3(c) and Fig. 4(c), measured by fractal dimension difference relative to a baseline 
of -1s to 0s before the onset of the visual cue. A sliding window scheme is also em-
ployed here with the window length of 1s and the step length of 0.1s. The topography 
mappings of the temporal fractal dimensions variation are shown in Fig. 3(d) and Fig. 
4(d). Evident negative correlations are observed in our experimental results, which 
strongly support our hypothesis on the correlation between temporal complexity and 
ERD. 
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Fig. 3. ERD and temporal complexity variation in hand movement imagination from subject al 

 
Fig. 4. ERD and temporal complexity variation in hand movement imagination from subject ay 
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4   Discussions and Conclusions  

Nonlinear mechanisms are crucial in neural systems and the temporal fractal property 
provides a good measure of the nonlinear behavior of the EEG signals by describing 
their irregular shape. The temporal fractal dimension has advantages over the attrac-
tor’s fractal dimension in that it depends neither on the desired attractor assumption 
nor on the phase space reconstruction process. 

In this study, we discussed the correlation between the temporal fractal characters 
of the EEG signal and the underlying neural activities, trying to give an assumption 
on the neuronal generators of the temporal complexity properties of EEG signals.  

EEG signals are believed to be synthesized from individual cell assembly activi-
ties. When most of the neuronal groups within a cortex area oscillate at a certain fre-
quency, the neuronal networks display a state of synchrony, for example in the alpha 
blocking phenomenon with eyes closing. The resultant EEG signal is regular with a 
lower temporal complexity degree. On the other hand, when a more complex task is 
executed, for example in preparing the hand movement, more cell assemblies change 
their oscillation patterns away from the preceding consensus rhythm to fulfill the 
mental task. The power of the preceding consensus rhythm is reduced, as can be re-
vealed by ERD. At the same time, the transformation in the oscillation patterns inevi-
tably causes a significant enhancement in the diversity of the neuronal population 
activities, and the overall energy is distributed over more frequency components, 
leading to an increase in the temporal complexity of the EEG signal.  

The experimental results indicate that the temporal complexity properties of EEG 
possibly relate to the diversity of the neuronal population activities. The change in the 
diversity of mass neuron activities may induce significant variations in the morpho-
logical aspect of the EEG signals. These morphological differences can be picked up 
and employed by the temporal complexity measure to provide a physical measure of 
human brain activities. This work may help to better understand the way of measuring 
the internal states of neural activities through a temporal morphologic view. 
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Abstract. This paper presents a PDF-matched modification to Stone’s
measure of predictability. The modified measure of predictability is a
measure of non-gaussianity too. It is an extent of signal predictability
by two different prediction terms. One prediction term is based on a
normal gaussian PDF assumption for signal. In contrast, the other one
is based on a unit variance supergaussian PDF assumption for signal.
By contrastive deployment of the above prediction terms, the modified
measure of predictability enables BSS to follow a high kurtosis PDF as-
sumption for signals. As an advantage, not only signals with maximized
predictability are recovered, but also with increased non-gaussianity too.
Deploying the modified measure of predictability concludes more inde-
pendent recovered signals. The dominance of BSS based on the modified
measure to the previous one has been demonstrated by many tests per-
formed over mixtures of realistic audio signals (music and speech) and
over mixtures of gray-scale images.

Keywords: Blind source separation, Gaussianity, Eigenvalue routine,
Predictability, Short-term linear predictors.

1 Introduction

Blind Source Separation (BSS) [1,2] is separation of blind sources from mixed
observed data without any prior information of the source signals and mixing
process. As basic model of BSS, K unknown source signals upon transmission
through a medium have been linearly mixed together and mixture signals are
collected byM sensors. The source signals are not observed and also no informa-
tion is available about the mixture. In mathematical model, the M × 1 vector x
of observed signals x(n) = (x1(n) x2(n) · · · xM (n))T is multiplication of K × 1
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vector s of unknown source signals s(n) = (s1(n) s2(n) · · · sK(n))T by unknown
M ×K mixing matrix A:

x(n) = A× s(n) (1)

Given only the observation signals x(n) = (x1(n) x2(n) · · · xM (n))T , the solu-
tion of BSS problem seeks for the best K ×M matrix W as un-mixing matrix
to extract signals as much as possible close to unknown source signals as follows

y(n) = W × x(n) (2)

where y is M × 1 vector of extracted signals y(n) = (y1(n) y2(n) · · · yK(n))T .
Each row of W is a 1 × M un-mixing vector wi related to one of extracted
signals.

Generally, BSS methods aim to find a separation matrix which minimizes the
mixing effect on some signals properties. The desired signal property depends on
the BSS method. One of BSS strategies is projection pursuit [3] that is based on
the central limit theorem (CLT) [4] and seeks a weight vector such that the signal
extracted from a set of signal mixtures is as non-gaussian as possible. A BSS
method like Independent Component Analysis (ICA) looks for maximization of
statistical independence between signals [5]. ICA based on Infomax [6] maximizes
entropy (uniformity) of distribution of signals instead of their independence and
it achieves the same result.

Stone has introduced the BSS method based on temporal predictability of
signal for instantaneous mixtures [7,8]. The Stone’s BSS has been extended to
convolutive [9] as well as nonlinear mixtures [10]. Also a probabilistic short term
version of Stone’s BSS has been presented in [11]. Despite most of BSS methods
which are suffered by their computational complexity, Stone’s BSS has a fast
algorithm. It has scaling characteristics of O(M3), where M is the number of
signal mixtures. Its extended version to complex domain has been used in [12] for
reducing complexity of ICA based MIMO-OFDM receiver. However, compared
to projection pursuit and ICA, it has lower separation performance.

In this paper, we propose a modification to Stone’s measure of predictability
to increase the separation performance of BSS. The modified measure is not only
a measure of predictability, but also it is a measure of non-gaussianity too. BSS
based on the modified measure extracts signals with maximized predictability
as well as increased non-gaussianity. Thus, the recovered signals are more in-
dependent, and the modified measure concludes a BSS with higher separation
performance. Its dominance to Stone’s BSS has been derived over mixtures of
realistic audio signals (music and speech) and over mixtures of gray-scale images.

The structure of the paper is as follows: Section 2 presents the proposed
modification to Stone’s measure of predictability. This section first explains the
Stone’s measure. Then its modification is presented. Section 2.3 establishes BSS
based on the modified measure. Section 3 discusses the performance of the mod-
ified Stone’s BSS in separation of signal mixtures and image mixtures made of
different sources. Finally section 4 concludes the paper.
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2 The PDF-Matched Measure of Predictability

Stone has presented the predictability conjecture of BSS [7], and it has been
modified by Xie [13]. This conjecture indicates that any mixture signal has a
predictability lying between the least and the most predictability values of the
source signals. Stone defines a measure of temporal predictability of signal that
has been used as merit function for BSS. Here we propose a probabilistic modi-
fication to Stone’s measure of predictability.

2.1 Stone’s Measure of Predictability

The measure of temporal predictability for aN -sampled signal z has been defined
as

FStone (z) = log
Vz

Uz
= log

∑N
n=1(zlong(n)− z(n))2∑N
n=1(zshort(n)− z(n))2

(3)

where z(n) is the value of the signal at sample n. The term Uz reflects the extent
to which z(n) is predicted by a short-term moving average zshort of values in z.
In contrast, the term Vz is a measure of the overall variability in z, as measured
by the extent to which z(n) is predicted by a long-term moving average zlong of
values in z. The long-term predicted value zlong(n) and the short-term predicted
value zshort(n) of z(n) are both exponentially weighted sums of signal values
measured up to sample (n−1), such that recent values have larger weighting than
those in the distant past. As an essential requirement, the long-term prediction
zlong must be obtained over much longer averaging window than the short-term
prediction zshort, typically at least 100 times longer.

2.2 The Proposed Measure of Predictability

In Stone’s measure of predictability the short term prediction mean squared
error Uz is the main part. The other term Vz is used for to be insured that by
maximization of the measure, the recovered signals not to be so predictable as to
be constant. While the long-term prediction error is not accurately the variance
of the signal, it is used to bring some amount of variance for extracted signals.

Here by using a probabilistic view to short-term prediction we presents a mod-
ification to Stone’s measure of predictability. The proposed measure wherein the
coefficients of short-term predictors are obtained by a probabilistic objective
method, concludes higher performance of BSS. The modified measure of pre-
dictability for an N -sampled signal z is defined as

Fproposed (z) = log
cov(ẽz, ẽz)
cov(êz, êz)

= log
∑N

n=1(z̃(n)− z(n))2∑N
n=1(ẑ(n)− z(n))2

(4)

where ẑ(n) is the short-term predicted value of z(n) by a unit variance super-
gaussian PDF assumption for z, and z̃(n) is the short-term predicted value of
z(n) by a normal gaussian PDF assumption for z. The terms ẽz(n) and êz(n) are
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error signals of these prediction signals, which their covariances are respectively
considered as measures of gaussianity and non-gaussianity of z. The Fproposed

is arranged so that it gives us not only a measure of predictability of the signal
but also its non-gaussianity. z̃(n) and ẑ(n) are obtained as follows

z̃(n) =
L∑

i=1

ãiz(n− i) (5)

ẑ(n) =
L∑

i=1

âiz(n− i) (6)

where ãi and âi are coefficients of the short-term predictors, and L is the length
of the predictors. In a probabilistic view to Eqs.(5)(6), z̃(n) and ẑ(n) can be
considered as expectation of z(n− i) with respect to i, and ãi and âi respectively
as probability weight of z(n − i) in linear combination of z̃(n) and ẑ(n). We
select the coefficient ãi proportional to p̃i that is the conditional probability of
on-coming current sample of the signal to be equal to its ith prior sample with
the precondition of assuming a gaussian PDF for z. The coefficient âi is selected
in the same way, but the corresponding conditional probability p̂i is obtained by
the precondition of assuming a supergaussian PDF for z.

p̃i = Prob.{ {z(n) = z(n− i)} | {PDF of z is gaussian} } (7)
p̂i = Prob.{ {z(n) = z(n− i)} | {PDF of z is supergaussian} } (8)

Evidently p̃i and p̂i are the most for the closest sample to the current sample
of signal, and by going further through the past samples, they are gradually de-
creased. For obtaining decreasing function of p̃i and p̂i, we have used respectively
the assumed corresponding normal gaussian PDF and unit variance supergaus-
sian PDF for z. The Laplacian distribution has been used as supergaussian PDF.
The deployed PDFs are as follows

f̃z(z) =
1√
2π
exp

(
−z

2

2

)
(9)

f̂z(z) =
1
2
exp (−|z|) (10)

Fig.1 shows the above PDFs. The same PDF is approximately considered for
short-length segments of the signal under prediction window, and the required
probabilities are obtained by sampling from the PDF. L probability values are
sampled in the distance from the peak-point of PDF to its tail-end point that
can be a point like p-value of .001. the p̃i and p̂i are obtained as follows

p̃i =
1√
2π
e
− (i−1)2E1

2

2(L−1)2 (i = 1, · · · , L) (11)

p̂i =
1
2
e−(i−1)

E2
L−1 , (i = 1, · · · , L) (12)
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where E1 and E2 are tail-end points of PDFs. E1
L−1 and E2

L−1 are sampling periods
in which L is the length of prediction window. The summation of obtained
probabilities is normalized to one to conclude probability weights as well as
predictors coefficients. Fig.1 shows the PDF-matched selection of coefficients for
24-points length of prediction window (L = 24). Fig.2 shows the PDF-matched
obtained coefficients for short term predictors.

The proposed measure is not only a measure of predictability, but also it is a
measure of non-gaussianity too. It leads BSS to an advantage beside deploying
temporal predictability maximization. This advantage is that by maximizing
the proposed measure of predictability of a set of signals, their non-gaussianity
is increased too. As we expect central limit theorem (CLT)[4], increasing the
nongaussianity leads to more independent recovered signals.
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2.3 BSS Based on the Proposed Measure of Predictability

Consider the recovered signal yi(n) formed by applying the separating vector wi

to the set of M mixtures; yi(n) = wix(n). Since yi(n) ∈ LS(x1(n), x2(n), · · · ,
xM (n)) that is the linear space spanned by mixture signals, the proposed measure
in Eq.(4) for yi(n) can be written as

Fproposed(yi) = log
cov(ẽyi , ẽyi)
cov(êyi , êyi)

= log
wiC̃wi

T

wiĈwi
T
. (13)

The matrices C̃ and Ĉ are obtained as follows

C̃ = cov(ẽx, ẽx) (14)

Ĉ = cov(êx, êx) (15)

where ẽx(n) = (ẽx1(n), ẽx2(n), · · · , ẽxM (n))T and êx(n) = (êx1(n), êx2(n), · · · ,
êxM (n))T , that ẽxj (n) = x̃j(n)− xj(n) and êxj(n) = x̂j(n)− xj(n). The signals
x̃j and x̂j are obtained by applying the two proposed PDF-matched predictors
introduced in Eqs. (5)(6) to observed mixture signal xj . The elements of C̃ and
Ĉ for N -sampled mixture signals are respectively as follows

Ĉ(ij) =
N∑

n=1

((xi(n)− x̂i(n))(xj(n)− x̂j(n))) (16)

C̃(ij) =
N∑

n=1

((xi(n)− x̃i(n))(xj(n)− x̃j(n))) . (17)

So, the requirements for obtaining C̃ and Ĉ are available from mixture signals.
These matrices should be computed only once. The following derivative form
of the measure in Eq.(13) can be used for obtaining the wi by gradient ascent
learning;

�wi
Fproposed =

2wi

cov(ẽi, ẽi)
C̃ − 2wi

cov(êi, êi)
Ĉ. (18)

Also, the ratio of Eq.(13) has the form of Rayleigh quotient [13] which its extrema
points correspond to eigensystem of the generalized eigenproblem. The point that
the gradient of F is zero leads to the following equation:

Ĉ−1C̃wi = wi

(
cov(ẽi, ẽi)
cov(êi, êi)

× I
)

(19)

where I is the identity matrix. It can be easily seen that the equation (19) has
the form of a generalized eigenvalue problem. So, BSS solutions for wi can be
obtained as eigenvectors of Ĉ−1C̃ matrix with corresponding eigenvalues di =
cov(ẽi,ẽi)
cov(êi,êi)

. Therefore by solving the generalized eigenvalue routine, W composed
of eigenvectors the same as un-mixing vectors wi is obtained (i = 1, 2, . . . ,M).
All source signals are simultaneously extracted by W .
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Fig. 3. (a) BSS experiment over music data, (b) BSS experiment over speech data,
where respectively from up to down is as follows: mixed music signals, source music
signals, recovered signals by Stone BSS and recovered signals by modified stone BSS

Table 1. Comparison of separation performances of Stone BSS and modified Stone
BSS related to Fig.3; Over music data (a) and over speech data (b) by correlation
values between recovered signals and their corresponding sources

(a) Music Data

St
on

e
B

SS y1 y2 y3

s1 .9963 .0041 .0863
s2 .0005 1.0000 .0032
s3 .0879 0.0011 .9961

M
od

ifi
ed

St
on

e
B

SS y1 y2 y3

s1 .9999 0.0001 0.0145
s2 0.0042 1.0000 0.0045
s3 0.0136 0.0023 .9999

(b) Speech Data

St
on

e
B

SS y1 y2 y3

s1 .9986 .0504 .0160
s2 .0854 .9960 .0275
s3 .0077 .0074 .9999

M
od

ifi
ed

St
on

e
B

SS y1 y2 y3

s1 .9999 .0041 .0077
s2 .0457 .9990 .0243
s3 .0040 .0122 1.0000

3 Results and Discussion

The performance of the BSS based on the modified measure of predictability
has been driven with many evaluation tests over mixtures of audio signals (mu-
sic and speech) and mixtures of gray-scale images. In our simulation the length
of predictors is acquired 24 samples. We have compared the modified measure
with Stone measure of predictability [7]. The sources, mixtures and recovered
signals/images have been normalized to have the same maximum and minimum
values. Also, the permutation and negative phase of recovered signals/images
have been corrected too. In all comparisons of this paper such normalization
have been done, unless stated otherwise. Fig. 3(a) shows BSS performance com-
parison over three linearly mixed music signals. The correlation values between
recovered music signals and source music signals in Table 1(a), indicate a better
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Fig. 4. gray-scale image mixtures (first row), their source images (2nd row), separated
images by Stone BSS (3rd row) & separated images by modified Stone BSS (4th row)

separation performance for modified Stone measure. Fig. 3(b) shows such exper-
iment over linear mixture of speech signals. Table. 1(b) conveys that there are
higher correlations between the recovered speech signals and their corresponding
sources, while the modified measure of predictability has been used.

More than the above experiment cases, we have done 1000 times of the
same experiment over mixtures made of different randomly selected music sig-
nals from a set of one hundred different music segments. The mixing matrix is
also randomly selected and it is the same for both BSS methods in each ex-
periment. The average result of correlation between source music signals and
corresponding recovered ones for Stone BSS and its modification are respec-
tively .9963 and .9975. A similar 1000 times experiments has been done over
speech signals too. Averaged correlation values for Stone BSS and modified
Stone BSS are respectively .9793 and .9822. The numerical results indicate
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Table 2. Comparison of separation performances of Stone BSS and modified Stone
BSS over gray-scale mixtures related to Fig.4

St
on

e
B

SS y1 y2 y3

s1 .9777 .1995 .2174
s2 .1050 .9105 .4806
s3 .1449 .3525 .8789 M

od
ifi

ed
St

on
e

B
SS y1 y2 y3

s1 .9994 0.0724 .1451
s2 .1124 .9999 .0721
s3 .0531 0.0439 .9965

higher separation performance of modified Stone BSS over both music and speech
data.

We have done the evaluation over mixtures of gray-scale images too. For the
both methods, the BSS implementation is row-wise that is followed by column-
wise. Fig.4 shows the Stone BSS and modified Stone BSS performances in sep-
aration of a set of linear mixtures of gray-scale images. For this case of image
mixtures, correlation values between recovered images by both methods and
their corresponding source images approve the higher performance of modified
Stone BSS with respect to Stone BSS (Table 2).

To get a better evaluation of efficiency of BSS methods, we have done 100
different experiments of separating mixtures of gray-scale images. Source im-
ages were randomly selected from a set of different images. Mixing matrix was
randomly selected too, and it was the same for both BSS methods in each ex-
periment. The average result of correlation values between recovered images and
their corresponding source images are respectively .9167 and .9803 for Stone BSS
and modified Stone BSS.

4 Conclusion

This paper presents a PDF-matched modification to Stone’s measure of signal
predictability [7] that is used as a merit function for blind sources separation
(BSS). The modified measure of predictability is a measure of non-gaussianity
too. Maximization of signals temporal predictability in parallel to increasing
their non-gaussianity leads to more independent recovered signals. BSS based
on the modified measure of predictability has been compared to BSS based on
Stone’s measure over mixtures of realistic audio signals (music and speech) as
well as mixtures of gray-scale images. Correlation values between sources and
their corresponding recovered signals/images demonstrate the higher separation
performance of BSS based on the modified measure of predictability. Especially,
it is much better over mixtures of gray-scale images.
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Abstract. This paper introduces a new concept of the connection weight to the 
multi-layer feedforward neural network. The architecture of the proposed ap-
proach is the same as that of the original multi-layer feedforward neural net-
work. However, the weight of each connection is multi-valued, depending on 
the value of the input data involved. The backpropagation learning algorithm 
was also modified to suit the proposed concept. This proposed model has been 
benchmarked against the original feedforward neural network and the radial  
basis function network. The results on six benchmark problems are very  
encouraging. 

Keywords: Feedforward Neural Network, Learning algorithm, Data mining, 
Classification. 

1   Introduction 

Classification is the process of finding a set of models that describe and distinguish 
data classes or concepts, for the purpose of being able to use the model to predict the 
class of objects whose class label is unknown [1]. A variety of techniques have been 
applied to deal with the classification problems, such as artificial neural networks, a 
decision tree, and statistical methods. However, many previous research works [2, 3, 
4, 5, 6] show that neural network classifiers have better performance, lower classifi-
cation error rate, and more robust to noise than other classification methods. Among 
a number of neural network classifiers, the multi-layer feedforward neural network 
with backpropagation learning algorithm, often called backpropagation neural net-
work, is the most widely used model. Arbach et al. [7] used the backpropagation 
neural network to classify mammographic masses. The classification performance 
was measured by computing the sensitivity, specificity, and area under the receiver 
operating characteristic (ROC) curves. The results showed that the backpropagation 
neural network performance was slightly better than the expert radiologists, and sig-
nificantly better than the residents. Grip et al. [8] used the backpropagation neural 
network to classify neck movement patterns related to Whiplash-associated  
disorders. The backpropagation neural network with six hidden nodes achieved a 
predictivity of 0.89, a sensitivity of 0.90, and a specificity of 0.88, which are  
very promising results. Another research work by Arbach et al. [9] used the  
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backpropagation neural network for classification of breast MRI lesions. The results 
illustrated the promise of using the backpropagation neural network as a physician’s 
assistant for breast MRI classification. 

Even though the backpropagation neural network has been responsible for numer-
ous successes, it is not without disadvantage. The backpropagation neural network 
suffers from shortcomings, such as slow convergence rate and easily being trapped in 
a local minimum [10]. Numerous algorithms that improve on the backpropagation 
learning algorithm have been proposed. In [11], Sarkar and Yegnanarayana proposed 
a method of embedding fuzzy objective functions into the original backpropagation 
learning algorithm. Rimer and Martinez [12] combined the standard backpropagation 
learning algorithm with lazy training [13]. The combined approach achieved higher 
accuracy and more robust solutions than either standard backpropagation or lazy 
training alone.   

This paper introduces a new concept of the connection weight to the original 
multi-layer feedforward neural network. Typically, each connection weight of the 
multi-layer feedforward neural network is a single real number. However, in this 
paper the weight of each connection is multi-valued, depending on the value of the 
input data involved. The performance of the proposed approach is evaluated against 
the original multi-layer feedforward neural network and the radial basis function 
network. 

This paper is divided into 4 sections. Following this introduction, section 2 pre-
sents the architecture of the proposed approach and its learning algorithm. A brief de-
scription of the experimental data and the experimental results are given in section 3. 
Finally, section 4 is the conclusions. 

2   The Proposed Approach 

In this paper, the three-layer feedforward neural network is used to demonstrate 
how the proposed approach works. The architecture of the three-layer feedforward 
neural network is shown in Figure 1. The first layer is the input layer, which con-
sists of N nodes. Each node represents a feature component of the input data. The 
second layer is the hidden layer. The nodes in the hidden layer are fully connected 
to the nodes in the input layer and the output layer. The third layer is the output 
layer. Each node in the output layer represents a class. In this paper, the input vec-
tor is denoted by X = (x1, x2, …, xi, …, xN), where N is the number of features in X. 
Once the network receives the input and its associated target output (X, Y), the 
training process will begin. The detailed procedure of the proposed approach is as 
follows: 
a. Define the number of nodes in the hidden layer. 
b. Normalize the input data to a value between [0, 1]. Divide the normalized input 

data range into S segments by specifying the point(s) where the segments will be 
split, called the splitting point(s). Then, initialize all weight values of each  
connection, wij and wjk, with random numbers between -1 and 1.  
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Input Layer 

Output Layer 
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Fig. 1. Architecture of the three-layer feedforward neural network 

For example, in Figure 2 the splitting point is at 0.5; as a result, xi and Oj are di-
vided into 2 equal segments (S = 2). The first segment (s1) covers the range  
between 0 and 0.5 while the second segment (s2) covers the range between 0.5 and 1. 
Then, for each connection, randomly pick S+1 numbers between -1 and 1. In Figure 
2.1, three numbers – 0.55, -0.05, and -0.7 – are randomly picked and  
assigned to be the weights at the points where xi = 0, xi = 0.5, and xi = 1  
respectively – wij(0), wij(0.5), and wij(1).  

xi

10.5 

0.5 

1

wij

-1 

-0.5 

Oj

10.5

0.5 

1

wjk

-1 

-0.5 

(2.1) (2.2)
 

Fig. 2. Example of the new connection weights 

c. Calculate the output of each hidden node (Oj) as follows: 

)net(fO jj = . (1) 
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where f(•) is the activation function. In this paper, the sigmoid function is used as the 
activation function in both the hidden layer and the output layer.  

  N is the total number of nodes in the input layer.  
  Li is a lower bound of the segment that xi falls into. 
  Ui is an upper bound of the segment that xi falls into. 

d. Calculate the output of each output node (Ok) as follows: 

)net(fO kk = . (4) 

∑
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jjkjk )O(wOnet . (5) 
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−
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where M is the total number of nodes in the hidden layer. 
  Lj is a lower bound of the segment that Oj falls into. 
  Uj is an upper bound of the segment that Oj falls into. 

e. Compare the desired output (Y) with the actual output (Ok) and determine the  
error at the output layer by  

∑
=

−=
C

1k

2
kk )Oy(

2

1
E . (7) 

f. Update the connection weights between the hidden layer and the output layer by 
using the equation 
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where η is the learning rate, which has a value between 0 and 1. 
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g. Update the connection weights between the input layer and the hidden layer by  
using the equation 
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h. Repeat steps c through g for all remaining input patterns in the training data set. 
i. Repeat steps c through h until a predetermined number of iteration is reached or 

the root mean square error reaches an acceptable level. 
 

During testing, each testing vector is applied in turn and its class is predicted. The 
class whose output node returns the maximum output value is the result of the 
prediction. 

}C...,,2,1k:O{maxargK k == . (14) 

3   Experimental Results 

To test the performance of the proposed approach, the experiments were conducted on 
4 artificial data sets and 2 real-life data sets. The four artificial data sets are called 
Fan, Flower 1, Flower 2, and Sawtooth. The names imply the shape of the classes. 
Fan data has 4 classes, while the other three have 2 classes. In each of the four data 
sets, the 4,000 data points in the database were randomly divided into a training set of 
2,000 data points and a testing set of 2,000 data points. 

The two real-life data sets are the iris data and the image segmentation data. The 
iris data [14] has been widely used in the classification problem. The sepal length,  
sepal width, petal length, and petal width of 150 iris flowers from 3 species (Iris-
setosa, Iris-versicolor, and Iris-virginica) are measured in centimeters, and are used as 
the input of the problem. The training set contains 90 records, while the testing set 
contains 60 records. 

The image segmentation data was retrieved from the UCI machine learning da-
tabase repository [15]. Nineteen continuous attributes are used to predict the out-
put class. There are 7 classes (brick face = 1, sky = 2, foliage = 3, cement = 4, 
window = 5, path = 6, and grass = 7) with 330 examples per class. In this paper, 
the training set contains 210 examples, while the testing set contains 2,100  
examples. 
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Fig. 3. Fan 

 

Fig. 4. Flower 1 

 

Fig. 5. Flower 2 
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Fig. 6. Sawtooth 

Results of the experiments are shown in Table 1. For Fan data (data set 1), the pro-
posed approach and the radial basis function network (RBFN) win out by a small 
margin over the multi-layer feedforward neural network (MFNN). The proposed  
approach and the RBFN achieve a perfect accuracy (100%) while the MFNN misses 
only 5 out of 2,000 patterns. 

For Flower 1, Flower 2, and Sawtooth, the proposed approach outperforms the 
MFNN by a wide margin. However, the performance of the proposed approach is 
only slightly better than that of the RBFN. The training parameters of the proposed 
approach are M = 18 and S = 10 for Flower 1, M = 13 and S = 10 for Flower 2, and M 
= 2 and S = 10 for Sawtooth. The best prediction performance of MFNN are obtained 
from the networks with M = 23 for Flower 1, M = 29 for Flower 2, and M = 18 for 
Sawtooth. The best prediction performance of RBFN are obtained from the networks 
with 93 hidden nodes for Flower 1, 89 hidden nodes for Flower 2, and 91 hidden 
nodes for Sawtooth.  

For the iris data (data set 5), all three methods – the MFNN, the RBFN, and the 
proposed approach – achieve a perfect accuracy (100%). These best prediction  
performances are obtained from the MFNN with 10 nodes in the hidden layer, from 
the RBFN with 32 hidden nodes, and from the proposed approach with 2 hidden 
nodes and S = 1. 

For the image data (data set 6), the proposed approach produces 102  
misclassifications out of a total of 2,100 examples; this corresponds to an accuracy of 
95.14%. The number of nodes in the hidden layer is 11 and S is 10. On the other 
hand, the MFNN with 14 hidden nodes produces 137 misclassifications, and the 
RBFN with 70 hidden nodes produces 109 misclassifications. 

4   Conclusions 

This paper introduces an improvement on the multi-layer feedforward neural network. 
In the proposed approach, the weight of each connection in the multi-layer feedfor-
ward neural network is modified. To test the performance, the proposed approach, the 
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original feedforward neural network, and the radial basis function network were used 
to classify six benchmark problems. With respect to the classification accuracy, the 
proposed approach is found to be far superior to the original feedforward neural net-
work, and marginally better than the radial basis function network. In addition, the 
size of the proposed network is much smaller than the sizes of the other two methods. 

Table 1. Experimental results 

Accuracy (%)  
Data Set Feedforward  

Neural Network 
Radial Basis  

Function Network 
Proposed Approach 

1. Fan 99.75 100.0 100.0 
2. Flower 1 95.35 97.40 99.35 
3. Flower 2 95.40 98.25 99.45 
4. Sawtooth 95.90 99.80 100.0 
5. Iris 100.0 100.0 100.0 
6. Image 93.48 94.81 95.14 
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Abstract. Voting is usually used in democratic society for decision-making, but 
majority circle is inevitable, if choosing that method. It is complex to by com-
binatory to compute the probability of majority circle, instead of that, geometry 
is an intuitive and simple method, besides, it can show the relationship between 
the different combination and majority circle. First, compute the probability of 
majority circle by combinatory, and then denote candidate triangle and result-
profile triangle. Finally analyze each preference combination and its voting re-
sult, what’s more, if voting majority circle occurs, compute the probability. 

Keywords: Majority circle, Condorcet winner, Result-profile triangle. 

1   Introduction 

Voting is an ancient way of decision-making, and it has a long history. From the Mid-
dle Ages up to now, research in this field has never been ceased. In democratic mod-
ern society, it is widely used in all aspects of social and economic life, and contributes 
greatly no matter to political and social activities, or to the evaluation and decision-
making of governments, international organizations.  

To most people, voting seems simple. After all, to vote we just need a sheet of pa-
per or a card, then count how many people favor each candidate. But voting may go 
wrong with such two elementary procedures. Maybe, the winner was not the one in 
the eyes of voters, for example, Al Gore was the loser in the U.S. presidential election 
who won the popular vote by approximately 500,000 votes, but ultimately lost the 
electoral college to Republican candidate George W. Bush when the legal controversy 
over the Florida election recount was eventually settled in the U.S. Supreme Court by 
a 5-4 margin in favor of Bush. 

In 18th century, Condorcet pointed out there is only one way that can strictly elect 
whom they really wanted. The "correct" voting procedure is the winner only can be 
the candidates who beat all other candidates in pairwise elections, and the winner 
called “Condorcet winner” [1]. It seems to be unquestionable, but actually it can be 
questioned. While three or more than three candidates, outcome appears majority 
circle, so elections reach an impasse. A simple explanation of this phenomenon is the 
ranking of entire group of voters does not have transitivity. 
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2   Combinatory Method 

Permutation and combination is a traditional way to analysis the majority circle. 
This old method proved to be very useful. We illustrate with an example, where 
voters select one person from {A, B, C} three candidates. The set of voters’ pref-
erences is called profiles which strictly ranks the candidates, thus here appears six 

profiles. “A fB” means “A is preferred B”, “A Gf B” means “the entire group of 

voters considers A is preferred B”. For convenience, assign these types by the 
following numbers: 

Considering each one can select one type from the six profiles, if there are three 
voters, the situation is up to 63 combinations. If the first voter chooses type 1, the 
second chooses type 5, and the third chooses type 5, comes the bad outcome 
“AfBfCfA”. This makes it impossible to select an “optimal” candidate. Simi-
larly, while the three voters with the profiles of {2,6,4}, {1,3,5}, {2,4,6}, {5,1,3}, 
{6,2,4}, {6,4,2}, {5,3,1}, {4,2,6}, {3,1,5}, {4,6,2}, {3,5,1} also cause majority 
circle. Through the analysis of the above, we compute the probability of three 
voters voting for three candidates is 12 divided by 216 equals 0.056. From this we 
see that it is too complicated to adopt combinatory method, especially the growth 
of the voters and candidates would multiply the complexity of the problem. Niemi 
and Garman (1968) computed the probability of different voters voting for differ-
ent candidates [2]. 

Table 1. Type of preferences 

Type Preference Type Preference 
1 Af Bf C 4 Cf Bf A 
2 Af Cf B 5 Bf Cf A 
3 Cf Af B 6 Bf Af C 

 

Table 2. Probability of different voters voting for different candidates 

Voter  
Candidate 

3 5 7 11 15 25 ∞ 

3 0.0556 0.0694 0.075 0.0798 0.082 0.0843 0.0877 

4 0.1111 0.14 0.15 

   

0.1755 

5 0.16 0.2 0.22 

   

0.2513 

6 0.2 0.25 0.27 

   

0.3152 

8 0.28 0.33 0.37 

   

0.4151 

10 0.32 0.4 

    

0.4887 
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3   Candidate Triangle of Three Candidates 

Faced with all profiles, progress has been seriously hindered by the complexity of 
combinatory method. This traditional way to construct profiles has a great failing. In 
recent years, the emphasis of the research has shifted to geometrical method. It re-
duces these previous complicated problems into simple graph that can be presented. 

Denote a candidate triangle where each of candidates {A, B, C} is identified with a 
vertex. The candidates have the same status, so the triangle is equilateral [3]. In it, 
there exist many voting points which reflect voters’ preferences to the candidates. If 
the voting points is much closer to the candidate’s vertex, the ranking of the candidate 
is in the voter’s profile is closer to the top. Doing a vertical line along the vertex C, 
divide the candidate triangle into two parts. Voting points is closer to A compared 
with B in the left part, so the voter consider AfB, otherwise BfA, and all of the 
points on the vertical line means A and B are indifferent between their options. Simi-
larly, the triangle is divided into the six same size and shape sections which corre-
spond with the types of profiles by the three vertical lines along the vertexes. Illustrate 
an example, all points in the region 1 are the closest to A, next closest to B, and far-
thest to C, so profile is AfBfC. 

If n is the number of the voters, ni is the number of the voters type i, so n1+ n2+ n3+ 
n4+ n5+ n6 =n, n and ni are nonnegative integers. 

There exists a simple case that if all voters have a common preference, their voting 
points only will concentrate in one region of the triangle, so the group profile is easily 

defined. If all voters only have two preferences, the situation is 2
6C =15, but considering 

symmetry and A, B, C are the same status, it reduce to four which is shown in Fig. 2. 

 

Fig. 1. Candidate triangle and profile region 

 

Fig. 2. Two preference candidate triangle 
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For instance of Fig. 2a, it is shown that all voting points are closest to C, so we 
only need care about the choice between A and B, if n3> n/2, thus n3>n4, the prefer-

ence of the group is C Gf A Gf B, otherwise C Gf B Gf A. Similarly, make the same 

analysis, the outcome is in Table 3. 

Table 3. Outcomes of different preferences 

 Qualification Outcome Qualification Outcome 

Fig. 2a. n3> n/2 C Gf A Gf B n3< n/2 C Gf B Gf A 

Fig. 2b. n2> n/2 A Gf B Gf C n2< n/2 B Gf A Gf C 

Fig. 2c. n1> n/2 A Gf B Gf C n1< n/2 B Gf A Gf C 

Fig. 2d. n4> n/2 C Gf B Gf A n4< n/2 B Gf C Gf A 

 
If all voters only have two preferences, the situation is 3

6C =20, but symmetry re-

duces the number to 4. 

 

Fig. 3. Three preference candidate triangle 

Fig. 3a shows a simplest case that all voting points are far from B, so if n3< n/2, the 
voters consider C is preferred to A, thus the group preference is preference 

A Gf C Gf B, otherwise C Gf A Gf B. 

In Figure 3b, we divide n1, n3, n5 by n to facilitate the research, let x=n1/n，y=n3/n, 
z=n5/n, thus z=1-x-y, so the candidate triangle is transformed into result-profile trian-
gle, as in Fig. 4. Compared A and B, only voting points in region 5 think B is pre-

ferred to A, if x+y>1/2, the group considers A Gf B, similarly, if x>1/2, A Gf B; if 

y>1/2, C Gf B. Divide the result-profile triangle into four parts and the center region 

is A Gf B Gf C Gf A, so majority circle happens. There are (n+1)(n+2)/2 points in the 

result-profile triangle. When n is odd the number of points in the center is (n+1)(n-
2)/8; when even, it is (n+1)(n-2)/8[4]. So, if n is odd the probability of majority circle 
is  
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1 3
(1 )    

4 2n
−

+  

(1) 

If n is even, the probability is  

1 9
(1 ) 

4 ( 2)( 1)n n
−

+ +
 (2) 

A B

A C

C B

 

Fig. 4. Result-profile triangle of Fig. 3b 

As n approaches infinite, the probability limit of majority cycle is 1/4. For n=3, 
there are only 1/10 that comes majority circle. Considering the possibility of three 
preferences is 3 3

6P / 6 =120/216, the probability of majority circle of three voters 

voting for three candidates is  

1 120 12

10 216 216
× =  

The result agrees to combinatorial method. Majority circle does not occur in Figure 
3c and 3d, as is shown in Fig. 5.  

 

Fig. 5. Result-profile Triangle 
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The above analysis is the geometry model of Condorcet function of three candi-
dates and three preferences, and it calculates in two-dimensional graph that three 
vertex is (1, 0), (0, 1), (0, 0). While the preference is more than three, the model be-
comes multi-dimensional graph. Except the origin, each vertex is assigned as a row of 
the matrix, for instance, if the number of voter types is five, the vertex coordinate is  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

As the growth of the candidates, the maximal number of preference type increases, 
so the dimensions of the model also go up, if set all voting theory into geometry, use 
vector space to make analysis of voting rules, not only do we come to a deeper under-
standing of the existing theory, but also help to redesign the theory.  

4   Summary 

Compared with traditional combinatorial method, geometry has great draw on analy-
sis of voting problem. As shown, the geometry offers a simple solution in voting 
theory for a complex problem. What's more, it allows to see whether the voting para-
dox occur or not in a specific figure and calculate the likelihood of each profile easily. 
Geometry is a significant theory as a complement of the solution of voting paradox. 
We can find the distribution of strategy-proof preference profile by the analysis of 
different preference profile triangles and predict the strategy-voting behavior on this 
basis. 
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Abstract. In this paper, we deal with the exponential asymptotic stabil-
ity of a two-unit standby redundant electronic equipment system under
human failure. First we prove that the positive contraction c0-semigroup
{T (t)}t≥0 which is generated by the operator corresponding to these
equations is a quasi-compact operator. Then by using that 0 is an eigen-
value of the operator with algebraic index one and the c0-semigroup
{T (t)}t≥0 is contraction, we deduce that the spectral bound of the oper-
ator is zero. By using the above results we obtain easily the exponential
asymptotic stability of the solution of the redundant system.

Keywords: Exponential asymptotic stability, Quasi-compact operator,
c0-semigroup, Electronic equipment system.

1 Introduction

As the development of science and technology, electron productions and network
are used everywhere. And redundancy plays an important role in enhancing sys-
tem reliability. So the stability analysis of the redundant system becomes more
and more important. In Ref.[1], the authors have developed a mathematical
model, which is a two-unit standby redundant electronic equipment system un-
der human failure. Furthermore, in Ref.[1], using the supplementary variable
technique, Laplace transforms of various state probabilities have been obtained
which further yield time dependent probabilities by inversion process. In Ref.[2],
author proved the asymptotic stability of the system and the steady-state so-
lution is shown to be the eigenvector of the system operator corresponding to
the eigenvalue 0. The aim of our present work is to study the velocity of the
time-dependent solution converging to the steady-state solution. In this article,
we will study the converging velocity. We first convert the model into an abstract
Cauchy problem in a Banach space, then show that the operator corresponding
to this system model generates a positive contraction c0-semigroup. We then
prove that c0-semigroup {T (t)}t≥0 is a quasi-compact operator, and that spec-
tral bound of this operator is zero. Thus by Theorem 2.1(see [3]) we have our
desired consequence.
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1.1 Assumptions

The following assumptions are associated with this system(see Fig.1)

(I) Initially the system is in good state.
(II) The system has two states i.e. good and failed.

(III) The standby unit starts operating just after the failure of the main unit.
(IV) The repair is undertaken only when the complex system is in state 4.
(V) After repair, the system works like new.

(VI) Both the units suffer two types of failures, namely constant failure and
human failure.

(VII) The failure and repair times for the system follow exponential and general
distribution respectively.

(VIII) Human failure rates from states 1 to 3 and 2 to 3 are different.
(IX) In the complex system, at any time, only one change can take place in

the state of the system.
(X) The system has two units connected in standby redundancy where of

course of each unit has two states i.e. good and failed.

��
��
p1(t)
1

Main unit
operable

�
η2(y)

p3(t)
3

��
��
p2(t)
2

Standbyunitworking

4
p4(0, t)
p4(y, t)

�λ

�
λh1

�
λh2

�

λ

�Good state
Failed state

Fig. 1. State transition diagram

1.2 Notations

The following symbols are used in this article:

(I) 1-good state (i.e. both the units are good);
(II) 2-one unit is good and other is failed;

(III) 3-failed state;
(IV) 4-failed state and under repair;
(V) λ-exponential constant failure rate for one unit from states 1 to 2 and

states 2 to 4;
(VI) η2(y)-transition rate of repair for the two units from states 4 to 1;

(VII) λh1-constant human failure rate from states 1 to 3;
(VIII) λh2-constant human failure rate from states 2 to 3;

(IX) p1(t)-Prob{system is in state 1; at time t};
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(X) p2(t)-Prob{system is in state 2; at time t};
(XI) p3(t)-Prob{system is in state 3; at time t};

(XII) p4(y, t)-pdf{system is in state 4 and is under repair; elapsed repair time
is y ; at time t};

According to [1], the system of a set of integro-differential equations for the
stochastic process which is continuous in time and discrete in space associated
with this mathematical model is as follows:

[
d

dt
+ λ+ λh1]p1(t) =

∫ ∞

0

p4(y, t)η2(y)dy (1)

[
d

dt
+ λh2 + λ]p2(t) = λp1(t) (2)

d

dt
p3(t) = λh2p2(t) + λh1p1(t) (3)

[
∂

∂t
+
∂

∂y
+ η2(y)]p4(y, t) = 0 (4)

the boundary and initial conditions are

p4(0, t) = λp2(t) (5)
p1(0) = 1 (6)
p2(0) = p3(0) = p4(y, 0) = 0 (7)

where

0 ≤ η2(y) <∞,
∫ ∞

0

e−
∫ y
0 η2(s)dsdy <∞,

0 < η2 = lim
y→∞

1
y

∫ y

0

η2(s)ds < +∞,
∫ ∞

0

η2(y)dy =∞

For simplicity, let
m1 = λ+ λh1,m2 = λ+ λh2

Taking state space X as follows:

X = {z ∈ R×R×R× L1[0,∞)|‖z‖ =
3∑

i=1

|zi|+ ‖z4(y)‖L1[0,∞)}

It is obvious that (X, ‖ · ‖) is a Banach Space.
In the following we define operator A and its domain:

AP =

⎛⎜⎜⎝
−m1 0 0 0

0 −m2 0 0
0 0 0 0
0 0 0 − d

dy − η2(y)

⎞⎟⎟⎠
⎛⎜⎜⎝

p1
p2
p3
p4(y)

⎞⎟⎟⎠



Exponential Asymptotic Stability 247

D(A) = {P ∈ X | dp4(y)
dy ∈ L1[0,∞), p4(y) is absolutely continuous functions,

p4(0) = λp2}
define operator B : X → X

BP =

⎛⎜⎜⎝
0 0 0

∫∞
0 ·η2(y)dy

λ 0 0 0
λh1 λh2 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

p1
p2
p3
p4(y)

⎞⎟⎟⎠
Then the above equations (1)-(7) can be described as an abstract Cauchy prob-
lem in Banach space X :

dP (t)
dt

= (A+B)P (t), t ∈ [0,∞) (8)

P (0) = (1, 0, 0, 0) (9)

Theorem 1. A generates a positive contraction c0-semigroup {S(t)}t≥0.

Theorem 2. A+B generates a positive contraction c0-semigroup {T (t)}t≥0.

The proof of Theorem 1.1 and Theorem 1.2 see in Ref.[2,4].
In this article, we first prove that S(t) is a quasi-compact operator by study-

ing two operators U(t) and V (t), then we obtain that T (t) is a quasi-compact
operator by using the compactness of B, and finally by using [2], 0 is an eigen-
value of A+B and (A+B)∗ with geometric multiplicity one. Thus by Theorem
2.1 in Ref.[3], we can obtain our desired result.

2 Conclusions

Proposition 1. For Φ ∈ X, P (y, t) = (S(t)Φ)(y) is a solution of the following
Cauchy problem: {

d
dtP (t) = AP (t),
P (0) = Φ, Φ ∈ X (10)

then

(S(t)Φ)(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝
Φ1e

−m1t

Φ2e
−m2t

Φ3

p4(0, t− y)e−
∫ y
0 η2(τ)dτ

⎞⎟⎟⎠ , y < t
⎛⎜⎜⎝

Φ1e
−m1t

Φ2e
−m2t

Φ3

Φ4(t− y)e−
∫

y
y−t

η2(τ)dτ

⎞⎟⎟⎠ , y ≥ t
where p4(0, t− y) is given by (5).



248 X. Qiao, Z. Li, and D. Ma

Proof. Since P is a solution of the following equations:

d

dt
p1(t) = −m1p1(t) (11)

d

dt
p2(t) = −m2p2(t) (12)

d

dt
p3(t) = 0 (13)

[
∂

∂t
+
∂

∂y
+ η2(y)]p4(y, t) = 0 (14)

p4(0, t) = λp2(t) (15)
p1(0) = Φ1, p2(0) = Φ2, p3(0) = Φ3, p4(y, 0) = Φ4(y) (16)

If we set ζ = y − t and define Q4(t) = p4(t+ ζ, t), then from (14) we get that

dQ4(t)
dt

= −η2(ζ + t)Q4(t) (17)

If ζ < 0, then integrating (17) from −ζ to t, and using Q4(−ζ) = p4(0,−ζ) =
p4(0, t− y), we have

p4(y, t) = Q4(t) = Q4(−ζ)e−
∫ t
−ζ

η2(ζ+τ)dτ (18)

p4(y, t) = p4(0, t− y)e−
∫

y
0 η2(τ)dτ (19)

From (11)-(13), we have

p1(t) = Φ1e
−m1t, p2(t) = Φ2e

−m2t, p3(t) = Φ3 (20)

If ζ ≥ 0, then integrating (17) from 0 to t, and then using relations Q4(0) =
p4(ζ, 0) = Q4(y − t), and by similar argument to (18)-(19) we get

(S(t)Φ)(y) =

⎧⎪⎪⎨⎪⎪⎩
Φ1e

−m1t

Φ2e
−m2t

Φ3

Φ4(t− y)e−
∫ y

y−t
η2(τ)dτ

, y ≥ t

The proof of Prop. 1 is completed. ��
By Theorem 1.1 and similar argument in Ref.[2] or [4], we know that the system
(10) has a unique nonnegative solution P (y, t) = (S(t)Φ)(y), by using the c0-
semigroup theory in Ref.[5], we can know that P (y, t) is not only the weak
solution of the system (10) but also the strong solution.

If we define two operators as follows, for P ∈ X

(U(t)P )(y) =
{

0, y ∈ [0, t),
(S(t)P )(y), y ∈ [t,∞), (21)

(V (t)P )(y) =
{

(S(t)P )(y), y ∈ [0, t),
0, y ∈ [t,∞), (22)

then S(t)P = U(t)P + V (t)P .
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Lemma 1. A closed and bounded subset Y ⊂ X is compact if and only if the
following two conditions hold:

(i) lim
h→0

∫∞
0 |Φ4(y + h)− Φ4(y)|dy = 0, uniformly for Φ = (Φ1, Φ2, Φ3, Φ4) ∈ Y ;

(ii) lim
h→0

∫∞
h
|Φ4(y)|dy = 0, uniformly for Φ = (Φ1, Φ2, Φ3, Φ4) ∈ Y .

The proof of the Lemma 2.1 is easy (see [6]), so we omit the details.

Theorem 3. V (t) is a compact operator on X.

Proof. According to the definition of V (t), it suffices to prove condition (ii) in
Lemma 2.1. For bounded Φ ∈ X , we set P (y, t) = (S(t)Φ)(y), y ∈ [0, t), then
P (y, t) is a general solution of the system (10). So by Prop.2.1, we have, for
y, h ∈ [0, t), y + h ∈ [0, t),∫ ∞

0

|p4(y + h)− p4(y, t)|dy =
∫ t

0

|p4(y + h, t)− p4(y, t)|dy

=
∫ t

0

|p4(0, t− y − h)e−
∫

y+h
0 η2(τ)dτ − p4(0, t− y)e−

∫
y
0 η2(τ)dτ |dy

≤
∫ t

0

|p4(0, t− y − h)| · |e−
∫

y+h
0 η2(τ)dτ − e−

∫
y
0 η2(τ)dτ |dy

+
∫ t

0

|p4(0, t− y − h)− p4(0, t− y)|e−
∫ y
0 η2(τ)dτdy (23)

We will estimate each term in (23). By using (15) and Theorem 1.1 we have

|p4(0, t− y − h)| = |λp2(t− y − h)| ≤ λ‖p(·, t− y − h)‖X
= λ‖S(t− y − h)Φ(·)‖X ≤ λ‖Φ‖X (24)

By using (24), we estimate the first term in (23) as follows:∫ t

0

|p4(0, t− y − h)| · |e−
∫

y+h
0 η2(τ)dτ − e−

∫
y
0 η2(τ)dτ |dy

≤ λ‖Φ‖X
∫ t

0

|e−
∫

y+h
0 η2(τ)dτ − e−

∫
y
0 η2(τ)dτ |dy → 0,

as |h| → 0, uniformly for Φ (25)

By using (15), (20) we have

|p4(0, t− y − h)− p4(0, t− y)| = λ|p2(t− y − h)− p2(t− y)|
= λ|Φ2(e−m2(t−y−h) − e−m2(t−y))| → 0,
as |h| → 0, uniformly for Φ (26)

(26) imply that the second term in (23) satisfies∫ t

0

|p4(0, t− y − h)− p4(0, t− y)|e−
∫

y
0 η2(τ)dτdy → 0,

as |h| → 0, uniformly for Φ (27)
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Combining (25), (27) with (23), for y + h ∈ [0, t), we have∫ ∞

0

|p4(y + h, t)− p4(y, t)|dy → 0, as |h| → 0, uniformly for Φ (28)

If h ∈ [−t, 0), y ∈ (0, t), then from the relation p4(y + h, t) = 0, for y + h < 0,
we have ∫ ∞

0

|p4(y + h, t)− p4(y, t)|dy =
∫ t

0

|p4(y + h, t)− p4(y, t)|dy

=
∫ t

−h

|p4(y + h, t)− p4(y, t)|dy +
∫ −h

0

|p4(y + h, t)− p4(y, t)|dy

=
∫ t

−h

|p4(y + h, t)− p4(y, t)|dy +
∫ −h

0

|p4(y, t)|dy (29)

Since y + h ∈ [0, t), for y ∈ [0, t), h ∈ [−t, 0), for the first term in (29), similar
way to (28) we have∫ t

−h

|p4(y + h, t)− p4(y, t)|dy → 0, as |h| → 0, uniformly for Φ (30)

By using Prop.2.1 and (24), we estimate the second term in (29) as follows:∫ −h

0

|p4(y, t)|dy =
∫ −h

0

|p4(0, t− y)e−
∫

y
0 η2(τ)dτ |dy

≤ λ‖Φ‖X
∫ −h

0

e−
∫

y
0 η2(τ)dτdy → 0, as |h| → 0, uniformly for Φ (31)

Combining (30)-(31) with (29), for h ∈ [−t, 0), we have∫ ∞

0

|p4(y + h, t)− p4(y, t)|dy → 0, as |h| → 0, uniformly for Φ (32)

From (28) and (32) we know that the result of the following theorem holds. ��
Theorem 4. Assume there exists one positive constant η2 such that

0 < lim
y→∞

1
y

∫ y

0

η2(s)ds = η2 < +∞,

then U(t) satisfies

‖U(t)Φ‖X ≤ e−min{m1, m2, η2}t‖Φ‖X , ∀Φ ∈ X (33)

Proof. For any Φ ∈ X , from the definition of U(t) and (20), we have

‖U(t)Φ‖X‖ = |p1(t)|+ p2(t)|+ |p3(t)|+
∫ ∞

t

|Φ4(t− y)e−
∫

y
y−t

η2(τ)dτ |dy

≤ |Φ1|e−m1t + |Φ2|e−m2t + |Φ3|+ |e−η2t||
∫ ∞

t

Φ4(t− y)dy|

≤ e−min{m1, m2, η2}t‖Φ‖X , ∀Φ ∈ X (34)

(34) shows that the result of the theorem holds. ��
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From Theorem 2.1 and 2.2, we have

‖S(t)− V (t)‖ = ‖U(t)‖ ≤ e−min{m1, m2, η2}t → 0, as t→∞.
From which together with Definition 2.7 in Ref.[3], we have the following result.

Theorem 5. S(t) is a quasi-compact operator on X.

Since B is a compact operator on X by Theorem 2.3 and Prop.2.9 in Ref.[3], we
deduce the following corollary.

Corollary 1. T (t) is a quasi-compact operator on X.

Remark 1. 0 ∈ σp(A+B) and its algebraic index is one, 0 ∈ σp(A+B)∗ and its
geometric multiplicity is one, and set {r ∈ C|Re r > 0 or r = ia, a 
= 0, a ∈ R}
belongs to the resolvent set of (A+B) (in Ref.[2]).

From the above Remark 2.1, we conclude that the spectral bound of (A+B) is
zero. Thus by using Remark 2.1, Theorem 1.1 and Corollary 2.1 and Theorem
2.1 (see [3]), we have the following result.

Theorem 6. If there exists one positive constant η2 such that 0 < lim
y→∞

1
y

∫ y

0 η2

(s)ds = η2 < +∞, then exists a positive projection L of rank one, and suitable
constants δ > 0, M ≥ 0 such that

‖T (t)− L‖ ≤Me−δt,

where L = 1
2πi

∫
Γ
(2I −A − B)−1dz, Γ is a circle with center 0 and sufficiently

small radius.

Combining Remark2.1 with Theorem 14 (see [5]), Theorem 2.4, Theorem 2.10
(in Ref.[3]), we have the following result.

Theorem 7. If there exists one positive constant η2 such that 0 < lim
y→∞

1
y

∫ y

0
η2

(s)ds = η2 < +∞, then the time dependent solution of the system (1)-(7)
strongly converges to its steady-state solution that is

lim
t→∞P (y, t) = p̂

and ‖P (y, t)− p̂‖ ≤ Ce−εt, ε > 0, C ≤ 1, where p̂ is the eigenvector correspond-
ing to 0.

Proof. By using Theorem 2.10 (see [3]), and Theorem 2.4, we have

T (t) = T1(t) +R(t)

where T1(t) = L, L is the positive projection of 0, ‖R(t)‖ ≤ Ce−εt, ε > 0, C ≥ 1.
Then

P (y, t) = T (t)P (0) =< P (0), Q > p̂+R(t)P (0) = p̂+R(t)P (0)
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where P (0) = (1, 0, 0, 0), Q = (1, 1, 1, 1) is the eigenvector corresponding eigen-
value 0 of the adjoint matrix (A+B)∗.

So, the exponential asymptotical stability of the solution of the electronic
equipment system with two units standby is obtained. ��
Acknowledgements. This work is supported by Daqing Normal University
Young Fund (No.YZQ008) and Heilongjiang Province Natural Science Fund
(No.A200813).
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Abstract. This paper treats the globally exponentially attractive set
and synchronization problem of a chaotic finance system. Firstly, based
on the definition of globally exponentially attractive set and Lyapunov
stability theory, a sufficient condition for the globally exponentially at-
tractive set was given. Secondly, two control approaches, namely nonlin-
ear feedback control of partial states and transmitted signal method of
a single variable, are investigated. In both cases, sufficient conditions for
the globally exponential synchronization of two chaotic finance systems
are obtained analytically. Finally, numerical simulation results indicates
the effectiveness of the proposed methods.

Keywords: chaotic finance system, globally exponentially attractive set,
globally exponentially synchronization, nonlinear feedback control, par-
tial state feedback, transmitted signal method.

1 Introduction

Chaos, as a very interesting nonlinear phenomenon, has been intensively studied
in the last decades. It is found to be either useful or has great potential in many
fields, such as in engineering, biology, physics, chemistry and secure communi-
cation. It has been well known that a chaotic system is a nonlinear determin-
istic system with complex and unpredictable behavior. Chaotic systems exhibit
sensitive dependence on initial conditions. Because of this property, chaotic sys-
tems are difficult to be synchronized or controlled. From the earlier works, the
researchers have realized that synchronization of chaotic motions are possible,
synchronization of chaos was of great interest in these years [1-5, 14-15].

Recently, there are two main approaches for controlling chaos: non-feedback
control and feedback control. The concept of chaos synchronization involves mak-
ing two chaotic systems which oscillate in a synchronized manner. Generally
speaking, the synchronization phenomenon has the following feature: the trajec-
tories of the drive and response systems are identical notwithstanding starting
from different initial conditions. However, slight errors of initial conditions, for
chaotic dynamical systems, will lead to completely different trajectories. There-
fore, how to control of two chaotic systems to be synchronized has been a flurry

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 253–261, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



254 J. Jian, X. Deng, and J. Wang

of research activities for over a decade. Many approaches [1-5, 14-15] have been
presented for the synchronization of chaotic systems such as linear and nonlinear
feedback control. At the same time, a chaotic system is also a dissipative system,
the global dissipativity of neural networks is studied by Liao and Wang [12] and
the globally attractive set and positive invariant set of Lorenz system are further
investigated by Liao [13,14].

In paper [6], a new system named the finance system is set up, which is a
third order autonomous system exhibiting very complex dynamical behaviors
with some interesting characteristics [7-9]. Its dynamical behaviors were further
explored and achieved chaotic synchronization for the finance system by applied
adaptive synchronization [15].

The layout of the rest of this paper is as follows. In Section 2, a brief descrip-
tion of a new chaotic finance system is introduced. In Section 3, based on the
Lyapunov stability theory, a generic conditions of globally exponentially attrac-
tive set for the finance system is derived. In Section 4, the globally exponential
synchronization of the chaotic finance system via nonlinear feedback control par-
tial states and transmitted signal method of a single variable are investigated. In
Section 5, numerical simulations for given chaotic finance system are presented.
Finally, the conclusion of this paper is given in Section 6.

2 Chaotic Finance System and Preliminaries

Chaotic finance model consisted of production, currency and labor force can be
described by the following system of differential equations: [6]⎧⎨⎩

ẋ = −ax+ xy + z,
ẏ = 1− by − x2,
ż = −x− cz,

(1)

where x(t) is interest rate, y(t) is the investment demand, z(t) is the price expo-
nent; a, b and c are parameters, and a > 0 is the saving amount, b > 0 is the per-
investment cost, c > 0 is the elasticity of demands of commercials. When the
system parameters a = 0.9, b = 0.2, c = 1.2, and the time history of the finance
system with initial condition (x(0), y(0), z(0)) = (2, 1, 2), this system (1) exhibits
chaotic behavior [5,15] and see Figure 1. Without the particular statement, these
values are adopted in this whole paper.

Definition 1.[13] For generalized radially unbound and positive definite function
Vλ(X) = Vλ(x, y, z) with λ ≥ 0, if there exists a constant number Lλ > 0 such
that for Vλ(X0) > Lλ and Vλ(X) > Lλ imply limt→+∞ Vλ(X(t)) = Lλ, then
Ωλ = {X |Vλ(X(t)) ≤ Lλ} is said to be a globally attractive set of system
(1). If for any X0 ∈ Ωλ and any t ≥ t0 imply X(t, t0, X0) ∈ Ωλ, then Ωλ

is said to be positive invariant set. If there exists constant numbers Lλ > 0,
rλ > 0 and ∀X0 ∈ R3 such that for Vλ(X0) > Lλ and Vλ(X(t)) > Lλ imply
V (X(t))−Lλ ≤ (V (X0)−Lλ)e−rλ(t−t0), then Ωλ = {X |Vλ(X(t)) ≤ Lλ} is said
to be a globally exponentially attractive set of system (1). Where X = (x, y, z).



Globally Exponentially Attractive Set and Synchronization of a Class 255

3 Globally Exponentially Attractive Set of Chaotic
Finance System

Theorem 1. For ∀λ ≥ 0, let Lλ = 2ac2−(c−1)2

2(2a−1)(2c−1)λ
2 + 1

2(2b−1) > 0 with a > 1
2 ,

b > 1
2 and c > 1

2 , Vλ = 1
2x

2 + 1
2y

2 + 1
2 (z − λ)2, then the system (1) has the

following estimate inequality for globally exponentially attractive set

V (X(t))− Lλ ≤ (V (X0)− Lλ)e−(t−t0).

In specially, Ωλ = {X |Vλ(X) ≤ Lλ}.
Proof. Consider the following generalized radially unbound and positive defi-
nite Lyapunov function

Vλ =
1
2
x2 +

1
2
y2 +

1
2
(z − λ)2.

Let F (X) = 1
2 (1− 2a)x2 + 1

2 (1− 2b)y2 + 1
2 (1− 2c)z2 +λx+ y+λ(c− 1)z+ 1

2λ
2.

Evaluating the time derivative of Vλ along the positive semi-trajectory of (1),
we have

dVλ

dt |(1) = xẋ + yẏ + (z − λ)ż
= x(−ax+ xy + z) + y(1− by − x2) + (z − λ)(−x − cz)
= −Vλ(X) + 1

2 (1− 2a)x2 + 1
2 (1 − 2b)y2 + 1

2 (1 − 2c)z2

+λx+ y + λ(c − 1)z + 1
2λ

2

= −Vλ(X) + F (X).

Let ∂F
∂x = (1−2a)x+λ = 0, ∂F

∂y = (1−2b)y+1 = 0, ∂F
∂z = (1−2c)z+λ(c−1) = 0,

we get

x =
λ

2a− 1
, y =

1
2b− 1

, x =
λ(c− 1)
2c− 1

.

From a > 1
2 , b > 1

2 , c > 1
2 , we have

∂2F

∂x2
=1− 2a < 0,

∂2F

∂y2
=1− 2b<0,

∂2F

∂z2
=1− 2c<0,

∂2F

∂x∂y
=
∂2F

∂y∂z
=
∂2F

∂z∂x
=0.

Because F (X) = F (x, y, z) is a quadratic function, its local maximum is also its
global maximum, so we get

supX∈R3 F (x, y, z) = F (x, y, z)|
x= λ

2a−1 ,y= 1
2b−1 ,x= λ(c−1)

2c−1

= λ2

2(2a−1) + λ2(c−1)2

2(2c−1) + 1
2(2b−1) + 1

2λ
2

= 2ac2−(c−1)2

2(2a−1)(2c−1)λ
2 + 1

2(2b−1) = Lλ > 0,

and
dVλ

dt
|(1) ≤ −Vλ(X) + Lλ ≤ 0,

Vλ(X) ≤ Vλ(X0)e−(t−t0) +
∫ t

t0

e−(t−s)Lλds = Vλ(X0)e−(t−t0) +Lλ(1− e−(t−t0)).
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When Vλ(X0) > Lλ and Vλ(X(t)) > Lλ, we get the following globally exponen-
tial estimate

Vλ(X(t))− Lλ ≤ (Vλ(X0)− Lλ)e−(t−t0),

and
lim

t→+∞Vλ(X(t)) ≤ Lλ,

i.e.Ωλ = {X |Vλ(X(t)) ≤ Lλ} = {X |x2+y2+(z−λ)2 ≤ 2ac2−(c−1)2

2(2a−1)(2c−1)λ
2+ 1

2(2b−1)}
is the globally exponentially attractive set of system (1).

4 Chaos Synchronization of Coupled Finance Systems

4.1 Globally Exponential Synchronization via Nonlinear Feedback
of Partial System States

We assume that we have two systems and that the drive system with the sub-
script 1 is to control the response system with subscript 2, then the drive system
(2) and the response system (3) are defined as follows, respectively:⎧⎨⎩

ẋ1 = −ax1 + x1y1 + z1,
ẏ1 = 1− by1 − x2

1,
ż1 = −x1 − cz1,

(2)

and ⎧⎨⎩
ẋ2 = −ax2 + x2y2 + z2 + u1(t),
ẏ2 = 1− by2 − x2

2 + u2(t),
ż2 = −x2 − cz2 + u3(t).

(3)

We have introduced three control functions u1(t), u2(t) and u3(t) in (3). Our
goal is to determine these functions u1(t), u2(t) and u3(t). In order to estimate
the control functions, we subtract (2) from (3). We define the error system as
the differences between the finance systems (2) and (3) that is to be controlled
and the controlling system using e(t) = (e1, e2, e3)T = (x2−x1, y2−y1, z2−z1)T .
Using this notation, we obtain⎧⎨⎩

ė1 = −ae1 + e3 + e1e2 + y1e1 + x1e2 + u1(t),
ė2 = −be2 − e21 − 2x1e1 + u2(t),
ė3 = −e1 − ce3 + u3(t).

(4)

Suppose that one of the following controllers is chosen as the control law for the
system (4):
(A1) u1 = x1e2 − y1e1 − ke1, u2 = 0, u3 = 0;
(A2) u1 = −y1e1 − k1e1, u2 = x1e1 − k2e2, u3 = 0.

Theorem 2. The origin of system (4) is exponentially asymptotically stable,
and consequently, the two finance systems (2) and (3) can be exponentially
synchronized if there exists constant k > (d−1)2

4cd − a for any d > 0 such that

(A1) can be satisfied or there exist constant k1 >
(d−1)2

4cd − a for any d > 0 and
k2 > −b such that (A2) can be satisfied.
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Proof. Construct a Lyapunov function in the form of V = 1
2e

2
1 + 1

2e
2
2 + 1

2de
2
3.

If (A1) is satisfied, we have

dVλ

dt |(4) = e1ė1 + e2ė2 + de3ė3
= −(a+ k)e21 − be22 − dce23 + (1− d)e1e3
= −(e1, e2, e3)TQ1(e1, e2, e3),

where Q1 =

⎛⎝a+ k 0 d−1
2

0 b 0
d−1
2 0 dc

⎞⎠ . It is easy to show that the matrix Q1 be positive

definite if and only if the following inequalities hold:

k + a > 0, 4dc(k + a) > (d− 1)2.

Then the matrix Q1 is positive definite and V̇ |(4) is negative definite, we have

V̇ |(4) ≤ −2λmin(Q1)
max{1, d} V,

i.e.

e21 + e22 + e23 ≤ (e21(t0) + e22(t0) + e23(t0))
max{1, d}
min{1, d} e

− 2λmin(Q1)
max{1,d} (t−t0). (5)

If (A2) is satisfied, we have

dVλ

dt |(4) = e1ė1 + e2ė2 + de3ė3
= −(a+ k1)e21 − (b+ k2)e22 − dce23 + (1− d)e1e3
= −(e1, e2, e3)TQ2(e1, e2, e3),

where Q2 =

⎛⎝a+ k1 0 d−1
2

0 b+ k2 0
d−1
2 0 dc

⎞⎠ . It is easy to show that the matrix Q2 be

positive definite if and only if the following inequalities hold:

k1 + a > 0, k2 + b > 0, 4dc(k1 + a) > (d− 1)2.

Then the matrix Q2 is positive definite and V̇ |(4) is negative definite, we have

V̇ |(4) ≤ −2λmin(Q2)
max{1, d} V,

i.e.

e21 + e22 + e23 ≤ (e21(t0) + e22(t0) + e23(t0))
max{1, d}
min{1, d} e

− 2λmin(Q2)
max{1,d} (t−t0). (6)

The inequality (5) and (6) imply that the origin of the error system (4) is expo-
nentially asymptotically stable. Therefore, the drive system (2) is exponentially
synchronizing with the response system (3). This concludes the proof.
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4.2 Globally Exponential Synchronization via Using x1 as the
Transmitted Signal

Theorem 3. Let x1 is the transmitted signal, for the following response system⎧⎨⎩
ẋ2 = −ax2 + x1y2 + z2,
ẏ2 = 1− by2 − x2

1,
ż2 = −x1 − cz2.

(7)

Then the drive system (2) is exponentially synchronizing with the response sys-
tem (7) and the exponential convergence rate is at lest r = min{a, b, c}.
Proof. Let e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1, then the error system can
be expressed as follow ⎧⎨⎩

ė1 = −ae1 + x1e2 + e2,
ė2 = −be2,
ė3 = −ce3.

(8)

From (8), we have

e2(t) = e2(0)e−bt, e3(t) = e3(0)e−ct,

e1(t) = e1(0)e−at +
∫ t

0

e−a(t−s)(x1(s)e2(s) + e3(s))ds.

Let δ = min{b, c}, µ = Mx|e2(0)| + |e3(0)|, where Mx is the upper boundary of
the absolute values of variables x1, then

|e1(t)| ≤ |e1(0)|e−at +
∫ t

0
e−a(t−s)(Mx|e2(0)|e−bs + |e3(0)|e−cs)ds

≤ |e1(0)|e−at + µe−at
∫ t

0
e(a−δ)sds

= |e1(0)|e−at + µ
a−δ (e−δt − e−at).

So e1(t) also exponentially tend to zero when t tend to infinity, i.e. the drive (2)
is exponentially synchronizing with the response (7) using x1 as the transmitted
signal.

5 Numerical Simulation

To verify the theoretical results given in the previous sections, we will discuss
the simulation results for the finance systems with the parameters a = 0.9, b =
0.2, c = 1.2. Let d = 5, k = k1 = k2 = 1. Then the response system (3)
and (7) synchronize with the drive system (2) as shown in Fig. 2 and Fig. 3,
respectively.
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Fig. 1. Finance system (1) exhibits chaotic behavior
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Fig. 2. (a) Shows the behaviors of the trajectory e1, e2, e3 of the error system with the
control (A1); (b) Shows the behaviors of the trajectory e1, e2, e3 of the error system
with the control (A2)
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Fig. 3. The trajectory e1, e2, e3 of the error system using x1 as the transmitted signal
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6 Conclusion

In this paper, according to the parameters, detailed estimations of exponential
attractive sets for chaotic finance system are presented without any hypothesis
on the existence. Meanwhile, two control approaches, namely nonlinear feed-
back control of partial states and transmitted signal method of a single variable,
are investigated and some sufficient conditions for the globally exponential syn-
chronization of two chaotic finance systems are obtained analytically. All the
numerical simulation results are in line with the theoretical analysis.
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Abstract. In this paper, a slight generalization of the celebrated contin-
uous Halanay inequality is developed, a discrete analogue of the continu-
ous Halanay inequality is proved. Using continuous and discrete Halanay
time-delayed inequalities, we derived some sufficient conditions for the
global exponential (asymptotic) stability of equilibrium point of neural
networks.
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1 Introduction

Stability theory plays an important role in systems theory and engineering. The
direct method of Lyapunov for ordinary differential equations has been gener-
alized to delayed differential equations, serving as the basic tool for stability
investigations for delayed differential equations. In addition, the method of dif-
ferential (difference) inequalities (different from the Lyapunov method) is also a
basic tool in the qualitative analysis of the solutions to differential (difference)
systems.

In [1], Halanay proved an asymptotic formula for the solutions of a differential
inequality involving the “maximum” functional, and applied it in the stability
theory of linear systems with delay. Such inequality was called Halanay inequality
in several works [2]-[13], in which some generalizations and new applications can
be found. In particular, in [6], Cooke and Ivanov consider discrete Halanay-type
inequalities in order to study some discretized versions of functional differential
equations. In [13], Liz and Ferreiro give a simple discrete version of Halanay’s
lemma, and to apply it to obtain results on the global asymptotical stability of
certain generalized difference equations, in addition, they show that the classical
criterion on the absolute stability (or delay-independent stability) in certain
delay equations holds for the discretized equation using the Euler scheme if the
discretization step is small enough.

In addition, recurrent neural networks have shown their promise and power
in the variety of important applications. As dynamic systems, recurrent neural

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 262–271, 2009.
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networks frequently need to be analyzed for stability. The stability criteria of
equilibrium points are established in a series of papers; e.g., [14]-[16].

In this paper, we obtain a slight generalization of the celebrated continuous
Halanay inequality and a discrete analogue of the continuous Halanay inequality.
Using continuous and discrete Halanay delayed inequalities, we derived some suf-
ficient conditions for the global exponential (asymptotic) stability of equilibrium
point of neural networks.

2 Continuous Halanay Inequality and Its Application

2.1 Continuous Halanay Inequality

Consider the following differential inequalities with time-varying delays

D+xi(t) ≤
n∑

j=1

aijxj(t) +
n∑

j=1

bijxj(t− δj(t)), (1)

D+xi(t) ≥
n∑

j=1

aijxj(t) +
n∑

j=1

bijxj(t− δj(t)), (2)

{
D+xi(t) ≤ aiixi(t) +

∑n
j=1,j 	=i aij |xj(t)|+

∑n
j=1 bij |xj(t− δj(t))|,

D+xi(t) ≥ aiixi(t)−
∑n

j=1,j 	=i aij |xj(t)| −
∑n

j=1 bij |xj(t− δj(t))|, (3)

where for all i, j ∈ {1, 2, · · · , n}, aii < 0; aij ≥ 0, (i 
= j); bij ≥ 0, and

D+xi(t) = lim
h→0+

sup
xi(t+ h)− xi(t)

h

is the right-hand upper Dini derivative of xi(t).
In this paper, we always assume that
H) For i = 1, 2, · · · , n, delay δi(t) : � → �+ is a continuous function such

that δi(t) < δ (constant), where �+ = [0,+∞),�− = (−∞, 0].
Denote A = (aij)n×n, B = (bij)n×n, x̄i(t0) = supt0−δi(t0)≤ξ≤t0 |xi(ξ)| >

0, x̄(t0) = max1≤i≤n{x̄i(t0)}, Then we have the following slight generalization
of the Halanay differential inequality.

Theorem 1. If for all i ∈ {1, 2, · · · , n}, xi(t), (t ≥ t0 − δi(t0)) are continuous
functions satisfying (1), and −A−B is a nonsingularM -matrix, then there exist
positive constants β and θ such that for ∀i ∈ {1, 2, · · · , n}, ∀t ≥ t0,

xi(t) ≤ βx̄(t0) exp{−θ(t− t0)}, (4)

Proof. Since −A−B is a nonsingularM -matrix, there exist γ1, γ2, · · · , γn such
that for ∀i ∈ {1, 2, · · · , n},

γiaii +
n∑

j=1,j 	=i

γjaij +
n∑

j=1

γjbij < 0.
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Let

ηi(ϑ) = γi(aii + ϑ) +
n∑

j=1,j 	=i

γjaij +
n∑

j=1

γjbij exp{ϑδ},

then ηi(0) = γiaii +
∑n

j=1,j 	=i γjaij +
∑n

j=1 γjbij < 0, ηi(−aii) ≥ 0. Hence,
there exists θi ∈ (0,−aii] such that ηi(θi) = 0, (we can choose the value of
θi ∈ (0,−aii) satisfying this equation since ηi(ϑ) is an increasing function), and
ηi(ϑ) ≤ 0, ϑ ∈ (0, θi]. Choose θ = min1≤i≤n{θi}, then for ∀j ∈ {1, 2, · · · , n},

ηj(θ) ≤ 0. (5)

Let yi(t) = xi(t)/γi, then according to (1),

D+yi(t) ≤ [
n∑

j=1

aijγjyj(t) +
n∑

j=1

bijγjyj(t− δj(t))]/γi. (6)

Denote ȳi(t0) = supt0−δi(t0)≤ξ≤t0 |yi(ξ)| > 0, ȳ(t0) = max1≤i≤n{ȳi(t0)}, gi(t) =
yi(t)− ȳ(t0) exp{−θ(t− t0)}, g(t) = (g1(t), g2(t), · · · , gn(t))T . We will prove that
for ∀t ≥ t0, g(t) ≤ 0. Otherwise, let t1 = min1≤i≤n{inf{t, gi(t) > 0}}, on the one
hand, since g(t) is a continuous vector function, there exist k ∈ {1, 2, · · · , n},
t2 > t1 > t0 and small enough ε > 0 such that

gk(t2) = ε, gk(t1) = 0 (7)

gj(t) ≤ 0, for j ∈ {1, 2, · · · , n}, t ∈ [t0 − δj(t0), t1], (8)

gj(t) ≤ ε, for j ∈ {1, 2, · · · , n}, t ∈ [t1, t2], (9)

and
D+gk(t)|t=t2 > 0. (10)

On the other hand, (6) implies that

D+gk(t)|t=t2 = D+yk(t)|t=t2 + θȳ(t0) exp{−θ(t2 − t0)}
= D+yk(t)|t=t2 + θ(yk(t2)− ε)

≤ [akk + θ]yk(t2) + [
n∑

j=1,j 	=k

akjγjyj(t2)

+
n∑

j=1

bkjγjyj(t2 − δj(t2))]/γk − θε.

By (8) and (9), for j = 1, 2, · · · , n, yj(t2) ≤ ȳ(t0) exp{−θ(t2 − t0)} + ε, yj(t2 −
δj(t2)) ≤ ȳ(t0) exp{−θ(t2 − δj(t2) − t0)} + ε. Hence, akj ≥ 0, (k 
= j); bkj ≥ 0
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imply that

D+gk(t)|t=t2 ≤ {(akk + θ) + [
n∑

j=1,j 	=k

γjakj

+
n∑

j=1

γjbkj exp{θδj(t2)}]/γk}ȳ(t0) exp{−θ(t2 − t0)}

+{akk + [
n∑

j=1,j 	=k

γjakj +
n∑

j=1

γjbkj ]/γk}ε. (11)

Then, by (5), it follows that D+gk(t)|t=t2 ≤ 0. This contradicts (10). Hence
xi(t) = γiyi(t) ≤ γiȳ(t0) exp{−θ(t− t0)}. Choose β = max1≤i≤n{γiȳ(t0)}/x̄(t0),
then (4) holds, this complete the proof.

Theorem 2. If for all i ∈ {1, 2, · · · , n}, xi(t), (t ≥ t0 − δi(t0)) are continuous
functions satisfying (2), and −A−B is a nonsingularM -matrix, then there exist
positive constants β and θ such that for ∀i ∈ {1, 2, · · · , n}, ∀t ≥ t0,

xi(t) ≥ −βx̄(t0) exp{−θ(t− t0)}. (12)

Proof. Since −A − B is a nonsingular M -matrix, it is similar to the proof
of Theorem 1 that there exist positive constants γ1, γ2, · · · , γn, θ such that for
∀i ∈ {1, 2, · · · , n},

γi(aii + θ) +
n∑

j=1,j 	=i

γjaij +
n∑

j=1

γjbij exp{θδ} ≤ 0.

Let zi(t) = xi(t)/γi. Denote z̄i(t0) = supt0−δi(t0)≤ξ≤t0 |zi(ξ)| > 0, z̄(t0) =
max1≤i≤n{z̄i(t0)}. It is similar to the proof of Theorem 2 that ḡi(t) = zi(t) +
z̄(t0) exp{−θ(t−t0)} ≥ 0. Choose β = max1≤i≤n{γiz̄(t0)}/x̄(t0), then (12) holds.

Theorem 3. If for all i ∈ {1, 2, · · · , n}, xi(t), (t ≥ t0 − δi(t0)) are continuous
functions satisfying (3), and −A−B is a nonsingularM -matrix, then there exist
positive constants β and θ such that for ∀i ∈ {1, 2, · · · , n}, ∀t ≥ t0,

|xi(t)| ≤ βx̄(t0) exp{−θ(t− t0)}.

Proof. It is similar to the proof of Theorems 1 and 2, hence it is omitted.

2.2 Exponential Stability of Neural Networks

Consider neural networks with time-varying delay

dxi(t)
dt

= aiixi(t) +
n∑

j=1,j 	=i

aijfj(xj(t)) +
n∑

j=1

bijgj(xj(t− δ(t))), (13)
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where i = 1, 2, · · · , n, x(t) = (x1(t), · · · , xn(t))T , f(x(·)) =
(
f1(x1(·)), f2(x2(·)),

· · · , fn(xn(·)))T and g(x(·)) =
(
g1(x1(·)), g2(x2(·)), · · · , gn(xn(·)))T are activa-

tion functions which satisfies

|
n∑

j=1,j 	=i

aijfj(xi(t)) +
n∑

j=1

bijgj(xj(t− δ(t)))|

≤
n∑

j=1,j 	=i

aij |xj(t)|+
n∑

j=1

bij |xj(t− δj(t))|. (14)

ForH > 0 and t0 ≥ 0, let CH(t0) is the set of continuous function φ : [t0−δ, t0]→
�n, φ=(φ1, · · · , φn)T , and it satisfies ||φ||t0 =sups∈[t0−δ,t0]{max1≤i≤n{|φi(s)|}}
< H. For t0 ≥ 0, denote x(t; t0, φ) be state of neural network (13), it means that
x(t; t0, φ) is continuous and satisfies (13) and x(s; t0, φ) = φ(s), for s ∈ [t0−δ, t0].
Also simply denote x(t) be state of neural network (13).

Theorem 4. If −A − B is a nonsingular M -matrix, then there exist positive
constants β and θ such that ∀i ∈ {1, 2, · · · , n}, ∀t ≥ t0,

|xi(t)| ≤ βx̄(t0) exp{−θ(t− t0)};

i.e., neural network (13) is globally exponentially stable.

Proof. From (13) and (14),{
D+xi(t) ≤ aiixi(t) +

∑n
j=1,j 	=i aij |xj(t)|+

∑n
j=1 bij |xj(t− δj(t))|,

D+xi(t) ≥ aiixi(t)−
∑n

j=1,j 	=i aij |xj(t)| −
∑n

j=1 bij |xj(t− δj(t))|.

According to Theorem 3, Theorem 4 holds.

3 Discrete Halanay Inequality and its Application

In this section, we give a discrete version of the original Halanay inequality, and
we always assume that t ∈ N , where N is the set of all natural number.

Consider difference equations

∆xi(t) = fi(t, x(t), x(t − 1), · · · , x(t− r)), (15)

where i=1, 2, · · ·,m,∆xi(t)=xi(t + 1) − xi(t), x(t) = (x1(t), x2(t), · · ·, xm(t))T ,
and fi : N × �(r+1)×m → �. Equation (15) is a class of generalized difference
equation. The initial value problem for this equation requires the knowledge of
initial data {x(−r), · · · , x(0)}. This vector is called initial string in [6]. For every
initial string, there exists a unique state {x(t)}t≥−r of (15) that can be calculated
by the explicit recurrence formula

xi(t+ 1) = xi(t) + fi(t, x(t), x(t − 1), · · · , x(t− r)), t ≥ 0. (16)
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3.1 Discrete Halanay Inequality

Consider the following difference inequalities with delays

∆xi(t) ≤
m∑

j=1

aijxj(t) +
m∑

j=1

bij max
1≤k≤r

{xj(t− k)}, (17)

∆xi(t) ≥
m∑

j=1

aijxj(t) +
m∑

j=1

bij min
1≤k≤r

{xj(t− k)}, (18)

{
∆xi(t) ≤ aiixi(t) +

∑m
j=1,j 	=i aij |xj(t)|+

∑m
j=1 bij max1≤k≤r{|xj(t− k)|},

∆xi(t) ≥ aiixi(t)−
∑m

j=1,j 	=i aij |xj(t)| −
∑m

j=1 bij max1≤k≤r{|xj(t− k)|},(19)

where i ∈ {1, 2, · · · ,m}. Denote x̄(r) = max1≤i≤m{max{|xi(0)|, |xi(−1)|, · · · ,
|xi(−r)|}}, Ā = (aij)m×m, B̄ = (bij)m×m.

Theorem 5. Let r > 0 be a natural number, and let {x(t)}t≥−r be a sequence of
real number vectors satisfying the inequality (17). If ∀i, j ∈ {1, 2, · · · ,m}, aii ∈
[−1, 0); aij ≥ 0, (i 
= j); bij ≥ 0, and −Ā − B̄ is a nonsingular M -matrix, then
there exist positive constants β and λ0 ∈ (0, 1) such that for ∀i ∈ {1, 2, · · · ,m},

xi(t) ≤ βx̄(r)λt
0, t ≥ 1.

Proof. Since −Ā− B̄ is a nonsingular M -matrix, there exist positive constants
γ1, γ2, · · · , γm such that for ∀i ∈ {1, 2, · · · ,m},

γiaii +
m∑

j=1,j 	=i

γjaij +
m∑

j=1

γjbij < 0. (20)

Let

ηi(λ) = γiλ
r+1 − γi(1 + aii)λr −

m∑
j=1,j 	=i

γjaijλ
r −

m∑
j=1

γjbij ,

then ηi(0) = −∑m
j=1 γjbij ≤ 0, ηi(1) > 0. Hence, there exists λ0i ∈ (0, 1) such

that ηi(λ0i) = 0, and ηi(λ) ≥ 0, λ ∈ [λ0i, 1).
In fact, if ηi(0) 
= 0, we can choose the largest value of λ ∈ (0, 1) satisfying

ηi(λ0i) = 0, since ηi(λ) is a polynomial and it has at most r + 1 real roots; if
ηi(0) = 0, we can choose λ0i = 1+aii+(

∑m
j=1,j 	=i γjaij)/γi. (20) implies 1+aii+

(
∑m

j=1,j 	=i γjaij)/γi < 1; aii ∈ [−1, 0) implies 1 + aii + (
∑m

j=1,j 	=i γjaij)/γi ≥ 0.
Choose λ0 = max1≤i≤m{λ0i}, then for ∀j ∈ {1, 2, · · · ,m},

ηj(λ0) ≥ 0. (21)



268 J. Huang and J. Liu

Let yi(t) = xi(t)/γi, then according to (17),

∆yi(t) ≤ [
m∑

j=1

aijγjyj(t) +
m∑

j=1

bij max
1≤k≤r

{γjyj(t− k)}]/γi. (22)

Let ȳ(r) = max1≤i≤m{max{0, yi(0), yi(−1), · · · , yi(−r)}}, then for all natural
number t, yi(t) ≤ ȳ(r)λt

0. Otherwise, there exist p ∈ {1, 2, · · · ,m} and natural
number q ≥ 1 such that yp(q) > ȳ(r)λq

0, and for all j 
= p, j ∈ {1, 2, · · · ,m},
yj(s) ≤ ȳ(r)λs

0, − r ≤ s ≤ q; yp(s) ≤ ȳ(r)λs
0, − r ≤ s < q.

Hence, since 1 + app ≥ 0; apj ≥ 0, (p 
= j); bpj ≥ 0, from (22),

ȳ(r)λq
0 < yp(q) ≤ (1 + app)ȳ(r)λq−1

0 + [
m∑

j=1,j 	=p

γjapj ȳ
(r)λq−1

0

+
m∑

j=1

γjbpj ȳ
(r)λq−1−r

0 ]/γp

≤ ȳ(r)λq−1
0 {(1 + app) + [

m∑
j=1,j 	=p

γjapj +
m∑

j=1

γjbpjλ
−r
0 ]/γp},

i.e., γpλ
r+1
0 < [γp(1 + app) +

∑m
j=1,j 	=p γjapj ]λr

0 +
∑m

j=1 γjbpj , this contradicts
(21). Hence for all natural number t ≥ 1, xi(t) = γiyi(t) ≤ γiȳ

(r)λt
0. Choose

β = max1≤i≤m{γiȳ
(r)}/x̄(r), the result of Theorem 5 holds.

Theorem 6. Let r > 0 be a natural number, and let {x(t)}t≥−r be a sequence
of real number vectors satisfying the inequality (18). If aii ∈ [−1, 0), aij ≥ 0, (i 
=
j), bij ≥ 0, −Ā−B̄ is a nonsingularM -matrix, then there exist positive constants
β and λ0 ∈ (0, 1) such that for ∀i ∈ {1, 2, · · · ,m},

xi(t) ≥ −βx̄(r)λt
0, t ≥ 1.

Proof. Since −Ā − B̄ is a nonsingular M -matrix, it is similar to the proof of
Theorem 5 that there exist positive constants γ1, γ2, · · · , γm and λ0 ∈ (0, 1) such
that for ∀i ∈ {1, 2, · · · ,m},

γiλ
r+1
0 − γi(1 + aii)λr

0 −
m∑

j=1,j 	=i

γjaijλ
r
0 −

m∑
j=1

γjbij ≥ 0.

Let zi(t) = xi(t)/γi. Denote z̄(r) = min1≤i≤m{min{0, zi(0), zi(−1), · · · , zi(−r)}}
< 0. It is similar to the proof of Theorem 5 that xi(t) = γizi(t) ≥ γiz̄

(r)λt
0, t ≥ 1.

Choose β = max1≤i≤m{−γiz̄
(r)}/x̄(r), then the result of Theorem 6 holds.

For i, j ∈ {1, 2, · · · ,m}, let

cij =
{−aii − bii, i = j,
−aij − bij , i 
= j, c̃ij =

{
2 + aii − bii, i = j,
−aij − bij , i 
= j.

Denote matrices C1 = (cij)m×m, C2 = (c̃ij)m×m.
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Theorem 7. Let r > 0 be a natural number, and let {x(t)}t≥−r be a sequence
of real number vectors satisfying the inequality (19). If one of the following two
cases holds:

case (i) aii ∈ [−1, 0); aij ≥ 0, (i 
= j); bij ≥ 0, C1 is a nonsingular M -matrix;
case (ii) aii ∈ (−2,−1); aij ≥ 0, (i 
= j); bij ≥ 0, C2 is a nonsingularM -matrix,

then there exist positive constants β and λ0∈(0, 1) such that for ∀i∈{1, 2, · · · ,m},
|xi(t)| ≤ βx̄(r)λt

0, t ≥ 1.

Proof. When aii ∈ [−1, 0), |1 + aii| = 1 + aii; when aii ∈ (−2,−1), |1 + aii| =
−1− aii. It is similar to the proof of Theorems 5 and 6 that there exist positive
constants β and λ0 ∈ (0, 1) such that for ∀i ∈ {1, 2, · · · ,m} and all natural
number t ≥ 1, |xi(t)| ≤ βx̄(r)λt

0.

3.2 Asymptotic Stability of Discrete-Time Delayed Neural
Networks

In this section, we consider a class of discrete-time delayed neural networks
described by the following difference equation: for i = 1, 2, · · · ,m,

∆xi(t) = aiixi(t) +
m∑

j=1,j 	=i

ãijfj(xj(t)) +
m∑

j=1

b̃ijgj(xj(t− τij(t))), (23)

where x = (x1, · · · , xm)T ∈ �m is the state vector, ∆xi(t) = xi(t + 1) − xi(t),
∀t ≥ 0, ∀i ∈ {1, 2, · · · , n}) τij(t) is the time-varying delay that satisfies 0 ≤
τij(t) ≤ r = max1≤i,j≤n{sup{τij(t), t ∈ N}}, fj and gj are neuron activation
functions.

Although for every initial string {x(−r), · · · , x(0)}, the state {x(t)}t≥−r of
(23) can be explicitly calculated by a recurrence similar to (16), in general it is
difficult to investigate the asymptotic behaviour of the states using that formula.
The next result gives an asymptotic estimate by a simple use of the discrete
Halanay inequality.

Theorem 8. If aii ∈ (−2, 0) and there exist constants aij ≥ 0, (i 
= j), bij ≥ 0,
such that ∀i ∈ {1, 2, · · · ,m},

|
m∑

j=1,j 	=i

ãijfj(xj(t)) +
m∑

j=1

b̃ijgj(xj(t− τij(t)))|

≤
m∑

j=1,j 	=i

aij |xj(t)|+
m∑

j=1

bij max
1≤k≤r

{|xj(t− k)|}, (24)

in addition, one of the following two cases holds:
case (i) aii ∈ [−1, 0); aij ≥ 0, (i 
= j); bij ≥ 0, C1 is a nonsingular M -matrix;
case (ii) aii ∈ (−2,−1); aij ≥ 0, (i 
= j); bij ≥ 0, C2 is a nonsingularM -matrix,

then (23) is globally asymptotically stable.



270 J. Huang and J. Liu

Proof. From (23) and (24),{
∆xi(t) ≤ aiixi(t) +

∑m
j=1,j 	=i aij |xj(t)|+

∑m
j=1 bij max1≤k≤r{|xj(t− k)|},

∆xi(t) ≥ aiixi(t)−
∑m

j=1,j 	=i aij |xj(t)| −
∑m

j=1 bij max1≤k≤r{|xj(t− k)|}.

According to Theorem 7, Theorem 8 holds.

4 Concluding Remarks

In this paper, a slight generalization of the celebrated continuous Halanay in-
equality is developed, a discrete analogue of the continuous Halanay inequality is
proved. Using continuous and discrete Halanay delayed inequalities, we derived
some sufficient conditions for the global exponential (asymptotic) stability of the
equilibrium of neural networks. And the estimates of the state of such neural
networks are also obtained. Conditions of these results can be directly derived
from the parameters of the inequalities and equations, are very easy to verified.
Hence, it is very convenience in application.

References

1. Halanay, A.: Differential Equations: Stability, Oscillations, Time Lags. Academic
Press, New York (1966)

2. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Pop-
ulation Dynamics. Springer, Cambridge (1992)

3. Liz, E., Trofimchuk, S.: Existence and Stability of Almost Periodic Solutions for
Quasilinear Delay Systems and Halanay Inequality. J. Math. Anal. Appl. 248, 625–
644 (2000)

4. Mohamad, S., Gopalsamy, K.: Continuous and Discrete Halanay-type Inequalities.
Bull. Aus. Math. Sot. 61, 371–385 (2000)

5. Pinto, M., Trofimchu, S.: Stability and Existence of Multiple Periodic Solutions
for A Quasilinear Differential Equation with Maxima. Proceedings of the Royal
Society of Edinburgh: Section A Mathematics 130, 1103–1118 (2000)

6. Cooke, K.L., Ivanov, A.F.: On the Discretization of A Delay Differential Equation.
J. Differ. Equations Appl. 6, 105–119 (2000)

7. Andreev, A.: On the Stability of Nonautonomous Functional Differential Equa-
tions. Nonlinear Anal. 30, 448–457 (1997)

8. Cermák, J.: The Asymptotic Bounds of Solutions of Linear Delay Systems. Journal
of Mathematical Analysis and Applications 2, 373–388 (1998)

9. Hatvani, L.: On Lyapunov,s Direct Method for Nonautonomous FDE,s. Functional
Differential equations 5, 315–323 (1998)

10. Hatvani, L.: On the Asymptotic Stability for Functional Differential Equations by
Lyapunov Functionals. Nonlinear Anal. 40, 251–263 (2000)

11. Lipovan, O.: A retarded Gronwall-like Inequality and Its Applications. Joural of
Mathematical Analysis and Applications 252, 389–401 (2000)

12. Zeng, Z.G., Wang, J., Liao, X.X.: Global Exponential Stability of A General Class
of Recurrent Neural Networks with Time-varying Delays. IEEE Trans. Circuits
and Systems 50, 1353–1358 (2003)



Continuous and Discrete Halanay Delayed Inequalities 271

13. Liz, E., Ferreiro, J.B.: A Note on the Global Stability of Generalized Difference
Equations. Applied Mathematics Letters 15, 655–659 (2002)

14. Zeng, Z.G., Wang, J., Liao, X.X.: Stability Analysis of Delayed Cellular Neural
Networks Described Using Cloning Templates. IEEE Trans. Circuits and Syst. 51,
2313–2324 (2004)

15. Zeng, Z.G., Wang, J.: Global Exponential Stability of Recurrent Neural Networks
with Time-varying Delays in the Presence of Strong External Stimuli. Neural Net-
works 19, 1528–1537 (2006)

16. Zeng, Z.G., Wang, J.: Multiperiodicity and Exponential Attractivity Evoked by
Periodic External Inputs in Delayed Cellular Neural Networks. Neural Computa-
tion 18, 848–870 (2006)



A Discrete-Time Recurrent Neural Network
with One Neuron for k-Winners-Take-All

Operation

Qingshan Liu1, Jinde Cao2, and Jinling Liang2

1 School of Automation, Southeast University, Nanjing 210096, China
qsliu@seu.edu.cn

2 Department of Mathematics, Southeast University, Nanjing 210096, China
{jdcao,jinlliang}@seu.edu.cn

Abstract. In this paper, a discrete-time recurrent neural network with
one neuron and global convergence is proposed for k-winners-take-all
(kWTA) operation. Comparing with the existing kWTA networks, the
proposed network has simpler structure with only one neuron. The global
convergence of the network can be guaranteed for kWTA operation. Sim-
ulation results are provided to show that the outputs vector of the net-
work is globally convergent to the solution of the kWTA operation.

Keywords: Discrete-time recurrent neural network, Global convergence,
k-winners-take-all operation.

1 Introduction

The winner-take-all (WTA) networks have been widely used in various appli-
cations, such as signal processing [1], associative memories [2], and cooperative
models of binocular stereo [3]. The WTA operation is to select the maximum
from a collection of input signals. The k-winners-take-all (kWTA) operation
selects the k largest inputs out of n inputs (1 ≤ k ≤ n), which can be consid-
ered as a generalized version of WTA operation. In literature, many WTA and
kWTA networks have been proposed [4-12]. However, neural networks with sim-
ple structure for kWTA operation are desired in real applications. In this paper,
we devote to present a discrete-time recurrent neural network with one neuron
for kWTA operation.

Generally, the kWTA operation can be defined as the following function

ui = f(vi) =
{

1, if vi ∈ {k largest elements of v},
0, otherwise, (1)

where v = (v1, v2, . . . , vn)T is the input vector and u = (u1, u2, . . . , un)T is the
output vector. According to [10], the solution of (1) can be determined from the

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 272–278, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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following zero-one integer quadratic programming problem

minimize
1
2η
uTu− vTu,

subject to
n∑

i=1

ui = k,

ui ∈ {0, 1}, i = 1, 2, . . . , n,

(2)

where η is a positive constant. Let v̄k be the kth largest element and v̄k+1 be the
(k+1)th largest element. If 1/(v̄k− v̄k+1) ≤ η, then the optimal solution of prob-
lem (2) is the same as that of the following continuous quadratic programming
problem [10]

minimize
1
2η
uTu− vTu,

subject to
n∑

i=1

ui = k,

0 ≤ ui ≤ 1, i = 1, 2, . . . , n.

(3)

Based on the quadratic programming problem (3), a new kWTA network will
be proposed in this paper.

2 Model Description

In this section, a discrete-time recurrent neural network is constructed for the
kWTA operation based on the quadratic programming problem (3).

According to the Karush-Kuhn-Tucker (KKT) conditions [13], x∗ is a opti-
mal solution of (3) if and only if there exist x∗ ∈ R and y∗ ∈ Rn such that
(u∗, x∗, y∗)T satisfies the following optimality conditions:

1
η
u− v − 1

η
ex− 1

η
y = 0, (4)

eTu = k, (5)

u = PΩ(u − y), (6)

where e = (1, 1, . . . , 1)T ∈ Rn and the projection operator PΩ(u) = (PΩ(u1),
. . . , PΩ(un))T with

PΩ(ui) =

⎧⎪⎨⎪⎩
1, ui > 1,
ui, 0 ≤ ui ≤ 1,
0, ui < 0.

(7)

From (4), we have
u− y = ex+ ηv. (8)

Substituting (8) into (6), we have

u = PΩ(ex+ ηv). (9)
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Substituting (9) into (5), we have

eTPΩ(ex+ ηv) = k. (10)

Based on equations (9) and (10), the proposed discrete-time kWTA network
model is described as follows:

• state equation

x(m+ 1) = x(m) − α[eTPΩ(ex(m) + ηv)− k], (11)

• output equation

u(m) = PΩ(ex(m) + ηv), (12)

where α is a positive constant and m is the iteration step.
The architecture of the kWTA network described in (11) and (12) is depicted

in Fig. 1. From which we can see that the network proposed herein has only one
neuron. The circuit realizing the network consists of 2n+6 simple summers and
n weighted connections. Comparing with the existing kWTA networks [6,11,14],
the proposed discrete-time kWTA network has simpler structure with only one
neuron which can be implemented by circuit easily.

v1 η ∑+
+

PΩ(·)

+
v2 η ∑+

+

PΩ(·) +

vn η ∑+
+

PΩ(·)

+

∑ α ∑+
−

Z−1

x(m+ 1)

k

−

u1(m)

u2(m)

un(m)

...
...

Fig. 1. Architecture of the proposed kWTA network

Definition 1. x∗ is said to be an equilibrium point of network (11) if x∗ satisfies

eTPΩ(ex+ ηv)− k = 0. (13)

From above analysis, the following lemma holds obviously.

Lemma 1. u∗ is an optimal solution of problem (3) if and only if there exists
x∗ ∈ R such that x∗ is an equilibrium point of network (11) and u∗ = PΩ(ex∗ +
ηv) holds.

The following lemma gives an inequality with respect to the projection operate
defined in (7) which is useful in next section.

Lemma 2. [15] For any x, y ∈ Rn, the projection operate PΩ satisfies the fol-
lowing inequality

(x− y)T (PΩ(x) − PΩ(y)) ≥ ‖PΩ(x) − PΩ(y)‖2. (14)
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3 Global Convergence

In this section, the global convergence of neural network (11) is analysis and
proved.

Theorem 1. For each α in the range of 0 < α < 2/n, the neural network (11)
is globally convergent to an equilibrium point for any initial point x(0) ∈ R.

Proof. Assume x∗ being an equilibrium point of network (11). Denote x̃(m) =
PΩ(ex(m) + ηv) and x̃∗ = PΩ(ex∗ + ηv). According to (11) and Lemma 2, for
any x(0) ∈ R, we have

[x(m+ 1)− x∗]2
= [x(m)− α(eT x̃(m)− k)− x∗ + α(eT x̃∗ − k)]2
= [x(m)− x∗ − αeT (x̃(m)− x̃∗)]2
= [x(m)− x∗]2 − 2α(x(m) − x∗)eT (x̃(m)− x̃∗)

+α2(x̃(m)− x̃∗)T eeT (x̃(m)− x̃∗)
≤ [x(m)− x∗]2 − 2α(x̃(m)− x̃∗)T (x̃(m)− x̃∗)

+α2(x̃(m)− x̃∗)T eeT (x̃(m)− x̃∗)
= [x(m)− x∗]2 − (x̃(m)− x̃∗)T (2αI − α2eeT )(x̃(m)− x̃∗), (15)

where I is identity matrix.
Consider the following Lyapunov function as such

V (x) = (x− x∗)2. (16)

Since the maximum eigenvalue of eeT is n, from (15), we have

V (x(m + 1))− V (x(m)) ≤ −(x̃(m)− x̃∗)T (2αI − α2eeT )(x̃(m)− x̃∗)
≤ −(2α− nα2)(x̃(m)− x̃∗)T (x̃(m)− x̃∗).

For any initial point x(0) ∈ R, if 0 < α < 2/n, V (x(m)) is non-increasing as
m→∞ and {x(m)} is bounded. Then there exists an increasing sequence {mN}
with limN→∞mN =∞ and a limit point x̄ such that limN→∞ x(mN ) = x̄. Thus
x̄ is a ω-limit point of x(m).

According to the LaSalle invariance principle for discrete-time system [16],
x(m) will converge to M , the largest invariant subset of the following set:

E = {x ∈ R : V (x(m+ 1))− V (x(m)) = 0}.
Note that, if V (x(m+ 1))−V (x(m)) = 0 and 0 < α < 2/n, we have x̃(m) = x̃∗.
Thus eTPΩ(ex(m) + ηv) − k = 0. That is to say x is an equilibrium point of
network (11).

Conversely, if x is an equilibrium point of network (11) (i.e., x is a constant),
it follows that V (x(m+ 1)) = V (x(m)). So, V (x(m+ 1))− V (x(m)) = 0 if and
only if x is an equilibrium point of network (11). Then we have

E = {x ∈ R : eTPΩ(ex+ ηv)− k = 0}.
Thus, x̄ ∈M ⊆ E.
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Finally, let’s define another Lyapunov function

V (x) = (x− x̄)2. (17)

Similarly to the above proof, if 0 < α < 2/n, there exists an increasing subse-
quence mNl

of {mN} such that

|x(mNl+1)− x̄| ≤ |x(m+ 1)− x̄| ≤ |x(m)− x̄| ≤ |x(mNl
)− x̄|. (18)

Since liml→∞ x(mNl
) = x̄, it follows that limm→∞ x(m) = x̄.

Consequently, for any initial point x(0) ∈ R, x(m) is globally convergent to
an equilibrium point of network (11).

Theorem 2. For each α in the range of 0 < α < 2/n, the output of the neural
network is convergent to the optimal solution of problem (3).

Proof. For any initial point x(0), there exist an equilibrium point x∗ of network
(11) such that limm→∞ x(m) = x∗. According to Theorem 1 and (12), we have
limm→∞ u(m) = limm→∞ PΩ(ex(m) + ηv) = PΩ(ex∗ + ηv) which is the optimal
solution of problem (3).

4 Simulation Results

In this section, two examples are given to demonstrate the effectiveness of the
proposed kWTA network.
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Fig. 2. Output behavior of the kWTA network in Example 1
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Fig. 3. Inputs and outputs of the kWTA network in Example 2

Example 1. Consider a kWTA problem with input vector vi = i (i = 1, 2, . . . , n),
k = 3. The proposed discrete-time kWTA network is utilized to determine the
three largest inputs.

According to Theorem 1, let η = 1 and α = 0.18, the transient behaviors of
output vector u of the kWTA network with 20 random initial values are depicted
in Fig. 2 with n = 10. It shows that the output vector of the network is convergent
to the unique optimal solution u∗ = (0, . . . , 0, 1, 1, 1)T which corresponds to the
three largest inputs.

Example 2. Let’s consider a set of four sinusoidal input signals with the following
instantaneous values vp(t) = 4 sin[2π(t + 0.2p)] (p = 1, 2, 3, 4) and k = 2. The
four input signals and the transient outputs of the kWTA network with η = 103

and α = 0.4 are depicted in Fig. 3. The simulation results show that the kWTA
network can generate the two largest signals in real time.

5 Conclusions

In this paper, a discrete-time recurrent neural network with one neuron has been
proposed for kWTA problems. The global convergence of the network is proved
by LaSalle invariance principle. The theoretical results show that the network is
efficient for kWTA problems if only the kth and (k + 1)th inputs are different.
Simulation results illustrated the performance of the proposed kWTA network.
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Abstract. In view of the character of positive linearity of activation
functions of neurons of the recurrent neural networks, the method de-
composing the state space to sub-regions is adopted to study almost sure
exponential stability on delayed cellular neural networks which are in the
noised environment. When perturbed terms in the model of the neural
network satisfy Lipschitz condition, some algebraic criteria are obtained.
The results obtained in this paper show that if an equilibrium of the
neural network is the interior point of a sub-region, and an appropriate
matrix related to this equilibrium has some stable degree to stabilize the
perturbation, then the equilibrium of the delayed cellular neural network
can still remain the property of exponential stability. All results in the
paper is only to compute eigenvalues of matrices. All results obtained in
this paper include the deterministic neural network as special case.

Keywords: Stochastic recurrent neural networks, Positive linear acti-
vation, Almost sure stability.

1 Introduction

The stability problem on recurrent neural networks is widely studied from origin
to now, including the original work [1], delayed cases [2] and other studies.

For reality, we should consider the case that the recurrent neural networks are
in noised environment, this is because the network realization is through VLSI
approach and the information transmission among real brain neuron cells ia a
noised process. We call these neural networks stochastic neural networks. The
stability analysis of these neural networks originates in [3], and after that, lots
of results [4,5,6] are obtained by some scholars.

Because of the characteristic of positive linearity about the activation func-
tions of neurons in recurrent neural networks, we are going to use this to study
the stability problem on stochastic recurrent neural networks, it has the form

dx(t) = [−Bx(t) +Af(x(t− τ)) + I]dt+ σ̃(x(t), x(t − τ))dw(t) . (1)

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 279–285, 2009.
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Fig. 1. the positive linear activation function

Where x=(x1, x2, · · · , xn)T∈IRn is the state vector of the neural networks,x(t−
τ) = (x1(t−τ1), x2(t−τ2), · · · , xn(t−τn))T, τi ≥ 0 is the time delay of the neuron
i and 0 ≤ τi ≤ τ, i = 1, 2, · · · , n.f(·) is the vector of the activation functions of
the neurons, f(x) = (f1(x1), f2(x2), · · · , fn(xn))T, fi(·) is the positive linearity
function as the following form:

fi(xi) = poslin(xi) =
{

0, xi < 0
xi, xi ≥ 0 , i = 1, 2, · · · , n , (2)

and the figure of the activation is in Fig.1. σ̃(·, ·) ∈ IRn×m is the perturbed
matrix satisfied Lipschtz condition, that is there exists a positive constant L
such that

‖σ̃(x, y)− σ̃(x̄, ȳ)‖2 ≤ L · (‖x− x̄‖2 + ‖y − ȳ‖2) . (3)

‖·‖ in this paper denotes the Frobenius norm of a matrix. w(·) is anm-dimension
Brownian motion, B = diag.(b1, b2, · · · , bn) is a positive diagonal matrix, A =
(aij)n×n is the weight matrix between neurons, I is the bias vector of the neurons.

2 Main Results

We will set up some sufficient criteria ensuring the neural network (1) almost
sure exponential stability in this section.

According to IR = (−∞,∞) being decomposed into two intervals (−∞, 0) and
[0,∞), the n-space IRn can be divided into 2n sub-regions.

Suppose that x∗ = (x∗1, x
∗
2, · · · , x∗n)T is an equilibrium of the system (1), which

is the interior point in one of the sub-regions,N(x∗) is the greatest neighborhood
of the point x∗ which is in the same sub-region that the point x∗ is in. Take the
transformation z = x− x∗ and the unit step function

u(x∗i ) =
{

1, x∗i ≥ 0
0, x∗i < 0 .
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From the assumptions above and Property (2) of the activation functions, the
formula

f(z + x∗)− f(x∗) = U(x∗)z

holds for all points z ∈ N(x∗), where U(x∗) = diag.(u(x∗1), u(x
∗
2), · · · , u(x∗n)) is

a diagonal matrix which the elements are either 0 or 1. For example, assume
that x∗ = (1.2,−0.6, 1.4)T is the equilibrium of a 3-order neural network, then,

U(x∗) = diag.(1, 0, 1) =

⎡⎣1 0 0
0 0 0
0 0 1

⎤⎦ .

Thus, in order to discuss the stability of the equilibrium x∗ of System (1),
we need only study the same property of the trivial equilibrium z = 0 of the
following system

dz(t) = [−Bz(t) +AU(x∗)z(t− τ)]dt+ σ(z(t), z(t− τ))dw(t) . (4)

Where σ(z(t), z(t− τ)) = σ̃(z(t) + x∗, z(t− τ) + x∗)− σ̃(x∗, x∗).
For ∀z, y ∈ IRn and a symmetric positive definite matrix Q, we have the

following estimation on the matrix σ(z, y) by using Condition (3):

trace(σT(z, y)Qσ(z, y)) ≤ ρ(Q) · L(‖z‖2 + ‖y‖2) . (5)

Where ρ(Q) is the spectral radius of the matrix Q, that is, ρ(Q) = λmax(Q),
the maximal eigenvalue of the matrix Q.

We first give a definition and a lemma [4] which plays an important role in
this paper.

Definition 1. For a Lyapunov function V ∈ C2(IRn; IR+), that is, the function
is continuously twice differentiable with respect to its variables, IR+ = [0,∞), for
any z, y ∈ IRn, defines the operator L generated by the system (4) as following

LV (z, y) = V̇ T(z) · [−Bz +AU(x∗)y] +
1
2
trace(σT(z, y)V̈ (z)σ(z, y)) .

Lemma 1. For System (4), if there exist functions V ∈ C2(IRn; IR+), µ ∈
C(IRn; IR+), µi ∈ C(IR+; IR+), i = 1, 2, · · · , n, and constants λ1 > λ2 ≥ 0, such
that

(1)LV (z, y) ≤ −λ1µ(z) + λ2

n∑
i=1

µi(yi), (2)V (z) ≤ µ(z), (3)
n∑

i=1

µi(zi) ≤ µ(z)

hold for any z, y ∈ IRn, then, the trivial equilibrium z = 0 is almost surely
exponentially stable.
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In the following, we will get the main results.

Theorem 1. Assume that x∗ be the equilibrium of (1). For diagonal positive
definite matrices Q = diag.(q1, q2, · · · , qn) and R = diag.(r1, r2, · · · , rn), if the
matrix

H =

⎛⎝−2QB + αE +R QAU(x∗)

(QAU(x∗))T −R+ αE

⎞⎠
2n×2n

is negative definite, then the equilibrium x∗ is almost surely exponentially stable,
where α = ρ(Q) · L,E ∈ IRn×n is the unit matrix.

Proof (of Theorem 1). For ∀z, y ∈ IRn, choose the Lyapunov function V (z) =
zTQz, and then, the operator L generated by System (4) has the form

LV (z, y) = 2zTQ(−Bz +AU(x∗)y) + trace(σT(z, y)Qσ(z, y)) .

By using Condition (5) and denoting −λ = λmax(H), λ > 0, we have the follow-
ing estimation:

LV (z, y) ≤ −2zT(QB)z + 2zT[QAU(x∗)]y + α(‖z‖2 + ‖y‖2)

= (zT, yT)H
(
z
y

)
−

n∑
i=1

riz
2
i +

n∑
i=1

riy
2
i

≤ −
n∑

i=1

(λ + ri)z2i +
n∑

i=1

(ri − λ)y2i .

From the construction of the matrix H , we can easily deduce that ri − λ ≥ α >
0, i = 1, 2, · · · , n. Denote that

λ1 = min
1≤i≤n

{ 1
qi

(λ+ ri)}, λ2 = max
1≤i≤n

{ri − λ
λ+ ri

} .

Obviously, λ1 > 0, 0 < λ2 < 1 (use λ > 0) and (λ+ ri)/λ1 ≥ qi, i = 1, 2, · · · , n.
Let

µ(z) =
1
λ1

n∑
i=1

(λ + ri)z2i , µi(yi) =
1
λ1

(λ+ ri)y2i ,

then, we have

(1)LV (z, y) ≤ −λ1µ(z) + λ1λ2

n∑
i=1

µi(yi), (2)V (z) ≤ µ(z), (3)
n∑

i=1

µi(yi) = µ(y) .

According to Lemma 1, the trivial equilibrium z = 0 of System (4), equiva-
lently, the equilibrium x∗ of (1) is almost sure exponentially stable. The proof
is complete.

Remark 1. As a special case of Theorem 1, it includes the corresponding stability
condition on the deterministic neural network. That is, for positive diagonal
matrices Q,R, if the matrix
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G =

⎛⎝ −2QB +R QAU(x∗)

(QAU(x∗))T −R

⎞⎠
2n×2n

is negative definite, then, the equilibrium x∗ of the following deterministic re-
current neural network

dx(t)
dt

= −Bx(t) +Af(x(t− τ)) + I (6)

is exponential stability.

Corollary 1. Let x∗ be the equilibrium of (1). If there exist positive diagonal
matrices Q = diag.(q1, q2, · · · , qn) and R = diag.(r1, r2, · · · , rn) such that the
matrix

H1 =

⎛⎝ −2QB +R QAU(x∗)

(QAU(x∗))T −R

⎞⎠
2n×2n

has the stable degree α, that is λmax(H1) < −α, then the equilibrium x∗ is almost
surely exponentially stable.

Proof (of Corollary 1). From Theorem 1, in order to prove Corollary 1, we need
only to verify the matrix H in Theorem 1 to be negative definite. For ∀z, y ∈ IRn,

(zT, yT)H
(
z
y

)
= (zT, yT)H1

(
z
y

)
+ α‖z‖2 + α‖y‖2

≤ (λmax(H1) + α)‖z‖2 + (λmax(H1) + α)‖y‖2 .

Because λmax(H1) < −α, the matrix H in Theorem 1 is negative definite. The
proof is complete.

In following, we give an approach to choose the optional matrix R and the matrix
Q, so, it is easy to use in system synthesis.

Corollary 2. Assume that x∗ be the equilibrium of (1). For an appropriate pos-
itive number m > 0, if the matrix

H2 =

⎛⎝ − 2m
m+1E B−1AU(x∗)

(B−1AU(x∗))T − 2
m+1E

⎞⎠
2n×2n

has the stable degree α = L · min{bi}, then the equilibrium x∗ is almost surely
exponentially stable.

Proof. Let −2QB + R = −mR and Q = B−1 in matrix H1, this implies that
R = [2/(m + 1)]E and ρ(Q) = max{b−1

i } = min{bi}, hence, the matrix H1

becomes the matrix H2, and the stable degree α becomes L ·min{bi}. The proof
is complete.
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Corollary 3. For equilibrium x∗ = (x∗1, x
∗
2, · · · , x∗n)T of System (1), x∗i >0, i=

1, 2, · · · , n. If there exists a number m > 0, such that the matrix

H3 =

⎛⎝ − 2m
m+1E B−1A

(B−1A)T − 2
m+1E

⎞⎠
2n×2n

has the stable degree α = L · min{bi}, then the equilibrium x∗ is almost sure
exponentially stable.

Proof. In this case, U(x∗) = E, by using Corollary 2, Corollary 3 holds. The
proof is complete.

Corollary 4. For equilibrium x∗ = (x∗1, x
∗
2, · · · , x∗n)T of System (1), x∗i <0, i=

1, 2, · · · , n. If there exists a number m > 0, such that the density of the pertur-
bation satisfies

0 ≤ L < min{ 2
m+ 1

,
2m
m+ 1

} ·min{bi}

then, the equilibrium x∗ can still remain exponential stability while x∗ of the
deterministic neural network (6) is exponentially stable.

Proof. In this case, U(x∗) = 0, H2 has the following form(− 2m
m+1E 0
0 − 2

m+1E

)
the biggest eigenvalue is

λmax(H2) = max
{
− 2m
m+ 1

,− 2
m+ 1

}
= −min

{
2m
m+ 1

,
2

m+ 1

}
.

So, the condition of this corollary implies λmax(H2) < −α = −L ·max{b−1
i }, by

using Corollary 2, this corollary holds. The proof is complete.

Corollary 5. For equilibrium x∗ = (x∗1, x∗2, · · · , x∗n)T of System (1), x∗j0 >
0, x∗i < 0, i = 1, · · · , j0 − 1, j0 + 1, · · · , n. If there exists positive number m,
such that

cj0 :=
n∑

i=1

(
ai,j0

bi

)2

<
4m

(m+ 1)2

and 0 ≤ L < λ(m) hold, then, the equilibrium x∗ is almost surely exponentially
stable, where

λ(m) = min
{

2
m+ 1

,
2m
m+ 1

, 1−
√
cj0 + (

m− 1
m+ 1

)2)
}
·min{bi} .
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Proof. Without loss generality, let x∗1 > 0, x∗i < 0, i = 2, 3, · · · , n. Hence,
U(x∗) = diag.(1, 0, · · · , 0), and then the character polynomial of matrix H2

is as following

f(λ) = (λ+
2

m+ 1
)n−1(λ+

2m
m+ 1

)n−1[(λ+
2

m+ 1
)(λ+

2m
m+ 1

)− c1] .

Its all eigenvalues satisfy the following equations

λ+
2

m+ 1
= 0, λ+

2m
m+ 1

= 0, λ2 + 2λ+
4m

(m+ 1)2
− c1 = 0 .

The condition c1 < 4m/(m+1)2 implies that the bigger root of the last equation
above is negative, it has the form

λ = −1 +

√
c1 + (

m− 1
m+ 1

)2 .

So, λmax(H2) = −λ(m) ·max{b−1
i } < −L ·max{b−1

i } = −α. Then, from the con-
dition of this corollary, the condition of Corollary 2 holds. The proof is complete.

3 Conclusions

From discussion above, we conclude the results as following:

1. All results obtained in our paper hold for the deterministic case correspond-
ing to neural network (1);

2. If the perturbed intensity is pre-estimated, then we can choose the parameter
matrices B and A to design a deterministic neural network which has enough
robustness to stabilize the perturbed intensity.
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Abstract. By using the positive linearity of the activation functions
of neurons in recurrent neural networks, and by adopting the method
of decomposing the state space to sub-regions, the mathematical equa-
tions of delayed recurrent neural networks are rewritten to be the form
of linear differential difference equations in the neighbourhood of each
equilibrium, which is an interior point of some sub-region. Based on this
linear form and by using the stability theory of linear differential dif-
ference equations and the tool of M-matrix, delay-dependent and delay-
independent stability algebraic criteria are obtained. All results obtained
in this paper need only to compute the eigenvalues of some matrices or
to examine the matrices to be M-matrix or to verify some inequalities to
be holden.

Keywords: Recurrent neural networks, Positive linear activation, Ex-
ponential stability.

1 Introduction

The stability problem of recurrent neural networks has been widely studied
[1,2,3]. Now, many researchers focus their attention on the delayed cases [4,5,6,7],
and the results obtained in these papers mainly use the Lyapunov direct method
and the Razumikhin-type theorems.

In order to sufficiently use the characteristic of positive linearity of the output
functions, we have introduced the method of decomposing state space to sub-
regions to study the stability of CNN[3,8]. In this paper, we are going to use this
method instead of Lyapunov direct method to study the stability problem of the
delayed recurrent neural networks with positive linear activation functions.

Consider the system of delayed recurrent neural networks with positive linear
activation functions:

ẋ(t) = −Bx(t) + Af(x(t− τ)) + I , (1)

where x = (x1, x2, · · · , xn)T ∈ IRn is the state vector of the neural networks,x(t−
τ) = (x1(t−τ1), x2(t−τ2), · · · , xn(t−τn))T, τi ≥ 0 is the time delay of the neuron

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 286–294, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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i and 0 ≤ τi ≤ τ, i = 1, 2, · · · , n. f(·) is the vector of the output functions of the
neurons, f(x) = (f1(x1), f2(x2), · · · , fn(xn))T, fi(·) has the form

fi(xi) = poslin(xi) =
{

0, xi < 0
xi, xi ≥ 0 , i = 1, 2, · · · , n , (2)

and the figure of the activation is in Fig.1. B = diag(b1, b2, · · · , bn) denotes
a diagonal matrix, bi > 0, i = 1, 2, · · · , n, A = (ais)n×n is the weight matrix
between neurons, I is the bias vector of the neurons in the delayed recurrent
neural networks.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 1. the positive linear activation function

This paper is organized as follows: In Section 2, some definitions and lemmas
are given used in this paper latter; In Section 3, Equation (1) is rewritten by
decomposing the state space and we obtain the stability criteria which depend
upon τ and are independent of τ respectively; And in Section 4, the results are
concluded and the paper’s feature is pointed out.

2 Definitions and Lemmas

In this section, we will give some preliminaries [9,10], including the stability
criteria of linear differential difference equations and the definition of M-matrix
and its equivalent conditions.

Consider the linear differential difference equations

ẋ(t) = Ax(t) +Bx(t− τ) , (3)

where x ∈ IRn, A,B ∈ IRn×n, x(t − τ) = (x1(t− τ1), · · · , xn(t − τn))T , 0 ≤ τi ≤
τ, i = 1, 2, · · · , n are constant delays.

The characteristic polynomial of Equation (3) is defined as

f(λ, τ) = det
(
λE −A−B · diag(e−λτ1 , e−λτ2 , · · · , e−λτn)

)
, (4)

where E denotes n× n unit matrix.
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Lemma 1. (1) Suppose that each eigenvalue λ of the character equation f(λ, 0)
= 0 has negative real part (Re(λ) < 0), then, there exists a positive number
∆ = ∆(A,B) > 0 such that x = 0 of Equation (3) is asymptotical stability as
0 ≤ τi ≤ ∆;

(2) Assume that there is at least one eigenvalue λ of f(λ, 0) = 0 satisfying
Re(λ) > 0, then, there exists a positive number ∆ = ∆(A,B) > 0 such that
x = 0 of Equation (3) is unstable as 0 ≤ τi ≤ ∆.

Definition 1. The equilibrium x = 0 of Equation (3) is called delay-independent
asymptotic stable if it is asymptotic stable for any delays τi ≥ 0, i = 1, 2, · · · , n.
Lemma 2. The equilibrium x = 0 of Equation (3) is delay-independent asymp-
totic stability if and only if

1) Each eigenvalue λ of character equation f(λ, 0) = 0 has negative real part;
2) For any ω ∈ IR and any τ ≥ 0, f(jω, τ) 
= 0, where j is the imaginary

unit.

Definition 2. A real matrix A = (ais)n×n is called an M-matrix, if
1) aii > 0, i = 1, 2, · · · , n, ais ≤ 0, i 
= s, i, s = 1, 2, · · · , n;
2) The determinants ∣∣∣∣∣∣

a11 · · · a1i

· · · · · · · · ·
ai1 · · · aii

∣∣∣∣∣∣ > 0, i = 1, 2, · · · , n.

Lemma 3. For a matrix A = (ais)n×n, assume that aii > 0, i=1, 2, · · · , n, ais ≤
0, i 
= s, i, s = 1, 2, · · · , n. The matrix A is an M-matrix if and only if one of the
following conditions holds.

1) There exist positive constants cs, s = 1, 2, · · · , n, such that

n∑
s=1

aiscs > 0, i = 1, 2, · · · , n.

2) −A is a stable matrix, that is, all eigenvalues of the matrix −A have neg-
ative real parts.

Lemma 4. Each eigenvalue of a matrix A = (ais)n×n is in one of the following
disk-fields:

Di = {λ : |λ− aii| ≤
n∑

s=1,s	=i

|ais|}, i = 1, 2, · · · , n.

3 Main Results

In this section, we will set up some sufficient algebraic criteria ensuring the
equilibrium of System (1) to be asymptotic stability or instability with respect
to cases of delay-dependent and delay-independent.
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Fig. 2. Decompose IR2 into 4 sub-domains

3.1 Rewrite System’s Equations

According to decomposing IR = (−∞,∞) into two intervals (−∞, 0) and [0,∞),
the n-space IRn can be divided into 2n sub-regions Vk, k = 1, 2, · · · , 2n, for the
case n = 2, see Fig.2. Suppose that x∗ = (x∗1, x

∗
2, · · · , x∗n)T is an arbitrary

equilibrium of System (1), which is an interior point in some sub-region Vk0 ,
N(x∗) ⊂ Vk0 is the greatest neighborhood of the point x∗, see Fig.2. Take the
transform z = x− x∗ and the unit step function

u(x∗i ) =
{

1, x∗i ≥ 0
0, x∗i < 0 .

By using the characteristic of the output functions (see formula (2) ), for any
x ∈ N(x∗), we have

fi(xi)− fi(x∗i ) =
{
xi − x∗i , x∗i > 0

0, x∗i < 0 = u(x∗i )(xi − x∗i ), i = 1, 2, · · · , n .

Furthermore, they can be rewritten as the vector form

f(x(t− τ)) − f(x∗) = U(x∗)
(
x(t− τ) − x∗) ,

where the matrix U(x∗) = diag(u(x∗1), u(x
∗
2), · · · , u(x∗n)) is a diagonal matrix, the

elements of which are either 0 or 1. For example, assume that x∗=(1.2,−0.6,1.4)T

is the equilibrium of a 3-order neural network, then,

U(x∗) = diag.(1, 0, 1) =

⎡⎣ 1 0 0
0 0 0
0 0 1

⎤⎦ .
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Thus, in order to discuss the stability of the equilibrium x∗ of System (1),
we need only to study the same property of the trivial equilibrium z = 0 of the
system

ż(t) = −Bz(t) +A∗z(t− τ) , (5)

where A∗ = AU(x∗) =
(
aisu(x∗s)

)
n×n

related to the equilibrium x∗.
The character polynomial of System (5) is

g(λ, τ) = det
(
λE +B −A∗diag(e−λτ1 , e−λτ2 , · · · , e−λτn)

)
.

Obviously, g(λ, 0) = det
(
λE +B −A∗) .

3.2 Case of Delay-Dependent

In reality, the delays of output of neurons in recurrent neural networks are very
small. Based on Lemma 1, in order to test the stability of z = 0 of System (5),
we need only to consider the eigenvalues of g(λ, 0) = 0.

It is easy to see that the following theorem holds (use Lemma 1).

Theorem 1. 1) If each eigenvalue of g(λ, 0) = 0 has negative real part, then,
there exists a positive number ∆ = ∆(B,A∗), such that the equilibrium z = 0 of
System (5) is asymptotic stability when time delays satisfy 0 ≤ τ ≤ ∆;

2) If g(λ, 0) = 0 has an eigenvalue λ with Re(λ) > 0, then, there exists a
positive number ∆ = ∆(B,A∗), such that the equilibrium z = 0 of System (5) is
unstable when time delays satisfy 0 ≤ τ ≤ ∆.

For integer k, 1 ≤ k ≤ n, denote

Bk = diag(b1, · · · , bk), Ak =

⎛⎝ a11 · · · a1k

· · · · · · · · ·
ak1 · · · akk

⎞⎠ .
We define gk(λ) = det(λEk +Bk −Ak) , here Ek is the k × k unit matrix.

Corollary 1. For the equilibrium x∗ = (x∗1, x∗2, · · · , x∗n)T of System (1), assume
that x∗i > 0, i = 1, 2, · · · , k, and x∗i < 0, i = k + 1, · · · , n.

1) If each eigenvalue of gk(λ) = 0 has negative real part, then the equilibrium
x∗ of System (1) is asymptotic stability so long as the time delays is sufficiently
small;

2) If gk(λ) = 0 has at least one eigenvalue with positive real part, then the
equilibrium x∗ of System (1) with small time lags is unstable.

Proof. By the assumption of this corollary, we see that

u(x∗i ) = 1, i = 1, 2, · · · , k, u(x∗i ) = 0, i = k + 1, · · · , n .
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This implies that

A∗ = AΦ(x∗) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1k 0 · · · 0
...

. . .
...

...
...

ak1 · · · akk 0 · · · 0
ak+1,1 · · · ak+1,k 0 · · · 0

...
...

...
...

an1 · · · ank 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

hence,

g(λ, 0) = det
(
λE +B −A∗)

= det(λEk +Bk −Ak)(λ+ bk+1) · · · (λ+ bn)
= gk(λ)(λ + bk+1) · · · (λ+ bn) .

If each eigenvalue of gk(λ) = 0 has negative real part, then each eigenvalue of
g(λ, 0) = 0 has negative real part. By Theorem 1, the corollary holds.

Remark 1. In particular, we can get simple conditions for several special cases:
1) If k = 0, then the equilibrium x∗ of System (1) is asymptotic stability. In

fact, all eigenvalues of g(λ, 0) = 0 are −b1,−b2, · · · ,−bn ;
2) If k = 1 and b1 > a11, then the equilibrium x∗ of System (1) is asymptotic

stable. In this case, g1(λ) = λ+ b1 − a11 = 0 has root λ = −(b1 − a11) < 0;
3) If k = 2 and b1 + b2 > a11 + a22, (b1 − a11)(b2 − a22) > a12a21, then the

equilibrium x∗ of System (1) is asymptotic stable. In fact,

g2(λ) = λ2 + (b1 + b2 − a11 − a22)λ+ (b1 − a11)(b2 − a22)− a12a21
has two roots with negative real parts.

3.3 Case of Delay-Independent

Generally speaking, it is difficult to compute the boundary ∆(B,A∗) in the the-
orems stated above. In this sub-section, we consider delay-independent stability
problems on equilibrium x∗ of System (1) or, equivalently, the equilibrium z = 0
of System (5).

By Lemma 2, in order to study delay-independent stability problem of System
(5), we not only verify that each eigenvalue λ of g(λ, 0) = 0 satisfies Re(λ) < 0,
which is discussed above, but also examine g(jω, τ) 
= 0 for any ω ∈ IR and any
τ ≥ 0, which is more difficult.

In the following, we will find out some sufficient conditions ensuring g(jω, τ) 
=
0, which are related to M-matrix.

For matrices B = diag(b1, b2, · · · , bn) and A∗ = (a∗is)n×n, we construct a
matrix L = (lis)n×n as follows:

lis =
{
bi − |a∗ii|, i = s = 1, 2, · · · , n
−|a∗is|, i 
= s, i, s = 1, 2, · · · , n .

In particular, if the weight matrix A is a non-negative matrix, then L = B−A∗.



292 D. Wang and Y. Wang

Lemma 5. If the matrix L = (lis)n×n is an M-matrix, then, g(jω, τ) 
= 0 for
any ω ∈ IR and any τ ≥ 0.

Proof. Let G = (gis)n×n = jωE+B−A∗diag(e−jωτ1 , e−jωτ2 , · · · , e−jωτn) , then

g(jω, τ) = det(G) , gis =
{
jω + bi − a∗iie−jωτi , i = s = 1, 2, · · · , n
−a∗ise−jωτs , i 
= s, i, s = 1, 2, · · · , n .

We estimate the term |gii|:
|gii| = |jω + bi − a∗iie−jωτi | ≥ |jω + bi| − |a∗iie−jωτi | ≥ bi − |a∗ii| .

By the assumption of this lemma that the matrix L is an M-matrix and by using
1) in Lemma 3, there exist positive numbers ci, i = 1, 2, · · · , n, such that

ci(bi − |a∗ii|) >
∑
s	=i

|a∗is|cs, i = 1, 2, · · · , n .

And this implies that

ci|gii| ≥ ci(bi − |a∗ii|) >
∑
s	=i

|a∗is|cs =
∑
s	=i

|gis|cs, i = 1, 2, · · · , n .

That is,
|giici| >

∑
s	=i

|giscs|, i = 1, 2, · · · , n .

And by Lemma 4, we know that the matrix G · diag(c1, c2, · · · , cn) has not zero
eigenvalues, and this shows

det
(
G · diag(c1, c2, · · · , cn)

)
= det(G) · det(diag(c1, c2, · · · , cn)) 
= 0 .

We get g(jω, τ) = det(G) 
= 0 for any ω ∈ IR and any τ ≥ 0.

According to Lemma 5 and Lemma 2, we immediately get the conditions
ensuring the equilibrium x∗ of System (1) to be delay-independent asymptotic
stable.

Theorem 2. Assume that the matrix L is an M-matrix and each eigenvalue
of g(λ, 0) = 0 has negative real part, then the equilibrium x∗ of System (1) is
delay-independent asymptotic stable.

Corollary 2. Suppose that the matrix A is a non-negative matrix and B −
A∗ is an M-matrix, then the equilibrium x∗ of System (1) is delay-independent
asymptotic stable.

Proof. By the definition of the matrix L and the matrix A is non-negative, we
have L = B −A∗, and by the assumption of the corollary, L is an M-matrix; In
addition, by using 2) in Lemma 3, −B +A∗ is a stable matrix, that is, all roots
of g(λ, 0) = det

(
λE + B − A∗)

)
have negative real parts. By Theorem 2, the

corollary holds.
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As the end of this section, we give three special cases of the equilibrium x∗ to
illustrate how to use the results obtained above, and we get some very simple
inequality conditions.

Example 1. Assume that x∗ = (x∗1, x
∗
2, · · · , x∗n)T is an equilibrium of System

(1) with x∗s < 0, s = 1, 2, · · · , n, then the equilibrium x∗ is delay-independent
asymptotic stability.

Proof. By using 1) in Remark 1, all eigenvalues of g(λ, 0) = 0 are real nega-
tive numbers −b1,−b2, · · · ,−bn; And in this case, a∗is = aisφ(x∗s) = 0, i, s =
1, 2, · · · , n, the matrix L = B = diag(b1, b2, · · · , bn) is an M-matrix. By Theorem
2, the proposition is proved.

Example 2. Assume that x∗ = (x∗1, x
∗
2, · · · , x∗n)T is an equilibrium of System (1)

with x∗1 > 0, x∗s < 0, s = 2, · · · , n, and b1 > |a11|, then the equilibrium x∗ is
delay-independent asymptotic stable.

Proof. From b1 > |a11| ≥ a11, by using 2) in Remark 1, all eigenvalues of
g(λ, 0) = 0 have negative real parts; And the matrix

L =

⎛⎜⎜⎝
b1 − |a11| 0 · · · 0
−|a21| b2 · · · 0

...
. . .

−|an1| 0 · · · bn

⎞⎟⎟⎠
is an M-matrix. By Theorem 2, we get the proof.

Example 3. For the equilibrium x∗ = (x∗1, x
∗
2, · · · , x∗n)T of System (1) with x∗1 >

0, x∗2 > 0, x∗s < 0, s = 3, · · · , n, if the condition

b1 > |a11|, (b1 − |a11|)(b2 − |a22|) > |a12a21|

holds, then the equilibrium x∗ of System (1) is delay-independent asymptotic
stability.

Proof. First, we can easily deduce b2 > |a22| ≥ a22, so b1 + b2 > a11 + a22;
a12a21 ≤ |a12a21| < (b1 − |a11|)(b2 − |a22|) ≤ (b1 − a11)(b2 − a22), by using 3) in
Remark 1, each eigenvalue of g(λ, 0) = 0 has negative real part; Obviously, the
matrix L is an M-matrix. Here, the matrix L is

L =

⎛⎜⎜⎜⎜⎝
b1 − |a11| −|a12| 0 · · · 0
−|a21| b2 − |a22| 0 · · · 0
−|a32| −|a32| b3 · · · 0

...
...

...
. . .

−|an1| −|an2| 0 · · · bn

⎞⎟⎟⎟⎟⎠ .

By Theorem 2, the proposition is true.
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4 Conclusions

1. For delayed recurrent neural networks(1) with positive linear activation func-
tions, we first discuss the delay-dependent stability problem which can be
determined by the roots of the character polynomial g(λ, 0) = det(λE+B−
A∗) = 0. Besides this, we add the condition that the matrix L is an M-matrix
to study delay-independent asymptotic stable;

2. If the interconnection matrix A is a non-negative matrix, and the matrix B−
A∗ is an M-matrix, then the equilibrium x∗ of the delayed recurrent neural
network with positive linear activation functions is both delay-dependent
asymptotic stable and delay-independent asymptotic stable;

3. All results obtained are algebraic criteria, it is convenient to test in system
synthesis;

4. The key of this paper is that we sufficiently use the characteristic of positive
linearity on the output functions of neurons. The results in this paper is true
in more general conditions than existed results. In particular, the results of
delay-dependent asymptotic stability are equivalent conditions.

Acknowledgments. This work was supported in part by the National Natural
Science Foundation of China under grant No. 60774051.
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The Dahlquist Constant Approach to Stability
Analysis of the Static Neural Networks

Guanjun Li and Jin Xu
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Abstract. Avoiding the difficulty of constructing a proper Lyapunov
function, the generalized Dahlquist constant approach is employed to
investigate the exponential stability of the static neural networks. With-
out assuming the boundedness, monotonicity of the activations, a new
sufficient conditions for existence of an unique equilibrium and the ex-
ponential stability of the neural networks are presented. An example is
given to show the effectiveness of our results.

Keywords: Dahlquist constant, Static neural network, Exponential
stability.

1 Introduction

The recurrently connected neural networks have been extensively studied in the
past decade and successfully applied to different areas such as combinatorial op-
timization, pattern recognition, associative memory. These applications greatly
rely on the dynamical behavior of the neural networks. Therefore, the dynami-
cal analysis is fundamental step for practical design and applications of neural
networks.

Depending upon whether neuron states (the external states of neurons) or lo-
cal field states (the internal states of neurons) are taken as basic variables, neural
networks can be classified as static neural networks or local field neural networks
[1,2]. For instance, the recurrent back-propagation networks (ReBP-type NNs)
[3,4], which are described by the following equations:

dxi(t)
dt

= −aixi(t) + fi(
n∑

j=1

wijxj(t) + Ii), i = 1, 2, · · · , n. (1)

are static neural networks. Where xi is the state variable of neuron i with ui =
n∑

j=1

wijxj + Ii being its local field state; fi is the activation function of neuron

i; wij is the connection weight between neuron i and neuron j; n is the number
of neurons in the neural networks. In contrast, Hopfield neural networks [5,6]
firstly introduced by Hopfield are local field neural networks

dxi(t)
dt

= −aixi(t) +
N∑

j=1

wijfj(xj(t)) + Ii, i = 1, 2, · · · , n. (2)
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where xi is the local field state variable with ui = fi(xi) as the output of neuron
i; Ii is the constant input from the outside of the system.

The static neural networks model (1) and the local field neural networks
model (2) typically represent two fundamental modeling approaches in the cur-
rent neural networks research [1,2,7]. However, they have been applied somehow
in a separate manner and hardly been cross-fertilized. As a result, some types
of networks such as the Hopfield-type NNs have been attracting considerable
interests, and many deep theoretical results have been obtained for the models
[8,9,10,11]. In contrast, other types of neural networks such as the ReBP-type
NNs have not received so much attention [7,12].

To the best of authors’ knowledge, the approaches extensively used in the
existing investigation into stability of neural networks are mainly those based on
Lyapunov direct method, that is, based on construction of Lyapunov functions.
It is known, however, that no general rule can guide how a proper Lyapunov
function should be constructed for a give system. Therefore, the construction of
Lyapunov function becomes very skillful, there is little compatibility among the
existing results.

The main difficulty for stability analysis of neural networks comes from the
nonlinearity of the activation functions fi. Almost all stability analysis is con-
ducted under some special assumptions on fi. There assumptions frequently
include those such as differentiability, boundedness.

Motivated by the above discussion, in this paper, we consider the stability of
model (1) and only assume the following properties of fi:
(H) For each i = 1, 2, · · · , n, fi is Lipschitz continuous, that is, ther is a constant
Li > 0 such that |fi(x) − fi(y)| ≤ Li|x− y| for any x, y ∈ R.

In the remainder of this paper, based on the generalized Dahlquist constant, a
sufficient condition will be obtained to ensure the global exponential stability of
(1). It should also be pointed out that here we only need the assumption (H) on
the activation function. In addition, the monotonicity restriction of activation
functions as well as boundedness of the activations are removed.

Throughout this paper, let Rn be the n−dimensional real vector space with

norm ‖ · ‖ defined as ‖x‖1 =
n∑

i=1

|xi| for any x ∈ Rn. E represent the identity

matrix with appropriate dimensions.

2 Main Results

To obtain our main results, we still need the following definitions and lemmas.
Let X be a Banach space endowed with the norm ‖ · ‖ and Ω be an open subset
of X . Considering the following system

dx(t)
dt

= F (x(t)), t ≥ t0. (3)

where F : Ω → X is a nonlinear operator, and x(t) ∈ Ω.
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Definition 1. Suppose x∗ is an equilibrium point of system (3), system (3) is
called to be exponentially stability on a neighborhood Ω of x∗, if there exists
α > 0 and ε > 0 such that ‖x(t) − x∗‖ ≤ εe−αt‖x(t0) − x∗‖ for t ≥ t0, where
x(t) is any solution of (3) initiated from x(t0).

Definition 2. [13] Suppose Ω be an open subset of Banach space X, F : Ω → X
is an operator, The constant

α(F ) = sup
x,y∈Ω,x 	=y

1
‖x− y‖ lim

r→+∞[‖(F + rE)x − (F + rE)y‖ − r‖x− y‖] (4)

is called to be the generalized Dahlquist constant of F on Ω.

Definition 3. Suppose Ω be an open subset of Banach spaceX, F : Ω → X is
an operator, and x0 is any fixed point in Ω. The constant

α(F, x0) = sup
x∈Ω,x 	=x0

1
‖x− x0‖ lim

r→+∞[‖(F +rE)x−(F +rE)x0‖−r‖x−x0‖] (5)

is called to be the generalized relative Dahlquist constant of F at x0.

Lemma 1. [13] If α(F ) < 0, then F is an injective mapping on Ω. In addition,
if Ω = Rn, then F is a homeomorphism of Rn.

Lemma 2. Suppose x∗ ∈ Ω is an equilibrium point of the system (3), if the
operator F satisfies α(F, x∗) < 0, then x∗ is the unique equilibrium point of the
system (3) in Ω, x∗ is exponentially stable.

Proof. Suppose the system (3) has an unique equilibrium point x∗ in Ω. Oth-
erwise, let x̃ ∈ Ω be any other equilibrium point of (3) different from x∗. Then
F (x̃) = F (x∗) = 0, x̃ 
= x∗. By Definition 3, we infer that

α(F, x∗) = sup
x∈Ω,x 	=x∗

1
‖x− x∗‖ lim

r→+∞[‖(F + rE)x − (F + rE)x∗‖ − r‖x− x∗‖]

≥ 1
‖x̃− x∗‖ lim

r→+∞[‖(F + rE)x̃ − (F + rE)x∗‖ − r‖x̃− x∗‖]
= 0

in contradiction to α(F, x∗) < 0. Thus x̃ = x∗, and the equilibrium point of (3)
is unique in Ω.

If x∗ ∈ Ω is the equilibrium point of system (3), then F (x∗) = 0. Suppose
x(t) is the solution of system (3) initiated from x(0) = x0 ∈ Ω. we have

(ertx(t))′ = rertx(t) + ertFx(t) = ert(F + rE)x(t)

for all t > 0 and r > 0.

ert[x(t) − x∗] = [x0 − x∗] +
∫ t

0

eru[(F + rE)x(u) − (F + rE)x∗]du
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then

ert ‖ x(t) − x∗ ‖ − ‖ x0 − x∗ ‖≤
∫ t

0

eru ‖ (F + rE)x(u) − (F + rE)x∗] ‖ du

(ert ‖ x(t)− x∗ ‖)′t ≤ ert ‖ (F + rE)x(t) − (F + rE)x∗] ‖ .
Let r→ +∞, we have

(‖ x(t)− x∗ ‖)′t ≤ α(F, x∗) ‖ x(t)− x∗] ‖

integration from 0 to t yields

‖ x(t) − x∗ ‖≤ eα(F,x∗)t ‖ x0 − x∗] ‖ .

Since α(F, x∗) < 0, we infer that the equilibrium point x∗ is exponentially stable
in Ω.

Theorem 1. If Li

n∑
j=1

|wji| < ai, i = 1, 2, · · · , n, then the neural networks (1)

has an unique equilibrium point, which is globally exponentially stable.

Proof. Step 1: For system (3), define an operator F : Rn → Rn by

Fi(x) = −aixi + fi(
n∑

j=1

wijxj + Ii)

where x = [x1, x2, · · · , xn]T ∈ Rn, F (x) = [F1(x), F2, · · · , Fn(x)]T . we can con-
clude that system (1) and system (3) have the same equilibrium set. Then an
equilibrium point x∗ = (x∗1, · · · , x∗n) of neural networks (3) is a point in Rn such
that F (x∗) = 0. If we can prove that F is a homeomorphism from Rn to Rn,
then the existence and uniqueness of the equilibrium are proved.
From Definition 2, we have

α(F ) = sup
x,y∈Rn,x 	=y

1
‖x− y‖1 lim

r→+∞[‖(F + rE)x − (F + rE)y‖1 − r‖x− y‖1]

where

‖(F + rE)x − (F + rE)y‖1 − r‖x − y‖1
=

n∑
i=1

{| − (aixi − aiyi) + fi(
n∑

j=1

wijxj + Ii)

−fi(
n∑

j=1

wijyj + Ii) + r(xi − yi)| − r|xi − yi|}.
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For any x, y ∈ Rn and r > 0 sufficiently large,we have

‖(F + rE)x − (F + rE)y‖1 − r‖x − y‖1
≤

n∑
i=1

{−|(aixi − aiyi)|+ |fi(
n∑

j=1

wijxj + Ii)− fi(
n∑

j=1

wijyj + Ii)|}

≤ −
n∑

i=1

ai|xi − yi|+
n∑

i=1

Li|(
n∑

j=1

wijxj + Ii)− (
n∑

j=1

wijyj + Ii)|

= −
n∑

i=1

ai|xi − yi|+
n∑

i=1

n∑
j=1

Li|wij ||xj − yj |

= −
n∑

i=1

(ai − Li

n∑
j=1

|wji|)|xi − yi|

≤ − min
1≤i≤n

(ai − Li

n∑
j=1

|wji|) ‖ x− y ‖1 .

Hence, α(F ) ≤ − min
1≤i≤n

(ai − Li

n∑
j=1

|wji|) < 0, by Lemma 1, we conclude that

system (3) or equivalently, system (1) has an unique equilibrium point x∗.

Step 2: Let x = [x1, x2, · · · , xn]T ∈ Rn, to simiplify the proof, we shift the
equilibrium point x∗ of (1) to the origin via the transformation yi(t) = xi(t)−x∗i ,
then Eq.(1) can be transformed into the following form:

dyi(t)
dt

= −aiyi(t)+fi[
n∑

j=1

wij(yj(t)+x∗j )+Ii]−fi(
n∑

j=1

wijx
∗
j +Ii), i = 1, 2, · · · , n.

(6)
Define an operator G : Rn → Rn by

Gi(y) = −aiyi(t)+fi[
n∑

j=1

wij(yj(t)+x∗j )+Ii]−fi(
n∑

j=1

wijx
∗
j +Ii), i = 1, 2, · · · , n.

Where y = [y1, y2, · · · , yn]T ∈ Rn, G(x) = [G1(x), G2, · · · , Gn(x)]T , then system
(6) can be described by

dy(t)
dt

= G(y(t)), t ≥ t0. (7)

We have

α(G, 0) = sup
y∈Rn,y 	=0

1
‖y‖1 lim

r→+∞

n∑
i=1

[|(G)i(y) + ryi| − r|yi|].
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For any y ∈ Rn and r > 0 sufficiently large, we have

n∑
i=1

[|(G)i(y) + ryi| − r|yi|]

=
n∑

i=1

| − aiyi(t) + fi[
n∑

j=1

wij(yj(t) + x∗j ) + Ii]− fi(
n∑

j=1

wijx
∗
j + Ii) + ryi| − r|yi|

≤
n∑

i=1

{−|(aiyi)|+ |fi[
n∑

j=1

wij(yj + x∗j ) + Ii]− fi(
n∑

j=1

wijx
∗
j + Ii)|}

≤ −
n∑

i=1

ai|yi|+
n∑

i=1

Li|[
n∑

j=1

wij(yj + x∗j ) + Ii]− (
n∑

j=1

wijx
∗
j + Ii)|

= −
n∑

i=1

ai|yi|+
n∑

i=1

n∑
j=1

Li|wij ||yj |

= −
n∑

i=1

(ai − Li

n∑
j=1

|wji|)|yi|

≤ − min
1≤i≤n

(ai − Li

n∑
j=1

|wji|) ‖ y ‖1 .

Hence, α(G, 0) ≤ − min
1≤i≤n

(ai − Li

n∑
j=1

|wji|) < 0, by Lemma 2, we conclude that

the origin of (7) or equivalently the equilibrium point x∗ is globally exponentially
stable.

Corollary 1. If Li

n∑
j=1

|wji| < ai, i = 1, 2, · · · , n, then the neural networks (2)

has an unique equilibrium point, which is globally exponentially stable.

Proof. Similar to the Proof of Theorem 1 and hence omitted.

3 An Illustrative Example

In this section, we will give a example to show the effectiveness of our results.
Consider the following neural networks

dx(t)
dt

= −Ax(t) + f(Wx) + I

where the parameters

A =
[

3 0
0 4

]
, W =

[−2.1 2
−0.5 5

]
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the activation f1(x) = 3
4 sinx+ 1

4x, f2(x) = 1
3 sinx+ 1

6x. Obviously, one can find
that fi satisfies the condition (H) with L1 = 1, L2 = 1

2 , on the other hand, it
can be verified that fi is not bounded and nonmonotonic. Thus, the condition
in [14,15] fails to conclude whether this neural network is globally stable or not.
Therefore, by Theorem 1, we know this neural network has and only has an
equilibrium point which is globally exponentially stable.

4 Concluding Remarks

In this paper, by using the generalized Dahlquist constant approach, a new suf-
ficient conditions have been derived to ensure the global exponential stability
of the equilibrium point of static neural networks, which voiding the difficulty
of constructing a proper Lyapunov function. Furthermore, the obtained results
removed the boundedness, monotonicity of the activations.
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Abstract. In this paper, the global exponential stability for a class of
reaction-diffusion delayed bidirectional associate memory (BAM) neu-
ral networks with Dirichlet boundary conditions is addressed by using
the method of variation parameter and inequality technique, the delay-
independent sufficient conditions to guarantee the uniqueness and global
exponential stability of the equilibrium point of such networks are es-
tablished. Finally, an example is given to show the effectiveness of the
obtained result.

Keywords: Bidirectional associate memory, Global exponential stabil-
ity, Reaction-diffusion, Equilibrium point.

1 Introduction

The bidirectional associate memory (BAM) neural networks was first introduced
by Kosto [1] in 1988. Recently, the stability of BAM neural networks has been
extensively studied in both theory and applications (see [5-12]). Refs. [5,7-9,12]
had derived some sufficient conditions for the global exponential stability of
delayed BAM neural networks by constructing suitable Lyapunov functional,
Refs. [6,10,11] used some analytic techniques and derived several simple criteria
for the global exponential stability of delayed BAM neural networks.

However, strictly speaking, diffusion effects can not be avoided when electrons
are moving in asymmetric electromagnetic fields, so we must consider that the
activations vary in space as well as in time. Refs. [11-18] have considered the
stability of neural networks with diffusion terms. It is also common to consider
the diffusion effects in biological systems (such as immigration). The bound-
ary conditions of the investigated reaction-diffusion neural networks [11-17]are
all Neumann boundary conditions, the stability of reaction-diffusion neural net-
works with Dirichlet boundary conditions has not yet been full developed. So
further investigation to these neural networks is significant.

To best of our knowledge, few authors have considered global exponential sta-
bility of reaction-diffusion delayed BAM neural networks with Dirichlet bound-
ary conditions, which is very important in theory and applications and also is
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a very challenging problem. Motivated by the above discussion, in this paper,
we will investigate the global exponential stability of a class of reaction-diffusion
delayed BAM neural networks with Dirichlet boundary conditions. The work
will have significance impact on the design and applications of neural circuits.

The rest of this paper is organized as follows. Preliminaries and model de-
scription are given in Section 2. In Section 3, we give main results and their
proof. An example is given in Section 4. Finally, we give the conclusion.

2 Model Description and Preliminaries

Consider the reaction-diffusion delayed BAM neural networks with Dirichlet
boundary conditions:

∂ui(t, x)
∂t

=
l∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)− aiui(t, x) +
m∑

j=1

bjifj(vj(t, x))

+
m∑

j=1

b̄jigj(vj(t− σji(t), x)) + Ii,

∂vj(t, x)
∂t

=
l∑

k=1

∂

∂xk

(
Djk

∂vj
∂xk

)− cjvj(t, x) +
n∑

i=1

dijfi(ui(t, x))

+
n∑

i=1

d̄ijgi(ui(t− τij(t), x)) + Jj ,

ui(t, x) = 0, vj(t, x) = 0, x ∈ ∂Ω, −τ ≤ t < +∞, −σ ≤ t < +∞,
ui(s, x) = ξi(s, x), −τ ≤ s ≤ 0, 0 ≤ τij(t) ≤ τ,
vj(s, x) = ηj(s, x), −σ ≤ s ≤ 0, 0 ≤ σji(t) ≤ σ, (1)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m and t ≥ 0. where x = (x1, · · · , xl)T ∈ Ω ⊂ Rl

and Ω = {x = (x1, · · · , xl)T : |xk| < ωk, k = 1, 2, · · · , l} is a bounded compact
set with smooth boundary ∂Ω and mesΩ > 0 in space Rl; ui(t, x) and vj(t, x)
denote the state variable of the ith neurons and jth neurons at time t and in
space x, respectively; fi, fj , gi, gj are nonlinear activation functions; ξi(s, x) and
ηj(s, x) denote the initial value; τij(t) and σji(t) denote time delays required for
neural processing and axonal transmission of signals; Ii and Jj denote external
inputs to the neurons introduced from outside the network; ai > 0 and cj > 0
denote the rate with which the ith unit and jth unit will reset their potential to
the resting state in isolation when disconnected from the networks and external
inputs, respectively; bji, b̄ji, dij , d̄ij denote synaptic connection weights; smooth
functions Dik = Dik(t, x, u) ≥ 0 and Djk = Djk(t, x, v) ≥ 0 denote transmission
diffusion operators.

Let the solution of system (1) denote (u(t, x; ξ), v(t, x; η))T , where u(t, x; ξ) =
(u1(t, x; ξ1), · · · , un(t, x; ξn))T , v(t, x; η) = (v1(t, x; η1), · · · , vm(t, x; ηm))T , or
(u(t), v(t))T , if no confusion occurs.
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Let L2(Ω) be the space of real Lebesgue measurable functions on Ω. It is
a Banach space for L2-norm ‖u‖2 = (

∫
Ω |u(x)|2 dx)

1
2 , where |u| denotes the

Euclid norm of a vector u ∈ Rn for any integer n. The norm ‖u‖ is defined by

‖u‖ =
n∑

i=1

‖ui‖2 .
Note that, ξ =

{
(ξ1(s, x), · · · , ξn(s, x))T : −τ ≤ s ≤ 0

}
is C([−τ, 0]×Ω,Rn)-

valued function, C([−τ, 0]×Ω,Rn) is the space of all continuous Rn-valued func-

tions defined on [−τ, 0]×Ω with the norm ‖ξ‖ = sup
−τ≤t≤0

{
n∑

i=1

‖ξi(t)‖2}, ‖ξi(t)‖22 =∫
Ω
|ξi(t, x)|2 dx, η =

{
(η1(s, x), · · · , ηm(s, x))T : −σ ≤ s ≤ 0

}
is similar to ξ.

Throughout this paper, we have the following assumptions on system (1):
(A1) fi, fj , gi, gj : R→ R satisfy

Pi = sup
u	=v

∣∣∣∣fi(u)− fi(v)u− v
∣∣∣∣ , Qj = sup

u	=v

∣∣∣∣fj(u)− fj(v)u− v
∣∣∣∣ ,

Li = sup
u	=v

∣∣∣∣gi(u)− gi(v)u− v
∣∣∣∣ , Mj = sup

u	=v

∣∣∣∣gj(u)− gj(v)u− v
∣∣∣∣ ,

|fi(u)| ≤ Ai < +∞, |fj(u)| ≤ Bj < +∞,
|gi(u)| ≤ Ci < +∞, |gj(u)| ≤ Dj < +∞,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m,u, v ∈ R, where Pi, Qj , Li,Mj, Ai, Bj , Ci, Dj are
positive constants.

(A2)

ρ

((
A 0
0 C

)−1 ( 0 B(0)
D(0) 0

))
< 1,

where

A = diag{a∗1, · · · , a∗n}, a∗i = ai +
l∑

k=1

D∗
ik

ω2
k

,

D∗
ik = inf

x∈Ω
Dik ≥ 0 is nonnegative number,

C = diag{c∗1, · · · , c∗m}, c∗j = cj +
l∑

k=1

D
∗
jk

ω2
k

,

D
∗
jk = inf

x∈Ω
Djk ≥ 0 is nonnegative number,

B(z) = (Bij(z))n×m, Bij(z) = |bji|Qj +
∣∣b̄ji

∣∣Mje
zσ,

D(z) = (Dji(z))m×n, Dji(z) = |dij |Pi +
∣∣d̄ij

∣∣Lie
zτ .

Definition 1. The equilibrium point (u∗, v∗)T of system (1) is said to be globally
exponentially stable, if there exist constants λ > 0 and M > 1 such that for any
ξ and η and all solutions (u, v)T of system (1)

‖u(t; ξ)− u∗‖+ ‖v(t; η)− v∗‖ ≤M(‖ξ − u∗‖+ ‖η − v∗‖)e−λt,

for all t ≥ 0.
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Lemma 1. If M ≥ 0 and ρ(M) < 1, then (I −M)−1 ≥ 0, where I denotes
the identity matrix and ρ(M) denotes the spectral radius of a square matrix M ,
M ≥ 0 means M is a nonnegative matrix.

Lemma 2 [18]. Let Ω be a cube |xk| < ωk(k = 1, 2, · · · , l), and let h(x) be a
real-valued function belonging to C1(Ω), which vanish on the boundary ∂Ω of

Ω, i.e., h(x)|∂Ω = 0. Then
∫

Ω h
2(x)dx ≤ ω2

k

∫
Ω

∣∣∣∣ ∂h∂xk

∣∣∣∣2 dx.

3 Main Results

In this section, we will study the global exponential stability and uniqueness of
equilibrium point of system (1). Let Dik = 0, Djk = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m, k =
1, 2, · · · , l, then system (1) turns to

∂ui(t, x)
∂t

= −aiui(t, x) +
m∑

j=1

bjifj(vj(t, x)) +
m∑

j=1

b̄jigj(vj(t− σji(t), x)) + Ii,

∂vj(t, x)
∂t

= −cjvj(t, x) +
n∑

i=1

dijfi(ui(t, x)) +
n∑

i=1

d̄ijgi(ui(t− τij(t), x)) + Jj ,

(2)

It is known under the assumption (A1), it can always guarantee that system (2)
has an equilibrium point (u∗, v∗)T , where u∗=(u∗1, · · · , u∗n)T , v∗=(v∗1 , · · · , v∗m)T .
Clearly, (u∗, v∗)T is also the equilibrium point of system (1). Therefore system
(1) is equivalent to

∂(ui(t)− u∗i )
∂t

=
l∑

k=1

∂

∂xk

(
Dik

∂(ui − u∗i )
∂xk

)− ai[ui(t)− u∗i ]

+
m∑

j=1

bji[fj(vj(t)− fj(v∗j )] +
m∑

j=1

b̄ji[gj(vj(t− σji(t)))− gj(v∗j )],

∂(vj(t)− v∗j )
∂t

=
l∑

k=1

∂

∂xk

(
Djk

∂(vj − v∗j )
∂xk

)− cj [vj(t)− v∗j ]

+
n∑

i=1

dij [fi(ui(t)) − fi(u∗i )]+
n∑

i=1

d̄ij [gi(ui(t− τij(t)))− gi(u∗i )].

(3)

Theorem 1. If system (1) satisfies assumptions (A1) and (A2), then the equi-
librium point (u∗, v∗)T of system (1) is unique and globally exponentially stable.

Proof. From (A2) and Lemma 1, we have(
I −

(
A 0
0 C

)−1 ( 0 B(0)
D(0) 0

))−1

≥ 0.
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Then there exists a positive constant λ < min {a∗1, · · · , a∗n, c∗1, · · · , c∗m} such that

E(λ) :=
(
I −

(
A− λI 0

0 C − λI
)−1 ( 0 B(λ)

D(λ) 0

))−1

≥ 0.

Let ūi = ui−u∗i , v̄j = vj−v∗j , i = 1, · · · , n, j = 1, · · · ,m. Multiplying the former
of (3) by ūi and integrating with respect to x, it is easy to obtain

1
2

d
dt
‖ūi(t)‖22 =

∫
Ω

ūi(t)
l∑

k=1

∂

∂xk

(
Dik

∂ūi

∂xk

)
dx− ai ‖ūi(t)‖22

+
∫

Ω

{
m∑

j=1

bjiūi(t)[fj(vj(t)− fj(v∗j )]

+
m∑

j=1

b̄jiūi(t)[gj(vj(t− σji(t)))− gj(v∗j )]}dx

From Green formula, the boundary condition and Lemma 2, we have∫
Ω

ūi(t)
l∑

k=1

∂

∂xk

(
Dik

∂ūi

∂xk

)
dx =

∫
Ω

ūi(t)∇ ·
(
Dik

∂ūi

∂xk

)l

k=1
dx

=
∫

∂Ω

ūi(t)
(
Dik

∂ūi

∂xk

)l

k=1
dx−

∫
Ω

(
Dik

∂ūi

∂xk

)l

k=1
∇ · (ūi)dx

= −
∫

Ω

(
Dik

∂ūi)
∂xk

)l

k=1
∇ · (ūi

)
dx = −

l∑
k=1

∫
Ω

Dik

( ∂ūi

∂xk

)2
dx

≤ −
l∑

k=1

∫
Ω

Dik

ω2
k

ū2
i dx ≤ −

l∑
k=1

D∗
ik

ω2
k

∫
Ω

ū2
i dx = −

l∑
k=1

D∗
ik

ω2
k

‖ūi(t)‖22

where � = (
∂

∂x1
, · · · , ∂

∂xl
)T is the gradient operator.

Then we can get

1
2

d
dt
‖ūi(t)‖22 ≤ −(ai +

l∑
k=1

D∗
ik

ω2
k

) ‖ūi(t)‖22 +
∫

Ω

{
m∑

j=1

bjiūi(t)[fj(vj(t)− fj(v∗j )]

+
m∑

j=1

b̄jiūi(t)[gj(vj(t− σji(t))) − gj(v∗j )]}dx

= −a∗i ‖ūi(t)‖22 +
∫

Ω

{
m∑

j=1

bjiūi(t)[fj(vj(t)− fj(v∗j )]

+
m∑

j=1

b̄jiūi(t)[gj(vj(t− σji(t))) − gj(v∗j )]}dx
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So we can easily obtain that

d
dt
‖ūi(t)‖2 ≤− a∗i ‖ūi(t)‖2 +

1
‖ūi(t)‖2

∫
Ω

{
m∑

j=1

bjiūi(t)[fj(vj(t)− fj(v∗j )]

+
m∑

j=1

b̄jiūi(t)[gj(vj(t− σji(t))) − gj(v∗j )]}dx (4)

By using the the method of variation parameter and Holder inequality, we obtain

‖ūi(t)‖2≤e−a∗
i t ‖ūi(0)‖2+

∫ t

0

e−a∗
i (t−s) 1

‖ūi(s)‖2

∫
Ω

{
m∑

j=1

bjiūi(s)[fj(vj(s)−fj(v∗j )]

+
m∑

j=1

b̄jiūi(s)[gj(vj(s− σji(s))) − gj(v∗j )]}dxds

≤ e−a∗
i t ‖ūi(0)‖2 +

∫ t

0

e−a∗
i (t−s) 1

‖ūi(s)‖2
{

m∑
j=1

|bji|Qj ‖ūi(s)‖2 ‖v̄j(s)‖2

+
m∑

j=1

∣∣b̄ji

∣∣Mj ‖ūi(s)‖2 ‖v̄j(s− σji(s))‖2}ds

= e−a∗
i t ‖ūi(0)‖2 +

∫ t

0

e−a∗
i (t−s){

m∑
j=1

|bji|Qj ‖v̄j(s)‖2

+
m∑

j=1

∣∣b̄ji

∣∣Mj ‖v̄j(s− σji(s))‖2}ds

Therefore, we have

sup
0≤θ≤t

(‖ūi(θ)‖2 eλθ) ≤ sup
0≤θ≤t

e(λ−a∗
i )θ ‖ūi(0)‖2 + sup

0≤θ≤t

∫ θ

0

eλθ−a∗
i (θ−s)

{
m∑

j=1

|bji|Qj ‖v̄j(s)‖2 +
m∑

j=1

∣∣b̄ji

∣∣Mj ‖v̄j(s− σji(s))‖2}ds

≤ sup
−τ≤θ≤0

‖ūi(θ)‖2

+ sup
0≤θ≤t

∫ θ

0

eλθ−a∗
i (θ−s)

m∑
j=1

|bji|Qj ‖v̄j(s)‖2 ds

+ sup
0≤θ≤t

∫ θ

0

eλθ−a∗
i (θ−s)

m∑
j=1

∣∣b̄ji

∣∣Mj ‖v̄j(s− σji(s))‖2 ds
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Compute that

sup
0≤θ≤t

∫ θ

0

eλθ−a∗
i (θ−s)

m∑
j=1

|bji|Qj ‖v̄j(s)‖2 ds

= sup
0≤θ≤t

∫ θ

0

e(λ−a∗
i )(θ−s)

m∑
j=1

|bji|Qj ‖v̄j(s)‖2 eλsds

≤ sup
0≤θ≤t

{
∫ θ

0

e(λ−a∗
i )(θ−s)ds

m∑
j=1

|bji|Qj sup
0≤s≤θ

(‖v̄j(s)‖2 eλs)}

≤ (a∗i − λ)−1
m∑

j=1

|bji|Qj sup
0≤θ≤t

(‖v̄j(θ)‖2 eλθ)

≤ (a∗i − λ)−1
m∑

j=1

|bji|Qj sup
−σ≤θ≤t

(‖v̄j(θ)‖2 eλθ)

and

sup
0≤θ≤t

∫ θ

0

eλθ−a∗
i (θ−s)

m∑
j=1

∣∣b̄ji

∣∣Mj ‖v̄j(s− σji(s))‖2 ds

= sup
0≤θ≤t

∫ θ

0

e(λ−a∗
i )(θ−s)

m∑
j=1

∣∣b̄ji

∣∣Mje
λσji(s) ‖v̄j(s− σji(s))‖2 eλ(s−σji(s))ds

≤ (a∗i − λ)−1
m∑

j=1

∣∣b̄ji

∣∣Mje
λσ sup

−σ≤θ≤t
(‖v̄j(θ)‖2 eλθ)

Hence we have

sup
0≤θ≤t

(‖ūi(θ)‖2 eλθ) ≤ sup
−τ≤θ≤0

‖ūi(θ)‖2 + (a∗i − λ)−1
m∑

j=1

(|bji|Qj

+
∣∣b̄ji

∣∣Mje
λσ) sup

−σ≤θ≤t
(‖v̄j(θ)‖2 eλθ)

Similarly, we can obtain

sup
0≤θ≤t

(‖v̄j(θ)‖2 eλθ) ≤ sup
−σ≤θ≤0

‖v̄j(θ)‖2 + (c∗j − λ)−1
n∑

i=1

(|dij |Pi

+
∣∣d̄ij

∣∣Lie
λτ ) sup

−τ≤θ≤t
(‖ūi(θ)‖2 eλθ)

Thus, we have

sup
−τ≤θ≤t

(‖ūi(θ)‖2 eλθ) ≤ 2 sup
−τ≤θ≤0

‖ūi(θ)‖2 + (a∗i − λ)−1
m∑

j=1

(|bji|Qj

+
∣∣b̄ji

∣∣Mje
λσ) sup

−σ≤θ≤t
(‖v̄j(θ)‖2 eλθ)
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sup
−σ≤θ≤t

(‖v̄j(θ)‖2 eλθ) ≤ 2 sup
−σ≤θ≤0

‖v̄j(θ)‖2 + (c∗j − λ)−1
n∑

i=1

(|dij |Pi

+
∣∣d̄ij

∣∣Lie
λτ ) sup

−τ≤θ≤t
(‖ūi(θ)‖2 eλθ)

Let set

Ui(t) = sup
−τ≤θ≤t

(‖ūi(θ)‖2 eλθ), Un+j(t) = sup
−σ≤θ≤t

(‖v̄j(θ)‖2 eλθ),

U(t) = (U1(t), · · · , Un(t), Un+1(t), Un+m(t))T .

Then we have

U(t) = 2U(0) +
(
A− λI 0

0 C − λI
)−1 ( 0 B(λ)

D(λ) 0

)
U(t)

and

U(t) = 2
(
I −

(
A− λI 0

0 C − λI
)−1 ( 0 B(λ)

D(λ) 0

))−1

U(0)

We further obtain

‖u(t; ξ)− u∗‖+ ‖v(t; η) − v∗‖ ≤ e−λt
m+n∑
k=1

Uk(t)

≤ 2e−λt

(m+n∑
l=1

m+n∑
k=1

Elk(λ)
)(m+n∑

k=1

Uk(0)
)

≤Me−λt(‖ξ − u∗‖+ ‖η − v∗‖)
whereM > 1 is some constant. From the above inequality, we can conclude that
the equilibrium point of system (1) is unique. The proof is completed.

Remark. Our methods only require the time-varying delays τij(t), σji(t)(1 ≤
i ≤ n, 1 ≤ j ≤ m) are nonnegative and bounded. However, in some recent
literatures, the time delays τij(t), σji(t) are often supposed to be differentiable
and their derivatives τ̇ij(t), η̇ji(t) be bounded by 1 in order to construct suitable
Lyapunov function.

For system (2), we have the following result

Corollary 1. If system (2) satisfies assumptions (A1) and

(A3)

ρ

((
A 0
0 C

)−1 ( 0 B(0)
D(0) 0

))
< 1,

where A= diag{a1, · · · , an}, C = diag{c1, · · · , cm}, B(z) = (Bij(z))n×m, Bij(z)
= |bji|Qj +

∣∣b̄ji

∣∣Mje
zσ, , D(z) = (Dji(z))m×n, Dji(z) = |dij |Pi +

∣∣d̄ij

∣∣Lie
zτ .

Then system (2) has a unique equilibrium point (u∗, v∗)T , which is globally
exponentially stable.
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4 Illustrative Example

Consider the following reaction-diffusion delayed BAM neural networks with
Dirichlet boundary conditions:

∂u(t, x)
∂t

=
2∑

k=1

∂

∂xk

(
Dk

∂u

∂xk

)− 1
2
u(t, x) +

1
4

sin (v(t, x))

+
1
4

tanh (v(t− σ(t), x)) + I,

∂v(t, x)
∂t

=
2∑

k=1

∂

∂xk

(
Dk

∂v

∂xk

)− 1
3
v(t, x) +

1
8

cos (u(t, x))

+
1
8

tanh (u(t− τ(t), x)) + J,

u(t, x) = 0, v(t, x) = 0, x ∈ ∂Ω, −τ ≤ t < +∞, −σ ≤ t < +∞,
u(s, x) = ξ(s, x), −τ ≤ s ≤ 0, 0 ≤ τ(t) ≤ τ,
v(s, x) = η(s, x), −σ ≤ s ≤ 0, 0 ≤ σ(t) ≤ σ, (5)

where D1 =
1
4
, D2 =

1
4
, D1 =

1
3
, D2 =

1
3
, Ω = {x | |xk| < 1, k = 1, 2} is a

bounded compact set. It is clear that P = Q = L = M = 1, A = 1, C = 1,

B(0) =
1
2
, D(0) =

1
4
.

Compute that ρ
((

A 0
0 C

)−1 ( 0 B(0)
D(0) 0

))
=

1
2
√

2
< 1. Hence, from

Theorem 1, we know that the equilibrium point (u∗, v∗)T of system (5) is unique
and globally exponentially stable.

5 Conclusion

In this paper, some novel sufficient conditions have been presented for the global
exponential stability of reaction-diffusion delayed BAM neural networks with
Dirichlet boundary conditions by employing the method of variation parameter
and inequality technique. The conditions possess highly important significance
in some applied fields, and can be easily checked in practice by simple algebraic
methods. These play an important role in design and applications of BAM neural
networks.
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Abstract. The global robust asymptotic stability problem of Cohen-Grossberg
neural networks with nonnegative amplification function is considered in this pa-
per. The amplification function condition is assumed to be nonnegative. In the
terms of linear matrix inequalities (LMIs), sufficient conditions are obtained by
using Lyapunov- Krasovskii method which guarantee the existence and global
robustly asymptotic stability of the equilibrium point of the Cohen-Grossberg
neural networks with nonnegative amplification function. Finally, a numerical
example is provided to verify the effectiveness of the proposed results.

Keywords: Cohen-Grossberg neural networks, Nonlinear complementary prob-
lem(NCP), Robust asymptotic stability, Linear matrix inequalities (LMIs).

1 Introduction

Cohen-Grossberg neural networks, proposed by Cohen and Grossberg in 1983[1], have
been applied to various signal processing problems such as optimization, image pro-
cessing, and associative memory design[2]. Recently, much attention is being focused
on the analysis of stability of Cohen-Grossberg neural networks.[3]-[7]. In [8] and [9],
the methods to analyze the global stability by the proper Lyapunov function are pro-
posed. Problems of exponential stability of neural networks with multiple time delays
were considered in [10]. In electronic implementation of neural networks, there also
exist inevitably some uncertainties due to the existence of modeling errors and param-
eter fluctuations, which lead to complex dynamical behaviors. This fact paves the way
for introducing the theory of interval matrices and interval dynamics to investigate the
global stability of interval neural networks. In the design of neural networks, it is impor-
tant to ensure that system be stable with respect to these uncertainties. In [11], [6]and
[7], the robust stability of interval neural networks with time delay is investigated. In
most of papers, the stability of Cohen-Grossberg neural networks are considered un-
der the positive amplification function condition. To the best of our knowledge, there
are few results about the stability problem of Cohen-Grossberg neural networks with
nonnegative amplification function[12], especially considering uncertainties.

In this paper, not only nonnegative amplification function but also uncertainties are
taken into consideration. The existence of unique nonnegative equilibrium of Cohen-
Grossberg neural networks with nonnegative amplification function and the sufficient

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 313–322, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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condition for its global robustly asymptotically stability criteria are obtained. Finally,
two numerical examples are given to show the effectiveness of the obtained results.

2 Preliminaries

Consider the following Cohen–Grossberg neural networks with uncertainties:

dxi(t)
dt

=ai(xi(t))[−di(xi(t)) +
n∑

j=1

(
w0

ij +∆w0
ij

)
gj(xj(t))

+
n∑

j=1

(wij +∆wij) gj(xj(t− τ)) + Ii], i = 1, 2, ..., n (1)

where xi(t) denotes the state variable of the ith neuron at time t; ai(xi(t)) represents
an amplification function at time t; di(xi(t)) is an appropriately the behaved func-
tion at time t; gi denotes the activation function; Ii is the external constant input;
W 0 +∆W 0 = (w0

ij)n×n +
(
∆w0

ij

)
n×n

andW +∆W = (wij)n×n +(∆wij)n×n de-
note the connection weight matrix and delayed connection weight matrix which contain
parameter uncertainties, respectively; τ is the time delay.

The network parameters are intervalized as follows:

W 0 ≤W 0 +∆W 0 ≤W 0
, i.e., w0

ij ≤ w0
ij +∆w0

ij ≤ w0
ij , i, j = 1, 2, ..., n

W ≤W +∆W ≤W, i.e., wij ≤ w+
ij∆wij ≤ wij , i, j = 1, 2, .., n (2)

let

x(t) = (x1(t), x2(t), ..., xn (t) )T
, d(x) = (d1(x1(t)), d2(x2(t)), ..., dn(xn(t)))T

g(x) = (g1(x1(t)), g2(x2(t)), ..., gn(xn(t)))T
, I = (I1, I2, ..., In)T

then the system (1) can be rewritten as

dx(t)
dt

= a(x)
[−d(x) + (W 0 +∆W 0)g(x(t)) + (W +∆W )g(x(t− τ)) + I

]
.

(3)
Throughout the paper, we make the following assumptions for Cohen–Grossberg

neural networks (3).

Assumption 1. For the amplification function, we have the following assumptions.
1) a(x) ∈ A1: a(x) is continuous and ai(0) = 0, ai(x) ≥ 0 (x > 0);
2) a(x) ∈ A2: a(x) ∈ A1 and for any ε > 0,

∫ ε

0
dx

ai(x) = +∞ (i = 1, 2, ...n);
3) a(x) ∈ A3: a(x) ∈ A1 and for any ε > 0,

∫∞
ε

dx
ai(x) = +∞ (i = 1, 2, ...n);

4) a(x) ∈ A4: a(x) ∈ A1 and for any ε > 0,
∫ ε

0
xdx

ai(x) < +∞ (i = 1, 2, ...n).

Assumption 2. There exists a positive diagonal matrixD = diag(D1, D2, ..., Dn) such
that 0 < Di ≤ di(ξ)−di(ζ)

ξ−ζ , ξ 
= ζ, i = 1, 2, ..., n.
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Assumption 3. For each activation function gi(i = 1, 2, . . . , n), there exist positive
finite constants Gi such that 0 ≤ gi(ξ)−gi(ζ)

ξ−ζ ≤ Gi for all ξ, ζ ∈ R, ξ 
= ζ and
i = 1, 2, ..., n.

Assumption 4. The uncertainties in the connection weight matrices are assumed to
satisfy the following assumption:[

∆W 0 ∆W
]

= HF
[
A B

]
where F is an unknown matrix representing parametric uncertainty which satisfies
FTF ≤ I and A,B and H are known real constant matrices with appropriate di-
mensions.
Notations: Rn

+ =
{
x = (x1, x2, ..., xn)T : xi ≥ 0, i = 1, 2...., n

}
denotes the first or-

thant, λm(D) and λM (D) denote the minimum eigenvalue and the maximum eigen-
value of a square matrixD.

If a(x) ∈ A1, then any equilibrium inRn
+ of system (3) is a solution of the following

equations:

xi [fi(x) − Ii] = 0 i = 1, 2, ..., n (4)

fi(x) = di(xi)−
n∑

j=1

(w0
ij +∆w0

ij + wij +∆wij)gj(xj), i = 1, 2, .., n (5)

Definition 1. (nonlinear complementary problem(NCP)) A NCP is to find x∗, i =
1, 2, ....n satisfying

x∗i ≥ 0, fi(x∗)− Ii ≥ 0
x∗i (fi(x

∗)− Ii) = 0, i = 1, 2, ....n

where f = (f1(x), f2(x), ..., fn(x))T : Rn
+ → Rn is continuous. Ii ∈ R, i =

1, 2, ..., n.

Definition 2. If x∗ is the solution of the NCP when f(x) is expressed as equation (5)
, then x∗is said to be a nonnegative equilibrium of the system (3) in the NCP sense .
Especially if x∗ > 0, then x∗is said to be a positive equilibrium of the system (3).

Definition 3. The neural network defined by (1) or (3) with the parameter ranges de-
fined by (2) is Rn

+- globally asymptotically robust stable if the unique equilibrium point
x∗ = (x∗1, x

∗
2, ..., x

∗
n)T of the neural system is globally asymptotically stable for any

positive initial condition φi(t) > 0 holds for all t ∈ [−τ, 0] and i = 1, 2, ..., n.

Lemma 1. [12] The NCP (10) has a unique solution for every I ∈ Rn if and only if
F (x) is norm-coercive, i.e. lim

‖x‖→∞
‖F (x)‖ = ∞ and locally univalent, where F (x) :

Rn → Rn is defined as follows:

F (x) = f(x+) + x−, x+ = (x+
1 , x

+
2 , ..., x

+
n )T , x− = (x−1 , x

−
2 , ..., x

−
n )T

x+
i =

{
xi

0
xi ≥ 0
xi < 0 , x−i =

{
xi

0
xi ≤ 0
xi > 0 , i = 1, 2, ....n.
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Lemma 2. [12] For given positive diagonal matrices D ∈ Rn×n and G ∈ Rn×n and
given matrices A ∈ Rn×n and B ∈ Rn×n, if there exist a positive definite diagonal
matrix P ∈ Rn×n and a positive definite symmetric matrix Q ∈ Rn×nsuch that[

2PDG−1 − PA−ATP −Q −PB
−BTP Q

]
> 0

holds, then there exists a constant β > 0 such that⎡⎣2βD −βA −βB
−βAT 2PDG−1 − PA−ATP −Q −PB
−βBT −BTP Q

⎤⎦ > 0

Lemma 3. [13] Let U, V,WandM be real matrices of appropriate dimensions withM
satisfyingM =MT , then we have

M + UVW +WTV TUT < 0

for all V V T ≤ I , if and only if there exists a scalar ε > 0 such that

M + ε−1UUT + εWTW < 0

3 Main Results

Theorem 1. Under assumptions 1, 2 and 3, if there exists a positive definite
diagonal matrix P = diag(p1, p2, ..., pn) such that

Ω = { rI − (S1 + S2) } > 0 (6)

holds, then there exists a unique nonnegative equilibrium of system (3), for any I ∈ Rn.
where

r =min(
pi

DG
), D = min(D1, D2, ..., Dn), G = max(G1, G2, ..., Gn),

S1 =(s̄1ij)n×n, s̄1ii = piw̄
0
ii, s̄1ij = max(

∣∣piw
0
ij

∣∣ , ∣∣piw̄
0
ij

∣∣), (i 
= j)
S2 =(s̄2ij)n×n, s̄2ii = piw̄ii, s̄2ij = max(

∣∣piwij

∣∣ , |piw̄ij |), (i 
= j).

Proof. According to (5) and Lemma 1, if F (x) is locally univalent and norm-coercive,
then for every I ∈ Rn, there exists a unique equilibrium of the system (3). At first, we
prove F (x) is locally univalent.

For any x = (x1, x2, ..., xn)T ∈ Rn, without loss of generality, by some rearrange-
ment of xi, we can assume xi > 0, if i = 1, 2, . . . , p; xi < 0, if i = p+ 1, p+ 2, ...,m;
xi = 0, if i = m + 1,m + 2, ..., n, for integers p ≤ m ≤ n. Moreover, if y ∈ Rnis
sufficiently close to x ∈ Rn, without loss of generality, we can also assume yi > 0 if
i = 1, 2, ..., p, yi < 0 if i = p + 1, p+ 2, ...,m, yi > 0 if i = m + 1,m + 2, ...,m1,
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yi < 0 if i = m1 + 1,m1 + 2, ...,m2, yi = 0 if i = m2 + 1,m2 + 2, ..., n, for some
integers p ≤ m ≤ m1 ≤ m2 ≤ n. It can be seen that

(x+
i − y+i )(x−i − y−i ) = 0, i = 1, 2, ..., n (7)

F (x)− F (y) = d(x+)− d(y+)− (W 0 +∆W 0)(g(x+)− g(y+))

− (W +∆W )(g(x+)− g(y+)) + (x− − y−) (8)

For x 
= y, if x+ = y+, then x− 
= y−. Therefore F (x) 
= F (y).
If x+ 
= y+, then there exit two cases.
Case 1: x+ 
= y+ and g(x+) = g(y+).

In this case, F (x)−F (y) = d(x+)− d(y+)+ (x−− y−). According to assumption
2, we can know if x+ 
= y+, then d(x+) 
= d(y+). By equation (8), F (x) − F (y) =
d(x+)− d(y+) 
= 0, so we have F (x) 
= F (y).
Case 2: x+ 
= y+and g(x+) 
= g(y+).

Multiplying both sides of (8) by (g(x+)− g(y+))TP results in

(g(x+)− g(y+))TP (F (x) − F (y)) = (g(x+)− g(y+))TP (d(x+)− d(y+))

− (g(x+)−g(y+))TPW̃ 0(g(x+)−g(y+))−(g(x+)−g(y+))TPW̃ (g(x+)

− g(y+)) + (g(x+)−g(y+))TP (x−−y−) (9)

where W̃ 0 =(w̃0
ij)n×n =W 0 +∆W 0, W̃ =(w̃ij)n×n =W +∆W , P =diag(pi>0).

According to Assumption 2,

(g(x+)−g(y+))TP (d(x+)−d(y+))=
n∑

i=1

pi((gi(x+)−gi(y+))(di(x+)−di(y+))

≥
n∑

i=1

pi

D
((gi(x+)−gi(y+))(x+−y+) ≥

n∑
i=1

pi

DG
(gi(x+)−gi(y+))2

≥ r(g(x+)−g(y+))2 (10)

(g(x+)−g(y+))TPW̃ 0(g(x+)−g(y+)) =
n∑

i=1

piw̃
0
ii(gi(x

+)−gi(y+))2

+
n∑

i=1

n∑
j=1,j 	=i

(piw̃
0
ij(gi(x

+)−gi(y+))(gj(x+)−gj(y+))

≤
n∑

i=1

piw̄
0
ii(gi(x

+)−gi(y+))2



318 Y. Kim et al.

+
n∑

i=1

n∑
j=1,j 	=i

∣∣piw̄
0
ij

∣∣ ∣∣(gi(x+)−gi(y+))
∣∣ ∣∣(gj(x+)−gj(y+)

∣∣
≤

n∑
i=1

s̄1ii(gi(x+)− gi(y+))2

+
n∑

i=1

n∑
j=1,j 	=i

s̄1ij

∣∣(gi(x+)− gi(y+))
∣∣ ∣∣(gj(x+)− gj(y+)

∣∣
=
∣∣(gi(x+)− gi(y+))T

∣∣ S̄1
∣∣(gi(x+)− gi(y+)

∣∣ (11)

Similarly,

(g(x+)−g(y+))TPW̃ (g(x+)−g(y+)) ≤∣∣(gi(x+)−gi(y+))T
∣∣S2

∣∣(gi(x+)−gi(y+))
∣∣ (12)

by (7), if x+ 
= y+, then (x− − y−) = 0

(g(x+)− g(y+))TP (x− − y−) = 0 (13)

From (9)∼(13), we have

(g(x+)−g(y+))TP (F (x)−F (y)) ≥ ∣∣(g(x+)−g(y+))T
∣∣Ω ∣∣(d(x+)−d(y+))

∣∣ (14)

If Ω > 0, then (g(x+) − g(y+))TP (F (x) − F (y)) > 0. g(x+) 
= g(y+) implies that
F (x) 
= F (y), it is proved that F (x) is locally univalent.

In (14), let y = 0, we have

(g(x+)−g(0+))TP (F (x)−F (0)) ≥ ∣∣(g(x+)−g(0+))T
∣∣Ω ∣∣(d(x+)−d(0+))

∣∣∣∣(g(x+)−g(0+))TP (F (x)−F (0))
∣∣ ≥ ∣∣(g(x+)−g(0+))T

∣∣Ω ∣∣(d(x+)−d(0+))
∣∣

‖P‖2
∥∥(g(x+)−g(0))

∥∥
2
‖(F (x)−F (0))‖1 ≥λm (Ω)

∥∥(d(x+)−d(0))
∥∥2

2∥∥(g(x+)−g(0))
∥∥

2
≥ ∥∥g(x+)

∥∥
2
−‖g(0)‖2 , ‖(F (x)−F (0))‖1≤ ‖F (x)‖1+‖F (0)‖1

‖F (x)‖1 ≥ ‖P‖−1
2 (λm (Ω)

∥∥g(x+)
∥∥

2
)− ‖P‖−1

2 (λm (Ω) ‖g(0)‖2)− ‖F (0)‖1
Since ‖P‖2 , ‖g (0)‖2and ‖F (0)‖2 are finite, we have

lim
‖x‖→∞

‖F (x)‖ =∞ (15)

F (x) is norm-coercive.
Let x∗ be the nonnegative equilibrium point of system (3) and x̃ = x− x∗, then the

system (1) can be transformed as

dx̃i(t)
dt

= ãi(x̃i(t))

⎡⎣−d̃i(x̃i(t)) +
n∑

j=1

(
w0

ij +∆w0
ij

)
g̃j(x̃j(t))

+
n∑

j=1

(wij +∆wij) g̃j(x̃j(t− τ)) + Ji

⎤⎦ (16)
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where

ãi(x̃i(t))=ai(x̃i+x∗i ), d̃i(x̃i(t))=di(x̃i+x∗i )−di(x∗i ),
g̃i(x̃i(t))=gi(x̃i+x∗i )−gi(x∗i )

Ji =

⎧⎨⎩−d̃i(x∗i ) +
n∑

j=1

(
w0

ij +∆w0
ij + wij +∆wij

)
g̃j(x∗j ) + Ii

0

x∗i = 0
x∗i > 0

Since x∗ is the nonnegative equilibrium point of system (3) , thus from (7) we know
that Ji ≤ 0 holds for all i = 1, 2, ..., n, which implies that g̃i(x̃i(t))Ji ≤ 0 holds for all
i = 1, 2, ..., n and t ≥ 0.

Theorem 2. Under assumptions 1, 2 ,3 and 4, if there exist a positive definite diagonal
matrix P , a positive definite symmetric matrix Q and a scalar ε > 0 such that⎡⎣Ψ11 PW + εATB PH

∗ Ψ22 0
∗ ∗ Ψ33

⎤⎦ < 0 (17)

holds, then the unique nonnegative equilibrium x∗of the system (3) is Rn
+- globally

robustly asymptotically stable. where

Ψ11 = −2PDG−1 + PW 0T
+W 0P + εATA, Ψ22 = −Q+ εBTB

Ψ33 = −εI, D = diag(D1, D2, ..., Dn), G = diag(G1, G2, ..., Gn)

Proof. Construct the following Lyapunov-Krasovskii functional:

V (x̃(t))=2β
n∑

i=1

∫ x̃(t)

0

s

ãi(s)
ds+2

n∑
i=1

pi

∫ x̃(t)

0

g̃i(s)
ãi(s)

ds+
∫ t

t−τ

g̃T (x̃(s))Qg̃(x̃(s))ds

(18)

where P = diag(pi) with pi > 0, Q = QT > 0, and i = 1, 2, . . . , n.
According to Assumption 1 and 3, we have

∫ x̃(t)

0

s

ãi(s)
ds < +∞,

∫ x̃(t)

0

g̃i(s)
ãi(s)

ds < +∞ (19)

Obviously, the V (x̃(t)) is the non-negative and radically unbounded function. Calcu-
lating the time derivatives of V (x̃(t)) along the trajectories of system (3) yield

V̇ (x̃(t))=2β
n∑

i=1

x̃i(t)[−d̃i(x̃i(t)) +
n∑

j=1

(w0
ij +∆w0

ij)g̃j(x̃j(t))

+
n∑

j=1

(wij +∆wij)g̃j(x̃j(t−τ))+Ji]+2
n∑

i=1

pig̃(x̃i(t))[−d̃i(x̃i(t))

+
n∑

j=1

(w0
ij +∆w0

ij)g̃j(x̃j(t))+
n∑

j=1

(wij +∆wij)g̃j(x̃i(t−τ))+Ji]

+ g̃T (x̃(t))Qg̃(x̃(t))− g̃T (x̃(t− τ))Qg̃(x̃(t− τ)) (20)
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x∗ is the nonnegative equilibrium point of system (3), therefore g̃(x̃(s))Ji ≤ 0.
From (19)-(20), we have

V̇ (x̃(t)) ≤2β [− x̃T (t)Dx̃(t) + x̃T (t)(W 0 +∆W 0)g(x̃T (t))

+ x̃T (t)(W +∆W )g̃((x̃(t− τ))] + 2[−g̃T (x̃(t))PDG−1g̃(x̃(t))

+g̃T (g̃(t))P (W 0+∆W 0)g̃(x̃(t)) +g̃T (x̃(t))P (W+∆W )g̃((x̃(t−τ))]
+g̃(x̃T (t)Qg̃(x̃(t))−g̃(x̃T (t−τ)Qg̃(x̃(t−τ))=−ζT (t)Ψ1ζ(t) (21)

where

ζ(t) = [x̃T (t) g̃T (x̃(t)) g̃T ((x̃(t− τ))]T ,

Ψ1 =

⎡⎣ψ11 −β(W 0 +∆W 0) −β(W +∆W )
∗ ϕ22 −P (W +∆W )
∗ ∗ ϕ33

⎤⎦ ,
ψ11 =2βD, ψ22 =2PDG−1−P (W 0 +∆W 0)T−(W 0 +∆W )P−Q, ψ33 =Q.

Obviously, if Φ1 > 0, it implies the
.

V (x) < 0 for any ζ(t) 
= 0.
According to Lemma 2, for a proper β, if

Ψ2 =
[
ψ22 −P (W +∆W )
∗ ψ33

]
> 0 (22)

where ψ22, ψ33 are same as those defined above, it implies the Φ1 > 0.
By the Assumption 4, inequality (22) can be rewritten in the following form:

Ξ +
[
PH
0

]
F
[
A B

]
+
[
AT

BT

]
FT

[
HTP 0

]
< 0 (23)

where Ξ =
[
−2PDG−1 + PW 0 +W 0T

P +Q PW
WTP −Q

]
is a definite diagonal matrix.

According to Lemma 3 , inequality (23) can be rewritten as follow

Ξ + ε−1

[
PHHTP 0
0 0

]
+ ε

[
ATA ATB
BTA BTB

]
< 0 (24)

According to Schur complement [5], (24) is equivalent to (17). Therefore, if inequal-
ity (17) is satisfied, then V̇ (x̃) < 0 and V̇ (x̃) ≤ −λm(Φ1) ‖x̃(t)‖22, lim

t→∞ ‖x̃(t)‖2 = 0.

x∗ is Rn
+ - globally robustly asymptotically stable.

4 Numerical Example

In this section , we present a numerical example to verify the theoretical results ob-
tained above. Consider the uncertain delayed Cohen-Grossberg neural network (3),
where g(x(t)) = [tanh(0.2x1), tanh(0.4x2)]T , ai(xi) = xi(t), d1(x1) = x1(t),
d2(x2) = 6x2(t) and
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D =
[

1 0
0 6

]
, G =

[
0.2 0
0 0.4

]
, W 0 =

[−2 1
−1 −1

]
, W =

[−1 1
1 1

]
,

A =
[

0.1 0.4
0 0.5

]
, B =

[−0.2 0.4
0.6 0.3

]
, H =

[
0.2 −0.1
0 0.4

]
, F =

[
sin t 0
0 sin t

]
.

By using the Matlab LMI Toolbox, a positive definite diagonal matrix P satisfies
inequality (6) can be given as follow

P =
[

6.5295 0
0 6.5295

]
> 0.

According to Theorem 1, there exists a unique nonnegative equilibrium.
A positive definite diagonal matrix P , a positive definite symmetric matrix Q and

a scalar ε satisfies inequality (17) by using the Matlab LMI Toolbox can be given as
follows.

P =
[

0.1189 0
0 0.1189

]
> 0, Q =

[
1.1413 0.0226
0.0226 1.6505

]
> 0, ε = 1.1289.

According to Theorem 2, the nonnegative equilibrium point of neural networks (3) is
globally asymptotically stable.

When∆W 0 = 0,∆W = 0 and I = (1, 0.1)T the solution of system (3) are (0, 0)T ,
(0.1072, 0)T (0.1569, 0)T and (0.1072, 0.1569)T . Among them, (0.1072, 0.1569)T is
the unique positive equilibrium point. When the initial condition is (0.7, 0.4)T , the state
response curves for τ = 2 and τ = 5 are shown in Fig.1. Fig.2 show state response
curves, which initial conditions are (0.4, 0.5)T and (1.5, 0.3)T .
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Fig. 1. State response for τ = 2(a) and τ = 5(b)
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Fig. 2. State response with initial conditions (0.4, 0.5)T (a) and (1.5, 0.3)T (b)
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5 Conclusion

This paper has the problem of global robust asymptotic stability analysis of a class of
Cohen-Grossberg neural networks with nonnegative amplification function. Some suf-
ficient conditions ensuring the existence and global robustly asymptotic stability of the
equilibrium point of the Cohen-Grossberg neural networks with nonnegative amplifica-
tion function have been obtained in terms of LMIs, respectively. Numerical examples
verify the validity of the method proposed in the paper.
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Abstract. In this paper, we investigate the multistability of neural networks with
a class of activation functions, which are nondecreasing piecewise linear with
2r(r ≥ 1) corner points. It shows that the n-neuron neural networks can have
and only have (2r +1)n equilibria under some conditions, (r +1)n of which are
locally exponentially stable and others are unstable. In addition, we discuss the
attraction basins of the stable equilibria for the two-dimensional case and found
out that under several conditions, the stable manifolds of the unstable equilibria
precisely comprise of the bounds of each attractor.

1 Introduction

Recently, the neural networks have been extensively studied due to their potential ap-
plications in classification, associative memory, parallel computation and other fields.
They can be modeled by the following differential equation

dui(t)
dt

= −diui(t) +
n∑

j=1

wijfj(uj(t)) + Ii, i = 1, · · · , n, (1)

where ui(t) represents the state of the i-th unit at time t; di > 0 denotes the rate
with which the i-th unit will reset its potential to the resting state in isolation when
disconnected from the network and external inputs; wij corresponds to the connection
weight of the j-th unit on the i-th unit; fj(·) is the activation function; and Ii stands for
the external input.

There have been a great number of literatures concerned with the dynamical be-
haviors of delayed neural networks. Most of them focus on the uniqueness and global
stability of the attractor, which is called as monostability, see [1] - [3]. However, it is
worth noting that there may exist more than one attractors. It is called as multistability
and it has many applications. For example, in pattern recognition, multiple attractors
correspond to the possible patterns and the converging to a certain attractor means that
the system recognizes the given pattern. For more references, see [4] - [6].
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In the pioneering paper [2], the authors have pointed out that the one neuron model
du(t)

dt = −u(t)+(1+ε)g(u(t)), where ε is a small positive number and g(u) = tanh(u),
has three equilibrium points and two of them are locally stable, one is unstable. Recent
studies have generalized it to the n-neuron neural networks, and many results have
been reported in the literature, see [7]-[13]. In [9], by decomposition of state space
into 3n subsets, the authors gave some conditions on the multiperiodicity of delayed
cellular neural networks with saturated activation function f(x) = |x+1|−|x−1|

2 , which
shows that the n-neural networks can have 2n periodic orbits located in 2n subsets of
Rn and they are attractive in the corresponding subsets, respectively. The multistability
of Cohen-Grossberg neural networks with a general class of activation functions was
also discussed in [10]. It showed that the n-neuron networks can have 2n locally ex-
ponentially stable equilibrium points located in saturation regions, and some sufficient
conditions are given meanwhile.

However, to the best of our knowledge, there are few papers discussing the existence
of attractors or repellers in other 3n − 2n subsets. Are there any equilibrium points?
Are they stable or unstable? In [11], the authors investigated the multiple stationary
equilibria of n-neuron neural networks. By defining 3n regions, it showed that the sys-
tem can have 3n equilibrium points, 2n of them are stable and they are attractive in a
class of subsets with positive invariance. Motivated by these works, we are to investi-
gate the multistability of neural networks (1) in this paper, to address the dynamics in
3n − 2n subsets, to figure out the number of equilibria located in Rn in all, and to see
the attraction basins of these stationary equilibrium points.

Consider the neural networks (1) with a class of activation functions:

fj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1
j −∞ < x < p1j ,

m2
j−m1

j

q1
j−p1

j
(x− p1j) +m1

j p1j ≤ x ≤ q1j ,
m2

j q1j < x < p
2
j ,

m3
j−m2

j

q2
j−p2

j
(x− p2j) +m2

j p2j ≤ x ≤ q2j ,
m3

j q2j < x < p
3
j ,

· · · · · · · · · · · ·
· · · · · · · · · · · ·
mr+1

j −mr
j

qr
j −pr

j
(x− pr

j) +mr
j pr

j ≤ x ≤ qrj ,
mr+1

j qrj < x < +∞,

(2)

where r ≥ 1, {mk
j }r+1

k=1 is an increasing constants series, pk
j , q

k
j , k = 1, 2, · · · , r are

constants with −∞ < p1j < q
1
j < p

2
j < q

2
j < · · · · · · < pr

j < q
r
j < +∞, j =

1, 2, · · · , n. That is, fj is a nondecreasing piecewise linear function with 2r corner
points.

In the following, the multistability of the system (1) is studied and a new viewpoint
on their attraction basins is presented.
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2 Main Results

2.1 Multistability on Neural Networks

Case 1: r = 1, n = 2.
For simplicity, we start with the neuron neural networks with r = 1 and n = 2. In

this case, the dynamical system (1) reduces to{
du1(t)

dt = −d1u1(t) + w11f1(u1(t)) + w12f2(u2(t)) + I1,
du2(t)

dt = −d2u2(t) + w21f1(u1(t)) + w22f2(u2(t)) + I2,
(3)

with

fj(x) =

⎧⎪⎨⎪⎩
mj −∞ < x < pj,
Mj−mj

qj−pj
(x− pj) +mj pj ≤ x ≤ qj ,

Mj qj < x < +∞,
(4)

wheremj ,Mj , pj, qj are constants withmj < Mj, pj < qj , j = 1, 2, · · · , n.
Then,R2 can be divided into 9 subsets: (−∞, p1)×(−∞, p2), (−∞, p1)× [p2, q2],

(−∞, p1)×(q2,∞), [p1, q1]×(−∞, p2), [p1, q1]×[p2, q2], [p1, q1]×(q2,∞), (q1,∞)×
(−∞, p2), (q1,∞)× [p2, q2], (q1,∞)× (q2,∞). And we have

Theorem 1. Suppose that{
−dipi + wiimi + max{wijmj, wijMj}+ Ii < 0,
−diqi + wiiMi + min{wijmj , wijMj}+ Ii > 0,

(5)

for i, j = 1, 2, i 
= j. Then, system (3) with activation (4) has 9 equilibrium points, in
which 4 are locally exponentially stable and others are unstable. �
Case 2: r = 1, n ≥ 2.

Similarly, for the neural networks with n-neuron, if we denote

(−∞, pk) = (−∞, pk)1 × [pk, qk]0 × (qk,+∞)0;
[pk, qk] = (−∞, pk)0 × [pk, qk]1 × (qk,+∞)0;

(qk,+∞) = (−∞, pk)0 × [pk, qk]0 × (qk,+∞)1,

then Rn can be divided into 3n subsets:
n∏

k=1

(−∞, pk)δk
1 × [pk, qk]δ

k
2 × (qk,+∞)δk

3 :

(δk1 , δ
k
2 , δ

k
3 ) = (1, 0, 0), or(0, 1, 0), or(0, 0, 1), k = 1, · · · , n.

Denote

Φ1 =
⋃

ηk∈{0,1},
k=1,··· ,n

( n∏
k=1

(−∞, pk)ηk × (qk,+∞)1−ηk
)
,

Φ2 =
n∏

k=1

[pk, qk], Φ3 = Rn − Φ1 − Φ2.

And we get
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Theorem 2. Suppose that⎧⎪⎪⎪⎨⎪⎪⎪⎩
−dipi + wiimi +

n∑
j=1,
j �=i

max{wijmj , wijMj}+ Ii < 0,

−diqi + wiiMi +
n∑

j=1,
j �=i

min{wijmj , wijMj}+ Ii > 0,
(6)

for i, j = 1, 2, · · · , n. Then, the dynamical system (1) with activation (4) has 3n equilib-
rium points in all, 2n of which are locally exponentially stable and others are unstable.

�

Case 3: r ≥ 1, n ≥ 2.
Inspired by the discussions above, it is easy to see thatR can be divided into (2r+1)

subsets, so that Rn can be divided into (2r + 1)n subsets. Then, we have

Theorem 3. Suppose that⎧⎪⎪⎨⎪⎪⎩
−dip

k
i + wiim

k
i +

∑
j=1,
j �=i

max{wijm
1
j , wijm

r+1
j }+ Ii < 0,

−diq
k
i + wiim

k+1
i +

∑
j=1,
j �=i

min{wijm
1
j , wijm

r+1
j }+ Ii > 0,

(7)

for i, j = 1, 2, · · · , n, k = 1, 2, · · · , r. Then, the dynamical system (1) with activation
(2) has (2r+ 1)n equilibrium points in all, and (r+ 1)n of them are locally stable and
others are unstable. �

Remark 1. In fact, the method can be applied to the neural networks with multilevel
sigmoid functions, such as,

gj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2r tanh(λj) + tanh(λj(x + 2r)),
−∞ < x ≤ −2r − 1,

2k tanh(λj) + tanh(λj(x− 2k)),
2k − 1 ≤ x ≤ 2k + 1,

2r tanh(λj) + tanh(λj(x− 2r)),
2r + 1 < x <∞,

(8)

where λj > 0, j = 1, · · · , n, k = −r, · · · ,−1, 0, 1, · · · , r, and we can get similar con-
clusions. Of course, the more levels the response function has, the more tight conditions
it should have for the input Ii.

2.2 Attraction Basins of Stationary Equilibria

To clarify our main points, we begin with the case of 2-neural networks with r= 1 for
simplicity. According to Theorem 1, under conditions (5), there are 4 stable equilibrium
points uS1, uS2 , uS3 , uS4 , in subsets S1, S2, S3, S4, respectively, and 5 unstable equilib-
rium points uΞ1 , uΞ2 , uΞ3 , uΞ4 , uΛ in Ξ1, Ξ2, Ξ3, Ξ4, Λ, respectively (See Fig. 1).
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Fig. 1. Sketched map on subsets of R2

Take a further look on the dynamics in subsetsΞ1, Ξ2, Ξ3, Ξ4, for example, inΞ1 =
(p1, q1)× (q2,+∞), system (1) reduces to the following equation{

du1(t)
dt = (−d1 + w11l1)u1(t) + w12M2 + w11c1 + I1,

du2(t)
dt = −d2u2(t) + w21l1u1(t) + w22M2 + w11c1 + I2,

(9)

where

lj =
Mj −mj

qj − pj
, cj =

mjqj −Mjpj

qj − pj
, i, j = 1, 2.

Denote x(t) = u(t)− uΞ1 , and we have{
dx1(t)

dt = (−d1 + w11l1)x1(t),
dx2(t)

dt = −d2x2(t) + w21l1x1(t).
(10)

Then, it can be seen that, uΞ1 is attractive along the direction x1 = 0, i.e., u1 = uΞ1
1 .

While for directions with u1 < uΞ1
1 (similarly, u1 > uΞ1

1 ), we see that u1(t) will
exceed p1(q1) when t is big enough, and then it is attracted to the equilibrium in S1(S2)
correspondingly. Similar conclusions can be derived for uΞ2 , uΞ3 , uΞ4 , and attraction
basins of uS1 , · · · , uS4 can be expanded to subsets Ξ1, · · · , Ξ4.

Then, consider the dynamics in Λ, which can be described as⎧⎪⎪⎪⎨⎪⎪⎪⎩
du1(t)

dt = (−d1 + w11l1)u1(t)
+ w12l2u2(t) + w11c1 + w12c2 + I1,

du2(t)
dt = (−d2 + w22l2)u2(t)

+ w21l1u1(t) + w11c2 + w22c2 + I2,

which can also be rewritten as

duT (t)
dt

= AuT (t) + αT , (11)
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where A =
(−d1 + w11l1 w12l2

w21l1 −d2 + w22l2

)
, and α = [w11c1 + w12c2 + I1, w11c1 +

w12c2 + I2].
Suppose that det(A) > 0. Then, all eigenvalues of A have positive real-parts, which

implies that uΛ is unstable and the solutions with initial states in the neighborhood of
uΛ diverge.

On the other hand, by translation yT (t) = uT (t) + A−1αT , system (11) can be
considered as homogeneous. Suppose its fundamental matrix of solution is Û(t), then,
its solution can be described as yT (t) = Û(t)yT (0). Similarly to time reversal, define
ỹT (t) = Û−1(t)ỹT (0), ũT (t) = ỹT (t)−A−1αT . Then, we have

dỹT (t)
dt

= −AỹT (t), (12)

and
dũT (t)
dt

= −AũT (t)− αT , (13)

which is an asymptotical stable system and all orbits converge to uΛ.
Denote Γ1 as the orbit of system (13) with initial state (uΞ1

1 , q2), that is,

Γ1 : ũ(t) = [(uΞ1
1 , q2) + α(AT )−1]e−AT t − α(AT )−1. (14)

Similarly, there are other 3 orbits Γ2, Γ3, Γ4, of system (13) with initial states (p1,
uΞ2

2 ), (q1, uΞ3
2 ), (uΞ4

1 , p2), respectively, and all of them converge to uΛ. Denote as

Γ2 : ũ(t) = [(p1, uΞ2
2 ) + α(AT )−1]e−AT t − α(AT )−1, (15)

Γ3 : ũ(t) = [(q1, uΞ3
2 ) + α(AT )−1]e−AT t − α(AT )−1, (16)

Γ4 : ũ(t) = [(uΞ4
1 , p2) + α(AT )−1]e−AT t − α(AT )−1. (17)

Denote
∆1 ⊂ Λ as the region bounded by Γ1 and Γ2,
∆2 ⊂ Λ as the region bounded by Γ1 and Γ3,
∆3 ⊂ Λ as the region bounded by Γ2 and Γ4,
∆4 ⊂ Λ as the region bounded by Γ3 and Γ4.

Then, for

S1

⋃
(Ξ1

⋂
{u : u1 < u

Ξ1
1 })

⋃
(Ξ2

⋂
{u : u2 > u

Ξ2
2 })

⋃
∆1,

its interior is in attraction basin of uS1 , while its bound is stable manifolds of unstable
equilibria uΞ1 and uΞ2 . Similar conclusions can be derived for uS2 , uS3, uS4 , and other
equilibrium points.

To sum up, we have

Theorem 4. Suppose that (5) is satisfied. If there also holds det(A) > 0, then, the
whole state space R2 can be divided into 4 parts, the interior of which are the very
attraction basins of equilibria uS1 , uS2 , uS3 , uS4 , respectively.
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Furthermore, for the case r ≥ 1, n = 2, denote

A(k,j) =
(−d1 + w11l

k
1 w12l

j
2

w21l
k
1 −d2 + w22l

j
2

)
,

where lkθ = mk+1
θ −mk

θ

qk
θ −pk

θ

, θ = 1, 2, k, j = 1, · · · , r. And we have

Theorem 5. Suppose that (7) (with n = 2) is satisfied. If there also holds det(A(k,j)) >
0 for all k, j = 1, · · · , r, then, the whole state space R2 can be divided into (r + 1)2

parts, the interior of which are the very attraction basins of equilibria uS1 , · · · , uSr+1 ,
respectively.

The details of proof and the further investigation to the general case of n > 2 will be
presented anywhere else in our future papers.

3 Simulation

Example 1. Consider the following 2-neuron neural networks:{
du1(t)

dt = −u1(t) + 3f1(u1(t)) + f2(u2(t)) + 1
2 ,

du2(t)
dt = −2u2(t) + f1(u1(t)) + 4f2(u2(t))− 1

2 ,
(18)

where we take the activation function as fi(x) = |x+1|−|x−1|
2 , i = 1, 2.

It is easy to see that the conditions (5) are satisfied. Therefore, according to the
Theorem 1, there must be 32 equilibria of (18), and 4 of them are locally stable while
others are unstable.

In fact, by simulations, the dynamics of system (18) are illustrated in Figs. 2 and 3,
where evolutions of more than 220 initial states have been tracked. It shows that there
are 4 stable equilibrium points, as confirmed by our theory.
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Fig. 2. The dynamics of (18) with different initial states, in which solutions with 180 initial states
converging to 4 stable equilibria are depicted in blue; and other 40 solutions with initial states
u1 = −3/4, or u1 = 1/4, or u2 = −1/4, or u2 = 3/4, respectively, are depicted in black
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Fig. 3. Details of the inset. The 4 curves in red represent Γ1, Γ2, Γ3, Γ4, respectively.
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Fig. 4. The dynamics of (19) with different initial states, in which solutions with more than 220
initial states converging to 9 stable equilibria are depicted in blue; and solutions with initial
states u1 = −1/2, 7/2, 0, 4, 1/2, 9/2, or u2 = 13/4, 7/2, 15/4, 1/4, 1/2, 3/4, respectively,
are depicted in black
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Fig. 5. Details of the inset. The 16 curves in red represent Γ1, · · · , Γ16, respectively.
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Example 2. Consider the following 2-neuron neural networks:{
du1(t)

dt = −2u1(t) + 4f(u1(t)) + 1
2f(u2(t))− 1

2 ,
du2(t)

dt = −2u2(t)− 1
2f(u1(t)) + 6f(u2(t))− 3

2 ,
(19)

where we take the activation function as

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 x ≤ −1,
x − 1 ≤ x ≤ 1,
1 1 < x ≤ 3,
x− 2 3 < x ≤ 5,
3 x > 5.

(20)

It is easy to see that the conditions (7) are satisfied. Therefore, according to the
Theorem 3, there must be 52 equilibria of (19), and 32 of them are locally stable while
others are unstable.

In fact, by simulations, the dynamics of system (19) are illustrated in Figs. 4 and 5,
where evolutions of more than 300 initial states have been tracked. It shows that there
are 9 stable equilibrium points, as confirmed by our theory.
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Robust Stability of Control Systems  
with One Form of Uncertain Parameters 

Faming Zhang  
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Abstract. By using Lyapunov stability method and linear matrix inequalities 
and through establishing proper Lyapunov function, the paper studies uncertain 
parameter time-delay Lurie control systems with structured parameter perturba-
tions and norm bound parameter perturbations, and thus obtains delay-
dependent sufficient conditions for robust absolute stability of the systems. The 
research shows: When parameter is uncertain and has no norm bound restric-
tion, these above conditions can be presented in terms of the positive definite 
characteristic of diagonal matrix and linear matrix, which is very directly per-
ceived and easy to operate and can be easily solved by using Matlab Toolbox. 

Keywords: Lurie control systems, Robust absolute stability, Linear matrix  
inequalities, Lyapunov function. 

1   Introduction 

Lurie control system is a very important non-linear control system. The issue of abso-
lute stability of Lurie control system receives much attention and extensive research, 
which has obtained good results[1-5]. These results are all based on system model 
when parameter is certain. In practice, there always exist errors in model building and 
uncertainties in model itself, thus the parameter of system model is uncertain, which 
shows the importance of research on robust absolute stability of Lurie control system. 
Nowadays, the research of robust absolute stability of uncertain Lurie control system 
has gained fruitful results[6-10]. Because the introduction of linear matrix in equali-
ties makes research results about stability less conservative than the results expressed 
by the traditional method of norm estimation, this paper gives sufficient condition of 
robust absolute stability of the system expressed by linear matrix in equalities. 

Consider the system 

⎪
⎩

⎪
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∆++−∆++∆+=
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Where nRtx ∈)( is the state vector, A.B.C.D is constant matrix: ,, nnRBA ×∈  

,mnRD ×∈ miRC n
i ,,2,1, L=∈ , [ ] ,21

mn
m RCCCC ×∈= L

[ ] ,)()()()( 21
mT

m Rtttt ∈= σσσσ L 0>τ  is a constant time delay, unknown 
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parameter vector ΘΘ∈ ,θ  is a set with bound restriction in R, )(tϕ  is continuous 

vector initial function,  [ ] ,))(())(())(())(( 2211
T

mm tftftftf σσσσ L=  

{ }0,)(0,0)0(|)()( 2
],0[ ≠≤<=⋅=∈⋅ iiiiiiiiki kfffKf

i
σσσσ , 

),,,2,1(,0 miki L=> )(),(),(),( θθθθ EDBA ∆∆∆∆  is uncertain parameter of 

the system and satisfy:  

111 )()( HFGA θθ =∆ , 222 )()( HFGB θθ =∆ , 333 )()( HFGD θθ =∆ ,  

Where )3,2,1(, =iHG ii  is known as constant matrix, )(θiF  is uncertain and sat-

isfy: )3,2,1(,)()( =≤ iIFF i
T

i θθ .Simply, ( )mkkkdiagK L21= , 

),(),( θθ BBBAAA ∆+=∆+= )(θDDD ∆+=  . 

2   Main Result 

Lemma 1 [11]. For arbitrary vector or matrix u, v and arbitrary symmetric positive 
definite matrix, the following inequality holds: 
 

.  , 11 vPvPuuuvvuvPvPuuuvvu TTTTTTTT −− +≤++≤−−  
 

Lemma 2 [12]. For arbitrary vector or matrix u, v and arbitrary symmetric positive 
definite matrix, the following in equality holds: 
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Theorem 1. If there exist matrixes )3,2,1(,0,0 =>> iRP i

, 

0),,,( 21 ≥= msssdiagS L  and constant )3,2,1(,0,0,0 =>>> iiii ηεµ  sat-

isfy the following linear matrix in equality 
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System (1) has robust absolute stability, where 
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),( 2222111133 GRGIGRGIdiag TT −−=Θ εε , 333344 GRGI T−=Θ ε ,. 

),,( 22332222221155 HHRHHRHHRdiag TTT ηηη −−−=Θ ,

),,( 32166 IIIdiag ηηη=Θ ,. 
 

Proof: suppose ],,[),()( TTtTt −−−∈−= τϕϕ  when τ≥t , then (1) can be written 

as: 
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If )()()(1 tPxtxtV T= , then according to the solution of (2) consider derivative, 

we have: 
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iiε ，From lemma 1, 

we have:  



 Robust Stability of Control Systems with One Form of Uncertain Parameters 337 

1111111111111 )()()(2 HFGRGFHHFGRAARAARA TTTTTT θθθ ++=  

11111
1

1111111 )( HHARGGRGIGRAARA TTTTT εε +−+≤ − , 

22222
1

22222222 )( HHBRGGRGIGRBBRBBRB TTTTTT εε +−+≤ − , 

33333
1

33333333 )( HHDRGGRGIGRDDRDDRD TTTTTT εε +−+≤ − , 

According to
],0[)(

iki Kf ∈⋅ , we have: 

mitftxCktf ii
T
iiii ,,2,1,0))](()())[(( L=≥− σσ . 

Establish Lyapunov norm function: )()()()()( 4321 tVtVtVtVtV +++= , then 

∑∑∑
===

−+≤=
m

i
ii

T
iiiii

i
i

i
i tftxCktfstVtVtV

1

4

1

4

1

))](()())[((2)()()( σσ&&&
 

⎥
⎦

⎤
⎢
⎣

⎡
Ξ⎥

⎦

⎤
⎢
⎣

⎡
=

))((

)(

))((

)(

tf

tx

tf

tx
T

σσ
, where ⎥

⎦

⎤
⎢
⎣

⎡
Ξ+
+Ξ

=Ξ
22

11

PDKSC

CSKPD
TT

,  

PBHHRBGGGGP T

i

T
ii

i

T
i

i

T
iii ⎟

⎠

⎞
⎜
⎝

⎛ −+++Θ=Ξ ∑∑∑
=

−

=

−

=

−
3

1

1
22

3

1
22

1
3

1

1
1111 )( ητητµ

])()([ 22
1

22222211
1

111111 BRGGRGIGRBARGGRGIGRA TTTTTT −− −+−+ εετ , 

DRGGRGIGRD TTT
33

1
3333332222 )( −−+Θ=Ξ ετ , 

From Lemma 3, 0<Θ  is the sufficient condition of 0<Ξ  thus from 0<Θ , the 
system has robust absolute stability.    

If parameter is uncertain and has norm bound restriction 
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then the uncertainty of corresponding system (1) can be assumed: 
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delay dependant rules can be shown as follow: 
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Then system (1) has robust absolute stability, where: 
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[ ]PBPBPB τττ=Τ15
, [ ]PPP τβτβτβ=Τ16 , 

SIDRDT 2)( 33322 −++=Τ γτεµτ ，

324 RDTτγ=Τ  , 

),( 221133 RIRIdiag βεαε −−=Τ ,
3344 RI γε −=Τ ,  

),,( 33221155 IRIRIRdiag βηβηβη −−−=Τ , ),,( 32166 IIIdiag ηηη=Τ  

3   Result Discussion  

(1). About time-delay Luries control system of uncertain parameter with struc-
tured parameter perturbations and norm bound parameter perturbations, this paper 
gives the sufficient condition of time-delay robust absolute stability through con-
structing Lyapunov function, which is expressed in terms of linear matrix inequality 
and is easy to operate and can be easily solved by using Matlab Toolbox through 
computer. 

(2). Reference[3]obtains the time-delay dependant sufficient condition of robust 
absolute stability by means of norm estimation, using Razumikhin technique. In prac-
tice, the need of calculating the maximum eigenvalue and the minimum eigenvalue of 
many matrixes and the norm of vectors makes calculation very complicated, however, 
the said results only involves the negative definite judgement of a linear matrix by 
using computer, which is very directly perceived and easy to operate and less conser-
vative. 

(3). Reference[7] discussed robust absolute stability of uncertain Lurie control 
system while this paper analyzes it when uncertain perturbations is unknown and has 
norm bound restriction. The said Lemma 2 is the extension of the result in Refer-
ence[7]. 

(4). Compared with Reference[8], this paper considers the fact that “Activation 
function” also has time-delay effects and improves the establishment of Lyapunov 
function. So the results of robust absolute stability is more general and the time-delay 
dependant sufficient condition is less conservative, that is, the said results are more 
effective than those in Reference[8].  
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Abstract. This paper presents the results of stability analysis of a gen-
eral class of continuous-time recurrent neural networks. The new stability
results includes sufficient conditions for global asymptotic stability. With
weaker conditions and less restrictive activation functions, the new sta-
bility results improve and extend existing ones. Discussions and examples
are given to illustrate and compare the new results with the existing ones.

Keywords: Neural networks, Stability, M -matrix, Positive half trajec-
tory.

1 Introduction

Neural networks have been extensively investigated in the past two decades and
have found many applications in a variety of areas, such as signal processing,
pattern recognition, static image processing, optimization, associative memory
[1], [2]. Some of these applications require that the equilibrium points of the
designed networks be stable. So, it is important to study the stability of recurrent
neural networks.

Stability is one of the important properties for dynamic systems. From a
systems-theoretic point of view, the global stability of recurrent neural networks
is a very interesting issue for research because of the special nonlinear structure
of recurrent neural networks. From a practical point of view, the global stability
of neural networks is also very important because it is a prerequisite in many
neural network applications such as optimization, control, and signal processing.

Global stability of various recurrent neural networks (such as Hopfield neu-
ral networks, cellular neural networks) has been investigated extensively [3]-[8].
In stability analysis of neural networks, the qualitative properties primarily con-
cerned are uniqueness, global asymptotic stability, and global exponential stability
of their equilibria. Among the numerous results, the stability of recurrent neural
networks are characterized using symmetry of weight matrices, diagonal domina-
tion of matrices, positive definiteness of matrices,M -matrix characteristics, LMI
technique and Lyapunov diagonal stability [9]-[12]. Despite the existence of many

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 340–346, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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reported results in the literature, there are still needs for more in-depth and com-
prehensive investigations. For example, in almost all the existing results, the acti-
vation functions of the neural networks are limited to be sigmoid functions, piece-
wise linear monotone nondecreasing functions with bounded ranges.

The purpose of this paper is to provide more comprehensive and less conserva-
tive stability results for a class of continuous-time recurrent neural networks with
a general activation function. The main contributions of this paper include the
derivations of new sufficient conditions for global asymptotic stability. It is shown
in this paper that the new stability results in the present paper are different from
and less conservative than many existing ones by using illustrative examples.

2 Model Description

Consider a general class of continuous-time recurrent neural networks described
by the following dynamic equation:

dx(t)
dt

= −x(t) +Wg(x(t)) + I, x(t0) = x0 (1)

where x = (x1, x2, · · · , xn)T ∈ �n is the state vector, the superscript T is the
transpose operator, W = [wij ] ∈ �n×n is the connection weight matrix which
is not necessarily symmetric, g(x(t)) = (g1(x(t)1), g2(x(t)2), · · · , gn(xn(t)))T :
�n → �n is the vector-valued activation function, and I = (I1, I2, · · · , In)T ∈ �n

is the external input vector (or bias).
Let x∗ be an equilibrium of (1), z := x(t)− x∗ and f(z) := g(z+ x∗)− g(x∗),

the dynamic equation (1) can be rewritten as

dz(t)
dt

= −z(t) +Wf(z(t)), z(t0) = z0. (2)

Note that an equilibrium of (2) is 0 since f(0) = 0.
The basic assumptions on an activation function gi(x(t)) are continuous and

monotone nondecreasing; i.e., its upper-right Dini-derivative D+gi ≥ 0. Let this
class of activation function be denoted as

G := {g(x(t))|gi(xi(t)) ∈ C[�,�], D+gi(xi(t)) ≥ 0, i = 1, 2, . . . , n}.
Note that the derivative of the activation function in G is allowed to be un-

bounded. In this paper, we will study mainly the global stability of recurrent
neural networks with activation functions in G.

3 Preliminaries

Consider a general autonomous dynamic system defined by the following ordi-
nary differential equation:

dz(t)
dt

= s(z(t)), z(t0) = z0, (3)

where z ∈ �n, s(0) = 0, s(z(t)) is locally Lipschitz continuous.
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Definition 1. The set Z+ = {z|z(t, t0, z0), t ≥ t0} is called a positive half
trajectory with initial condition (t0, z0). If z0 
= 0, then Z+ is called a nontrivial
positive half trajectory.

Lemma 1. (Barbashin-Krasovski asymptotic stability theorem): If there exists a
positive definite and radially unbounded Lyapunov function V (z(t)) ∈ C[�n,�]
such that dV (z(t))/dt|(3) ≤ 0 and the setM := {z|dV (z(t))/dt|(3) = 0} does not
include the whole positive half trajectory except at 0, then the zero solution of
the dynamic system (3) is globally asymptotically stable.

4 Global Asymptotic Stability

In this section, we investigate the global asymptotic stability of equilibria of the
neural network (1).

Theorem 1. Let gi ∈ G. Suppose that ∀xi(t) 
= x∗i , gi(xi(t)) 
= gi(x∗i );Li :=
supr∈�D

+gi(r) = D+gi(x∗i ) 
≡ D+gi(xi(t)) (i = 1, 2, . . . , n). If there exists a
positive diagonal matrix P such that Q := P (W − L−1) + (W − L−1)TP is
negative semi-definite, where L = diag{Li}, then the equilibrium point x∗ of
the neural network (1) is globally asymptotically stable.

Proof: Let’s rewrite (1) as (2). We construct a positive definite and radially
unbounded Lyapunov function

V (z(t)) =
n∑

i=1

pi

∫ zi(t)

0

fi(zi(t))dzi(t). (4)

Calculating the time derivative dV (z(t)/dt along the positive half trajectory
of (2), we obtain

dV (z(t))
dt

|(2) =
1
2
f(z(t))T (PW +WTP )f(z(t))− z(t)TPf(z(t))

≤ 1
2
f(z(t))T (PW +WTP )f(z(t))− f(z(t))TPL−1f(z(t))

=
1
2
f(z(t))T [P (W − L−1) + (W − L−1)TP ]f(z(t))

≤ 0.

Now let’s prove that the set {z | dV (z(t))/dt|(2) = 0} does not include
the positive half trajectory of (2) except at 0. It is very obvious that ∀zi 
=
0, Li = supr∈�D+fi(r) 
≡ D+fi(zi). Without loss of generality, let z(t) =
(0, . . . , 0, z�(t), . . . , zn(t)) 
= 0 be any non-equilibrium state in the positive half
trajectory of (2), zj(t) 
= 0 for � ≤ j ≤ n and δj := D+fj(zj(t)) <
supr∈�D+fj(r) = D+fj(0) = Lj (j = �, � + 1, . . . , n). Because
D+fi(zi(t)) 
≡ Li,
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dV (z(t))
dt

|(2) =
1
2
f(z(t))T

[
P

(
W − diag(

1
L1
, · · · , 1

L�−1
,

1
δ�
, · · · , 1

δn
)
)

+
(
W − diag(

1
L1
, · · · , 1

L�−1
,

1
δ�
, · · · , 1

δn
)
)T

P

]
f(z(t))

=
1
2
f(z(t))T

[
P

(
W − diag(

1
L1
, · · · , 1

L�−1
,

1
δ�
, · · · , 1

δn
)
)

+
(
W − diag(

1
L1
, · · · , 1

L�−1
,

1
δ�
, · · · , 1

δn
)
)T

P

]
f(z(t))

+
1
2
f(z(t))T

[
P (W − L−1) + (W − L−1)TP

]
f(z(t))

−1
2
f(z(t))T

[
P (W − L−1) + (W − L−1)TP

]
f(z(t))

=
1
2
f(z(t))T

[
P

(
W − diag(

1
L1
, · · · , 1

L�−1
,

1
δ�
, · · · , 1

δn
)
)

+
(
W − diag(

1
L1
, · · · , 1

L�−1
,

1
δ�
, · · · , 1

δn
)
)T

P

]
f(z(t))

+
1
2
f(z(t))T

[
P (W − diag(

1
L1
, · · · , 1

Ln
)

−P (W − diag(
1
L1
, · · · , 1

L�−1
,

1
δ�
, · · · , 1

δn
)

+(W − diag(
1
L1
, · · · , 1

Ln
)TP

−(W − diag(
1
L1
, · · · , 1

L�−1
,

1
δ�
, · · · , 1

δn
)TP

]
f(x(z))

+
1
2
f(z(t))T

[
P

(
diag(0, · · · , 0,

1
L�
− 1
δ�
, · · · , 1

Ln
− 1
δn

)
)

+
(

diag(0, · · · , 0, 1
L�
− 1
δ�
, · · · , 1

Ln
− 1
δn

)
)T

P

]
f(z(t))

≤ 1
2
f(z(t))T

[
P

(
diag(0, · · · , 0,

1
L�
− 1
δ�
, · · · , 1

Ln
− 1
δn

)
)

+
(

diag(0, · · · , 0, 1
L�
− 1
δ�
, · · · , 1

Ln
− 1
δn

)
)T

P

]
f(z(t))

=
1
2

n∑
j=�

pj(
1
Lj
− 1
δj

)(fj(zj(t)))2 < 0, ∀z(t) 
= 0.

Therefore, the positive half trajectory of (2) is not included in {x|dV (z(t))/dt
= 0} except at 0. According to Lemma 1, we know that the equilibrium point
x∗ of (1) is globally asymptotically stable. As a result, the equilibrium point is
unique.
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Remark 1. Theorem 1 is an extension and improvement of the existing ones.

Definition 2. An n× n matrix A = [aij ] is a nonsingular M -matrix if for
i, j = 1, 2, . . . , n; i 
= j; aii > 0, aij ≤ 0, and⎛⎜⎝a11 . . . a1i

...
. . .

...
ai1 · · · aii

⎞⎟⎠ > 0.

Remark 2. For i, j = 1, 2, . . . , n, let W̃ = [w̃ij ]n×n and

w̃ij :=
{ |wii|+ 1

Li
, if i = j;

−|wij | if i 
= j

It is known that the so-calledM -criterion is a very useful method on the stability
of neural networks. TheM -criterion ensure that if W̃ is a nonsingularM -matrix,
then the equilibrium point x∗ of (1) is globally asymptotically stable.

Example 1. Given a two-state neural network as follows:

dx1(t)
dt

= −x1(t)− 2g1(x1(t)) + 9g2(x2(t)) + I1,

dx2(t)
dt

= −x2(t) + g1(x1(t))− 2g2(x2(t)) + I2, (5)

where Li = supr∈�D
+gi(r) = D+gi(x∗i ) 
≡ D+gi(xi(t)) at finite points of xi(t) 
=

x∗i only D+gi(x∗i ) = Li, Li = 1 for i = 1, 2.
In this case,

W̃ =
( |w11|+ 1

L1
, −|w12|

−|w21|, |w22|+ 1
L2

)
=
(

3 −9
−1 3

)
, (6)

which is not an M matrix. Hence, the M -criterion is no longer has any effect on
neural network (5). In addition,

A :=W − L−1 =
(−3 9

1 −3

)
is not Lyapunov diagonally stable because A is Lyapunov diagonally stable if
and only if a11 = −3 < 0, a22 = −3 < 0, and a11a22 > a12a21. However,
a11a22 = a12a21 = 9.

Now we take P = diag(1/3, 3), then

PA+ATP =
(

1
3 0
0 3

)(−3 9
1 −3

)
+
(−3 1

9 −3

)(
1
3 0
0 3

)
=
(−1 3

3 −9

)
+
(−1 3

3 −9

)
=
(−2 6

6 −18

)
≤ 0.
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So the condition of Theorem 1 is satisfied. Hence, the equilibrium point of (5)
is globally asymptotically stable.

Corollary 1. Let Li = supr∈�D+gi(r) = D+gi(x∗i ) 
≡ D+gi(xi), i = 1, 2, · · · , n,
∀xi 
= x∗i . If there exist n positive constants pi > 0 (i = 1, 2, . . . , n) such that

pi(wii − 1
Li

) +
n∑

i=1,i	=j

pi|wij | ≤ 0, (7)

then the equilibrium point of x∗ of (1) is globally asymptotically stable.

Proof: Let the positive definite and radially unbounded Lyapunov function be

V (z(t)) =
n∑

i=1

pi|zi(t)|.

Calculating the right-upper Dini-derivative of (2), we obtain

D+V (z(t))|(2) =
n∑

i=1

pi
dzi(t)
dt

sgn|zi(t)|

≤ −
n∑

j=1

pj |zj(t)|+
n∑

j=1

⎡⎣pjwjj +
n∑

i=1,i	=j

pi|wij |
⎤⎦ |fj(zj(t))|

≤ −
n∑

j=1

pj

Lj
|fj(zj(t))|+

n∑
j=1

⎡⎣pjwjj +
n∑

i=1,i	=j

pi|wij |
⎤⎦ |fj(zj(t))|

=
n∑

j=1

⎡⎣pj(wjj − 1
Lj

) +
n∑

i=1,i	=j

pi|wij |
⎤⎦ |fj(zj(t))| ≤ 0.

Similar to the proof of the final part of Theorem 1, we can prove that
{z |D+V (z(t))|(2) = 0} does not include the whole positive half trajectory of
(2) except at 0. According to Lemma 1, we know the equilibrium point x∗ of (1)
is globally asymptotically stable.

Example 2. Consider a neural network as follows:

dx1(t)
dt

= −x1(t)− 3g1(x1(t)) + 2g2(x2(t)) − 2g3(x3(t)) + I1,

dx2(t)
dt

= −x2(t) + 3g1(x1(t))− 3g2(x2(t)) + g3(x3(t)) + I2,

dx3(t)
dt

= −x3(t) + g1(x1(t)) + 2g2(x2(t))− 2g3(x3(t)) + I3,

where gi(xi(t)) ∈ G, Li = 1, i = 1, 2, 3.
Similar to (6), it is well known that

W̃ =

⎛⎝ 4 −2 −2
−3 4 −1
−1 −2 3

⎞⎠ .
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Because det(W̃ ) = 0, W̃ is not an M matrix. Therefore, the conditions of the
M -criterion are not satisfied. Now we take p1 = p2 = p3 = 1, then the condition
of Corollary 1 is satisfied.

5 Concluding Remarks

In this paper, several sufficient conditions are presented for checking the global
asymptotic stability of a general class of continuous-time recurrent neural net-
works. The new stability conditions have shown to have improved results com-
pared with existing ones.

Acknowledgments. This work was supported by the Innovative Research Team
of Hubei Normal University and the Key Program of Educational Department
of Hubei Province of China under Grant D20082201.
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Abstract. In this paper, the global asymptotic stability for delayed cel-
lular neural networks is addressed with a new Lyapunov-Krasovskii func-
tion. New delay-independent LMI-based conditions for global asymp-
totic stability are derived. A key feature of the new approach is the
introduction an integral of term of neuron activation functions in the
Lyapunov-Krasovskill function, which can provide useful and less con-
servative results. Finally, two numerical examples show the effectiveness
of the proposed method.

Keywords: Delay cellular neural networks; Global asymptotic stabil-
ity; Linear matrix inequality (LMI); Lyapunov-Krasovskii function.

1 Introduction

Cellular neural networks (CNNs), which were introduced in [1], have many ap-
plications in image processing, pattern recognition, optimal computation, asso-
ciation etc. Some of these applications require that the equilibrium points of
the designed network be stable. Thus, it is important to study the stability of
CNNs. In biological and artificial neural networks, time delays often arise in the
processing of information storage and transmission. The existence of time delays
may lead to oscillation, divergence or instability in neural networks due to finite
speed of information processing. Fundamental results have been established on
uniqueness, global stability of the equilibrium point for delayed cellular neural
networks (DCNNs) [2,3,4,5,6,7,8,9]. Furthermore, in the design of neural net-
works, one is not only interested in global stability, but also interested in some
other performance such as global exponential stability. Therefore, exponential
stability for DCNNs has been investigated by many researchers [10,11]. The same
idea of free-weighting matrices has been used in [12] as well to provide better
exponential stability test for DCNNs.

Recently, an LMI-based asymptotical stability criterion was derived for DC-
NNs by employing S-proceduce [13] to deal with the nonlinearities [14]. How-
ever, the constraints on the nonlinearities in [14] are very strict, i.e., the upper

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 347–356, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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bounds of the sectors are set to 1. Even though they are relaxed to k in [15],
all the bounds are set to the same value. For different value of upper bounds,
the global asymptotic stability for DCNNs was studied by Cao and Ho in [16].
They obtained a generalized and improved results. Later, Singh [17] presented
a simplified version of the respective LMI based criterion given by Cao and Ho
[16]. He et al [18] presented a new Lyapunov-Krasovskii functional containing an
integral term of state for DCNNs. A global asymptotical stability criterion was
derived. However, these results are all sufficient conditions and have conservatism
to some degree, which leaves space for further improvement.

In this paper, by utilizing a new Lyapunov-Krasovskii functional, we present
an improved global asymptotic stability conditions for DCNNs. These derived
conditions are expressed in terms of LMIs, which can be checked numerically
very efficiently. A key feature of our approach is the introduction an integral
of term of neuron activation functions in the Lyapunov-Krasovskill function,
which is helpful to reduce conservatism in applying the criteria in the analy-
sis. This feature also enables us to cast a series of previous results such as in
[3,4,5,6,7,14,16,17,18,19] into even more general framework. Two numerical ex-
amples show the effectiveness of the proposed method.

The organization of this paper is as follows. The problem statement is given in
Section II. Section III presents the main results. Numerical examples are given
in Section IV. Finally, the paper is concluded in Section V.

2 Problem Statement

Consider the following cellular neural networks with a time-varying delay, which
is described by a nonlinear delay differential equation of the form:

ẋ(t) = −Cx(t) +Ag(x(t)) +Bg(x(t − d(t))) + u, (1)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T is the state vector associated with n neu-
rons, C = diag{c1, c2, · · · , cn} > 0, A is a feedback matrix, and B is a delayed
feedback matrix. u = [u1, u2, · · · , un]T is a constant external input vector. The
scalar d(t) represents the time-varying delay which satisfies that

0 ≤ ḋ(t) ≤ µ. (2)

g(x(t)) = [g1(x1(t)), g2(x2(t)), · · · , gn(xn(t))]T is the neuron activation function.
It is assumed that each neuron activation function gi(xi) is bounded, monoton-
ically nondecreasing and satisfies the following condition:

|gi(x) − gi(y)| ≤ ki|x− y|, i = 1, 2, · · · , n, (3)

for any x, y ∈ R, where ki > 0 for i = 1, 2 · · · , n.
Let x∗ = [x∗1, x∗2, · · · , x∗n]T be the equilibrium point of (1). Then, by letting

z(t) = x(t) − x∗, the system (1) can be transformed into:

ż(t) = −Cz(t) +Af(z(t)) +Bf(z(t− d(t))), (4)
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where z(t) = [z1(t), z2(t), · · · , zn(t)]T is the state, f(z(t)) = [f1(z1(t)), f2(z2(t)),
· · · , fn(zn(t))]T and fi(zi) = gi(zi + x∗i )− gi(x∗i ), i = 1, 2, · · · , n. Note that the
functions fi(·), i = 1, 2, · · · , n is monotonically nondecreasing with the relation:

|fi(zi)| ≤ ki|zi|, i = 1, · · · , n,
i.e.,

0 ≤ fi(zi)
zi

≤ ki, ∀zi 
= 0, fi(0) = 0, i = 1, · · · , n, (5)

which are equivalent to

fj(zj)[fj(zj)− kjzj] ≤ 0, fj(0) = 0, j = 1, 2, · · · , n. (6)

The following Lemma is useful to derive the main result.

Lemma 1. [13] (S-procedure) Let Ti ∈ Rn×n (i = 0, 1, · · · , p) be symmetric
matrices. The conditions on Ti (i = 0, 1, · · · , p)

ζTT0ζ > 0, ∀ζ 
= 0 s.t. ζTTiζ ≥ 0 (i = 1, 2, · · · , p), (7)

hold if there exist τi ≥ 0 (i = 1, 2, · · · , p) such that

T0 −
p∑

i=1

τiTi > 0. (8)

3 Main Results

In this section, we construct a new Lyapunov-Krasovskii functional and use the
S-procedure to handle the nonlinearities. Then, new asymptotic stability criteria
are obtained.

Theorem 1. Under the conditions (2) and (5), the system (4) has a unique
equilibrium point and that is global asymptotically stable if there exist four posi-
tive definite symmetric matrices P , R, Q, V and three definite diagonal matri-
ces T = diag{t1, t2, · · · , tn}, S = diag{s1, s2, · · · , sn}, D = diag{d1, d2, · · · , dn},
W = diag{w1, w2, · · · , wn} and four matrices U , Y1, Y2, Y3 such that the follow-
ing LMIs hold:

Φ =

⎡⎢⎢⎢⎢⎣
Φ11 −Y T

1 + Y2 − V Φ13

−Y1 + Y T
2 − V Φ22 0

ΦT
13 0 Φ33

BTP SK − UT BTD
−Y1 + Y T

3 −Y2 − Y T
3 0

PB −Y T
1 + Y3

KS − U −Y T
2 − Y3

DB 0
−(1− µ)(Q−KTWK)− 2S 0

0 −V − Y3 − Y T
3

⎤⎥⎥⎥⎥⎦ < 0, (9)
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[
R U
UT Q

]
> 0, (10)

where Φ11 = −CP −PC+R+Y1 +Y T
1 +V +KTWK, Φ22 = −(1−µ)R−Y2−

Y T
2 + V − (1 − µ)KTWK, Φ13 = PA − CD +KT + U , Φ33 = ATD +DA +
Q− 2T −KTWK, K = diag{k1, k2, · · · , kn}.
Proof. First, we prove the uniqueness of the equilibrium point by contradiction.
Assume that z̄ is the equilibrium point of the delayed DCNNs in (4). Then, we
have

− Cz̄ + (A+B)f(z̄) = 0, (11)

Suppose f(z̄) 
= 0. By (11), we can obtain

2z̄TP [−Cz̄ + (A+B)f(z̄)] = 0, (12)

and
2fT (z̄)D[−Cz̄ + (A+B)f(z̄)] = 0, (13)

Note that

2fT (z̄)D[−Cz̄ + (A+B)f(z̄)]
= 2fT (z̄)[D(A+B)− S − T ]f(z̄) + 2fT (z̄)(S + T )f(z̄)− 2fT (z̄)DCz̄
≤ 2fT (z̄)[D(A+B)− S − T ]f(z̄) + 2fT (z̄)(SK + TK −DC)z̄.

(14)

and
µzT (t)KTWKz(t)− µfT (z(t))KTWKf(z(t)) ≥ 0. (15)

Then, form (12)-(15) it follows that

2z̄TP [−Cz̄ + (A+B)f(z̄)] + 2fT (z̄)(SK + TK −DC)z̄
+2fT (z̄)[D(A+B)− S − T − µKTWK]f(z̄) + µzT (t)KTWKz(t) ≥ 0,

i.e., [
z̄
f(z̄)

]T [−CP − PC + µKTWK
ΩT

Ω
Λ− µKTWK

] [
z̄
f(z̄)

]
≥ 0, (16)

where Ω = P (A+B)+K(T+S)−CD, Λ = D(A+B)+(A+B)TD−2S−2T .
On the other hand, pre- and post-multiplying (9) by[

I I 0 0 0
0 0 I I 0

]
and its transpose, respectively, we have[−CP − PC + µ(R + KT WK) Ω

Ω Λ + µ(R − KT WK)

]
< 0. (17)

(9) and (17) imply that[−CP − PC + µKT WK Ω

Ω Λ − µKT WK

]
< 0, (18)
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which contradicts with (16). Therefore, we can conclude that (4) has a unique equilib-
rium point.

Next, we prove that the unique equilibrium point of (4) is asymptotically stable.
Consider the following Lyapunov-Krasovskii functional:

V (z(t)) = zT (t)Pz(t) + 2
n∑

j=1

∫ zj(t)

0
djfj(s)ds

+
∫ t

t−d(t)
[xT (s)KWKx(s) − fT (x(s))Wf(x(s))]ds

+
∫ t

t−d(t)

[
z(s)

f(z(s))

]T [
R U

UT Q

] [
z(s)

f(z(s))

]
ds. (19)

Calculating the derivative of V (z(t)) along the solution of system (4), we can obtain:

V̇ (z(t)) = 2zT (t)P ż(t) + 2
n∑

j=1

djfj(zj(t))żj(t) + xT (t)KT WKx(t)

−fT (x(t))KT WKf(x(t)) − (1 − ḋ(t))[xT (t − d(t))KT WKx(t− d(t))

−fT (x(t − d(t)))KT WKf(t − d(t))] +
[

z(t)
f(z(t))

]T [
R U

UT Q

] [
z(t)

f(z(t))

]
−(1 − ḋ(t))

[
z(t − d(t))

f(z(t − d(t)))

]T [
R U

UT Q

] [
z(t − d(t))

f(z(t − d(t)))

]
.

Form (2) it follows that

V̇ (z(t)) ≤ 2zT (t)P ż(t) + 2
n∑

j=1

difj(zj(t))żj(t) + xT (t)KT WKx(t)

−fT (x(t))KT WKf(x(t)) − (1 − µ)[xT (t − d(t))KT WKx(t − d(t))

−fT (x(t − d(t)))KT WKf(t − d(t))] +
[

z(t)
f(z(t))

]T [
R U

UT Q

] [
z(t)

f(z(t))

]
−(1 − µ)

[
z(t − d(t))

f(z(t − d(t)))

]T [
R U

UT Q

] [
z(t − d(t))

f(z(t − d(t)))

]
.

(20)

Note that

2zT (t)Y T
1 [z(t) − z(t − d(t)) − ∫ t

t−d(t)
ż(s)ds] = 0,

2zT (t − d(t))Y T
2 [z(t) − z(t − d(t)) − ∫ t

t−d(t)
ż(s)ds] = 0,

(2
∫ t

t−d(t)
żT (s)ds)Y T

3 [z(t) − z(t − d(t)) − ∫ t

t−d(t)
ż(s)ds] = 0,

(21)

and

−
(∫ t

t−d(t)
ż(s)ds

)T

V
(∫ t

t−d(t)
ż(s)ds

)
+
[

z(t)
z(t − d(t))

]T [
V −V
−V V

] [
z(t)

z(t − d(t))

]
= 0.

(22)
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From (20)-(22), we have

V̇ (z(t)) ≤ 2zT (t)P ż(t) + 2
n∑

j=1

difj(zj(t))żj(t) +
[

z(t)
f(z(t))

]T [
R U

UT Q

] [
z(t)

f(z(t))

]
+xT (t)KT WKx(t) − fT (x(t))KT WKf(x(t))

−(1 − µ)[xT (t − d(t))KT WKx(t− d(t)) − fT (x(t − d(t)))KT WKf(t − d(t))]

−(1 − µ)
[

z(t − d(t))
f(z(t − d(t)))

]T [
R U

UT Q

] [
z(t − d(t))

f(z(t − d(t)))

]
+2zT (t)Y T

1 [z(t) − z(t − d(t)) − ∫ t

t−d(t)
ż(s)ds]

+2zT (t − d(t))Y T
2 [z(t) − z(t − d(t)) − ∫ t

t−d(t)
ż(s)ds]

+(2
∫ t

t−d(t)
żT (s)ds)Y T

3 [z(t) − z(t − d(t)) − ∫ t

t−d(t)
ż(s)ds]

−
(∫ t

t−d(t)
ż(s)ds

)T

V
(∫ t

t−d(t)
ż(s)ds

)
+
[

z(t)
z(t − d(t))

]T [
V −V
−V V

] [
z(t)

z(t − d(t))

]
.

(23)
Now, considering the relationship in (6), we have

fj(zj)[fj(zj) − kjzj ] ≤ 0, j = 1, 2, · · · , n, (24)

and
fj(zj(t − d(t)))[fj(zj(t − d(t))) − kjzj(t − d(t))] ≤ 0,

j = 1, 2, · · · , n.
(25)

Then, applying the S-procedure, we find that system (4) is asymptotically stable if
there exist T = diag{t2, t2, · · · , tn} ≥ 0 and S = diag{s1, s2, · · · , sn} ≥ 0 such that

V̇ (z(t)) − 2
n∑

j=1

tjfj(zj(t))[fj(zj(t)) − kjzj(t)]

−2
n∑

j=1

sjfj(zj(t − d(t)))[fj(zj(t − d(t))) − kjzj(t − d(t))]

= ξT (t)Φξ(t) < 0,

(26)

for all ξ(t) �= 0, where

ξ(t) = [zT (t), zT (t − d(t)), fT (z(t)), fT (t − d(t)),
∫ t

t−d(t)
żT (s)ds].

This completes the proof.

Remark 1. Unlike the Lyapunov-Krasovskii functional in [19], the one given
above contains not only the integrals of term of states and of a cross product
term, but also a integral of term of the neuron activation function. The advantage
of this is that Theorem 1 can lead to better stability results for DCNNs.

Now, let
C = I, d(t) = d, (27)

and the activation functions

gi(xi) =
1
2
(|xi + 1| − |xi − 1|), (28)

where d is a given constant. Clearly, when invoking Theorem 1, we set ki = 1,
i = 1, 2, · · · , n and µ = 0. The DCNNs of such case have been discussed by many
researchers [3,4,5,6,7,16,19]. For this model, we have the following corollary.
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Corollary 1. Under conditions (27) and (28), the system (4) has a unique equi-
librium point and that is global asymptotically stable if there exist four positive
definite symmetric matrices P , R, Q, V and three definite diagonal matrices
T = diag{t1, t2, · · · , tn}, S = diag{s1, s2, · · · , sn}, D = diag{d1, d2, · · · , dn},
W = diag{w1, w2, · · · , wn} and four matrices U , Y1, Y2, Y3 such that (10) and

Φ=

⎡⎢⎢⎢⎢⎣
Φ11 −Y T

1 + Y2 − V
−Y1 + Y T

2 − V −R− Y2 − Y T
2 + V

ΦT
13 0

BTP S − UT

−Y1 + Y T
3 −Y2 − Y T

3

Φ13 PB −Y T
1 + Y3

0 S − U −Y T
2 − Y3

Φ33 DB 0
BTD −Q− 2S 0

0 0 −V − Y3 − Y T
3

⎤⎥⎥⎥⎥⎦<0,

(29)
hold, where Φ11 = −2P +R+Y1 +Y T

1 +V +µKTWK, Φ13 = PA−D+T +U ,
Φ33 = ATD +DA+Q− 2T − µKTWK.

Now, we show that the conditions given in [16], [18] and [19] can be considered
as the special cases of the results obtained in Theorem 1 and Corollary 5.

Theorem 2 ([16]). Under conditions (2) and (5), the system (4) has a unique
equilibrium point and that is global asymptotically stable if there exist P = PT >
0, Q = QT > 0 and diagonal matrix D > 0 such that the following condition
holds: ⎡⎣−PC − CP PA PB

ATP Ψ DB
BTP BTD −(1− µ)Q

⎤⎦ < 0, (30)

where Ψ = DA+ATD +Q− 2DK−1C, K = diag{k1, k2, · · · , kn}.
In fact, letting W = U = S = Y1 = Y2 = Y3 = 0, T = K−1CD and

R = V = εI with sufficient small scalar ε > 0 in (9) and (10) yields the condition
(30).

Theorem 3 ([16]). Under conditions (27) and (28), the system (4) has a
unique equilibrium point and that is global asymptotically stable if there exist
P = PT > 0, Q = QT > 0 and diagonal matrix D > 0 such that the following
condition holds: ⎡⎣−2P PA PB

ATP DA+ATD +Q− 2D DB
BTP BTD −Q

⎤⎦ < 0, (31)

Using the same method, from Corollary 5 we can obtain the condition (31).

Theorem 4 ([18]). Under conditions (2) and (5),the system (4) (C = I) is
global asymptotically stable if there exist three positive definite symmetric ma-
trices P , R, Q and three definite diagonal matrices T = diag{t1, t2, · · · , tn},
S = diag{s1, s2, · · · , sn}, D = diag{d1, d2, · · · , dn} such that the following LMIs
hold:
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Φ11 0 Φ13 PB
0 −(1− µ)R 0 KS
ΦT

13 0 Φ33 DB
BTP SK BTD −(1− µ)Q− 2S

⎤⎥⎥⎦ < 0, (32)

where Φ11 = −2P + R, Φ13 = PA − D + KT , Φ33 = ATD + DA + Q − 2T ,
K = diag{k1, k2, · · · , kn}.

It is obviously that the condition of Theorem 4 is recovered by setting U = Y1 =
Y2 = Y3 = 0 and V = εI with sufficient small scalar ε > 0 in Theorem 1 (C = I).

Theorem 5. Under conditions (27) and (28), the system (4) has a unique equi-
librium point and that is global asymptotically stable if there exist four positive
definite symmetric matrices P , R, Q, V and three definite diagonal matrices
T = diag{t1, t2, · · · , tn}, S = diag{s1, s2, · · · , sn}, D = diag{d1, d2, · · · , dn} and
four matrices U , Y1, Y2, Y3 such that (10) and

Φ=

⎡⎢⎢⎢⎢⎣
Φ11 −Y T

1 + Y2 − V
−Y1 + Y T

2 − V −R− Y2 − Y T
2 + V

ΦT
13 0

BTP S − UT

−Y1 + Y T
3 −Y2 − Y T

3

Φ13 PB −Y T
1 + Y3

0 S − U −Y T
2 − Y3

Φ33 DB 0
BTD −Q− 2S 0

0 0 −V − Y3 − Y T
3

⎤⎥⎥⎥⎥⎦<0,

(33)
hold, where Φ11 = −2P + R + Y1 + Y T

1 + V , Φ13 = PA −D + T + U , Φ33 =
ATD +DA+Q− 2T .

Theorem 5 is recovered by setting W = 0 in Corollary 1.

Remark 2. The results obtained by Shen [19] generalized and improved those
given in [3,4,5,6,7,14,16,17]. Based on the above analysis, these results can be
considered as a special case of our results. Therefore, our results is more general
and less conservative.

4 Numerical Examples

In this section, the validity of the new criteria is demonstrated by two examples
which are borrowed from [18,19] for the purpose of comparison.

Example 1. Consider the second-order DCNNs (4) with the following parameters:

C =
[
1 0
0 1

]
, A =

[
0 1
−1 −1

]
, B =

[
0.5 0.5
1 0

]
.

For a time-varying delay, we calculate the upper bounds on k2 with k1 = 1.2.
The results are listed in Table 1 along with the results obtained by the methods
in this paper, in [16,17,18] and in [19], respectively.
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Table 1. Upper bounds on k2 for k1 = 1.2 and various µ

µ 0.8 0.9 1.0
[16]
[17] infeasible infeasible infeasible
[18]
[19] 0.46 0.33 infeasible

Theorem 1 0.46 0.33 0.11

Example 2. Consider the second-order DCNN (4) with the following parameters:

C =
[

1 0
0 1

]
, A =

[
0.5 0.5
−1 −0.5

]
, B =

[
0.5 0.5
0.5 0

]
.

For a time-varying delay, we calculate the upper bounds on k2 with k1 = 0.12
by the methods in [18], [16], [17], [19] and our method, respectively. The results
are listed in Table 2.

Table 2. Upper bounds on k2 for k1 = 0.12 with µ = 1

[16,17,18] Theorem 1 in [19] Theorem 1
max k2 infeasible infeasible 0.06

Clearly, our method produces much less conservative results, thus demonstrat-
ing its validity.

5 Conclusion

This paper has investigated the problem of global asymptotic stability for DC-
NNs with time-varying delays. By constructing a new Lyapunov-Krasovskii func-
tional with a integral of term of neuron activation function, new LMI-based suffi-
cient conditions for global asymptotic stability are derived. Examples have been
provided to demonstrate the validity of the proposed results.
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dation of China (No. 60773190), the National Science Foundation of Hubei
Province (No. 2008CDZ046 ), the Scientific Innovation Team Project of Hubei
Provincial Department of Education (T200809).

References

1. Chua, L., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circuits
Syst. 35, 1257–1272 (1988)

2. Cao, J., Zhou, D.: Stability Analysis of Delayed Cellular Neural Nwtworks. Neural
Netw. 11, 1601–1605 (1998)



356 Y. Shen, L. Zhang, and Y. Zhang

3. Arik, S., Tavsanoglu, V.: On the Global Asymptotic Stability of Delayed Cellular
Neural Networks. IEEE Trans. Circuits Syst. I. 47, 571–574 (2000)

4. Liao, T., Wang, F.: Global Stability of Cellular Neural Networks with Time Delay.
IEEE Trans. on Neural Netw. 11, 1481–1484 (2000)

5. Cao, J.: Global Stability Conditions for Delayed CNNs. IEEE Trans Circuits Syst.
I. 48, 1330–1333 (2001)

6. Arik, S.: An Improved Global Stability Result for Delayed Cellular Neural Net-
works. IEEE Trans. Circuits Syst. I 49, 1211–1214 (2002)

7. Arik, S.: An Analysis of Global Asymptotic Stability of Delayed Cellular Neural
Networks. IEEE Trans. Neural Netw. 13, 1239–1242 (2002)

8. Ensari, T., Arik, S.: Global Stability Analysis of Neural Networks with Multiple
Time Varying Delays. IEEE Trans. Automat. Control 50, 1781–1785 (2005)

9. Xu, S., Lam, J., Ho, D., Zou, Y.: Novel Global Asymptotic Stability Criteria for
Delayed Cellular Neural Networks. IEEE Trans. Circuits Syst. II 52, 349–353 (2005)

10. Liao, X., Chen, G., Sanchez, E.N.: Delay-Dependent Exponential Stability Analysis
of Delayed Neural Networks: an LMI Approach. Neural Netw. 15, 855–866 (2002)

11. Yucel, E., Arik, S.: New Exponential Stability Results for Delayed Neural Networks
with Time Varying Delays. Phys. D: Nonlinear Phenomena 191, 314–322 (2004)

12. He, Y., Wu, M., She, J.H.: Delay-Dependent Exponential Stability of Delayed Neu-
ral Networks with Time-Varying Delay. IEEE Trans. Circuit Syst. II 53, 553–557
(2006)

13. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in
System and Control Theory. SIAM, Philadlephia (1994)

14. Singh, V.: A Generalized Lmi-Based Approach to the Global Asymptotic Stability
of Delayed Cellular Neural Networks. IEEE Trans. Neural Netw. 15, 223–225 (2004)

15. Zhang, H., Li, C., Liao, X.: A Note on the Robust Stability of Neural Networks
with Time Delay. Chaos, Solitons and Fractals 25, 357–360 (2005)

16. Cao, J., Ho, D.: A General Framework for Global Asymptotic Stability of Delayed
Neural Networks Based on LMI Approach. Chaos, Solitons and Fractals 24, 1317–
1329 (2005)

17. Singh, V.: Simplified LMI Condition for Global Asymptotic Stability of Delayed
Neural Networks. Chaos, Solitons and Fractals 29, 470–473 (2006)

18. He, Y., Wu, M., She, J.: An Improved Global Asymptotic Stability Criterion for
Delayed Cellular Neural Networks. IEEE Trans. Neural Netw. 17, 250–252 (2006)

19. Shen, Y.: LMI-based Stability Criteria with Auxiliary Matrices for Delayed Re-
current Neural Networks. IEEE Transaction on Circuits System II 55, 811–815
(2008)



 

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 357–365, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Multi-sensor Optimal H∞ Fusion Filters for a Class of 
Nonlinear Intelligent Systems with Time Delays 

Meiqin Liu1,2, Meikang Qiu2, and Senlin Zhang1 

1 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China 
2 Department of Electrical Engineering, University of New Orleans, New Orleans,  

LA 70148, USA 
liumeiqin@zju.edu.cn 

 

Abstract. This paper proposes a nonlinear system model, which is composed of 
a linear time-delay dynamic system and a bounded static nonlinear operator. 
Base on the H∞ performance analysis of this nonlinear model, H∞ fusion filter is 
designed for this model with multiple sensors to guarantee the asymptotic sta-
bility of the fusion error system and reduce the effect of the noise signals on the 
filtering error to a lowest level. The parameters of the filter are obtained by 
solving the eigenvalue problem (EVP). Some delayed (or non-delayed) intelli-
gent systems composed of neural networks or Takagi and Sugeno (T-S) fuzzy 
models can be transformed into this nonlinear model, then the multi-sensor op-
timal H∞ fusion filters for them are designed. 

Keywords: Nonlinear intelligent system; H∞ fusion filter; Time-delay. 

1   Introduction 

The H∞ filtering problem is to design an estimator to estimate the unknown state com-
bination via output measurement, which guarantees the L2 gain (from the external 
disturbance to the estimation error) less than a prescribed level [1-6]. In contrast with 
the well-known Kalman filter, one of the main advantages of H∞ filtering is that, it is 
not necessary to know exactly the statistical properties of the external disturbance, but 
only assumes the external disturbance to have bounded energy. The H∞ filtering  
technique has been found useful in certain applications. One of such applications is 
reported in [6] for seismic signal deconvolution. Various approaches, such as the 
algebraic Riccati equations, interpolation, linear matrix inequality (LMI) and so on, to 
H∞ filter design have been successfully proposed and many results on this topic have 
been reported in the literature [1-6]. 

As modern industrial systems are more and more complex, the observation systems 
based on a single sensor are often unable to meet the needs of the information 
acquisition. In contrast, multi-sensor system has inherent redundancy, may obtain 
more observation information, and will continue running in low performance while 
some part of sensors can not work. It expands the space and time domains of informa-
tion coverage, collects more data in a unit time, and can be achieved performance 
requirement in a short time. Therefore, the study of multi-sensor fusion filtering 



358 M. Liu, M. Qiu, and S. Zhang 

 

method for the nonlinear systems with uncertainty models and non-Gaussian noise 
inputs, is very important in the area of data fusion. In recent years, there are a lot of 
research results about the design of multi-sensor robust filter for uncertain linear sys-
tems, such as H2 filtering [7], H∞ filtering [8] and guaranteed cost filtering [9]. The 
study on estimating the states of the complex nonlinear dynamic systems (e.g. net-
worked control system with a variety of models and controllers), is a prerequisite of 
guaranteeing safety and economy of the system, and is also the basis of many applica-
tions (such as process monitoring, fault diagnosis and process optimization, etc.). 
However, the research on the multi-sensor filtering of nonlinear systems is little, since 
complicated nonlinear terms make it difficult to find a fusion method. If the nonlinear 
terms of some systems, such as neural network systems, fuzzy control systems and 
hybrid intelligent systems consisting of them, have certain characteristics (e.g. sector 
bound), some useful fusion methods can be developed. There does not seem to be 
much (if any) study on this. 

In this paper, we propose a dynamic system model with unified nonlinear opera-
tors. This model can represent not only the nonlinear systems which consist of neural 
networks or Takagi and Sugeno (T-S) fuzzy models, but also linear systems; not only 
time-delayed systems, but also non-time-delayed systems. By virtue of Lyapunov 
stability theory and the dissipative theory (mainly L2 gain analysis), we can use the 
LMI approach to design multi-sensor H∞ fusion filters for the dynamic systems with 
unified nonlinear operators. 

Notation. The superscript “T” stands for matrix transposition. l2[0, ∞) is the space of 
square integrable vectors. I denotes identity matrix of appropriate order. ||x|| denotes 
the Euclid norm of the vector x. ∗ denotes the symmetric parts. diag{⋅⋅⋅} denotes the 
block diagonal matrix. The notations X>Y and X≥Y, where X and Y are matrices of 
same dimensions, mean that the matrix X−Y is positive definite and positive semi-
definite, respectively. If X∈ℜp and Y∈ℜq, C(X; Y) denotes the space of all continuous 
functions mapping ℜp → ℜq. 

2   Problem Formulation 

We consider the following stochastic nonlinear system with time delays: 

( ) ( ) ( ) ( ( )) ( ),

( ) ( ) ( ) ( ( )) ( ),
d p w

q qd p qw

x t Ax t A x t B ξ t B w t

ξ t C x t C x t D ξ t D w t

τ φ
τ φ

= + − + +⎧⎪
⎨ = + − + +⎪⎩

&
 (1) 

with the initial condition function x(t)=ϖ(t), ∀t∈[−τ, 0], where x(t)∈ℜn is the system 
state, A∈ℜn×n, Ad∈ℜn×n, Bp∈ℜn×L, Bw∈ℜn×m, Cq∈ℜL×n, Cqd∈ℜL×n, Dp∈ℜL×L, and 
Dqw∈ℜL×m are the corresponding state-space matrices, ξ∈ℜL is the input of nonlinear 
function φ, φ∈C(ℜL; ℜL) is nonlinear continuous function satisfying φ(0)=0, w(t)∈ℜm 
is stochastic process noise which belongs to l2[0, ∞), L∈N is the number of nonlinear 
functions, τ∈ℜ is the time delay, ϖ(t) is the given continuous function on [−τ, 0]. 

Remark 1. While w(t)=0, the nonlinear model (1) unifies linear systems, several well-
known intelligent systems including dynamic neural networks or fuzzy models with 
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or without time delays, and Lur’e systems. Ref. [10]-[12] illustrate that some intelli-
gent systems are special examples of (1). 

Here, we assume the system (1) has h sensors: 

( ) ( ) ( ), 1,2, ,i i i iy t C x t D v t i h= + = L , (2) 

where y1(t)∈ℜ 1p , y2(t)∈ℜ 2p , …, and yh(t)∈ℜ hp  are the measurement outputs, 

v1(t)∈ℜ 1s , v2(t)∈ℜ 2s , …, and vh(t)∈ℜ hs , are the measurement noise which belong to 

l2[0, ∞). C1∈ℜ 1p n× , C2∈ℜ 2p n× , …, Ch∈ℜ hp n× , D1∈ℜ 1 1p s× , D2∈ℜ 2 2p s× , …, and 

Dh∈ℜ h hp s× are constant matrices.  
The estimated signals are the combination of the system states described as fol-

lows: 

( ) ( )zz t C x t= , (3) 

where z(t)∈ℜr is the unmeasurable estimated signal, Cz∈ℜr×n is constant matrix. 
For convenience, the measurement model (2) can be denoted as the following aug-

mented measurement equation: 

( ) ( ) ( )y t Cx t Dv t= + , (4) 

where y(t)=[y1
T(t), y2

T(t), …, yh
T(t)]T, v(t)=[v1

T(t), v2
T(t), …, vh

T(t)]T, C=[C1
T, C2

T, …, 
Ch

T]T, D=diag{D1, D2, …, Dh}. Combining Eq.(1) with Eqs. (3), (4), we have 

( ) ( ) ( ) ( ( )) ( ),

( ) ( ) ( ) ( ( )) ( ),

( ) ( ) ( ),

( ) ( ).

d p w

q qd p qw

z

x t Ax t A x t B ξ t B w t

ξ t C x t C x t D ξ t D w t

y t Cx t Dv t

z t C x t

τ φ
τ φ

= + − + +⎧
⎪ = + − + +⎪
⎨

= +⎪
⎪ =⎩

&

 (5) 

For Eq. (5), we construct the following Luenberger-like estimator for z(t): 

ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( )) [ ( ) ( )],

ˆ ˆˆ ˆ( ) ( ) ( ) ( ( )),

ˆˆ( ) ( ).

d p

q qd p

z

x t Ax t A x t B ξ t K y t Cx t

ξ t C x t C x t D ξ t

z t C x t

τ φ

τ φ

⎧ = + − + + −
⎪⎪ = + − +⎨
⎪ =⎪⎩

&

 (6) 

where K∈ 1

h

j
j

n p
=

×∑
ℜ  is filter gain to be determined to meet certain performance criteria, 

ˆ( )x t  and ˆ( )z t  denote the estimates of x(t) and z(t), respectively. Defining the error 

vector e(t)=x(t)− x̂ (t), we have the following dynamic equations which e(t) satisfies. 

( ) ( ) ( ) ( ) ( ( )) ( ) ( ),

ˆ( ) ( ) ( ) ( ) ( ) ( ( )) ( ),

ˆ( ) ( ) ( ) ( ),

d p w

q qd p qw

z

e t A KC e t A e t B f ξ t B w t KDv t

ξ t ξ t ξ t C e t C e t D f ξ t D w t

z t z t z t C e t

τ

τ

⎧ = − + − + + −
⎪⎪ = − = + − + +⎨
⎪ = − =⎪⎩

%&

% %

%

 (7) 

where ( )z t%  is fusion error signal, and ˆ( ( )) ( ( )) ( ( ))f ξ t ξ t ξ tφ φ= −% . 
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Definition 1. If there exists a positive scalar γ such that 

T 2 T T

0
( ( ), ( )) [ ( ) ( ) ( ( ) ( ) ( ) ( ))] 0J w t v t z t z t w t w t v t v t ,

 
(8) 

for any nonzero w(t)∈l2[0, ∞), v(t)∈l2[0, ∞), with the initial state x(t)=ϖ(t)=0, ∀t∈[−τ, 
0], and the system (7) is asymptotically stable when w(t)=0 and v(t)=0, then the L2 
gain of the system (7) does not exceed γ, that is, the system (6) is an H∞ fusion estima-
tor for z(t). If we find a minimal positive γ to satisfy the above conditions, the system 
(6) is an optimal H∞ fusion estimator for z(t). 

3   H∞ Fusion Filter Design 

In this paper, we assume that the nonlinear functions in (1) are monotonically non-
decreasing and globally Lipschitz. That is, there exist non-negative scalar qi and posi-
tive scalar ui such that 

( ) ( )i i
i iq u

φ σ φ δ
σ δ

−
≤ ≤

−
, ∀σ, δ∈ℜ, ui>qi≥0, i=1, …, L. (9) 

Then the nonlinear functions ( ( ))i if ξ t%  (i=1, …, L) satisfy the following sector-

bounded conditions: 

( ( ))

( )
i i

i i

i

f ξ t
q u

ξ t
≤ ≤

%

%
, i.e. [ ( ( )) ( )] [ ( ( )) ( )] 0i i i i i i i if ξ t q ξ t f ξ t u ξ t− ⋅ − ≤% % % % . (10) 

 
Theorem 1. There exists a multi-sensor optimal H∞ fusion filter (6) such that the 
system (7) is globally asymptotically stable when w(t)=0, v(t)=0, and the upper bound 
on the L2 gain of the system (7) is minimal provided that there exist symmetric posi-
tive definite matrices P and Γ, diagonal semi-positive definite matrix Λ, a matrix S, 
and a positive scalar γ that satisfy the following EVP: 

Minimize  γ2, (11) 
Subject to 

T

2

2

( )
( )

* ( ) 0 0

( )
0,

* * ( ) ( ) 0

2

* * * 0

* * * *

T

d p q w

z z

qd

p

p qw

PA SC PA
PA PB C Q U PB SD

SC C C Γ
Γ C Q U

D Q U

Q U D Q U D

I

I

Τ

Τ

Τ

Λ

Λ
Λ

Λ Λ
Λ

γ
γ

⎡ ⎤⎛ ⎞− +
+ + −⎢ ⎥⎜ ⎟⎜ ⎟− + +⎢ ⎥⎝ ⎠

⎢ ⎥− +⎢ ⎥
⎢ ⎥⎛ ⎞+
⎢ ⎥ <⎜ ⎟
⎢ ⎥+ + +⎜ ⎟
⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦
 

 
 
 

 

(12) 
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where Q=diag(q1, q2, …, qL), U=diag(u1, u2, …, uL). Furthermore, the gain of desired 
H∞ fusion filter (6) can be determined by: 

1K P S−= . (13) 
 

Proof.  Considering (12) (13), we have 

T

2

2

( )

( ) ( )

* ( ) 0 0

0.( )

* * ( ) ( ) 0

2

* * * 0

* * * *

T

d p q w

z z

qd

p

p qw

A KC P

P A KC PA PB C Q U PB PKD

C C Γ
Γ C Q U

G D Q U

Q U D Q U D

I

I

Τ

Τ

Τ

Λ

Λ
Λ

Λ Λ
Λ

γ
γ

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟+ − + + −⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+ +⎝ ⎠⎢ ⎥
⎢ ⎥− +
⎢ ⎥

= <⎛ ⎞+⎢ ⎥
⎜ ⎟⎢ ⎥+ + +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥

⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦
 

(14) 

For simplicity, we denote e(t) as e , e(t−τ) as eτ, z% (t) as z% , w(t) as w, v(t) as v, 

( )iξ t%  as iξ% , ( ( ))i if ξ t%  as if , and ( ( ))f ξ t%  as f. Firstly, we consider the system (7) with 

w(t)=0 and v(t)=0; that is 

( ) ( ) ( ) ( ) ( ( )),

( ) ( ) ( ) ( ( )).

d p

q qd p

e t A KC e t A e t B f ξ t

ξ t C e t C e t D f ξ t

τ

τ

⎧ = − + − +⎪
⎨

= + − +⎪⎩

%&

% %
 (15) 

Since e(t)=0 and ( )ξ t% =0 are solutions to (15), there exists at least one equilibrium 

point located at the origin, i.e. eeq=0, eqξ% =0. For the system (15), we adopt the follow-

ing Lyapunov-Krasovskii functional: 

0T( ) ( ) ( )V t e Pe e t e t d ,
 

(16) 

where P>0, Γ>0. Thus, ∀e≠0, V(t)>0, and V(t)=0 iff e=0. The derivative of V(t) along 
the solution of system (15) is: 

T T( )V t e Pe e Pe e Γe e ΓeΤ Τ= + + −& & & τ τ  
T T( ) ( )d p d pA KC e A e B f Pe e P A KC e A e B f e Γe e ΓeΤ Τ⎡ ⎤ ⎡ ⎤= − + + + − + + + −⎣ ⎦ ⎣ ⎦τ τ τ τ  

0

T T

T

T

( ) ( )

0

0 0

d p

d

p

R

e A KC P P A KC Γ PA PB e

e A P Γ e

f B P f

⎡ ⎤− + − +⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦1444444442444444443

τ τ . (17) 
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For the system (7) under zero initial condition, J(w, v) in Eq. (8) is equivalent to 
T 2 T T

0
( , ) [ ( )]J w v z z w w v v dt

T 2 T T

0
[ ( ) ( )] (z z w w v v V t dt V )

]T 2 T T

0
[ ( ) ( )z z w w v v V t dt

T

0
( ) d p wA KC e A e B f B w KDv Pe

 

                            ( )T ( ) d p we P A KC e A e B f B w KDv+ − + + + −τ  

                           T T 2 T T( )z ze Γe e Γe e C C e w w v v dtΤ Τ ⎤+ − + − + ⎦τ τ γ  

The sector-bounded conditions (10) can be rewritten as follows: 
2 2( ) 0i i i i i i i if q u f q u− + ≤ − ≤% %ξ ξ , 

which is equivalent to: 

2
, , , ,2 2( ) ( ) 0i i i i q i qd i p i qw iq u f C e C e D f D w− + + + + ≤τφ , (19) 

where Cq,i is the ith row of matrix Cq, Cqd,i is the ith row of matrix Cqd, Dp,i is the ith row 
of matrix Dp, Dqw,i is the ith row of Dqw. We rewrite (19) in matrix notation as follows: 
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where 

,( ,1)

,( , 1)
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⎢ ⎥
⎢ ⎥

⎦
 

and dp,(i,j) is the entry of the matrix Dp at the ith row and jth column. By virtue of S-
procedure [13], if there exist λi≥0 (i=1, …, L), such that the following inequality 
holds 

0
1

0
L

i i
i

R R G
=

− = <∑λ , (21) 

then 0 0R < , where Λ=diag{λ1, λ2, …, λL}, and Λ≥0. We can obtain that for any [eT 

eτ
T f T wT vT]T≠0, J(w,v)<0, for any nonzero w∈l2[0, ∞) and v∈l2[0, ∞). By the well-

known Schur complement [13], 0 0R <  is equivalent to 
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(22) 

From (22), we have 

T

T
0

T

( ) ( )

0 0

0 0

d p

d

p

A KC P P A KC Γ PA PB

R A P Γ
B P

⎡ ⎤− + − +
⎢ ⎥= − <⎢ ⎥
⎢ ⎥⎣ ⎦

. (23) 

So the system (7) with w=0 and v=0 [i.e. the system (15)] is globally asymptotically 
stable. 

We hope that γ is minimal such that the system (7) can reject the external distur-
bance as strong as possible. It requires solving the eigenvalue problem (EVP) (11)-
(12), which is a convex optimization problem and can be solved by using the MAT-
LAB LMI Control Toolbox [14]. This completes the proof. 
 
Remark 2.  For the convenience of the application of designed filters in the engineer-
ing practice, it is necessary to limit the magnitude of filter gain K, which is equivalent 
to restricting the norm of P and S in some ranges, that is, 
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1 ,

,

P

S

δ

σ

−⎧ <⎪
⎨

<⎪⎩
 

(24) 

where δ and σ are positive scalars, which are well chosen according to the design 
requirement in practical systems. By virtue of the well-known Schur complement 
formula [13], the constraints (24) is equivalent to 

0
P I

I P

−⎡ ⎤
<⎢ ⎥−⎣ ⎦

δ
δ

, (25) 

T

0
I S

S I

σ
σ

⎡ ⎤−
<⎢ ⎥−⎣ ⎦

. (26) 

 

Remark 3. Most literature [15] [16], which investigating H∞ filter problem, assumes 
that the estimated system (1) is asymptomatically stable in the absence of process 
noise w and measurement noise v. However, in most case, the information about the 
systems’ stability can not be known. Here, we need not this assumption. On the other 
hand, while constructing filter structure, we take full advantage of the information 
provided by the system (1) and measurement from sensors (2) (or (4)), such as A, Ad, 
Bp, Cq, Cqd, Dp, C , D and Cz, therefore, only one parameter K in the H∞ Filter (6) 
should be determined. 

4   Conclusion 

In this paper, we have studied an H∞ fusion filtering algorithm for a class of time-
delayed systems with unified nonlinear operators, such as recurrent neural networks, 
fuzzy dynamic systems, and Lur’e systems. Central to our design are the introduction 
of the unified model, which interconnects a linear time-delayed dynamic system with 
static nonlinear operators, and the transformation of the nonlinear system to this uni-
fied model. An optimal H∞ fusion filter has been designed for this unified nonlinear 
model such that L2 gain of the system (7) is minimized. The filter structure is based 
on the system (1), and the only one filter parameter should be determined. The result-
ing design equations are a set of LMIs which can be solved by the MATLAB LMI 
Control Toolbox [14]. The fusion method is applicable to not only stable nonlinear 
systems, but also unstable complex systems.  
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Abstract. This paper investigates robust H∞ synchronization problem of general 
discrete-time time-delayed chaotic neural networks with external disturbance. 
Based on Lyapunov stability theory and H∞ control concept, time-delayed state 
feedback controllers are established to not only guarantee exponential stable 
synchronization between two general chaotic neural networks with time delays, 
but also reduce the effect of external disturbance on synchronization error to a 
minimal H∞ norm constraint. The control design problem is shown to be a linear 
matrix inequality (LMI) standard problem which can be easily solved by vari-
ous convex optimization algorithms to determine the optimal H∞  synchroniza-
tion control law.  

1   Introduction 

Since Aihara firstly introduced chaotic neural network model to simulate the chaotic 
behavior of biological neurons in 1990 [1], chaotic neural networks have been suc-
cessfully applied in combinational optimization [2], associative memory [3], secure 
communication [4], chemical biology [5] and so on. Based on the drive-response 
(master-slave) concept proposed by Pecora and Carroll [6], research on the synchro-
nization of chaotic neural networks has broadened considerably in the last few years. 
A wide variety of approaches have been proposed for the synchronization and control 
of chaotic neural networks with or without delays, which include linear and nonlinear 
feedback control, adaptive design control, impulsive control method, and invariant 
manifold method, among many others (see [7-10] and references cited therein). 

In real physical systems, some noise or disturbances always exist that may cause 
instability and poor performance. Therefore, the effect of the noises or disturbances 
must be also reduced in synchronization process for chaotic systems. In this regards, 
Suykens et al. [11] firstly adopted the H∞ control concept to reduce the effect of the 
disturbance for chaotic synchronization problem of chaotic Lur’e systems. Refs. [12] 
and [13] investigated the H∞ synchronization problem for a general class of chaotic 
systems with external disturbance via dynamic feedback approach. On the other hand, 
since Mackey and Glass [14] first found chaos in time-delay system, there has been 
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increasing interest in time-delay chaotic systems. The H∞ synchronization problem for 
time-delayed chaotic systems is also investigated by some researchers [15]. 

However, to our best knowledge, the above aforementioned methods and many 
other existing synchronization methods are only applied to the continuous-time cha-
otic systems. There does not seem to be much (if any) study on the H∞ synchroniza-
tion for discrete-time delayed chaotic systems with external disturbance. It is well 
known that discrete-time systems play a very important role in digital signal analysis 
and processing. Especially, the discrete-time neural networks have been found  
intensive application, such as bidirectional associative memory, nonlinear output 
regulation and adaptive tracking etc. Therefore, here we will combine the H∞ control 
concept and Lyapunov stability theory to investigate the optimal H∞ synchronization 
problem for a general class of discrete-time time-delayed chaotic neural networks 
with external disturbance. We are inspired by the standard neural network model 
(SNNM) in [16] and put forward this general discrete-time chaotic neural network, 
which is the interconnection of a linear delayed dynamic system and a bounded static 
nonlinear operator. Most chaotic systems with time delays, such as Hopfield neural 
networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) 
networks, recurrent multilayer perceptrons (RMLPs), and Cohen-Grossberg neural 
networks (CGNNs) etc, can be transformed into this general chaotic neural network to 
be H∞ synchronization controller designed in a unified way. Time-delayed state feed-
back controller for the synchronization between two general discrete-time time-
delayed chaotic neural networks is proposed. By the state feedback control scheme, 
the closed-loop error system is exponentially stable and the H∞-norm from the distur-
bance to controlled output is reduced to a lowest level. 
 

Notation. ℜn denotes n dimensional Euclidean space, and ℜn×m is the set of all n×m 
real matrices. l2[0, ∞) is the space of square integrable vectors. I denotes the identity 
matrix of appropriate order. AT means the transpose of the matrix A. diag{⋅⋅⋅}denotes 
the block diagonal matrix. ∗ denotes the symmetric parts. λM(A) and λm(A) denote the 
maximal and minimal eigenvalue of a square matrix A, respectively. ||x|| denotes the 
Euclid norm of the vector x. The notations X>Y and X≥Y, where X and Y are matrices 
of same dimensions, mean that the matrix X−Y is positive definite and positive semi-
definite, respectively. If X∈ℜp and Y∈ℜq, C(X; Y) denotes the space of all continuous 
functions mapping ℜp → ℜq. 

2   Problem Formulation 

In this paper, we consider the following chaotic delayed neural network model [16]: 

( 1) ( ) ( ) ( ( )),

( ) ( ) ( ) ( ( )),

( ) ( ),

d p

q qd p

x

x k Ax k A x k B ξ k

ξ k C x k C x k D ξ k

z k Cx k

τ φ
τ φ

+ = + − +⎧
⎪ = + − +⎨
⎪ =⎩

 (1) 

with the initial condition function x(k)=ϖ(k), ∀k∈[−τ, 0], where x(k)∈ℜn is the state 
vector associated with the neurons, A∈ℜn×n, Ad∈ℜn×n, Bp∈ℜn×L, Cq∈ℜL×n, Cqd∈ℜL×n, 
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Dp∈ℜL×L , and C∈ℜl×n are the corresponding state-space matrices, φ∈C(ℜL; ℜL) is 
nonlinear activation function satisfying φ(0)=0, ξ∈ℜL is the input vector of φ, τ≥1 is 
the transmission delay, ϖ(⋅) is the given continuous function on [−τ, 0], zx(k)∈ℜl is 
the output vector, and L∈ℜ is the total number of neurons in the hidden layers and 
output layer of the neural network. 

In this paper, we assume that the activation functions in (1) are monotonically non-
decreasing and globally Lipschitz. That is, there exist non-negative scalar qi and posi-
tive scalar hi such that 

( ) ( )i i
i iq h

φ µ φ υ
µ υ

−
≤ ≤

−
, 0i ih q> ≥ i=1, …, L, (2) 

for all arbitrary µ, υ∈ℜ. 
The synchronization problem of system (1) is considered using the drive-response 

configuration [6]. This is, if the system (1) is regarded as the drive system, a suitable 
response system with control input should be constructed to synchronize the drive 
system. According to the above drive-response concept, unidirectionally coupled 
chaotic systems can be described by the following equations: 

( 1) ( ) ( ) ( ( )) ( ) ( ),

( ) ( ) ( ) ( ( )),

( ) ( ),

d p

q qd p

y

y k Ay k A y k B k u k Dw k

k C y k C y k D k

z k Cy k

τ φ ζ
ζ τ φ ζ
⎧ + = + − + + +
⎪

= + − +⎨
⎪ =⎩

 

 

(3) 

with the initial condition function y(k)=σ(k), ∀k∈[−τ, 0], where y(k)∈ℜn is the state 
vector of response system, D∈ℜn×s is constant matrices, σ(⋅) is the given continuous 
function on [−τ, 0], w(k)∈ℜs is external disturbance which belongs to l2[0, ∞), 
zy(k)∈ℜl is the output of the response system, and u(k)∈ℜn is a unidirectionally cou-
pled term, which is regarded as the control input and will be appropriately designed 
such that the specific control objective is achieved. 

Now, we define the synchronization error signal e(k)=y(k)−x(k), where x(k) and 
y(k) are the state variables of drive system (1) and response system (3), respectively. 
Therefore, the error dynamical system between (1) and (3) is given as follows: 

( 1) ( ) ( ) ( ( )) ( ) ( ),

( ) ( ) ( ) ( ( )),

( ) ( ),

d p

q qd p

e

e k Ae k A e k B k u k Dw k

k C e k C e k D k

z k Ce k

τ ψ η
η τ ψ η

+ = + − + + +⎧
⎪ = + − +⎨
⎪ =⎩

 

 

(4) 

where e(k)∈ℜn, ze(k)=zy(k)−zx(k), η(k)=ζ(k)−ξ(k), andψ(η(k))=φ(ζ(k))−φ(ξ(k))=φ(η(k) 
+ξ(k))−φ(ξ(k)), therefore ψ(0)=0. Since all the φi(⋅) are globally Lipschitz, ψi(⋅) satisfy 
the sector conditions, i.e. , for each i=1, …, L, 

qi≤ψi(ηi(k))/ηi(k)≤hi or [ψi(ηi(k))−qiηi(k)]⋅[ψi(ηi(k))−hiηi(k)]≤0. (5) 

Next, in order to synchronize between drive system (1) and response one (3) in the 
sense of H∞ theory, let us consider the following state and time-delay state feedback 
controller: 
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1 2( ) ( ) ( )u k K e k K e k τ= + − , (6) 

where K1∈ℜn×n and K2∈ℜn×n are feedback gains to be scheduled. With the control law 
(6), the error dynamics can be expressed by the following form: 

1 2( 1) ( ) ( ) ( ) ( ) ( ( )) ( ),

( ) ( ) ( ) ( ( )),

( ) ( ).

d p

q qd p

e

e k A K e k A K e k B k Dw k

k C e k C e k D k

z k Ce k

τ ψ η
η τ ψ η

+ = + + + − + +⎧
⎪ = + − +⎨
⎪ =⎩

 

 

(7) 

Since ψ(0)=0, the system (7) admits a trivial solution e(k)≡0 in the absence of external 
disturbance w(k). 

Before stating the main results, we first need the following definition. 
 
Definition 1 (Exponential H∞ synchronization). [12][13][15].  The drive system (1) 
and the response system (3) are said to be exponentially synchronized in H∞ sense if 

(H1) there exist constants λ(α)≥1 and α>0 under w(k)≡0 such that ||x(k)−y(k)||≤ 
λ(α)

0
sup ( ) ( )

i
y i x i

τ− ≤ ≤
− exp(−αk), for any k≥0. Moreover, the constant α is defined as 

the exponential synchronization rate; 
(H2) the following condition holds under zero initial condition with a given posi-

tive constant γ: 

2 T

0

[ ( ) ( ) ( ) ( )] 0T
e e

k

J z k z k w k w kγ
∞

=

= − <∑ (i.e. 
2( ) 0, ( ) [0, )

( )
sup

( )
e

w k w k l

z k

w k
γ

≠ ∈ ∞
< ). (8) 

Then, the controller u(k) is said to be the H∞ synchronization controller with the dis-
turbance attenuation γ. The parameter γ is called the H∞-norm bound of the controller. 
If we find a minimal positive γ to satisfy the above conditions, the controller (6) is an 
optimal H∞ synchronizer. 

3   Main Results 

Theorem 1. For given α>0, if there exist positive definite matrices R and Γ, diagonal 
semi-positive definite matrix Σ , a positive scalar γ, and nonzero matrices Y1 and Y2, 
that satisfy the following eigenvalue problem (EVP): 

Minimize  γ2, (9) 
Subject to 
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T T

T

T

2

* exp( 2 ) 0 ( ) 0

* * exp( 2 ) ( ) 0
0,

( ) 2
* * * 0

( )

* * * *

d p

q

qd

p

p

R RA Y RA Y RB RD

R C C C Q H Σ
C Q H Σ

D Q H Σ Σ
Σ Q H D

I

α Γ
ατ Γ

γ

− + +⎡ ⎤
⎢ ⎥− − + + +⎢ ⎥
⎢ ⎥− − +
⎢ ⎥ <

⎛ ⎞+ −⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟+ +⎢ ⎥⎝ ⎠

⎢ ⎥−⎣ ⎦

 

 
 
 

(10) 
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where Q=diag(q1, q2, …, qL), H=diag(h1, h2, …, hL), then the drive system (1) and the 
response system (3) can be synchronized with a prescribed exponential synchroniza-
tion rate α, and H∞-norm bound of the controller (6) does not exceed γ. Moreover, the 
feedback gains of optimal H∞ controller (6) are obtained as K1=R−1Y1 and K2=R−1Y2. 
 

Proof.  Substituting Y1=RK1 and Y2=RK2 into (10), and using the well-known Schur 
complement [17], Ieq. (10) is equivalent to: 
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(11) 

Firstly, we consider the system (7) with w(k)=0; that is 

1 2( 1) ( ) ( ) ( ) ( ) ( ( )),

( ) ( ) ( ) ( ( )),
d p

q qd p

e k A K e k A K e k B k

k C e k C e k D k

τ ψ η
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 (12) 

For the error dynamical system (12), we define a positive definite Lyapunov-
Krasovskii functional as: 

1
T( ( )) exp(2 ) ( ) ( ) exp(2 ) ( ) ( )

k

i k

V e k k e k Pe k i e i Γe i
τ

α α
−

Τ

= −

= + ∑ , (13) 

where P=PT>0, Γ=ΓT>0, and α>0. Thus, ∀e(k)≠0, V(e(k))>0, and V(e(k))=0 iff 
e(k)=0. The difference of V(e(k)) along the solution to (12) is 

( ( )) ( ( 1)) ( ( ))V e k V e k V e k∆ = + −  
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(14) 

Let exp(2α)P=R, we can get P=exp(−2α)R. We rewrite the above formulation of 
∆V(e(k)) as: 
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where  
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Next, for the system (7) under zero initial condition, J in Eq. (8) is equivalent to 
 

T 2 T

0

[ ( ) ( ) ( ) ( )]e e
k

J z k z k w k w kγ
∞

=

= −∑  

T T 2 T

0

[ ( ) ( ) ( ) ( ) ( ( ))] ( ( )) ( (0))
k

e k C Ce k w k w k V e k V e V eγ
∞

=

= − + ∆ − ∞ +∑  

T T 2 T

0

[ ( ) ( ) ( ) ( ) ( ( ))]
k

e k C Ce k w k w k V e kγ
∞

=

≤ − + ∆∑  

0
0

( ) ( )

( ) ( )
exp(2 )

( ( )) ( ( ))

( ) ( )

T

k

e k e k

e k e k
k G

k k

w k w k

τ τ
α

ψ η ψ η

∞

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ , 

 
 

(16) 

 

where  
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The sector conditions (5) can be rewritten as follows: 
2 2( ( )) ( ( ))( ) ( ) ( ) 0i i i i i i i i i ik k q h k q h kψ η ψ η η η− + + ≤ , (17) 

Since qihiηi
2(k)≥0,  we can obtain 

2 ( ( )) ( ( ))( ) ( ) 0i i i i i i ik k q h kψ η ψ η η− + ≤ , (18) 

which is equivalent to:  
2

, ,2 ( ( )) 2 ( ( ))( ) ( ) 2 ( ( ))( ) ( )i i i i i i q i i i i i qd ik k q h C e k k q h C e kψ η ψ η ψ η τ− + − + −  

,2 ( ( ))( ) ( ( )) 0i i i i p ik q h D kψ η ψ η− + ≤ , (19) 

where Cq,i denotes the ith row of Cq, Cqd,i denotes the ith row of Cqd, Dp,i denotes the ith 
row of Dp. We rewrite (19) in matrix notation as follows:  
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where si=qi+hi, dp,i,j is the entry of the matrix Dp at the ith row and jth column. By the 
S-procedure [17] and (11), if there exist εi≥0 (i=1, …, L), such that the following 
inequality holds: 
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where Σ=diag{ε1, ε2, …, εL}, and Σ≥0, then 0 0G < . we can obtain that for any [eT(k) 

eT(k-τ) ψT(η(k)) wT(k)]T≠0, J<0, for any nonzero w∈ l2[0, ∞). By the well-known 

Schur complement [17], 0 0G <  is equivalent to 
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From (22), we have G0<0, that is, ∆V(e(k))≤0, therefore, V(e(k))≤V(e(0)). However, 
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Θ = , and V(e(k))≥exp(2αk)eT(k)Pe(k)≥exp(2αk)λm(P)||e(k)||2, 

therefore the convergence rates of e(k) are 
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From Definition 1, it concludes that the drive system (1) and the response system (3) 
are exponentially synchronized with an exponential synchronization rate α. 

We hope that γ is minimal such that the system (7) can reject the external distur-
bance as strong as possible. It requires solving the eigenvalue problem (EVP) (9) (10), 
which is a convex optimization problem and can be solved by using MATLAB’s LMI 
Control Toolbox [18]. We thus complete the proof. 

4   Conclusion 

In this paper, we provide a general discrete-time chaotic neural network model to unify 
several well-known dynamic neural networks with delays. Utilizing time-delay feed-
back control and LMI techniques, we have proposed a criterion to design optimal H∞ 
synchronization controller of this general chaotic neural network model. Solving the 
EVP by using MATLAB’s LMI Control Toolbox [18], we have obtained the optimal 
H∞-norm bound of the controller and the feedback gain matrices of optimal controller in 
the response network, with which the drive system and the response system can be 
exponentially synchronized in the prescribed convergent rate, and reject the external 
disturbance as strong as possible. In addition, the design approach can be easily ex-
tended to synthesize synchronization controllers for any discrete-time chaotic systems 
as long as their equations can be transformed into the general models (1). 
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Stability of Hopfield Neural Networks with Time-Varying 
Delay 
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Abstract. In this paper, the stability of Hopfield Neural Networks with Time-
Varying Delay is investigated by means of Lyapunov functions and the general-
ized Halanay delay differential inequality. The obtained results are the algebraic 
criteria entirely and are obviously practical  

Keywords: Stability; time-delay; neural networks; Lyapunov functions. 

1   Introduction 

It is known that the stability of Hopfield continuous neural networks 
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Hopfield continuous neural networks with constant time-delay  
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is investigated by a lot of people, many results of stability are obtained. But the stabil-
ity of Hopfield continuous neural networks with time-varying delay is rarely studied. 
In reality，the neural networks with time-varying delay is universal. In many cases, 
we only known the time-delay bound, but don’t know the real value of time-delay. In 
dynamical process, the absolute constant time-delay is rarely existed, and is only ideal 
approximation. Therefore, the investigation of stability of the Hopfield neural net-
works with time-varying delay is of the theoretical meaning and realistic meaning.  

Consider the Hopfield neural networks with time-varying delay 
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where iC  is capacitor, iR is resistor, and iR/1 represents the time constant of the 

change rate for the ith  neuron potential; iI is current, and is the constant external 

input to the network; ijT  is the synaptic efficacy of the jth neuron potential transmit-

ted to the ith  neuron. 1Cg j ∈ is monotonous increasing function satisfying 
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),...,,( 21 nxxxcolx = = ),...,,( **
22

*
11 nn uuuuuucol −−− ， 

)()( *
iiiii uxgxf += )( *

ii ug− ,   

then the system (1) may be changed into 

                     )(
1

)))(((
1

tx
R

ttxfT
dt

dx
C i

i

n

j

jjjij
i

i −−=∑
=

τ , ni ,...,2,1= .                     (2) 

Therefore, the equilibrium 0=x of system (2) is equal to the equilibrium *uu = of 
system (1) in stability.. 

2   Main Results 

Lemma 1. Generalized Halanay Time-delay Differential Inequality  
Suppose that 0,0 >> ba are constants, and ba > . The function )(tx is one variable 

continuous function, and nonnegative. As 0tt ≥ , the following inequality is satisfied   

                                            )()()( txbtaxtxD +−≤+                                              (3) 

where )(tx
∆
= { })(sup sx

tst ≤≤−τ
， 0≥τ is a constant, then we have 

                                )](exp[)()( 00 tttxtx −−≤ λ                      as 0tt ≥  

where λ is only one positive root of the following transcendental equation 

                  λτλ bea −=                                                      (4) 
Proof:  
① We proof that the following transcendental equation (4) has only one positive 
solution. 
② Let )](exp[)()( 00 tttxty −−= λ ,  then                                      

                                    )()(
)( τ−+−≤ tbytay

dt

tdy
 ， ),[ 0 +∞∈ tt                             (5) 

Suppose that k is a any constant and 1>k ，then 

         )()( tkytx < ,  ],[ 00 ttt τ−∈                                    (6) 

Now suppose that there is a ),( 0 +∞∈ tt ，such that )()( tkytx = . then from continuous 

of )(),( tytx ，we have that there exists ),( 01 +∞∈ tt  satisfying the following  

        )()( tkytx < ， ),[ 10 ttt τ−∈ ，  )()( 11 tkytx =                           (7) 

On the other hand，from (3), we have 

     
dt

tdy
ktbkytakytxbtaxtxD

)(
)()()()()( 1

11111 =−+−<+−≤+ τ              (8) 
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so we have 

                                                  
dt

tdy
ktxD

)(
)( 1

1 <+                                                (9) 

(7) is contradiction to (9). Then for any ),[ 0 +∞∈ tt , we have 
            )()( tkytx <          

Again, letting 1→k ,then 

       =< )()( tytx )](exp[)( 00 tttx −−λ                                  (10) 

 

Theorem 1.  Suppose that ∗= uu is the equilibrium state of system (1)，and satis-
fies the following conditions 

(1)0≤ )('
jj ug ≤ jL ＜∞  

(2) ）（
jj

nj CR
a

1
min
1 ≤≤

∆
= ＞ ∑

=
≤≤

n

i
nj

1
1

|max
i

jij

C

LT
| b

∆
=  

Then the equilibrium state ∗= uu of system (1) is global exponentially stable, and 
the unique positive solution λ of characteristic equation (4) is regard as Lyapunov 
exponent of system (1). 

Proof: For system (1), we choose Lyapunov function ∑
=

=
n

i

ixxW
1

)( . The Dini de-

rivative of )(xW  is obtained along the system (2), 

i
i x

dt

dx
xWD sgn)( )2( =+ ≤ ∑∑∑

= ==

−⋅+− n

i

jj

n

j i

jij
i

n

i ii

ttx
C

LT
x

RC 1 11

))((
1 τ  

          ≤-
ni≤≤1

min
ii RC

1 ∑
=

n

j

jx
1

+∑∑
= =

⋅
n

j

n

i

j
i

iij
tx

C

LT

1 1

)(  

≤-
ni≤≤1

min
ii RC

1 ∑
=

n

j
jx

1

+ ∑∑
==

≤≤
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ n

j
j

n

i i

iij

nj
tx

C

LT

11
1

)(max  

)()()()( xWbxaWxbWxaW +−=+−=
∆

                                                  

(11) 
By Lemma 1,we have： 

      ∑
=

=
n

ti
i tWxttx )(),,( 00 ≤ )(

0
0)( ttetW −−λ                                   

(12) 
where λ is unique positive root of the transcendental equation (4). From (12), the 

equilibrium state ∗= uu of system (1) is global exponentially stable. 

Theorem 2.  Suppose that ∗= uu is the equilibrium state of system (1)，and satis-
fies the following conditions 
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(1) 0 ≤ )( jj ug ′ ≤ jL ＜∞； 

(2) )
1

(min
1

ii
ni CR

a
≤≤

∆
= ＞λ. 

Let
ni

jij

n
C

LT
B

B

B
H

××
Τ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ππ
||,

0

0

22

, λ  is maximum eigenvalue of matrix 

H , ΤB is the transition matrix of B ,then the equilibrium state ∗= uu of system (1) 
is global exponentially stable.  

Let the unique positive solution of tea µλλµ
22

+−=  is µ ，then 
2

µ
 is regarded as 

Lyapunov exponent of system (1). 

Proof: For system (1), we choose Lyapunov function ∑
=

=
n

i

ixxW
1

2

2

1
)( , then 

)))(((
1)(

1 1

2

1
)1( ttxfTxx

RCdt

tdW
j

n

j

n

i
jjijii

n

i ii

τ∑∑∑
= ==

−+−=  

≤ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− ∑

=
≤≤ 0

0

||

||

2

11
min

1

2

1 T

Tn

j
j

iini B

B

x

x
x

RC
 

≤ )(
2

)()
2

()(
2

)(
2

)( xWxWaxWxWxaW
λλλλ ++−=++−  

                  )()( xWbxWa +−=                                                                              (13)   

where ∑
=

==−=
n

i
i txxWbaa

1

2|)(|)(,
22

λλ
， .From a >λ, we have a >b. By 

Lemma 1, we have 

           )(xW ≤ ))0((xW )( 0tte −−µ                                        (14) 

where µ  is unique positive solution of the transcendental equation: µτµ bea += ,  i.e. 

  
)(

2

1

2
0

1

002 0
),,(

tt
n

i

i

n

i

i exxttx
−−

==
∑∑ ≤

µ

                                   (15) 

The proof of Theorem 2 is completed. 
 
Definition 1. ),,( yxtG is said to be nH class function, if the following conditions are 
satisfied: 

(1) ,,,, )2()1( nn CyyRxIt ∈∀∈∀∈∀  as )1(y ≤ )2(y (i.e. )1(
iy  ≤ )2(

iy , ni ,,2,1 "= ),we 

have 

                                              ≤),,( )1(yxtG ),,( )2(yxtG                                      (16) 

(2) )1(,, xCyIt n ∀∈∀∈∀ , .)2( nRx ∈  As )1(x ≤ )2(x ,for some I,we have )2()1(
ii xx = , 

and for these i , we have 
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     ),,( )1( yxtg i ≤ ),,( )2( yxtg i                                      (17) 

where ]],,[[ nn RttCCf τ−=∈ , ],[),,( nnn RCRRCyxtG ××∈ + .  

 

Lemma 2. 设 )(),( tytx are n-dimension vector functions, and 
[ ]

),(sup)(
,

ξ
τξ

xtx
tt −∈

=  

[ ]
)(sup)(

,
ξ

τξ
yty

tt−∈
= , ),,( yxtG nH∈ , the following conditions are satisfied    

(1) ]0,[),()( τθθθ −∈< yx  

(2) 0,,,2,1)),(),(,()( ≥=>+ tnitytytgtyD ii "  

0,,,2,1)),(),(,()( ≥=≤+ tnitxtxtgtxD ii "  

then )()( tytx < ,  as 0>t .   

where )))(),(,(,)),(),(,(())(),(,( 1 txtxtgtxtxtgcoltxtxtG n"=  

 
Proof(Proof by contradiction): Suppose that there exists a constant 0>η and 
some i , such that )()( ηη ii yx = . 

Let { })()( ηηη ii yxZ == ,it is obvious that φ≠Z ，therefore there exists a 0η , such 

that ηη
η Z∈

= inf0 . From condition (1), we have ]0,[),()( τθθθ −∈< asyx . So we know 

that 00 >η , ),()( 00 ηη yx ≤  and )()( 00 ηη yx ≤ . Therefore, from given condition (2), 

there exists a integer njj ≤≤1, , such that   

)())(),(,())(),(,()( 00000000 ηηηηηηηη jjjj yDyygxxgxD ++ <≤≤    (18) 

But as ),,0( 0η∈t we have ),()(..),()( tytxeitytx jj << but )()( 00 ηη jj yx = . So 

we have 

        )()( 00 ηη jj yDxD ++ ≥                                         (19) 

This is contradictive to (18) .  The proof of Lemma 2 is completed. 
 
Lemma 3. Suppose that the following conditions are satisfied 

(1) nitxbtxatxD
n

j

n

j
jijjijj ,,2,1),)()(()(

1 1

"=+≤ ∑ ∑
= =

+                                      (20) 

where 0)(,,,2,1,,0,,0
1

0∑
=

>=≥≠≥
n

i
iijij txnjibjia "  

(2) nnijij baM ×+−= )(  is M-matrix. 

Then there exists constants 0,0 >> αγ i , such that the solution of differential inequal-

ity (20) satisfies estimation formula. 

       )(

1
0

0])([)( tt
n

j
jii etxtx −−

=
∑≤ αγ                                         (21) 



380 H. Xiao 

Proof: Let ∑∑
==

+=
m

j
jij

n

j
jiji txbxatxtxtg

11

)())())(),(,( δ  

nn HtxtxtgtxtxtgcoltxtxtG ∈= )))(),(,(,)),(),(,(())(),(,( 1 "  
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Choose α , 10 << α ,such that 
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j
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1
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As ，],[ 00 ttt τ−∈  we choose 1, >RR , such that 1>ατeRdi . For any given 0>ε , let 
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1
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0])([)( tt
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Therefore ))(),(,()( tqtqtgtqD ii ≥+
。But as ],[ 00 ttt τ−∈ , we have 
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j
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1
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1
0 )(]))([)( 0 εεδ α  

Let ∑
=
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ji txtx
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0 )()( ε , ],[. 00 ttt τ−∈ . By Lemma 2, we have  
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0]))([)()( tt
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jiii etxRdtqtx −−
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0 ,)]([)( 0αγ , ni ,,2,1 ⋅⋅⋅= . 

The proof of Lemma3 is completed. 
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Theorem 3. If ,,2,1, njLf jj "=≤  and nnj
i

ij

nn

L
C

T

CRCR
diag ×− )()

1
,,

1
(

11

"  is M-

matrix, then universal solution of system (2) is global exponentially stable. i.e. the 

equilibrium state ∗= uu of system (1) is global exponentially stable. 
 

Proof: The system (2) is written as 

    )()()
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Because nnj
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nn

L
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CRCR
diag ×− )()

1
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1
(

11

"  is M-matrix, by lemma3, we know 

that the solution of differential inequality (23) satisfies estimation formula： 
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)(
0 ,])([)( 0αγ                        (24) 

where αγ ,i are positive constants. So Theorem3 comes into existence. 

 
Theorem 4. If the conditions of Theorem3 are satisfied, and there exists a con-

stant 0>γ , such that nnj
i

ij

nn

L
C
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CRCR
diag ×−−− )()

1
,,

1
(

11

λλ" is also M-matrix, 

then the solution of differential inequality (24)  at least, satisfies estimation formula 
(24) 
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Therefore, λ is Lyapunov exponent of system (1).. 
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If 0
1

min
1

1
>=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−∑

=
≤≤

λj

n

j i

ij

ii
ni

L
C

T

CR
,  then the conditions of Theorem 4 are satisfied. 

λ is Lyaunprov exponent. 
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Abstract. In this paper, fuzzy cellular neural networks with bounded
uncertain delays are investigated. By constructing Lyapunov functional
method, applying inequality technique and the homeomorphism theory,
we derive some new sufficient conditions to guarantee existence, unique-
ness of the equilibrium point and its global exponential stability for fuzzy
cellular neural networks. The results of this paper are new and they com-
plement previously known results.

Keywords: Fuzzy cellular neural networks; Global exponential stability;
Homeomorphism theory; Lyapunov functional; Equilibrium point.

1 Introduction

So far, there are two basic cellular neural networks being proposed. The first
one is traditional cellular neural networks (CNNs)which was first introduced by
Chua and Yang in 1988(see [1][2]). The dynamical behaviors of CNNs and with
delays (DCNNs) have received much attention due to their potential application
in associated memory, parallel computing, pattern recognition, signal process-
ing and optimization problems (see [3]-[11]). When a neural circuit is employed
as associated memory, the existence of many equilibrium points is necessary
feature. However, in application to solve optimization problems, the networks
must possess a unique globally asymptotically stable (GAS) or globally expo-
nentially stable(GES) equilibrium point for every input vector. GAS or GES
of cellular neural networks without delay and with delay have been extensively
investigated(see[3]-[11]). Based on traditional CNNs , T.Yang and L.B.Yang [12]-
[13] proposed another type-fuzzy cellular neural networks (FCNNs), which in-
tegrates fuzzy logic into the structure of cellular neural networks. Unlike CNNs
structure, FCNNs has fuzzy logic between its template input and/or output
besides the sum of product operations. Studies have shown that FCNNs has
its potential in image processing and pattern recognition. Like the traditional
CNNs, the stability of the system is very important in the design of the FCNNs.
In recent years some results on stability for FCNNs have been derived(see [14]-
[17]). To the best of our knowledge. FCNNs with delays are seldom considered.

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 383–394, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Authors in reference [16] give some conditions to guarantee the global stability
of FCNNs with constant delays and time-varying delays under the assumption
(A3), i.e. delay τ(t) is differentiable satisfied with τ ,

j(t) ≤ µj , τ(t) ≤ τ . However,
in most of the practical applications, it is difficult to know the delays exactly.
Hence, it is not easy to estimate the bounds of the derivatives of delay in ad-
vance. In this paper we consider the following FCNNs with bounded uncertain
delays.

ẋi(t) = −dixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=i

bijuj + Ii +
n∧

j=1

αijgj(xj(t− τij))

+
n∧

j=1

Tijuj +
n∨

j=1

βijgj(xj(t− τij)) +
n∨

j=1

Hijuj (1)

i = 1, 2, · · · , n where αij , βij , Tij and Hij are elements of fuzzy feedback MIN
template and fuzzy feedback MAX template, fuzzy feed forward MIN template
and fuzzy feed forward MAX template, respectively. aij and bij are elements of
feedback template and feed forward template.

∧
and

∨
denote the fuzzy AND

and fuzzy OR operation, respectively. xi, uj and Ii denote state, input and bias
of the ith neurons, respectively. τij is the transmission delay with 0 ≤ τij ≤ τ, fj
and gj are the activation functions.

Suppose that system (1) has the initial conditions with xi(t) = φi(t),−τ ≤ t ≤
0. A continuous solution denoted by x(t, 0, φ) or x(t) if no confusion should occur,
where x(t) = (x1(t), x2(t), . . . , xn(t))T (T denote transpose ). For x ∈ Rn,we
define the vector norm ‖x‖ = (

∑n
i=i | xi |2) 1

2 , ‖x‖∞ = max1≤i≤n | xi |. For any
φ = (φ1, φ2, . . . , φn)T ∈ C(where C = C([−τ, 0], Rn)), we define a norm in C by
‖φ‖τ = sup−τ≤θ≤0 ‖φ(θ)‖∞
Definition 1. The equilibrium point x∗ = (x∗1, x∗2, . . . , x∗n)T of system (1) is
said to be GES, if there are constants λ > 0 and M ≥ 1 such that, for any t ≥ 0

‖x(t)− x∗‖∞ ≤M‖φ− x∗‖τe−λt

Definition 2. If f(t) : R → R is a continuous function, then the upper right
derivative of f is defined as

D+f(t) = lim
l→0+

sup
1
l
(f(t+ l)− f(t))

Definition 3. [18] A map H : Rn → Rn is a homeomorphism of Rn onto itself
if H is continuous and one-to-one and its inverse map H−1 is also continuous.

Lemma 1. [18] Let H : Rn → Rn be continuous. If H satisfies the following
conditions
(1) H(x) is injective on Rn

(2) ‖H(x)‖ → ∞ as ‖x‖ → ∞ .
Then H is homeomorphism.
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Lemma 2. ( Mitrinovic and Vasic,1970 ) For ak ≥ 0, bk ≥ 0, (k = 1, 2, . . . ,m)
the following inequality holds

a
n∏

k=1

bqk

k ≤
1
r

m∑
k=1

qkb
r
k +

1
r
ar, (2)

where qk > 0, (k = 1, 2, . . . ,m) is some constant ,
∑m

k=1 qk = r − 1 and r > 1.

To obtain our results, we make the following assumptions.
(A1): fj and gj(j = 1, 2, . . . , n) are globally Lipschitz continuous, i.e., there exist
positive constant uj and σj such that

|fj(x)− fj(y)| ≤ uj |x− y|, |gj(x) − gj(y)| ≤ σj |x− y|, (3)

and fj(0) = gj(0) = 0 for any x, y ∈ R and j = 1, 2, . . . , n.
(A2): There are constants δkj , γkj , ξkj ∈ R, qk > 0 and ci > 0, i, j = 1, 2, . . . , n; k
= 1, 2, . . . ,m such that

rdi >
n∑

j=1

m∑
k=1

qk|aij |
rδkj

qk uj +
n∑

j=1

m∑
k=1

qk|αij |
rγkj

qk σj +
n∑

j=1

m∑
k=1

qk|βij |
rξkj

qk σj

+
1
ci

⎡⎣ n∑
j=1

|aij |rδm+1,jcjui +
n∑

j=1

|αij |rγm+1,jcjσi +
n∑

j=1

|βij |rξm+1,jcjσi

⎤⎦(4)

where

m+1∑
k=1

δkj = 1,
m+1∑
k=1

γkj = 1,
m+1∑
k=1

ξkj = 1,
m∑

k=1

qk = r − 1, r ≥ 1, i, j = 1, 2, . . . , n

The rest of this paper is organized as follows. in Section 2, we will give the
existence and uniqueness of equilibrium point for fuzzy cellular neural networks.
Results for global exponential stability of fuzzy cellular neural networks with
bounded unknown delays will be given and proved in Section 3. Conclusion will
be given in Section 4.

2 Existence and Uniqueness of the Equilibrium Point

In this section, we will discuss the existence and uniqueness of equilibrium point
for fuzzy cellular neural networks (1). In order to prove our results some lemma
is given as follows.

Lemma 3. [12] Suppose x and y are two states of system (1), then we have∣∣∣∣∣∣
n∧

j=1

αijfj(xj)−
n∧

j=1

αijfj(yj)

∣∣∣∣∣∣ ≤
n∑

j=1

|αij ||fj(xj)− fj(yj)|, (5)
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and ∣∣∣∣∣∣
n∨

j=1

βijfj(xj)−
n∨

j=1

βijfj(yj)

∣∣∣∣∣∣ ≤
n∑

j=1

|βij ||fj(xj)− fj(yj)| (6)

Firstly, we study the existence and uniqueness of the equilibrium point, consid-
ering the following equations associated with system (1)

−dixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=i

bijuj + Ii +
n∧

j=1

αijgj(xj(t− τij)) +
n∧

j=1

Tijuj

+
n∨

j=1

βijgj(xj(t− τij)) +
n∨

j=1

Hijuj = 0.

Define the map H as follows

H(x) = (h1(x1), h2(x2), . . . , hn(xn))T (7)

in which

hi(xi) = −dixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=i

bijuj + Ii +
n∧

j=1

αijgj(xj(t− τij))

+
n∧

j=1

Tijuj +
n∨

j=1

βijgj(xj(t− τij)) +
n∨

j=1

Hijuj (8)

Theorem 1. Assume that (A1) and (A2) hold , then system (1) has a unique
equilibrium point x∗.

Proof. We define map H as (7) and (8), we only need to show that H satisfies
two conditions of Lemma 1. We will show that If x 
= x then H(x) 
= H(x) holds
for any x, x ∈ Rn. The component hi(xi)− hi(xi) of the vector H(x)−H(x) is
as follows: for i = 1, 2, . . . , n.

hi(xi)− hi(xi) = −di(xi − xi) +
n∑

j=1

aij(fj(xj))− fj(xj)) +
n∧

j=1

αijgj(xj)

−
n∧

j=1

αijgj(xj) +
n∨

j=1

βijgj(xj)−
n∨

j=1

βijgj(xj) (9)

By (A1) and Lemma 2, we obtain∑n
i=1 sgn(xi − xi)rci[hi(xi)− hi(xi)]|xi − xi|r−1

=
n∑

i=1

sgn(xi − xi)rci|xi − xi|r−1

⎧⎨⎩−di(xi − xi) +
n∑

j=1

aij(fj(xj)− fj(xj))
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+
n∧

j=1

αijgj(xj)−
n∧

j=1

αijgj(xj) +
n∨

j=1

βijgj(xj)−
n∨

j=1

βijgj(xj)

⎫⎬⎭
≤

n∑
i=1

rci

⎧⎨⎩−di|xi − xi|r +
n∑

j=1

|aij |uj |xj − xj ||xi − xi|r−1

+
n∑

j=1

|αij |σj |xj − xj ||xi − xi|r−1 +
n∑

j=1

|βij |σj |xj − xj ||xi − xi|r−1

⎫⎬⎭
=

n∑
i=1

rci

⎧⎨⎩−di|xi − xi|r +
n∑

j=1

uj|aδm+1,j

ij (xj − xj)|
m∏

k=1

|a
δkj
qk

ij (xi − xi)|qk

+
n∑

j=1

σj |αγm+1,j

ij (xj − xj)|
m∏

k=1

|α
γkj
qk

ij (xi − xi)|qk

+
n∑

j=1

σj |βξm+1,j

ij (xj − xj)|
m∏

k=1

|β
ξkj
qk

ij (xi − xi)|qk

⎫⎬⎭
≤

n∑
i=1

rci

⎧⎨⎩−di|xi − xi|r+
n∑

j=1

1
r

[
m∑

k=1

qk|aij |
rδkj

qk |xi−xi|r + |aij |rδm+1,j |xj−xj |r
]
uj

+
n∑

j=1

1
r

[
m∑

k=1

qk|αij |
rγkj

qk |xi − xi|r + |αij |rγm+1,j |xj − xj |r
]
σj

+
n∑

j=1

1
r

[
m∑

k=1

qk|βij |
rξkj

qk |xi − xi|r + |βij |rξm+1,j |xj − xj |r
]
σj

⎫⎬⎭
=

n∑
i=1

⎧⎨⎩−rcidi|xi − xi|r + ci

⎡⎣ n∑
j=1

m∑
k=1

qk|aij |
rδkj

qk uj +
n∑

j=1

m∑
k=1

qk|αij |
rγkj

qk σj

+
n∑

j=1

m∑
k=1

qk|βij |
rξkj

qk σj

⎤⎦ |xi − xi|r

+
n∑

j=1

ci
[
uj |aij |rδm+1,j + σj |αij |rγm+1,j + σj |βij |rξm+1,j

] |xj − xj |r
⎫⎬⎭

=
n∑

i=1

⎧⎨⎩−rdici|xi − xi|r + ci

⎡⎣ n∑
j=1

m∑
k=1

qk|aij |
rδkj

qk uj +
n∑

j=1

m∑
k=1

qk|αij |
rγkj

qk σj

+
n∑

j=1

m∑
k=1

qk|βij |
rξkj

qk σj

⎤⎦ |xi − xi|r +

⎡⎣ n∑
j=1

|aji|rδm+1,jcjui
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+
n∑

j=1

|αji|rγm+1,jcjσi +
n∑

j=1

|βji|rξm+1,jcjσi

⎤⎦ |xi − xi|r
⎫⎬⎭

= −
n∑

i=1

ci

⎧⎨⎩rdi −
⎡⎣ n∑

j=1

m∑
k=1

qk|aij |
rδkj

qk uj +
n∑

j=1

m∑
k=1

qk|αij |
rγkj

qk σj

+
n∑

j=1

m∑
k=1

qk|βij |
rξkj

qk σj

⎤⎦− 1
ci

⎡⎣ n∑
j=1

|aij |rδm+1,jcjui +
n∑

j=1

|αij |rγm+1,jcjσi

+
n∑

j=1

|βij |rξm+1,jcjσi

⎤⎦⎫⎬⎭ |xi − xi|r

From (A2) we derive

n∑
i=1

sgn(xi − xi)rci[hi(xi)− hi(xi)]|xi − xi|r−1 < 0.

Which implies that there is at least one index i such that hi(xi) − hi(xi) 
= 0,
therefore H(x) 
= H(x), namely, the map H is injective.

Now we only need to prove that ‖H(x)‖ → ∞ as ‖x‖ → ∞.
Let

H∗(x) = (h∗1(x1), h∗2(x2), . . . , h∗n(xn))T

where

h∗i (xi) = −dixi +
n∑

j=1

aij(fj(xj)− fj(0)) +
n∧

j=1

αijgj(xj)−
n∧

j=1

αijgj(0)

+
n∨

j=1

βijgj(xj)−
n∨

j=1

βijgj(0) (10)

To prove that ‖H(x)‖ → ∞ as ‖x‖ → ∞. it suffices to show that ‖H∗(x)‖ → ∞
as ‖x‖ → ∞, we have∑n

i=1 rcisgn(xi)h∗i (xi)|xi|r−1

≤
n∑

i=1

rci

⎧⎨⎩−di|xi|r +
n∑

j=1

|aij |uj |xj ||xi|r−1 +
n∑

j=1

|αij |σj |xj ||xi|r−1

+
n∑

j=1

|βij |σj |xj ||xi|r−1

⎫⎬⎭
=

n∑
i=1

rci

⎧⎨⎩−di|xi|r +
n∑

j=1

uj|aδm+1,j

ij xj |
m∏

k=1

|a
δkj
qk

ij xi|qk
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+
n∑

j=1

σj |αγm+1,j

ij xj |
m∏

k=1

|α
γkj
qk

ij xi|qk +
n∑

j=1

σj |βξm+1,j

ij xj |
m∏

k=1

|β
ξkj
qk

ij xi|qk

⎫⎬⎭
≤

n∑
i=1

rci

⎧⎨⎩−di|xi|r +
n∑

j=1

uj
1
r

[
m∑

k=1

qk|aij |
rδkj

qk |xi|r + |aij |rδm+1,j |xj |r
]

+
n∑

j=1

σj
1
r

[
m∑

k=1

qk|αij |
rγkj

qk |xi|r + |αij |rγm+1,j |xj |r
]

+
n∑

j=1

σj
1
r

[
m∑

k=1

qk|βij |
rξkj

qk |xi|r + |βij |rξm+1,j |xj |r
]⎫⎬⎭

= −
n∑

i=1

ci

⎧⎨⎩rdi −
⎡⎣ n∑

j=1

m∑
k=1

qk|aij |
rδkj

qk uj +
n∑

j=1

m∑
k=1

qk|αij |
rγkj

qk σj

+
n∑

j=1

m∑
k=1

qk|βij |
rξkj

qk σj

⎤⎦− 1
ci

⎡⎣ n∑
j=1

|aji|rδm+1,jcjui +
n∑

j=1

|αji|rγm+1,jcjσi

+
n∑

j=1

|βji|rξm+1,jcjσi

⎤⎦ |xi|r
⎫⎬⎭

≤ −η
n∑

i=1

ci|xi|r

where

η = min
1≤i≤n

⎧⎨⎩rdi −
⎡⎣ n∑

j=1

m∑
k=1

qk|aij |
rδkj

qk uj +
n∑

j=1

m∑
k=1

qk|αij |
rγkj

qk σj +
n∑

j=1

m∑
k=1

×qk|βij |
rξkj

qk σj

]
− 1
ci

⎡⎣ n∑
j=1

|aji|rδm+1,jcjui +
n∑

j=1

|αji|rγm+1,jcjσi

+
n∑

j=1

|βji|rξm+1,jcjσi

⎤⎦⎫⎬⎭
> 0

Thus we obtain

ηci|xi|r ≤ η
n∑

i=1

ci|xi|r

≤
∣∣∣∣∣

n∑
i=1

rci sgn(xi)h∗i (xi)|xi|r−1

∣∣∣∣∣
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≤
n∑

i=1

rci sgn(xi)h∗i (xi)|xi|r−1

≤ ‖H∗(x)‖∞‖x‖r−1
∞

n∑
i=1

rci.

That is ηc‖x‖∞ ≤ (
∑n

i=1 rci)‖H∗(x)‖∞, where c = min1≤i≤n{ci}. Therefore,it
follows that ‖H∗(x)‖ ≥ ηc∑

n
i=1 rci

‖x‖∞, which directly implies that ‖H∗(x)‖ → ∞
as ‖x‖ → ∞, in view of the equivalance of the norms ‖ · ‖∞ and ‖ · ‖, thus H
is a homeomorphism on Rn. Hence there is a unique equilibrium point x = x∗

such that H(x∗) = 0.

3 Global Exponential Stability of FCNNs

Let x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T be the equilibrium point of system(1), we make a

transform for system (1): zi(t) = xi(t)− x∗i , (i = 1, 2, . . . , n), we have

żi(t) = −dizi(t) +
n∑

j=1

aij(fj(zj(t) + x∗j )− fj(x∗j )) +
n∧

j=1

αijgj(zj(t− τij) + x∗j )

−
n∧

j=1

αijgj(x∗j ) +
n∨

j=1

βijgj(zj(t− τij) + x∗j )−
n∨

j=1

βijgj(x∗j ) (11)

where zi(t) = Φi(t), Φi(t) = φi(t)− x∗i , i, j = 1, 2, . . . , n.− τ ≤ t ≤ 0,
Clearly, the equilibrium point x∗ of system (1) is GES if and only if the

equilibrium point O of system (11) is GES. In the following, we only study
global exponential stability of the equilibrium point O for system (11).

Theorem 2. If the conditions (A1)-(A2) hold, then the system (11) has a unique
equilibrium point O of system which is GES and satisfies

‖z(t)‖∞ ≤M‖Φ‖τe−λt (12)

where

M =

⎧⎨⎩1
c

⎡⎣ n∑
i=1

ci +
n∑

i=1

n∑
j=1

ciσj(|αij |rγm+1,j + |βij |rξm+1,j )τeλrτ

⎤⎦⎫⎬⎭
1
r

≥ 1

λ > 0 is a constant, z(t) = (z1(t), z2(t), . . . , zn(t))T , Φ = (Φ1, Φ2, . . . , Φn)T .

Proof. The existence and uniqueness of an equilibrium point O is guaranteed
by theorem 1. So we only need to show that inequality (12 ) holds. From (A2),
there is a small constant 0 < λ < di, such that

min
1≤i≤n

⎧⎨⎩r(di − λ)−
⎡⎣ n∑

j=1

m∑
k=1

qk|aij |
rδkj

qk uj +
n∑

j=1

m∑
k=1

qk|αij |
rγkj

qk σj
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+
n∑

j=1

m∑
k=1

qk|βij |
rξkj

qk σj

⎤⎦− 1
ci

⎡⎣ n∑
j=1

|aji|rδm+1,jcjui +
n∑

j=1

|αji|rγm+1,jcjσi

+
n∑

j=1

|βji|rξm+1,jcjσi

⎤⎦⎫⎬⎭ ≥ 0

Now we consider the following Lyapunov functional

V (t) =
n∑

i=1

ci

⎡⎣|zi(t)|reλrt +
n∑

j=1

σj(|αij |rγm+1,j + |βij |rξm+1,j )

×
∫ t

t−τij

|zj(s)|reλr(s+τ)ds

]
(13)

Calculating the upper right derivative of V along system (11) and using Lemma
2, we obtain

D+V (t) ≤
n∑

i=1

ci
{
r|zi(t)|r−1D+|zi(t)|eλrt + |zi(t)|rλreλrt

+
n∑

j=1

σj(|αij |rγm+1,j+|βij |rξm+1,j )[|zj(t)|reλr(t+τ)−|zj(t−τij)|eλrτ ]

⎫⎬⎭
≤

n∑
i=1

rci

⎧⎨⎩eλrt

⎡⎣−di|zi(t)|r +
n∑

j=1

|aij |uj |zi(t)|r−1|zj(t)|+
n∑

j=1

(|αij |

+|βij |)σj |zi(t)|r−1|zj(t− τij)|
]
+|zi(t)|rλeλrt+

1
r

⎡⎣ n∑
j=1

σj(|αij |rγm+1,j

+|βij |rξm+1,j )|zj(t)|reλr(t+τ) −
n∑

j=1

σj(|αij |rγm+1,j + |βij |rξm+1,j )

×|zj(t− τij)|reλrt
]}

=
n∑

i=1

rci

⎧⎨⎩eλrt

⎡⎣−(di − λ)|zi(t)|r +
n∑

j=1

uj |aδm+1,j

ij zj(t)|
m∏

k=1

|a
δkj
qk

ij zi(t)|qk

+
n∑

j=1

σj |αγm+1,j

ij zj(t− τij)|
m∏

k=1

|α
γkj
qk

ij zi(t)|qk +
n∑

j=1

σj |βξm+1,j

ij zj(t−τij)|

×
m∏

k=1

|β
ξkj
qk

ij zi(t)|qk

]
+

1
r

⎡⎣ n∑
j=1

σj(|αij |rγm+1,j+|βij |rξm+1,j )|zj(t)|reλr(t+τ)
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−
n∑

j=1

σj(|αij |rγm+1,j + |βij |rξm+1,j )|zj(t− τij)|reλrt

⎤⎦⎫⎬⎭
≤

n∑
i=1

rcie
λrt

⎧⎨⎩−(di−λ)|zi(t)|r+ 1
r

n∑
j=1

uj

[
m∑

k=1

qk|aij |
rδkj

qk |zi(t)|r+|aij|rδm+1,j

×.|zj(t)|r]+1
r

n∑
j=1

σj

[
m∑

k=1

qk|αij |
rγkj

qk |zi(t)|r+|αij |rγm+1,j |zj(t− τij)|r
]

+
1
r

n∑
j=1

σj

[
m∑

k=1

qk|βij |
rξkj

qk |zi(t)|r + |βij |rξm+1,j |zj(t− τij)|r
]

+
1
r

⎡⎣ n∑
j=1

σj(|αij |rγm+1,j + |βij |rξm+1,j )||zj(t)|reλrτ

−
n∑

j=1

σj(|αij |rγm+1,j + |βij |rξm+1,j )|zj(t− τij)|r
⎤⎦⎫⎬⎭

= eλrt
n∑

i=1

⎧⎨⎩−rci(di − λ)|zi(t)|r + ci|zi(t)|r
⎡⎣ n∑

j=1

uj

m∑
k=1

qk|aij |
rδkj

qk

+
n∑

j=1

σj

m∑
k=1

qk

(
|αij |

rγkj
qk + |βij |

rξkj
qk

)⎤⎦
+

n∑
j=1

ci
[
uj|aij |rδm+1,j + (|αij |rγm+1,j + |βij |rξm+1,j)σje

λrτ
] |zj(t)|r

⎫⎬⎭
= −eλrt

n∑
i=1

ci

⎧⎨⎩(di − λ)r −
⎡⎣ n∑

j=1

m∑
k=1

qk|aij |
rδkj

qk uj

+
n∑

j=1

m∑
k=1

qk

(
|αij |

rγkj
qk + |βij |

rξkj
qk

)
σj

⎤⎦− 1
ci

⎡⎣ n∑
j=1

|aji|rδm+1,jcjui

+
n∑

j=1

(|αji|rγm+1,j + |βji|rξm+1,j )cjσie
λrτ

⎤⎦⎫⎬⎭ |zi(t)|r ≤ 0

So V (t) ≤ V (0). From Eq.(13) we have

V (0)=
n∑

i=1

ci

⎡⎣|Φi(0)|r+
n∑

j=1

σj(|αij |rγm+1,j +|βij |rξm+1,j )×
∫ 0

−τij

|Φj(s)|reλr(s+τ)ds

⎤⎦



Global Exponential Stability of FCNNs with Bounded Uncertain Delays 393

≤
n∑

i=1

⎡⎣ci + ci
n∑

j=1

σj(|αij |rγm+1,j + |βij |rξm+1,j )τeλrτ

⎤⎦ ‖Φ‖rτ
and it is obvious that

V (t) ≥
n∑

i=1

ci|zi(t)|reλrt ≥ ci|zi(t)|reλrt

Therefore

ci|zi(t)|reλrt ≤
n∑

i=1

⎡⎣ci + ci
n∑

j=1

σj(|αij |rγm+1,j + |βij |rξm+1,j )τeλrτ

⎤⎦ ‖Φ‖rτ
That is

‖z(t)‖∞ ≤Me−λt‖Φ‖τ , t ≥ 0

where

M =

⎧⎨⎩1
c

⎡⎣ n∑
i=1

ci +
n∑

i=1

n∑
j=1

ciσj(|αij |rγm+1,j + |βij |rξm+1,j )τeλrτ

⎤⎦⎫⎬⎭
1
r

≥ 1.

This implies that the equilibrium point O of system (11 ) is GES, namely the
equilibrium point x∗ of system (11) is GES . The proof is completed .

Remark 1. In Theorem 2, if we don’t consider fuzzy AND and fuzzy OR opera-
tions, it becomes traditional cellular neural networks. The results in References
[7] are the corollary of theorem 2. Therefore the results of this paper are new
and extend the previous known publication.

Remark 2. In this paper, we don’t need delay with deferential and continuous.
Clearly, the proposed results are different from those in reference [16].

4 Conclusion

By constructing a new Lyapunov functional, employing the inequality (2) and
the Homeomorphism theory, we have derived a new conditions of the exis-
tence,uniqueness of the equilibrium point and its GES for the fuzzy cellular
neural networks with bounded unknown delays. In contrast with the previous
paper, these conditions are independent of delays, which need not be differen-
tiable.
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Abstract. In this paper, the finite time boundedness (FTB) for cer-
tain and uncertain neutral type neural networks are investigated. The
concept of FTB for time delay system is extended first. Then, based on
the Lyapunov stability theory and linear matrix inequality (LMI) tech-
nique, some sufficient conditions are derived to guarantee FTB, and our
results are less conservative than exiting results. Finally, some examples
are given to demonstrate the effectiveness and improvement of the pro-
posed results.
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1 Introduction

In recent years, there exists an extensive literature on various aspects of differ-
ent neural networks with or without time delays, such as the Hopfield neural
networks, cellular neural networks, bidirectional associative memory neural net-
works and so on. Time delays are unavoidably encountered in implementation
of artificial networks. As is well known, time delays may degrade system per-
formance and induce oscillation in a network, causing instability. So, it is very
important to study time delays effects on stability and convergent dynamics of
neural networks. It has received considerable attention in the past decades [1-6].
In many practical applications, some systems may be unstable, in this case, the
main concern is the behavior of the system over a fixed finite time interval, it
could be required that the trajectories of the controlled system do not exceed
given bounds. In order to deal with this problem, Peter Dorato [7] presented
the concept of finite-time stability (FTS). After that, Amato [8-11] extended the
definition of FTS to the definition of finite-time boundedness (FTB), which takes
into external constant disturbances. Recently, there are many papers about FTB
analysis, such as [12, 13].

As far as we know, there are two types of time delays: discrete and neutral
type. The first one contains delays only in its states. The second one contains
delays in both its states and the derivatives of its states. So far, there are only
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a few papers that have taken neutral type phenomenon into account in delay
neural networks [14-20]. However, there is few result about FTB for certain or
uncertain neutral type neural networks in exiting works. Based on the above
discussion, in this paper, we further extend the results of FTB to certain and
uncertain neural networks with time delays described by nonlinear delay differ-
ential equations of the neutral type. Some sufficient conditions are presented to
ensure the delayed neural networks are FTB. The conditions can be reduced
to a feasibility problem. Finally, some examples are given to demonstrate the
effectiveness and improvement of the proposed results.

Throughout this paper, for real symmetric matrices X and Y , the nota-
tion X ≥ Y (respectively, X > Y ) means that the matrix X − Y is positive
semi-definite (respectively, positive definite). The superscript T presents the
transpose. We use λmin(·) and λmax(·) to denote the minimum and maximum
eigenvalue of a real symmetric matrix, respectively. The notation denotes ‖x‖
a vector norm defined by ‖x‖ = (

∑n
i=1 x

2
i )

1
2 , where x is a vector, while ‖A‖

denotes a matrix norm defined by ‖A‖ = (λmax(ATA))
1
2 , where A is a matrix.

Matrices, if not explicitly stated, are assumed to have compatible dimensions.

2 Problem Formulation and Preliminaries

Consider the following delayed neural networks with norm-bounded parametric
uncertainties which is described by a nonlinear neutral delay differential equation

u̇(t) = −Au(t)+(W+ W )g(u(t))+(W1+ W1)g(u(t−τ))+W2u̇(t−τ)+J, (1)

u(t) = ϕ(t), u̇(t) = φ(t), t ∈ [−τ, 0]. (2)

Where u(t) = (u1(t), u2(t), · · · , un(t))T is the state vector associated with n
neurons, and g(u(t)) = (g1(u1(t)), g2(u2(t)), · · · , gn(un(t)))T denotes the neuron
activation function. The diagonal matrix A = diag{a1, a2, · · · , an}. A,W,W1

and W2 are interconnection weight matrices. ϕ(t), φ(t) denote the initial con-
dition function that are continuously differentiable on [−τ, 0]. J is a constant
external input vector.  W, W1 are parametric uncertainties. The scalar τ > 0
represents the transmission delay. Throughout the paper we assume that the
activation function satisfies the following assumption.

Assumption 1. The activation function g(u) satisfies

0 ≤ gi(ξ1)− gi(ξ2)
ξ1 − ξ2 ≤ ki, i = 1, 2, · · · , n (3)

for any ξ1, ξ1 ∈ R, where real constant ki > 0 for i = 1, 2, · · · , n. The uncertain-
ties  W, W1 are defined by

 W = HFE, W1 = H1F1E1, (4)

where H,H1, E,E1 are known constant matrices of appropriate dimensions, and
F, F1 are unknown matrices representing the parameter uncertainties, which
satisfy
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FTF ≤ I, FT
1 F1 ≤ I. (5)

Assume u∗ is an equilibrium point of (1). Let x(t) = u(t)−u∗, then it is easy to
see that system (1) can be transformed to

ẋ(t) = −Ax(t)+(W + W )f(x(t))+(W1 + W1)f(x(t−τ))+W2ẋ(t−τ), (6)

where x(t) = (x1(t), x2(t), · · · , xn(t))T , f(x(t)) = g(x(t) + u∗)− g(u∗), f(x(t)) =
(f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T . Then, it is easy to see that fi(0) = 0(i =
1, 2, · · · , n) and fi(·) satisfies (3), that is

0 ≤ fi(ξ1)− fi(ξ2)
ξ1 − ξ2 ≤ ki, i = 1, 2, · · · , n. (7)

The problem to be addressed in this paper is to develop some sufficient conditions
which guarantee that the state of time delay neural networks with norm-bounded
parametric uncertainties is finite time boundedness (FTB).

Definition 1. System (6) is said to be finite time boundedness(FTB) with re-
spect to (c1, c2, T ), if

sup
t∈[−τ,0]

‖ϕ(t)‖2 ≤ c21 =⇒ ‖x(t)‖2 ≤ c22, ∀t ∈ [0, T ]. (8)

Lemma 1. (Schur complement) Given constant symmetric matrices Σ1, Σ2, Σ3,
where Σ1 = ΣT

1 and 0 < Σ2 = ΣT
2 , then Σ1 +ΣT

3 Σ
−1
2 Σ3 < 0 if and only if(

Σ1 Σ
T
3

Σ3 −Σ2

)
< 0, or

(−Σ2 Σ3

ΣT
3 Σ1

)
< 0.

Lemma 2. For matrices Y,D and E of appropriate dimensions, where Y is

a symmetric matrix, then Y + DFE + ETFTDT < 0 holds for all matrix F
satisfying FTF ≤ I, if and only if there exist a constant ε > 0, such that
Y + εDDT + ε−1ETE < 0 holds

3 Main Results

Firstly, we consider a special case of system (6) with certain parameters, i.e., it
becomes

ẋ(t) = −Ax(t) +Wf(x(t)) +W1f(x(t− τ)) +W2ẋ(t− τ). (9)

Theorem 1. System (9) is FTB with respect to (c1, c2, T ) for any delay 0 <
τ ≤ τ̄ , if there exsit matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0 and two diagonal
matrices S > 0, Y > 0, and a scalar α such that the following conditions hold:
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∏
=

⎛⎜⎜⎜⎜⎜⎜⎝
−Q̄ −Q̄A Q̄W Q̄W1 Q̄W2 0
∗ Φ1 Ψ1 Ψ2 PW2 0
∗ ∗ Φ2 0 0 0
∗ ∗ ∗ Φ3 0 −τ̄Y
∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ −τ̄Q3

⎞⎟⎟⎟⎟⎟⎟⎠ < 0, (10)

and

c21[λmax(P ) + τ̄λmax(Q1)λmax(ΣTΣ)] + µ2[τ̄λmax(Q2) + τ̄2λmax(Q3)]
e−αTλmin(P )

< c22,

(11)
where Φ1 = −PA − AP − αP,Φ2 = Q1 − S, Φ3 = −Q1 − Y Σ−1 − Σ−1Y, Ψ1 =
PW + 1

2SΣ, Ψ2 = PW1 + Y, Q̄ = Q2 + τ̄Q3, supt∈[−τ,0] ‖ϕ(t)‖2 ≤ c21, Σ =
diag{k1, k2, · · · , kn}, supt∈[−τ,0] ‖φ(t)‖2 = µ2, and ki > 0(1, 2, · · · , n) are given
in Assumption 1.

Proof. Let

V (x(t)) = xT (t)Px(t) +
∫ t

t−τ
fT (x(s))Q1f(x(s))ds

+
∫ t

t−τ
ẋT (s)Q2ẋ(s)ds+

∫ 0

−τ

∫ t

t+β
ẋT (s)Q3ẋ(s)dsdβ,

(12)

where x(t) = x(t + θ),−τ ≤ θ ≤ 0. Then, the time-derivative of V (x(t)) along
the solution of (9) is

V̇ (x(t)) = 2xT (t)P [−Ax(t) +Wf(x(t)) +W1f(x(t− τ)) +W2ẋ(t− τ)]
+fT (x(t))Q1f(x(t)) − fT (x(t − τ))Q1f(x(t− τ)) + ẋT (t)Q2ẋ(t)
−ẋT (t− τ)Q2ẋ(t− τ) + τẋT (t)Q3ẋ(t)−

∫ t

t−τ ẋ
T (s)Q3ẋ(s)ds.

(13)
By the Newton-Leibniz formula, it is easy to see that

x(t− τ) = x(t)−
∫ t

t−τ

ẋ(s)ds. (14)

It follows from (13) and (14) that

V̇ (x(t)) = 1
τ

∫ t

t−τ{2xT (t)P [−Ax(t) +Wf(x(t)) +W1f(x(t − τ)) +W2ẋ(t− τ)]
+fT (x(t))Q1f(x(t))− fT (x(t − τ))Q1f(x(t− τ))
+ẋT (t)(Q2 + τQ3)ẋ(t)− ẋT (t− τ)Q2ẋ(t− τ) − τẋT (t)Q3ẋ(t)
+2fT (x(t− τ))Y [x(t) − x(t− τ)] − 2fT (x(t− τ))τY ẋ(s)
−fT (x(t))Sf(x(t)) + fT (x(t))Sf(x(t))}ds.

(15)
Noting that Y > 0 and S > 0 are diagonal matrices and using (7), we can obtain

− fT (x(t− τ))Y x(t− τ) ≤ −fT (x(t − τ))Y Σ−1f(x(t− τ)), (16)

fT (x(t))Sf(x(t)) ≤ fT (x(t))SΣx(t). (17)
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Taking (16) and (17) into (15), we can obtain the following matrix inequality

V̇ (x(t)) ≤ 1
τ

∫ t

t−τ

ξT (t, s)Ωξ(t, s)ds, (18)

where ξ(t, s) = [xT (t), fT (x(t)), fT (x(t− τ)), ẋT (t− τ), ẋT (s)]T ,

Ω =

⎛⎜⎜⎜⎜⎝
−PA−AP −Ψ̄1 Ψ̄2 Ψ̄3 0

∗ Φ̄2 Γ1 Γ2 0
∗ ∗ Φ̄3 Γ3 −τY
∗ ∗ ∗ Φ̄4 0
∗ ∗ ∗ ∗ −τQ3

⎞⎟⎟⎟⎟⎠ , (19)

Ψ̄1 = (P−AQ̄)W+ 1
2SΣ, Ψ̄2 = (P−AQ̄)W1+Y, Ψ̄3 = (P−AQ̄)W2, Φ̄2 = Q1−S+

WT Q̄W, Φ̄3 = −Q1−Y Σ−1−Σ−1Y +WT
1 Q̄W1, Q̄ = Q2+τQ3, Φ̄4 =WT

2 Q̄W2−
Q2, Γ1 =WT Q̄W1, Γ2 =WT Q̄W2, Γ3 =WT

1 Q̄W2. Then, pre-multiply and post-
multiply the inequality (10) by the matrix diag{Q̄−1, I, I, I, I, I}, for any delay
0 < τ ≤ τ̄ , we can obtain that (10) is equivalent to⎛⎜⎜⎜⎜⎜⎜⎝

−Q̄−1 −A W W1 W2 0
∗ Φ1 Ψ1 Ψ2 PW2 0
∗ ∗ Φ2 0 0 0
∗ ∗ ∗ Φ3 0 −τY
∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ −τQ3

⎞⎟⎟⎟⎟⎟⎟⎠ < 0, (20)

by Lemma 1, (20) is equivalent to⎛⎜⎜⎜⎜⎝
Φ1 Ψ̄1 Ψ̄2 Ψ̄3 0
∗ Φ̄2 Γ1 Γ2 0
∗ ∗ Φ̄3 Γ3 −τY
∗ ∗ ∗ Φ̄4 0
∗ ∗ ∗ ∗ −τQ3

⎞⎟⎟⎟⎟⎠ < 0, (21)

then, it follows from (21) and (19), we have⎛⎜⎜⎜⎜⎝
−PA−AP Ψ̄1 Ψ̄2 Ψ̄3 0

∗ Φ̄2 Γ1 Γ2 0
∗ ∗ Φ̄3 Γ3 −τY
∗ ∗ ∗ Φ̄4 0
∗ ∗ ∗ ∗ −τQ3

⎞⎟⎟⎟⎟⎠ <
⎛⎜⎜⎜⎜⎝
αP 0 0 0 0
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

⎞⎟⎟⎟⎟⎠ , (22)

from (18) and (22), we can get

V̇ (x(t)) < αxT (t)Px(t)
≤ α[xT (t)Px(t) +

∫ t

t−τ
fT (x(s))Q1f(x(s))ds

+
∫ t

t−τ ẋ
T (s)Q2ẋ(s)ds+

∫ 0

−τ

∫ t

t+β ẋ
T (s)Q3ẋ(s)dsdβ]

= αV (x(t)).

(23)
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Multiplying (23) by e−αt, we can obtain

d

dt
(e−αtV ) < 0, (24)

integrating (24) from 0 to t, with t ∈ [0, T ], we have e−αtV (x(t)) < V (x(0)),
then

V (x(t)) < eαtV (x(0))
= eαt[xT (0)Px(0) +

∫ 0

−τ f
T (x(s))Q1f(x(s))ds

+
∫ 0

−τ ẋ
T (s)Q2ẋ(s)ds+

∫ 0

−τ

∫ 0

β ẋ
T (s)Q3ẋ(s)dsdβ]

≤ eαT [λmax(P )xT (0)x(0)+λmax(Q1)λmax(ΣTΣ)
∫ 0

−τ f
T (x(s))f(x(s))ds

+λmax(Q2)
∫ 0

−τ ẋ
T (s)ẋ(s)ds+ λmax(Q3)

∫ 0

−τ

∫ 0

β ẋ
T (s)ẋ(s)dsdβ].

(25)
Noting that

xT (t)Px(t) ≤ V (x(t)) =⇒ λmax(P )xT (t)x(t) ≤ V (x(t)). (26)

Using (25), (26) and 0 < τ ≤ τ̄ , we have

‖x(t)‖2≤ c
2
1(λmax(P )+τ̄λmax(Q1)λmax(ΣTΣ))+µ2(τ̄λmax(Q2)+τ̄2λmax(Q3))

e−αTλmin(P )
,

(27)
where supt∈[−τ,0] ‖ϕ(t)‖2 ≤ c21, supt∈[−τ,0] ‖φ(t)‖2 = µ2. Then condition (11)
implies ‖x(t)‖2 ≤ c22 for all t ∈ [0, T ]. Therefore, the proof is completed.

Theorem 2. System (6) is FTB with respect to (c1, c2, T ) for any delay 0 < τ ≤
τ̄ , if there exsit matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, constant ε1 > 0, ε2 > 0
and two diagonal matrices S > 0, Y > 0, and a scalar α such that the following
conditions hold:

Θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε1I 0 HT Q̄ HTP 0 0 0 0
∗ −ε2I HT

1 Q̄ H
T
1 P 0 0 0 0

∗ ∗ −Q̄ −Q̄A Q̄W Q̄W1 Q̄W2 0
∗ ∗ ∗ Φ1 Ψ1 Ψ2 PW2 0
∗ ∗ ∗ ∗ Φ2 + ε1ETE 0 0 0
∗ ∗ ∗ ∗ ∗ Φ3 + ε2ET

1 E1 0 −τ̄Y
∗ ∗ ∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ̄Q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0,

(28)
and

c21[λmax(P ) + τ̄λmax(Q1)λmax(ΣTΣ)] + µ2[τ̄λmax(Q2) + τ̄2λmax(Q3)]
e−αTλmin(P )

< c22,

(29)
where c21, Q̄, µ

2, Φ1, Φ2, Φ3, Ψ1, Ψ2, Σ are given in Theorem 1.
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Proof. To proof that the system (6) is FTB, according to Theorem 1, we only
need proof

Λ =

⎛⎜⎜⎜⎜⎜⎜⎝

−Q̄ −Q̄A Q̄W̄ Q̄W̄1 Q̄W̄2 0
∗ Φ1 Ψ̃1 Ψ̃2 PW2 0
∗ ∗ Φ2 0 0 0
∗ ∗ ∗ Φ3 0 −τ̄Y
∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ −τ̄Q3

⎞⎟⎟⎟⎟⎟⎟⎠ < 0, (30)

where W̄ = W + W, W̄1 = W1 + W1, Ψ̃1 = PW̄ + 1
2SΣ, Ψ̃2 = PW̄1 + Y . By

(4) and (10), (30) can be rewritten as

Π +M1FM2 +MT
2 F

TMT
1 +M3F1M4 +MT

4 F
T
1 M

T
3 < 0, (31)

where P is given in (10), MT
1 =

(
HT Q̄ HTP 0 0 0 0

)
, M2 =

(
0 0 E 0 0 0

)
,

MT
3 =

(
HT

1 Q̄ H
T
1 P 0 0 0 0

)
, M4 =

(
0 0 0 E1 0 0

)
. With (5), by Lemma 2, (31)

is equivalent to

Π + ε−1
1 M1M

T
1 + ε1MT

2 M2 + ε−1
2 M3M

T
3 + ε2MT

4 M4 < 0, (32)

where ε1 > 0, ε2 > 0 are certain constants. By Lemma 1, (32) is equivalent to
Θ < 0 in (28). Then, we can obtain that Λ < 0. So, the system (6) is FTB.
Therefore, the proof is completed.

Remark 1. By above discussion, (10) is equivalent to (21), so when α = 0,
the condition (10) in Theorem 1 is equivalent to the condition (9) of Theorem 1
in [14], which is the sufficient condition for the globally exponential stability of
neutral systems. In other words, the results in this paper can also be the criteria
of the globally exponential stability of this class of neutral systems.

Remark 2. Let W2 = 0 in Theorem 1 and Theorem 2, then the results in
this paper can also be the criteria of FTB for the time delayed systems, and
our results are less conservative than exiting results, which can be illustrated in
Example 2.

4 Numerical Examples

In this section, examples are given to show the validity of our results.

Example 1. Consider system (6) with parameter as

W =

⎛⎝ 1 −3.1 −2
3.1 −1 −2.5
2 −1.4 0.6

⎞⎠, W1 =

⎛⎝ −1 −1 3.8
0.1 0.7 −2.4
−0.7 1.3 −1.8

⎞⎠, W2 =

⎛⎝ 0.2 0.1 0.4
−0.1 0.3 0.1
−0.3 0.1 0.4

⎞⎠, A =⎛⎝3 0 0
0 1 0
0 0 9

⎞⎠, H =

⎛⎝0.2 0.5 0.2
0.1 −0.3 0.1
0.4 0.1 0.2

⎞⎠, H1 =

⎛⎝−0.4 0.3 0.3
0.3 0.1 0.4
0.1 0.2 0.1

⎞⎠, Σ =

⎛⎝0.1 0 0
0 0.4 0
0 0 0.07

⎞⎠,

E = H,E1 = H1, c1 = µ = 1.
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Giving α = 0.2, by Theorem 2, we can obtain 0 < τ ≤ τ̄ = 1.2212, and the
solutions as follows

P =

⎛⎝ 3.004 0.9835 −2.2900
0.9835 3.6519 −1.0467
−2.2900 −1.0467 8.4949

⎞⎠ , Q1 =

⎛⎝14.4012 7.5704 18.8816
7.5704 23.7533 1.6504
18.8816 1.6504 31.5849

⎞⎠ ,
Q2 =

⎛⎝0.6310 0.2356 0.0348
0.2356 1.1929 0.2716
0.0348 0.2716 0.4338

⎞⎠ , Q3 =

⎛⎝ 0.2546 0.2714 −0.2509
0.2714 0.7892 −0.4885
−0.2509 −0.4885 0.5145

⎞⎠ ,
S =

⎛⎝83.0850 0 0
0 83.0850 0
0 0 083.0850

⎞⎠ , Y =

⎛⎝2.0771 0 0
0 2.0771 0
0 0 2.0771

⎞⎠ ,
ε1 = 10.4143, ε2 = 15.7534. When T = 0.9, it is obtained that the minimum
c2 = 3.6553 from (29). So system (6) is FTB with respect to (c1, c2, T ).

Example 2. Consider the system

ẋ(t) = −Ax(t) + (W + W )f(x(t)) + (W1 + W1)f(x(t− τ))
with parameter as:

A =
(

0.2 0
0 0.4

)
,W =

(
1 −0.1
−0.1 1

)
,W1 =

(−1 0.7
1 −2

)
, H = H1 =

(
0.1 0
0 0.1

)
,

E = E1 =
(

1 0
0 1

)
, Σ =

(
0.1 0
0 0.3

)
, c1 = µ = 1.

Giving α = 0.1, by Theorem 2, we can obtain 0 < τ ≤ τ̄ = 1.6379, and the
solutions as follows

P =
(

5.4041 1.3414
1.3414 6.4172

)
, Q1 =

(
41.0526 4.5805
4.5805 14.0863

)
, Q2 =

(
0.0412 0.0161
0.0161 0.0065

)
,

Q3 =
(

2.0654 0.0387
0.0387 4.2514

)
, S =

(
85.2453 0

0 85.2453

)
, Y =

(
10.8433 0

0 10.8433

)
,

ε1 = 2.8096, ε2 = 1.7766. When T = 0.6, it is obtained that the minimum
c2 = 2.4347, so system (6) is FTB with respect to (c1, c2, T ). But when we apply
this example to the Theorem 1 in [13], the LMIs are not strictly feasible. So it
is very obvious that the proposed results in this paper are less conservative.

5 Conclusion

The paper has mainly investigated the problem of FTB for a class of neutral
type neural networks. Based on the Lyapunov stability theory and linear matrix
inequality (LMI) technique, some sufficient conditions are derived to guarantee
FTB, and our results are less conservative than exiting results[13]. Two examples
are given to demonstrate the effectiveness and improvement of the proposed
results.
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Abstract. In this paper, the passivity problem is investigated for a class
of stochastic neural networks with time-varying delays as well as general-
ized activation functions. By employing a combination of
Lyapunov functional, the free-weighting matrix method and stochastic
analysis technique, a delay-independent criterion for the passivity of the
addressed neural networks is established in terms of linear matrix in-
equalities (LMIs), which can be checked numerically using the effective
LMI toolbox in MATLAB. An example is given to show the effectiveness
and less conservatism of the proposed criterion. It is noteworthy that
the traditional assumptions on the differentiability of the time-varying
delays and the boundedness of its derivative are removed.

Keywords: Passivity, Stochastic neural networks, Time-varying delays.

1 Introduction

It is well known that many artificial neural networks have been extensively in-
vestigated and successfully applied to various areas such as signal processing,
pattern recognition, associative memory and optimization problems. In such ap-
plications, it is of prime importance to ensure that the designed neural networks
are stable [1]. In hardware implementation, time delays are likely to be present
due to the finite switching speed of amplifiers and communication time. It has
also been shown that the processing of moving images requires the introduction
of delay in the signal transmitted through the networks [2]. The time delays
are usually variable with time, which will affect the stability of designed neural
networks and may lead to some complex dynamic behaviors such as oscillation,
bifurcation, or chaos [3]. Therefore, the study of neural dynamics with consider-
ation of time delays becomes extremely important to manufacture high quality
neural networks [4]. Many important results on the dynamical behaviors have
been reported for delayed neural networks, see [1]-[16] and the references therein
for some recent publications.

Just as pointed out in [17], in real nervous systems, synaptic transmission is
a noisy process brought on by random fluctuations from the release of neuro-
transmitters and other probabilistic causes. In the implementation of artificial

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 405–412, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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neural networks, noise is unavoidable and should be taken into consideration in
modelling. Therefore, it is of significant importance to consider stochastic effects
to the dynamical behaviors of neural networks [18]. Some recent interest results
on stochastic neural networks can be found, see [18]-[20] and references therein.

On the other hand, the passivity theory is another effective tool to the sta-
bility of nonlinear system [21]. The main idea of passivity theory is that the
passive properties of system can keep the system internal stability [22]. Thus,
the passivity theory has received a lot of attention from the control community
since 1970s [23]. Recently, the passivity theory for delayed neural networks was
investigated, some criteria checking the passivity were provided for certain or
uncertain neural networks with time-varying delays, see [24]-[26] and references
therein. It is worth pointing out that, the given criteria in [24]-[26] have been
based on the following assumptions: 1) the time-varying delays are continuously
differentiable; 2) the derivative of time-varying delay is bounded and is smaller
than one; and 3) the activation functions are bounded and monotonically nonde-
creasing. However, time delays can occur in an irregular fashion, and sometimes
the time-varying delays are not differentiable. In such a case, the methods devel-
oped in [24]-[26] may be difficult to be applied, and it is therefore necessary to
further investigate the passivity problem of neural networks with time-varying
delays under milder assumptions. To the best of our knowledge, few authors
have considered the passivity problem for stochastic neural networks with time-
varying delays as well as generalized activation functions.

Motivated by the above discussions, the objective of this paper is to study
the passivity of stochastic neural networks with time-varying delays as well as
generalized activation functions by employing a combination of Lyapunov func-
tional, the free-weighting matrix method and stochastic analysis technique. The
obtained sufficient conditions require neither the differentiability of time-varying
delays nor the monotony of the activation functions, and are expressed in terms
of linear matrix inequalities (LMIs), which can be checked numerically using the
effective LMI toolbox in MATLAB. An example is given to show the effectiveness
and less conservatism of the proposed criterion.

2 Problem Formulation and Preliminaries

In this paper, we consider the following neural network model

dx(t) = [−Dx(t) +Af(x(t)) +Bf(x(t− τ(t))) + u(t)]dt
+σ(t, x(t), x(t − τ(t)))dω(t) (1)

for t ≥ 0, where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the state vector of the
network at time t, n corresponds to the number of neurons;D=diag(d1, d2,· · ·,dn)
is a positive diagonal matrix, A = (aij)n×n and B = (bij)n×n are the inter-
connection weight matrices; σ ∈ Rn×q is the diffusion coefficient vector and
ω(t) = (ω1(t), ω2(t), · · · , ωq(t))T is an q-dimensional Brownian motion defined
on a complete probability space (Ω,F, {Ft}t≥0, P ) with a filtration {Ft}t≥0 sat-
isfying the usual conditions (i.e., it is right continuous and F0 contains all P -null
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sets); f(x(t)) = (f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T denotes the neuron activa-
tion at time t; u(t) = (u1(t), u2(t), · · · , un(t))T ∈ Rn is a varying external input
vector; τ(t) > 0 is the time-varying delay, and is assumed to satisfy 0 ≤ τ(t) ≤ τ ,
where τ is constant.

The initial condition associated with model (1) is given by

x(s) = φ(s), s ∈ [−τ, 0].

Let x(t, φ) denote the state trajectory of model (1) from the above initial
condition and x(t, 0) is the corresponding trajectory with zero initial condition.

Throughout this paper, we make the following assumptions:
(H1).([14]) For any j ∈ {1, 2, · · · , n}, fj(0) = 0 and there exist constants F−

j

and F+
j such that

F−
j ≤

fj(α1)− fj(α2)
α1 − α2

≤ F+
j

for all α1 
= α2.
(H2).([19]) There exist constant matrices R1 and R2 of appropriate dimensions
such that the following inequality trace

trace
(
σT (t, x(t), x(t − τ(t)))σ(t, x(t), x(t − τ(t)))

)
≤ ‖R1u‖2 + ‖R2v‖2

holds for all (t, u, v) ∈ R×Rn ×Rn.

Definition 1. ([23]) System (1) is called globally passive in the sense of expec-
tation if there exists a scalar γ > 0 such that

2E
{∫ tp

0

fT (x(s))u(s)ds
}
≥ −E

{
γ

∫ tp

0

uT (s)u(s)ds
}

for all tp ≥ 0 and for all x(t, 0).

3 Main Results

For presentation convenience, in the following, we denote

F1 = diag(F−
1 F

+
1 , · · · , F−

n F
+
n ), F2 = diag(

F−
1 + F+

1

2
, · · · , F

−
n + F+

n

2
).

Theorem 1. Under assumptions (H1) and (H2), model (1) is passive in the
sense of expectation if there exist two scalar γ > 0, λ > 0, a symmetric positive
definite matrices P , two positive diagonal matrices L and S, and matrices M ,
N and W such that the following two LMIs hold:

P < λI, (2)
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Ω =

⎡⎢⎢⎢⎢⎢⎢⎣
Ω1 PA+ F2L PB P W −MT N −MT

∗ −L 0 −I 0 0
∗ ∗ −S 0 0 F2S
∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ −W −WT −N −WT

∗ ∗ ∗ ∗ ∗ Ω2

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (3)

where Ω1 = −PD−DP+λRT
1 R1−F1L+M+MT , Ω2 = λRT

2 R2−F1S−N−NT .

Proof. Consider the following Lyapunov functional as

V (t, x(t)) = xT (t)Px(t), (4)

By Itô differential rule, the mathematical expectation of the stochastic deriva-
tive of V (t) along the trajectory of system (1) can be obtained as

E{dV (t, x(t))} = E
{[

2xT (t)P
(
−Dx(t) +Af(x(t)) +Bf(x(t− τ(t))) + u(t)

)
+trace

(
σT (x(t), x(t − τ(t)))Pσ(x(t), x(t − τ(t)))

)]
dt
}
. (5)

From assumption (H2) and inequality (2), we have

trace
(
σT (x(t), x(t − τ(t)))Pσ(x(t), x(t − τ(t)))

)
≤ λ

[
xT (t)RT

1 R1x(t) + xT (t− τ(t))RT
2 R2x(t− τ(t))

]
. (6)

It follows from inequalities (5)and (6) that

E{dV (t, x(t))} ≤ E
{[
xT (t)

(
− PD −DP + λRT

1 R1

)
x(t)

+2xT (t)PAf(x(t)) + 2xT (t)PBf(x(t− τ(t)))
+2xT (t)Pu(t) + λxT (t− τ(t))RT

2 R2x(t− τ(t))
]
dt
}

(7)

From assumption (H1), we have(
fi(xi(t)) − F−

i xi(t)
)(
fi(xi(t))− F+

i xi(t)
)
≤ 0, i = 1, 2, · · · , n,

which are equivalent to[
xi(t)
fi(xi(t))

]T
[
F−

i F
+
i eie

T
i −F−

i +F+
i

2 eie
T
i

−F−
i +F+

i

2 eie
T
i eie

T
i

][
xi(t)
fi(xi(t))

]
≤ 0, i = 1, 2, · · · , n,

where er denotes the unit column vector having 1 element on its rth row and
zeros elsewhere. Let

L = diag{l1, l2, · · · , ln}, S = diag{s1, s2, · · · , sn},
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then
n∑

i=1

li

[
xi(t)
fi(xi(t))

]T
[
F−

i F
+
i eie

T
i −F−

i +F+
i

2 eie
T
i

−F−
i +F+

i

2 eie
T
i eie

T
i

] [
xi(t)
fi(xi(t))

]
≤ 0,

that is [
x(t)
f(x(t))

]T [
F1L −F2L
−F2L L

] [
x(t)
f(x(t))

]
≤ 0. (8)

Similarly, one has[
x(t− τ(t))
f(x(t− τ(t)))

]T [
F1S −F2S
−F2S S

] [
x(t− τ(t))
f(x(t− τ(t)))

]
≤ 0. (9)

From Newton-Leibniz formulation x(t) − x(t − τ(t)) − ∫ t

t−τ(t)
dx(s) = 0, we

have

0 = 2
(
x(t)− x(t− τ(t)) −

∫ t

t−τ(t)

dx(s)
)T

×
(
Mx(t) +Nx(t− τ(t)) +W

∫ t

t−τ(t)

dx(s)
)

= 0. (10)

It follows from (7)-(10) that

E{dV (t, x(t)) − 2fT (x(t))u(t)dt − γuT (t)u(t)dt}
≤ E

{[
xT (t)

(
− PD −DP + λRT

1 R1

)
x(t) + 2xT (t)PAf(x(t))

+2xT (t)PBf(x(t − τ(t))) + 2xT (t)Pu(t)
+λxT (t− τ(t))RT

2 R2x(t− τ(t))

−
[
x(t)
f(x(t))

]T [
F1L −F2L
−F2L L

] [
x(t)
f(x(t))

]
−
[
x(t− τ(t))
f(x(t− τ(t)))

]T [
F1S −F2S
−F2S S

] [
x(t− τ(t))
f(x(t− τ(t)))

]
+2

(
x(t)− x(t − τ(t)) −

∫ t

t−τ(t)

dx(s)
)T

×
(
Mx(t) +Nx(t− τ(t)) +W

∫ t

t−τ(t)

dx(s)
)

−2fT (x(s))u(s) − γuT (t)u(t)
]
dt
}

= E
{
αT (t)Ωα(t)dt

}
, (11)

where α(t)=
(
xT (t), fT (x(t)), fT (x(t−τ(t))), uT (t),

∫ t

t−τ(t) dx(s), x
T (t−τ(t))

)T

.
One can derive from (3) and (11) that

E{dV (t, x(t))}
dt

−E{2fT (x(t))u(t) + γuT (t)u(t)} ≤ 0. (12)
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From (12) and the definition of V (t, x(t)), we can get

2E{
∫ tp

0

fT (x(s))u(s)ds} ≥ −γE{
∫ tp

0

uT (s)u(s)ds}

From Definition 1, we know that the stochastic neural networks (1) is globally
passive in the sense of expectation, and the proof of Theorem 1 is then completed.

Remark 1. Assumption (H1) was first proposed in [14] and [15]. The constants
F−

j and F+
j (i = 1, 2, · · · , n) in assumption (H1) are allowed to be positive,

negative or zero. Hence, Assumption (H1) is weaker than the assumption in
[24]-[26]. In addition, the conditions in [24]-[26] that the time-varying delay is
differentiable and the derivative is smaller than one have been removed in this
paper.

4 An Example

Consider a two-neuron neural network (1), where

D =
[
1.8 0
0 2.5

]
, A =

[
0.3 0.1
−0.2 −0.2

]
, B =

[
0.1 −0.5
0.3 0.7

]
,

f1(z) = tanh(−0.2z), f2(z) = tanh(0.4z), τ(t) = 5| sin t|,
and σ satisfies

trace
(
σT (t, x(t), x(t − τ(t)))σ(t, x(t), x(t − τ(t)))

)
≤ 0.04x2

1(t) + 0.01x2
2(t) + 0.01x2

1(t− τ(t)) + 0.01x2
2(t− τ(t)).

It can be verified that assumptions (H1) and (H2) are satisfied, and F1 = 0,
F2 = diag{−0.1, 0.2}, R1 = diag{0.2, 0.1}, R2 = diag{0.1, 0.1}.

By the Matlab LMI Control Toolbox, we find a solution to the LMIs in (2)
and (3) as follows:

P = 10−7

[
0.6997 0.1565
0.1565 0.7805

]
, L = 10−4

[
0.1048 0

0 0.0228

]
,

S = 10−6

[
0.1047 0

0 0.0363

]
, M = 106

[−2.2397 −0.0685
0.0498 −6.9419

]
,

N = 106

[
2.2397 0.0685
−0.0498 6.9419

]
, W = 106

[
2.2397 0.0685
−0.0498 6.9419

]
,

γ = 2.2536× 107, λ = 1.7865× 10−7.

Therefore, by Theorem 1, we know that the considered model is passive in
the sense of Definition 1. It should be pointed out that the conditions in [24]-[26]
cannot be applied to this example since it requires the differentiability of the
time-varying delay.
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5 Conclusions

In this paper, the passivity has been investigated for a class of stochastic neural
networks with time-varying delays as well as generalized activation functions.
By employing a combination of Lyapunov functional, the free-weighting matrix
method and inequality technique, a new delay-independent criterion for the pas-
sivity of the addressed neural networks has been established in terms of linear
matrix inequalities (LMIs), which can be checked numerically using the effective
LMI toolbox in MATLAB. The obtained results generalize and improve the ear-
lier publications, and remove the traditional assumptions on the differentiability
of the discrete time-varying delay and the boundedness of its derivative. An ex-
ample has been provided to demonstrate the effectiveness and less conservatism
of the proposed criterion.
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Abstract. In this paper, the existence and global exponential stability
of equilibrium point of high-order fuzzy cellular neural networks (HFC-
NNs) with time-varying delays is studied. Employing nonsingular M -
matrix and Lyapunov functional method, some new sufficient conditions
are derived for checking the existence and global exponential stability of
equilibrium point of the HFCNNs with time-varying delays.

Keywords: Cellular neural networks, Equilibrium point, Exponential
stability, Nonsingular M -matrix, Lyapunov functional.

1 Introduction

Fuzzy cellular neural networks (FCNNs) is introduced by Yang, Yang, Wu and
Chua in [1], combines fuzzy logic with the traditional CNNs. Studies have shown
the potential of FCNNs in image processing and pattern recognition. In these
applications, it is required that the neural networks be exponentially stable. In
[2], the authors have obtained some conditions for the existence of the equilib-
rium point and the exponential stability of FCNNs without delay. The FCNNs
with the constant and time-varying delays, with distributed delay, with diffusion
have been also studied in [3-6].

It is well known that the high-order neural networks (HNNs) dose better
than the ordinary neural networks in the applications, that is to say, HNNs
have stronger approximation property, faster convergence rate, great stronger
capacity and higher fault tolerance(see [7-9]). In [10, 11] the stability of HNNs
with impulsive effects was studied by using the linear matrix inequality (LMI)
method, Halanay inequality and fixed point theorem. In [12], the exponential
stability of high-order bidirectional associative memory neural networks with
time delays was studied by employing LMI. In [13, 14] the existence and stability
of periodic solution for delayed HNNs was studied by using coincidence degree
theory.

However, to the best of our knowledge, there does not seem to be much (if any)
study on the dynamics of high-order fuzzy cellular neural networks (HFCNNs).
Therefore, In this paper, the global exponential stability of HFCNNs with time-
varying delays is proposed. Employing the nonsingularM -matrix and method of

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 413–422, 2009.
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Lyapunov functional, some sufficient conditions are derived for checking global
exponential stability of the HFCNNs with time-varying delays.

In this paper, we will study the following delayed HFCNNs:

dxi(t)
dt

= −dixi(t) +
n∑

j=1

aij f̃j(xj(t− τij(t)))

+
n∑

j=1

n∑
l=1

bijlf̃j(xj(t− τij(t)))f̃l(xl(t− τij(t)))

+
n∧

j=1

αij f̃j(xj(t− τij(t))) +
n∨

j=1

βij f̃j(xj(t− τij(t)))

+
n∧

j=1

(
n∧

l=1

γijlf̃j(xj(t− τij(t)))f̃l(xl(t− τij(t))))

+
n∨

j=1

(
n∨

l=1

σijlf̃j(xj(t− τij(t)))f̃l(xl(t− τij(t))))

+
n∧

j=1

Tijuj +
n∨

j=1

Hijuj + Ii, i = 1, 2, · · · , n. (1)

where, xi denotes the potential (or voltage) of the cell i at time t; di is positive
constant, denotes the rate with which the cell i reset its potential to the resting
state when isolated from the other cells and inputs; Time delays τij(t) (i, j =
1, 2, · · · , n) are non-negative, continuously differentiable functions, it correspond
to finite speed of axonal signal transmission; aij and bij are the first- and second-
order connection weights of neural network, respectively; αij , βij , Tij and Hij

are elements of the first-order fuzzy feedback MIN template, first-order fuzzy
feedback MAX template, first-order fuzzy feed-forward MIN template and first-
order fuzzy feed-forward MAX template, respectively; γijl and σijl are elements
of the second-order fuzzy feedback MIN template, second-order fuzzy feedback
MAX template, respectively;

∧
and

∨
denote the fuzzy AND and fuzzy OR

operations, respectively; ui and Ii denote input and bias of the ith neurons,
respectively; f̃i is the activation function.

2 Preliminaries

Throughout this paper, the following notations will be used. Let A = (aij) be an
n×n dimensional real matrix. A−1 denotes the inverse of matrix A. For x ∈ Rn,
its norm is defined by ‖x‖ =

√
xTx.

For system (1), we introduce the following assumptions:
(H1) For each i ∈ 1, 2, · · · , n, there exist a constant Mi > 0, such that

|f̃i(u)| ≤Mi, for all u ∈ R.
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(H2) For each i ∈ 1, 2, · · · , n, there exist a constant Li > 0, such that

|f̃i(u)− f̃i(v)| ≤ Li|u− v|, for allu ∈ R.

(H3) For i, j = 1, 2, · · · , n, τij(t) are nonnegative, bounded, differentiable and
there exist a constant 0 ≤ δ < 1, such that τ̇ij(t) ≤ δ, where τ̇ij(t) = dτij(t)

dt .
Let τ = sup{τij(t) : t ∈ [0, +∞}, i, j = 1, 2, · · · , n}. We introduce C([−τ,

0], Rn) as the initial function space of system (1), which is the Banach space
of all continuous functions φ = (φ1, φ2, · · · , φn)T : [−τ, 0] → Rn with normal
‖φ‖ = sup−τ≤θ≤0 |φ(θ)|, where |φ(θ)| = (

∑n
i=1 |φi(θ)|2) 1

2 .

Definition 1. Equilibrium point x∗ of system (1) is said to be globally exponen-
tially stable, if there exist constants k > 0 and γ > 0 such that, for all t ≥ 0,

‖x(t, ϕ)− x∗‖ ≤ γe−kt.

Definition 2. (see [15]). Let matrix A = (aij)n×n have nonpositive off-diagonal
elements, then A is said to be a nonsingular M -matrix if A have all posi-
tive diagonal elements and there exists a positive diagonal matrix Λ = diag
(λ1, λ2, · · · , λn, ) such that AΛ or ATΛ is strictly diagonally dominant; That is

aiiλi >

n∑
j 	=i

|aij |λj , or aiiλi >

n∑
j 	=i

|aji|λj i = 1, 2, · · · , n,

which can be rewritten as

n∑
j=1

aijλj > 0, or
n∑

j=1

ajiλj > 0 i = 1, 2, · · · , n.

To obtain our main results, we need the following lemma.

Lemma 1. (see [12]). Suppose x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn)
are two states of system (1), then we have

|
n∧

j=1

αij f̃i(xj)−
n∧

j=1

αij f̃i(yj)| ≤
n∑

j=1

|αij ||f̃i(xj)− f̃i(yj)|,

|
n∨

j=1

αij f̃i(xj)−
n∨

j=1

αij f̃i(yj)| ≤
n∑

j=1

|αij ||f̃i(xj)− f̃i(yj)|.

3 Existence Uniqueness of Equilibrium Point

In the following discussions, we denote L = diag(L1, L2, · · · , Ln), D = diag(d1,
d2, · · · , dn), A = (|aij |+ |αij |+ |βij |)n×n and B = (Bij)n×n with Bij =

∑n
l=1Ml

(|bijl|+ |γijl|+ |σijl|+ |bilj |+ |γilj |+ |σilj |).
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Theorem 1. Under assumptions (H1) and (H2), then system (1) has a unique
equilibrium x∗ if D − (A+B)L is a nonsingular M -matrix.

Proof. Let g(x) = (g1(x), g2(x), · · · , gn(x)) with

gi(x) = dixi −
n∑

j=1

aij f̃j(xj)−
n∑

j=1

n∑
l=1

bijlf̃j(xj)f̃l(xl)

−
n∧

j=1

αij f̃j(xj)−
n∨

j=1

βij f̃j(xj)

−
n∧

j=1

(
n∧

l=1

γijlf̃j(xj)f̃l(xl))−
n∨

j=1

(
n∨

l=1

σijlf̃j(xj)f̃l(xl))

−
n∧

j=1

Tijuj −
n∨

j=1

Hijuj − Ii, i = 1, 2, · · · , n. (2)

Obviously, the solution of equation g(x) = 0 is the equilibrium point of system
(1). We can define homotopic mapping as follow

G(x, λ) = λg(x) + (1 − λ)x,

where λ ∈ [0, 1], G(x, λ) = (G1(x, λ), G2(x, λ), · · · , Gn(x, λ))T , then it follows
from (H1) and (H2) that for 1 ≤ i ≤ n

|Gi(x, λ)| ≥ |λdixi + (1− λ)xi| − λ
n∑

j=1

|aij ||f̃j(xj)|

−λ|
n∑

j=1

n∑
l=1

bijlf̃j(xj)f̃l(xl)|

−λ|
n∧

j=1

αij f̃j(xj)| − λ|
n∨

j=1

βij f̃j(xj)|

−λ|
n∧

j=1

(
n∧

l=1

γijlf̃j(xj)f̃l(xl))| − λ|
n∨

j=1

(
n∨

l=1

σijlf̃j(xj)f̃l(xl))|

−λ|
n∧

j=1

Tijuj| − λ|
n∨

j=1

Hijuj | − λ|Ii|

≥ (1− λ)|xi|+ λ[di|xi| −
n∑

j=1

AijLj |xj | −
n∑

j=1

BijLj|xj |]

−λ[
n∑

j=1

|aij ||f̃j(0)|+ |
n∧

j=1

αij f̃j(0)|+ |
n∨

j=1

βij f̃j(0)|
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+|
n∑

j=1

n∑
l=1

bijlf̃j(0)f̃l(0)|+ |
n∧

j=1

(
n∧

l=1

γijlf̃j(0)f̃l(0))|

+|
n∨

j=1

(
n∨

l=1

σijlf̃j(0)f̃l(0))|+ |
n∧

j=1

Tijuj|+ |
n∨

j=1

Hijuj|+ |Ii|]. (3)

Since D − AL − BL is a nonsingular M -matrix, hence, there exist constants
ri > 0 such that

ridi −
n∑

j=1

rjAjiLj −
n∑

j=1

rjBjiLj > 0, i = 1, 2, · · · , n.

Further, we have

n∑
i=1

ri|Gi(x, λ)|

≥ λ
n∑

i=1

[ridi|xi| − ri
n∑

j=1

AijLj|xj | − ri
n∑

j=1

BijLj |xj |]

−λ
n∑

i=1

ri[
n∑

j=1

|aij ||f̃j(0)|+ |
n∧

j=1

αij f̃j(0)|+ |
n∨

j=1

βij f̃j(0)|

+|
n∑

j=1

n∑
l=1

bijlf̃j(0)f̃l(0)|+ |
n∧

j=1

(
n∧

l=1

γijlf̃j(0)f̃l(0))|

+|
n∨

j=1

(
n∨

l=1

σijlf̃j(0)f̃l(0))|+ |
n∧

j=1

Tijuj|+ |
n∨

j=1

Hijuj|+ |Ii|].

≥ λ
n∑

i=1

[ridi −
n∑

j=1

rjAjiLj −
n∑

j=1

rjLjBji]|xi| − λnI0

≥ λr0‖x‖1 − λnI0,

where

r0 = min
1≤i≤n

{ridi −
n∑

j=1

rjAjiLj −
n∑

j=1

rjLjBji},

I0 = max
1≤i≤n

{ri[
n∑

j=1

|aij ||f̃j(0)|+ |
n∧

j=1

αij f̃j(0)|+ |
n∨

j=1

βij f̃j(0)|

+|
n∑

j=1

n∑
l=1

bijlf̃j(0)f̃l(0)|+ |
n∧

j=1

(
n∧

l=1

γijlf̃j(0)f̃l(0))|

+|
n∨

j=1

(
n∨

l=1

σijlf̃j(0)f̃l(0))|+ |
n∧

j=1

Tijuj|+
n∨

j=1

Hijuj |+ |Ii|]}.
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Let

B(H0) = {x|‖x‖1 < H0 =
n(I0 + 1)
r0

},

then, we have ‖x‖1 = H0 = n(I0+1)
r0

, for any x ∈ ∂B(H0), so, we obtain

n∑
i=1

ri|Gi(x, λ)| ≥ λr0n(I0 + 1)
r0

− λnI0 λ ∈ (0, 1].

When λ = 0, G(x, λ) = id(x) = x 
= 0, for any x ∈ ∂B(H0), here, id is identity
mapping. Consequently, we have G(x, λ) 
= 0, for any x ∈ ∂B(H0), λ ∈ [0, 1].

From (H2), it is easy to prove deg(id, B(H0), 0) = 1, hence, we have from
homotopy invariance theorem that

deg(g,B(H0), 0) = deg(id, B(H0), 0) = 1.

This shows that system (1) has at least one equilibrium point x∗ = (x∗1, x
∗
2,

· · · , x∗n).
Assume that y∗ = (y∗1 , y∗2 , · · · , y∗n)T is also an equilibrium point of system (1),

then, we have

gi(x∗) = 0, gi(y∗) = 0, i = 1, 2, · · · , n.

This implies that

di|x∗i − y∗i | ≤
n∑

j=1

Aij |f̃j(x∗j )− f̃j(y∗j )|+
n∑

j=1

Bij |f̃j(x∗j )− f̃j(y∗j )|

≤
n∑

j=1

AijLj|x∗j − y∗j |+
n∑

j=1

BijLj|x∗j − y∗j |

i = 1, 2, · · · , n. (4)

(3) can be rewriten as

(D −AL−BL)(|x∗1 − y∗1 |, |x∗2 − y∗2 |, · · · , |x∗n − y∗n|) ≤ 0. (5)

Since D − AL − BL is a nonsingular M -matrix, so (D − AL − BL)−1 is a
nonnegative matrix. Thus multiplying both sides of (4) by (D − AL − BL)−1,
we obtain

|x∗1 − y∗1 |, |x∗2 − y∗2 |, · · · , |x∗n − y∗n| ≤ 0.

This means that x∗ = y∗. This implies that system (1) has one unique equilib-
rium point.
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4 Exponential Stability of Equilibrium

Theorem 2. Under assumptions (H1) − (H3), equilibrium point x∗ of system
(1) is globally exponentially stable if D(1 − δ)− (A+ B)L is a nonsingular M -
matrix.

Proof. If D(1 − δ)− (A +B)L is a nonsingular M -matrix, then D − (A + B)L
is also a nonsingular M -matrix. Hence, from Theorem 1, equilibrium point x∗

of system (1) exists and is unique. Let x(t) = (x1(t), x2(t), · · · , xn(t)) be any
solution of system (1) with initial condition xi(s) = ϕi(s), for all s ∈ [−τ, 0]
(i = 1, 2, · · · , n) and x∗ = (x∗1, x∗2, · · · , x∗n)T . We define

yi(t) = xi(t)− x∗i , fi(yi(t)) = f̃i(xi(t) + x∗i )− f̃i(x∗i ), i = 1, 2, · · · , n,
then, from system (1) we have

dyi(t)
dt

= −diyi(t) +
n∑

j=1

aijfj(yj(t− τij(t)))

+
n∑

j=1

n∑
l=1

[bijlf̃l(xl(t− τij(t))) + bilj f̃l(x∗l )]fj(yj(t− τij(t)))

+
n∧

j=1

αij f̃j(yj(t− τij(t)) + x∗j )−
n∧

j=1

αij f̃j(x∗j )

+
n∨

j=1

βij f̃j(yj(t− τij(t)) + x∗j )−
n∨

j=1

βij f̃j(x∗j ).

+
n∧

j=1

(
n∧

l=1

γijlf̃j(yj(t− τij(t)) + x∗j )f̃l(yl(t− τij(t)) + x∗l ))

−
n∧

j=1

(
n∧

l=1

γijlf̃j(x∗j )f̃l(x
∗
l ))

+
n∨

j=1

(
n∨

l=1

σijlf̃j(yj(t− τij(t)) + x∗j )f̃l(yl(t− τij(t)) + x∗l ))

−
n∨

j=1

(
n∨

l=1

σijlf̃j(x∗j )f̃l(x
∗
l )). (6)

According to Lemma 1, we have

d|yi(t)|
dt

≤ −di|yi(t)|+
∑n

j=1(Aij +Bij)|fj(yj(t− τij(t)))|.

If D(1− δ)− (A+B)L is a nonsingular M -matrix, then there exist constants
ri > 0 and a sufficiently small positive constant λ such that

(di − λ)ri −
n∑

j=1

rjLi
Aji +Bji

1− δ eλτ > 0, i = 1, 2, · · · , n.
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Take Lyapunov functional as

V (y(t)) =
n∑

i=1

ri|yi(t)|eλt +
n∑

i=1

ri

∫ t

t−τij(t)

n∑
j=1

Aij +Bij

1− τ̇ij(ψ−1
ij (t))

×|fj(yj(s))|eλ(s+τij(ψ−1
ij (s)))ds,

where ψ−1
ij (t) is the inverse function of ψij(t) = t− τij(t).

Calculating the derivative of V (y(t)), we have

dV (y(t))
dt

≤
n∑

i=1

ri(−di|yi(t)|+
n∑

j=1

(Aij +Bij)|fj(yj(t− τij(t)))|)eλt

+
n∑

i=1

riλ|yi(t)|eλt +
n∑

i=1

ri

n∑
j=1

Aij +Bij

1− τ̇ij(ψ−1
ij (t))

Lj |yj(t)|

×eλ(t+τij(ψ
−1
ij (t))) −

n∑
i=1

ri

n∑
j=1

(Aij + Bij)Lj |yj(t− τij(t))|eλt.

≤
n∑

i=1

[(λ− di)ri +
n∑

j=1

rjLi
Aij +Bij

1− δ eλτ ]|yi(t)|eλt < 0.

Which implies that

V (y(t)) ≤ V (y(0)), for all t ≥ 0.

So, we have

n∑
i=1

ri|yi(t)|eλt ≤
n∑

i=1

|yi(0)|+
n∑

i=1

ri max
1≤j≤n

Aij +Bij

1− δ ‖φ‖Lj

∫ 0

−τ

eλ(s+τ)ds.

Let

γ =

∑n
i=1 |yi(0)|+∑n

i=1 ri max1≤j≤n
Aij+Bij

1−δ ‖φ‖Lj

∫ 0

−τ e
λ(s+τ)ds

min1≤i≤n ri
,

consequently,

n∑
i=1

|yi(t)| = γe−λt.

This implies that the equilibrium point x∗ is globally exponentially stable.

Remark 1. For system (1), if τij(t) = τ (i, j = 1, 2, · · · , n), where τ is a constant,
then we have the following result as corollary of Theorem 1.

Corollary 1. Under assumptions (H1) − (H2), equilibrium point x∗ of system
(1) is globally exponentially stable if D −AL −BL is a nonsingular M -matrix.
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5 Illustrative Example

In this section, we give a numerical example to demonstrate the effectiveness of
our results.

Consider 2-dimension HFCNNs with time delays. For system (1), we take
activation functions fi(x) = 1

2 (|x + 1| − |x − 1|) (i = 1, 2). Obviously, fi(x)
satisfies Hypotheses (H1) and (H2) with Li = 0.8 (i = 1, 2). Further, we take
delays τij(t) = 1

10 + 9
10 | sin t| (i, j = 1, 2, · · · , n) and initial functions (ϕ1, ϕ2) =

(− 1
2 sin t, cos t)T for all t ∈ [−1, 0]. Further, we take

D =
(

3 0
0 3

)
, a =

(−0.2 0.1
0.1 0.1

)
, B1 =

(−0.1 −0.1
0.1 0.11

)
,

B2 =
(

0.1 −0.1
−0.14 0.13

)
, α =

(
0.2 −0.1
0.1 0.1

)
, β =

(
0.2 0.1
−0.1 0.1

)
,

R1 =
(

0.1 −0.1
0.1 0.13

)
, R2 =

(
0.1 −0.1
−0.1 0.11

)
, Q1 =

(
0.1 −0.14
0.13 0.12

)
,

Q2 =
(

0.1 −0.1
−0.1 0.13

)
, T = H =

(
0.3 −0.23
0.2 0.3

)
,

a = (aij)2×2, Bi = (bijl)2×2, α = (αij)2×2, β = (βij)2×2,

Ri = (γijl)2×2, Qi = (σijl)2×2, T = (Tij)2×2, T = (Tij)2×2.

For this example, it is easy to see that if (I1, I2)T = (−1, 1) and u1 = u2 = 1,
the conditions of Theorem 2 are satisfied. So the equilibrium point is unique and
globally exponentially stable.

6 Conclusion

In this paper, we have investigated the existence and global exponential stability
of equilibrium point for Fuzzy cellular neural networks. Using the nonsingular M-
matrix and Lyapunov functional method, we gave a sufficient criterion ensuring
the existence and global exponential stability of equilibrium point of system
(1). The obtained result improves and extend several earlier publications and is
useful in applications of manufacturing high quality neural networks.
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Abstract. This paper provides improved results on stability condition
for a class of neural networks (NNs) with time-varying interval delay. The
activation functions of the NNs are assumed to be more general. Based on
a new augmented Lyapunov-Krasovskii functional, the improved delay-
dependent stability criterion for delay NNs is obtained in terms of linear
matrix inequalities (LMIs). It is shown that the new criterion can provide
less conservative results than some existing ones. A numerical example is
given to demonstrate the effectiveness and the benefits of the proposed
method.

Keywords: Neural networks (NNs), Lyapunov-Krasovskii functional,
Delay-dependent, Time-varying interval delay.

1 Introduction

In the past few decades, neural networks (NNs) have received considerable at-
tention due to their extensive applications in a variety of areas, such as signal
processing, pattern recognition, and combinatorial optimization [1]. Time delay
is frequently encountered in NNs and it is often a source of instability and oscil-
lations in a system, so increasing interest has been focused on stability analysis
of NNs with time delays. Generally speaking, the so-far obtained stability results
for delay NNs can be classified into two types; that is, delay-independent stabil-
ity [2]-[4] and delay-dependent stability [5]-[16]; the former does not include any
information on the size of delay while the latter employs such information.

For delay-dependent type, much attention has been paid to reduce the con-
servatism of stability conditions. Recently, a free-weighting matrices method was
proposed in [8] to study the delay-dependent stability problems for NNs with time-
varying delay. It has been shown effective in reducing conservatism by the intro-
duction of free-weighting matrices. By considering the additional useful terms,
some less conservative delay-dependent stability criteria for NNs were presented
in [12] and [13]. With aid of an augmented Lyapunov-Krasovskii functional, an
improved delay-dependent stability criterion was established in [16].

In this paper, by constructing a new augmented Lyapunov-Krasovskii func-
tional, improved delay-dependent stability criterion for NNs with time-varying

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 423–432, 2009.
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interval delay is obtained. In addition, the activation functions of NNs con-
sidered in this paper are more general than those in [13], [16], etc. Further-
more, a illustrative example is given to show the effectiveness of the proposed
criteria.

Notation. Throughout this paper, a real symmetric matrix P > 0(≥ 0) denotes
P being a positive definite (positive semi-definite) matrix. I is used to denote
an identity matrix with proper dimension. Matrices, if not explicitly stated, are
assumed to have compatible dimensions. The symmetric terms in a symmetric
matrix are denoted by ∗. The superscript “T” represents the transpose.

2 Problem Formulation and Preliminaries

Consider the following NNs with time-varying delays:

ẋ(t) = −Cx+Ag(x(t)) +Bg(x(t− d(t))) + J (1)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn, g(x(t)) = [g1(x1(t)), g2(x2(t)),
· · · , gn(xn(t))]T ∈ Rn, g(x(t− d(t))) = [g1(x1(t− d(t))), g2(x2(t− d(t))), · · ·,
gn(xn(t−d(t)))]T ∈ Rn, J = [J1(·), J2(·), · · · , Jn(·)]T ∈ Rn, C = diag{c1, c2,
· · · , cn}, A = (aij)n×n and B = (bij)n×n. In the following, we assume that
each neuron activation function in (1), gi(·), i = 1, 2, ..., n, satisfies the following
condition:

k−i ≤
gi(x)− gi(y)
x− y ≤ k+

i , ∀ x, y ∈ R, x 
= y, i = 1, 2, ..., n (2)

where k−i , k
+
i , i = 1, 2, ..., n are some constants. d(t) corresponds to the time-

varying transmission delay and satisfies

h1 ≤ d(t) ≤ h2, ḋ(t) ≤ µ, (3)

where 0 ≤ h1 < h2 and µ > 0 are constants. Note that h1 may not be equal to 0.

Remark 1. The previous results in [12], [14], and [16] only considered the case
that the range of the time-varying delay from 0 to an upper bound. Indeed,
the lower bound of time-varying delay for NNs is always not equal to 0 in
practice.

Remark 2. As pointed out in [10], the constants k−i , k
+
i are allowed to be pos-

itive, negative or zero. Hence, the resulting activation functions could be non-
monotonic, and more general than the usual sigmoid functions.

Assume x∗ = [x∗1, x
∗
2, ..., x

∗
n]T is an equilibrium of system (1), one can derive

from (1) that the transformation z(·) = x(·)− x∗ transforms system (1) into the
following system:

ż(t) = −Cz(t) +Af(z(t)) +Bf(z(t− d(t))) (4)
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where z(t) = [z1(t), z2(t), · · · , zn(t)]T is the state vector of the transformed sys-
tem, f(z(t)) = [f1(z1(t)), f2(z2(t)), · · · , fn(zn(t))]T , f(x(t − d(t))) = [f1(x1(t−
d(t))), f2(x2(t − d(t))), · · · , fn(xn(t − d(t)))]T ∈ Rn and fi(zi(t)) = gi(zi(t) +
x∗i ) − gi(x∗i ), i = 1, 2, ..., n. Note that the functions fi(·), i = 1, 2, ..., n satisfy
the following condition:

k−i ≤
fi(x)− fi(y)
x− y ≤ k+

i , ∀ x, y ∈ R, x 
= y, i = 1, 2, ..., n (5)

The main purpose of this paper is to establish LMI-based sufficient conditions
guaranteeing the global asymptotic stability of delay NNs (4). To obtain our
main results, we need the following lemmas:

Lemma 1. ([13]) Given constant matrices Ω1, Ω2, Ω3 where Ω1 = ΩT
1 and

Ω2 > 0, then
Ω1 +ΩT

3 Ω
−1
2 Ω3 < 0 (6)

if only if [
Ω1 Ω

T
3

Ω3 −Ω2

]
< 0, or

[−Ω2 Ω3

ΩT
3 Ω1

]
< 0 (7)

Lemma 2. ([17]) For any constant matrix M ∈ Rn×n, M =MT > 0, a scalar
γ > 0, vector function ω : [0, γ]→ Rn, then(∫ γ

0

ω(s)ds
)T

M

(∫ γ

0

ω(s)ds
)
≤ γ

∫ γ

0

ωT (s)Mω(s)ds. (8)

3 Main Results

In the section, a new augmented Lyapunov-Krasovskii functional is constructed
and the following asymptotic stability criterion is obtained.

Theorem 1. For given scalars 0 ≤ h1 < h2, µ > 0, and h12 = h2 − h1. Let
matrices K1 = diag{k+

1 k
−
1 , k

+
2 k

−
2 , ..., k

+
n k

−
n }, K2 = diag{(k+

1 + k−1 ), (k+
2 +

k−2 ), ..., (k+
n + k−n )}, and K3 = diag{k−1 , k−2 , ..., k−n }. Then, for any delay d(t)

satisfy (3), the origin of system (4) with (5) is globally asymptotically sta-
ble, if there exist positive diagonal matrices Λ = diag{λ1, λ2, ...λn}, D1 =

diag{d11, d12, ...d1n}, D2 = diag{d21, d22, ...d2n} and matrices
[
P11 P12

∗ P22

]
>

0,
[
Q11 Q12

∗ Q22

]
> 0, X =

[
X11 X12

∗ X22

]
> 0, Y =

[
Y11 Y12

∗ Y22

]
> 0, Ri > 0 (i =

1, 2), Qi > 0 (i = 1, 2, 3, 4) , Zi > 0 (i = 1, 2) and any matrices Pi (i =
2, · · · , 7) with appropriate dimensions, such that the following LMIs(9)-(12) are
feasible:
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Ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14 PT
4 −PT

6 Ξ17 0 −CTU µP12 0
∗ Ξ22 0 D2K2 PT

5 Ξ26 Ξ27 − h2
h12
QT

12 0 0 µP22

∗ ∗ Ξ33 ΛB 0 0 ATP12 0 ATU 0 0
∗ ∗ ∗ Ξ44 0 0 BTP12 0 BTU 0 0
∗ ∗ ∗ ∗ −Q3 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 h2

h12
QT

12 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ − h2

h12
Q11 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −µZ1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −µZ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (9)

Π1 =

[
X11 X12 P

T
2

∗ X22 P
T
3∗ ∗ R1

]
≥ 0, (10)

Π2 =

[
Y11 Y12 P

T
4

∗ Y22 P
T
5∗ ∗ R2

]
≥ 0, (11)

Π3 =

[
X11 + Y11 X12 + Y12 PT

6

∗ X22 + Y22 PT
7∗ ∗ R1 +R2

]
≥ 0, (12)

where
Ξ11 = −P11C − CTP11 + P2 + PT

2 + ΛK3C + CTKT
3 Λ

T +Q1

+Q3 +Q4 + h2
2Q11 − h2

2C
TQT

12 − h2
2Q12C −Q22

+P12 + PT
12 − 2D1K1 + h2X11 + h12Y11,

Ξ12 = P3 − PT
2 + PT

6 − PT
4 − P12 +Q22 + h2X12 + h12Y12,

Ξ13 = P11A− CTΛ− ΛK3A+ h2
2Q12A+D1K2,

Ξ14 = P11B − ΛK3B + h2
2Q12B,

Ξ17 = −QT
12 − CTP12 + PT

22,

Ξ22 = −P3 − PT
3 − P5 − PT

5 + P7 + PT
7 + µZ1 − (1− µ)Q1

−Q22 − h2

h12
Q22 − 2D2K1 + h2X22 + h12Y22,

Ξ26 = −PT
7 +

h2

h12
QT

12,

Ξ27 = −PT
22 +QT

12,

Ξ33 = ΛA+ATΛ+Q2 − 2D1,

Ξ44 = −(1− µ)Q2 − 2D2,

Ξ66 = −Q4 − h2

h12
Q22,

Ξ77 = µZ2 −Q11,

U = h2R1 + h12R2 + h2
2Q22.
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Proof. Choose a new augmented Lyapunov-Krasovskii functional candidate as
follows:

V (z(t)) = V1(z(t)) + V2(z(t)) + V3(z(t)) + V4(z(t)), (13)

where

V1(z(t)) = ξT0 (t)EPξ0(t) + 2
n∑

i=1

λi

∫ zi(t)

0

(fi(s)− k−i s)ds,

V2(z(t)) =
∫ t

t−d(t)

[zT (s)Q1z(s)ds+ fT (z(s))Q2f(z(s))]ds

+
∫ t

t−h1

zT (s)Q3z(s)ds+
∫ t

t−h2

zT (s)Q4z(s)ds,

V3(z(t)) =
∫ 0

−h2

∫ t

t+θ

żT (s)R1ż(s)dsdθ +
∫ −h1

−h2

∫ t

t+θ

żT (s)R2ż(s)dsdθ,

V4(z(t)) = h2

∫ 0

−h2

∫ t

t+θ

[
z(s)
ż(s)

]T [
Q11 Q12

∗ Q22

] [
z(s)
ż(s)

]
dsdθ,

where E =

⎡⎣ I 0 0 0 0
0 I 0 0 0
0 0 0 0 0

⎤⎦ , P =

⎡⎢⎢⎢⎢⎣
P11 P12 0
PT

12 P22 0
P2 0 P3

P4 0 P5

P6 0 P7

⎤⎥⎥⎥⎥⎦ , ξ0(t) =

⎡⎣ z(t)∫ t

t−d(t) z(s)ds
z(t− d(t))

⎤⎦ ,

Qi = QT
i > 0, i = 1, · · · , 4, Ri = RT

i > 0, i = 1, 2, Λ = diag{λ1, λ2, · · · , λn} ≥ 0,[
P11 P12

∗ P22

]
> 0, and Pj , j = 2, · · · , 7 are any matrices with appropriate dimen-

sions. It is easy to see that EP = PTET > 0, and ξT0 (t)EPξ0(t) is actually[
z(t)∫ t

t−d(t) z(s)ds

]T [
P11 P12

∗ P22

] [
z(t)∫ t

t−d(t) z(s)ds

]
.

On the other hand, from the Leibniz-Newton formula, the following equations
are true

α1 := z(t)− z(t− d(t))−
∫ t

t−d(t)

ż(s)ds = 0

α2 := z(t− h1)− z(t− d(t)) −
∫ t−h1

t−h2

ż(s)ds = 0

α3 := z(t− d(t))− z(t− h2)−
∫ t−d(t)

t−h2

ż(s)ds = 0

Then calculating the time derivative of V (z(t)) along the solution of (4) yields

V̇1(z(t)) = −2zT (t)P11Cz(t) + 2zT (t)P11Af(z(t)) + 2zT (t)P11Bf(z(t− d(t)))
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−2

(∫ t

t−d(t)

z(s)ds

)T

PT
12Cz(t) + 2

(∫ t

t−d(t)

z(s)ds

)T

PT
12Af(z(t))

+2

(∫ t

t−d(t)

z(s)ds

)T

PT
12Bf(z(t− d(t))) + 2zT (t)P12z(t)

−2zT (t)P12z(t− d(t)) + 2

(∫ t

t−d(t)

z(s)ds

)T

P22z(t)

−2

(∫ t

t−d(t)

z(s)ds

)T

P22z(t− d(t)) + 2ḋ(t)zT (t)P12z(t− d(t))

+2ḋ(t)

(∫ t

t−d(t)

z(s)ds

)T

P22z(t− d(t))

+2ξT0 (t)PT

⎡⎢⎢⎢⎢⎣
0
0
α1

α2

α3

⎤⎥⎥⎥⎥⎦+ 2
n∑

i=1

λi(fi(zi(t)) − k−i zi(t))żi(t) (14)

On the other hand, for some matrices Z1 > 0, Z2 > 0, the following inequities
always hold based on (3)

2ḋ(t)zT (t)P12z(t− d(t))
≤ µzT (t)P12Z

−1
1 PT

12z(t) + µzT (t− d(t))Z1z(t− d(t)) (15)

2ḋ(t)

(∫ t

t−d(t)

z(s)ds

)T

P22z(t− d(t))

≤ µ
(∫ t

t−d(t)

z(s)ds

)T

Z2

(∫ t

t−d(t)

z(s)ds

)
+µzT (t− d(t))P22Z

−1
2 PT

22z(t− d(t)) (16)

.Then,

V̇1(z(t)) = ξT (t)Ξ̃ξ(t)− 2ξT0 (t)

⎡⎣PT
2

0
PT

3

⎤⎦∫ t

t−d(t)

ż(s)ds

−2ξT0 (t)

⎡⎣PT
4

0
PT

5

⎤⎦∫ t−h1

t−h2

ż(s)ds− 2ξT0 (t)

⎡⎣PT
6

0
PT

7

⎤⎦∫ t−d(t)

t−h2

ż(s)ds

+µzT (t)P12Z
−1
1 PT

12z(t)
+µzT (t− d(t))P22Z

−1
2 PT

22z(t− d(t)) (17)
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where

ξT (t) = [zT (t) zT (t− d(t)) fT (z(t)) f(z(t− d(t)))

zT (t− h1) zT (t− h2) (
∫ t

t−d(t)

z(s)ds)T (
∫ t−d(t)

t−h2

z(s)ds)T ],

and

Ξ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̃11 Ξ̃12 Ξ̃13 Ξ̃14 P
T
4 −PT

6 Ξ̃17 0
∗ Ξ̃22 0 0 PT

5 −PT
7 −P22 0

∗ ∗ ΛA+ATΛ ΛB 0 0 ATP12 0
∗ ∗ ∗ 0 0 0 BTP12 0
∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ µZ2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ξ̃11 = −P1C − CTP1 + ΛK3C + CTK3Λ+ P2 + PT
2 + P12 + PT

12,

Ξ̃12 = −PT
2 + P3 − PT

4 + PT
6 − P12,

Ξ̃13 = P1A− CTΛ− ΛK3A,

Ξ̃14 = P1B − ΛK3B,

Ξ̃17 = −CTP12 + P22,

Ξ̃22 = −P3 − PT
3 − P5 − PT

5 + P7 + PT
7 + µZ1.

In addition,

V̇2(z(t)) ≤ zT (t)(Q1 +Q3 +Q4)z(t) + fT (z(t))Q2f(z(t))
−(1− µ)zT (t− d(t))Q1z(t− d(t))
−(1− µ)fT (z − d(t))Q2f(z − d(t))
−zT (t− h1)Q3z(t− h1)− zT (t− h2)Q4z(t− h2), (18)

and,

V̇3(z(t)) = żT (t)(h2R1 + h12R2)ż(t)−
∫ t

t−d(t)

żT (s)R1ż(s)ds

−
∫ t−h1

t−d(t)

żT (s)R2ż(s)ds−
∫ t−d(t)

t−h2

żT (s)(R1 +R2)ż(s)ds, (19)

and,
V̇4(z(t)) = h2

2

[
z(t)
ż(t)

]T [
Q11 Q12

∗ Q22

] [
z(t)
ż(t)

]
−h2

∫ t

t−h2

[
z(s)
ż(s)

]T [
Q11 Q12

∗ Q22

] [
z(s)
ż(s)

]
ds, (20)

with
h2

2

[
z(t)
ż(t)

]T [
Q11 Q12

∗ Q22

] [
z(t)
ż(t)

]
= h2

2z
T (t) [Q11 − 2Q12C] z(t) + zT (t)(2h2

2Q12A)f(z(t))
+zT (t)2h2

2Q12Bf(z(t− d(t))) + żT (t)h2
2Q22ż(t). (21)
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It follows from Lemma 2, that the rightmost term of (20) satisfies

−h2

∫ t

t−h2

[
z(s)
ż(s)

]T [
Q11 Q12

∗ Q22

] [
z(s)
ż(s)

]
dt

≤
⎡⎣ z(t)
z(t− d(t))∫ t

t−d(t) z(s)ds

⎤⎦T ⎡⎣−Q22 Q22 −QT
12

∗ −Q22 QT
12

∗ ∗ −Q11

⎤⎦⎡⎣ z(t)
z(t− d(t))∫ t

t−d(t) z(s)ds

⎤⎦

+

⎡⎣ z(t− d(t))
z(t− h2)∫ t−d(t)

t−h2
z(s)ds

⎤⎦T ⎡⎢⎣−
h2
h12
Q22

h2
h12
Q22 − h2

h12
QT

12

∗ − h2
h12
Q22

h2
h12
QT

12

∗ ∗ − h2
h12
Q11

⎤⎥⎦
⎡⎣ z(t− d(t))

z(t− h2)∫ t−d(t)

t−h2
z(s)ds

⎤⎦ .(22)

Defining D1 = diag{d11, d12, ...d1n}, D2 = diag{d21, d22, ...d2n}, K1 = diag{
k+
1 k

−
1 , k

+
2 k

−
2 , ..., k

+
n k

−
n }, K2 = diag{(k+

1 + k−1 ), (k+
2 + k−2 ), ..., (k+

n + k−n )}, one
can infer from (5) that

− 2
n∑

i=1

d1i

[
z(t)
f(z(t))

]T
[
k+

i k
−
i eie

T
i −k+

i +k−
i

2 eie
T
i

−k+
i +k−

i

2 eie
T
i eie

T
i

][
z(t)
f(z(t))

]
− 2

n∑
i=1

d2i ×
[
z(t− d(t))
f(z(t− d(t)))

]T
[
k+

i k
−
i eie

T
i −k+

i +k−
i

2 eie
T
i

−k+
i +k−

i

2 eie
T
i eie

T
i

][
z(t− d(t))
f(z(t− d(t)))

]
≥ 0. (23)

Moreover, for any appropriately dimensioned matrices X = XT ≥ 0 and Y =
Y T ≥ 0, the following equations hold:

0 = h2ξ0(t)Xξ0(t)−
∫ t

t−d(t)

ξ0(t)Xξ0(t)ds−
∫ t−d(t)

t−h2

ξ0(t)Xξ0(t)ds (24)

0 = h12ξ0(t)Y ξ0(t)−
∫ t−h1

t−d(t)

ξ0(t)Y ξ0(t)ds −
∫ t−d(t)

t−h2

ξ0(t)Y ξ0(t)ds (25)

then, Considering (14)-(22), (23), (24), and (25), we have

V̇ (z(t)) ≤ ξT (t)Ξ0ξ(t) + żT (t)Uż(t) + µzT (t)P12Z
−1
1 PT

12z(t)

+µzT (t− d(t))P22Z
−1
2 PT

22z(t− d(t))−
∫ t

t−d(t)

ξT1 (t, s)Π1ξ1(t, s)ds

−
∫ t−h1

t−d(t)

ξT1 (t, s)Π2ξ1(t, s)ds−
∫ t−d(t)

t−h2

ξT1 (t, s)Π2ξ1(t, s)ds, (26)

with

Ξ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14 PT
4 −PT

6 Ξ17 0
∗ Ξ22 0 D2K2 PT

5 Ξ26 Ξ27 − h2
h12
QT

12

∗ ∗ Ξ33 ΛB 0 0 ATP12 0
∗ ∗ ∗ Ξ44 0 0 BTP12 0
∗ ∗ ∗ ∗ −Q3 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 h2

h12
QT

12

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ − h2

h12
Q11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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ξ1(t, s) =
[
zT (t) zT (t− d(t)) żT (s)

]T
.

Applying the Schur complement equivalence to (9) gives V̇ (z(t)) < −ε‖z(t)‖2
for a sufficiently small ε > 0. Then, the system (4) is asymptotically stable.

Lemma 3. It is worth pointing out that d(t), h2 − d(t), and d(t) − h1 are not
simply enlarged as h2, h2−h1, and h2−h1, respectively. Instead the term h2−d(t)
is also considered, which may reduce conservatism.

4 Numerical Example

This section presents a numerical example to demonstrate the validity of the
method described above.

Example 1. [6]: Consider the delayed NN (4) with:

C =
[
2 0
0 2

]
, A =

[
1 1
−1 −1

]
, B =

[
0.88 1
1 1

]
, k+

1 = 0.4, k+
2 = 0.8.

The corresponding upper bound of h2 for various h1 and µ derived by Theorem
1 in this paper and those in [6], [12], and [13] are listed in Table 1. It is clear
that our results are better than those in [6], [12], and [13]. For the general
activation functions, the maximum allowed delay for µ = 0.8 and h1 = 1 are
illustrated in Table 2. But [6], [12], and [13] fail to conclude whether this system
is asymptotically stable or not.

Table 1. Comparison of delay-dependent stability criterion of example 2

h1 Methods µ = 0.8 µ = 0.9 unknown µ

[6] 1.2281 0.8636 0.8298
[12] 1.6831 1.1493 1.0880

h1 = 0 [13] 2.3534 1.6050 1.5103
Theorem 1 2.7262 1.6330 1.5103

h1 = 1 [13] 3.2575 2.4769 2.3606
Theorem 1 3.6207 2.4904 2.3606

h1 = 2 [13] 4.2552 3.4769 3.3606
Theorem 1 4.5548 3.4826 3.3606

Table 2. The maximum allowed delay of generalized activation functions (µ = 0.8)

k−
1 = k−

2 = 0.1 k−
1 = 0.1, k−

2 = −0.1 k−
1 = −0.2, k−

2 = −0.1
h1 = 1 3.6609 +∞ 2.7036

5 Conclusions

In this paper, an augmented Lyapunov-Krasovskii functional is proposed to in-
vestigate the stability problem of NNs with time-varying interval delay. The
obtained stability condition is expressed in terms of LMIs. It can be shown that
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the derived criterion is less conservative than previously existing results through
the numerical example.
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Dynamic Analysis of Delayed Fuzzy Cellular
Neural Networks with Time-Varying Coefficients

Manchun Tan

Department of Mathematics, Jinan University, Guangzhou 510632, China

Abstract. Some new sufficient conditions are obtained guaranteeing the
exponential convergence behavior of each solution of fuzzy cellular neu-
ral networks (FCNNs) with variable delays and time-varying coefficients.
Compared with some earlier works, the new criteria do not require the
Lipschitz continuous condition on activation functions and the differen-
tiability of variable delays.

Keywords: Delayed fuzzy neural network, Exponential convergence,
Time-varying coefficients.

1 Introduction

The study on various neural networks is known to be important in theory and
application [1]-[7]. Researchers have found that fuzzy cellular neural networks
(FCNNs) are useful in image processing, and some results have been reported on
stability and periodicity of FCNNs [8]-[17]. Liu and Tang (2004)[12] and Yuan
et al.(2006)[15] studied a class of delayed FCNNs using M-matrix theory. Liu et
al. (2008) studied such FCNNs by LMI approach [13]. Most of the results are
obtained under the Lipschitz continuous condition in the literature [9]-[16]. In
addition, some stability criteria, such as those in [12], [13] and [15], require the
differentiability of time-varying delays.

Most studies in the literature focused on the dynamics of autonomous neural
network model [12]-[16]. However, non-autonomous phenomena often occur in
many realistic systems. The parameters of the system usually will change along
with time, when we consider a long-term dynamical behaviors of the system.
Thus, it is of prime importance and significance to study the dynamic behavior
of FCNNs with variable coefficients.

To the best of the author’s knowledge, for the non-autonomous FCNNs with
variable coefficients and time-varying delays, up till now, the study works are
very few. In this paper, we propose some new criteria for FCNNs with variable
delays and time-varying coefficients, without the assumption of the Lipschitz
continuous condition on activation functions and the differentiability of variable
delays.

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 433–439, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Problem Statement and Preliminaries

We consider the following fuzzy cellular neural networks (FCNNs) with variable
delays and time-varying coefficients:

ẋi(t) = −di(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t)) +
n∑

j=1

cijuj(t) + Ii(t)

+
n∧

j=1

αij(t)fj(xj(t− τij(t))) +
n∧

j=1

ςijuj(t)

+
n∨

j=1

βij(t)fj(xj(t− τij(t))) +
n∨

j=1

δijuj(t), (1)

i = 1, 2, · · · , n, where αij , βij , ςij and δij are elements of fuzzy feedback MIN
template, fuzzy feedback MAX template, fuzzy feed-forward MIN template and
fuzzy feed-forward MAX template, respectively. aij is element of feedback tem-
plate, and cij is element of feed-forward template.

∧
and

∨
denote the fuzzy

AND and fuzzy OR operation, respectively. xi, ui and Ii denote state, input and
bias of the ith neurons, respectively. fi(·) is the activation function. τij(t) is the
bounded transmission delay with 0 ≤ τij(t) ≤ τ , i = 1, 2, · · · , n.

We make the following assumptions:
(H1) For each i ∈ {1, 2, · · · , n}, there exist constants ki ≥ 0 such that |fi(x)| ≤
ki |x|, ∀x ∈ R.

(H2) For i = 1, 2, · · · , n, there exist positive constants λ and η, such that for all
t > 0, there holds

λ− di(t) +
n∑

j=1

kj |aij(t)|+
n∧

j=1

kj |αij(t)| eλτ +
n∨

j=1

kj |βij(t)| eλτ < −η < 0.

(H3) |ui(t)| = O(e−λt), |Ii(t)| = O(e−λt), i = 1, 2, · · · , n.
For convenience, we use the following notations.

X(t) = (x1(t), x2(t), · · · , xn(t))T , ‖X(t)‖ = max
1≤i≤n

|xi(t)| ,

ω = max
1≤i≤n

{sup
t≥0

∣∣∣∣∣∣
n∑

j=1

cijuj(t) + Ii(t) +
n∧

j=1

ςijuj(t) +
n∨

j=1

δijuj(t)

∣∣∣∣∣∣}.
The initial conditions associated with system (1) are of the forms

xi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, 2, · · · , n, (2)

where ϕi(·) are real-valued continuous functions defined on [−τ, 0].
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3 Exponential Convergence Analysis

Theorem 1. Under assumptions (H1), (H2) and (H3), for every solution X(t)
=(x1(t), x2(t), · · · , xn(t))T of FCNN (1) with initial condition (2), there holds

|xi(t)| = O(e−λt), i = 1, 2, · · · , n.
Proof. From assumption (H3), we know that there exist κ > 0 and T > 0, such
that for all t > T and i ∈ {1, 2, · · · , n}∣∣∣∣∣∣

n∑
j=1

cijuj(t) + Ii(t) +
n∧

j=1

ςijuj(t) +
n∨

j=1

δijuj(t)

∣∣∣∣∣∣
≤

n∑
j=1

(|cij |+ |ςij |+ |δij |) |uj(t)|+ |Ii(t)| ≤ ηκe−λt. (3)

Let X(t) = (x1(t), x2(t), · · · , xn(t))T be a solution of FCNN (1) with initial
condition (2), and it be such an index that

|xit(t)| = ‖X(t)‖ . (4)

In view of (4), the upper right Dini derivative of eλs |xis(s)| along the trajec-
tory of system (1) is

D+
(
eλs |xis(s)|

)∣∣
s=t

=λeλt |xit(t)|+ eλtsgn(xit(t))

⎧⎨⎩−dit(t)xit(t) +
n∑

j=1

citjuj(t)

+
n∑

j=1

aitj(t)fj(xj(t)) + Iit(t) +
n∧

j=1

αitj(t)fj(xj(t− τitj(t))) +
n∧

j=1

ςitjuj(t)

+
n∨

j=1

βitj(t)fj(xj(t− τitj(t))) +
n∨

j=1

δitjuj(t)

⎫⎬⎭
≤ eλt

⎧⎨⎩(λ− dit(t)) |xit(t)|+
n∑

j=1

kj |aitj(t)| |xj(t)|

+
n∧

j=1

kj |αitj(t)| |xj(t− τitj(t))|+
n∨

j=1

kj |βitj(t)| |xj(t− τitj(t))|

+

∣∣∣∣∣∣
n∑

j=1

citjuj(t) + Iit(t) +
n∧

j=1

ςitjuj(t) +
n∨

j=1

δitjuj(t)

∣∣∣∣∣∣
⎫⎬⎭ , (5)

where t ≥ T .
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Let
M(t) = max

s≤t
{eλs ‖X(s)‖}. (6)

It is obvious that M(t) ≥ eλt ‖X(t)‖, and M(t) is non-decreasing.
In the following, we prove that

M(t) ≤ max{M(T ), κ}, t > T. (7)

Assume, by way of contradiction, that (7) does not hold. Then, there exists
γ > T such that M(γ) > max{M(T ), κ}. In view of the continuousness of M(t),
there exists a interval [t0, t1] ⊆ [T, γ] such that M(t) is strictly increasing in
[t0, t1], and

M(t) = eλt ‖X(t)‖ = eλt |xit(t)| ≥ κ, ∀t ∈ [t0, t1]. (8)

From (5), (9), (8) and assumption (H2), we get

D+(M(s))
∣∣
s=t0

= D+
(
eλs |xis(s)|

)∣∣
s=t0

≤ eλt0
{
(λ − dit0

(t0))
∣∣xit0

(t0)
∣∣

+
n∑

j=1

kj

∣∣ait0 j(t0)
∣∣ |xj(t0)|+

n∧
j=1

kj

∣∣αit0 j(t0)
∣∣ ∣∣xj(t0 − τit0 j(t0))

∣∣
+

n∨
j=1

kj

∣∣βit0 j(t0)
∣∣ ∣∣xj(t0 − τit0 j(t0))

∣∣}+ ηκ

= eλt0(λ− dit0
(t0))

∣∣xit0
(t0)

∣∣+ eλt0

n∑
j=1

kj

∣∣ait0 j(t0)
∣∣ |xj(t0)|

+eλ(t0−τit0 j(t0))eλτit0 j(t0)

⎧⎨⎩
n∧

j=1

kj

∣∣αit0 j(t0)
∣∣ ∣∣xj(t0 − τit0 j(t0))

∣∣

+
n∨

j=1

kj

∣∣βit0 j(t0)
∣∣ ∣∣xj(t0 − τit0 j(t0))

∣∣⎫⎬⎭+ ηκ

≤M(t0)

⎧⎨⎩(λ − dit0
(t0)) +

n∑
j=1

kj

∣∣ait0 j(t0)
∣∣ eλτ +

n∧
j=1

kj

∣∣αit0 j(t0)
∣∣ eλτ

+
n∨

j=1

kj

∣∣βit0 j(t0)
∣∣ eλτ

⎫⎬⎭ + ηκ < −ηM(t0) + ηκ ≤ 0. (9)

This contradicts that M(t) is non-decreasing. Hence, we obtain eλt ‖X(t)‖ ≤
M(t) ≤ max{M(T ), κ}, for any t > T . This completes the proof.
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4 Numerical Example

Example 1. Consider the FCNNs (1) with the following parameters:

X(t) = [x1(t), x2(t)]T , d1(t) = 3− 1
3

cos t, d2(t) = 3− 1
3

sin t,

a11(t) =
|t| sin t

1 + 4 |t|2 , a12(t) =
|t| cos t

2(1 + 2 |t|) , a21(t) =
|t| cos t

2(1 + |t|2) ,

a22(t) =
|t| sin t

2(1 + 2 |t|) , α11(t) =
|t| cos t2

8(1 + 4 |t|2) , α12(t) =
|t| sin t2

8(1 + 4 |t|) ,

α21(t) =
|t| cos t2

4(1 + 16 |t|2) , α22(t) =
|t| sin t

8(1 + 4 |t|) , β11(t) =
|t| cos t

4(1 + 16 |t|2) ,

β12(t) =
|t| (sin t)2

16(1 + |t|2) , β21(t) =
|t| cos t

8(1 + 4 |t|2) , β22(t) =
|t| sin t

16(1 + 2 |t|) ,

fi(x) = x cos(x2), Ii(t) =
1
3
e−t cos t, ui(t) =

1
8
e−t cos t,

τij(t) =
1
4
(1 + |sin t|), cij = ςij = δij = 1, i, j = 1, 2.

From the parameters above, we obtain

τ = 0.5, ki = 1, |aij(t)| ≤ 1
4
, |αij(t)| ≤ 1

32
, |βij(t)| ≤ 1

32
.

Letting λ = 1, η = 1, we have

(λ− di(t)) +
n∑

j=1

kj |aij(t)|+
n∧

j=1

kj |αij(t)| eλτ +
n∨

j=1

kj |βij(t)| eλτ

≤ λ− di(t) +
2∑

j=1

kj
1
4

+ (
1
32

+
1
32

)eλτ < −1 = −η, t > 0.

Hence, the parameters in this FCNNs satisfy assumptions (H1), (H2) and (H3).
From Theorem 1, we know that the solution of this FCNNs model with initial
condition (2) converge exponentially to the zero point [0, 0]T .

Remark 1. The commonly used assumption on activation functions is the Lip-
schitz continuous condition (see [7-14]), i.e., there exist constants ki > 0 such
that for |fi(ξ1)− fi(ξ2)| ≤ ki |ξ1 − ξ2| , ∀ξ1, ξ2 ∈ R. It is obvious that functions
fi(x) = x cos(x2) in Example 1 don’t satisfy the Lipschitz continuous condition.
Therefore, the results in [7]-[14] are not applicable to this example.

Remark 2. In [10], [11] and [13], results are obtained under the assumptions that
each time-varying delay τij(t) is differentiable. Such limitation is removed in this
paper.
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5 Conclusion

In this paper, we study a class of delayed fuzzy cellular neural networks (FC-
NNs) involving variable delays and time-varying coefficients. Some new sufficient
conditions that ensure the exponential convergence behavior of each solution of
such FCNNs are obtained. We do not assume that the considered model has any
equilibriums. The Lipschitz continuous conditions on the activation functions
and the differentiability of time-varying delays, which are needed in most other
papers, are not required in the new criteria. These obtained conditions are new
and they complement previously known results.

Acknowledgements. The research is supported by grants from the National
Natural Science Foundation of China (No. 50578064) and the Natural Science
Foundation of Guangdong Province in China (No.06025219).
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Delay-Dependent Exponential Stability of  
Discrete-Time BAM Neural Networks with Time  

Varying Delays  

Rui Zhang , Zhanshan Wang, Jian Feng, and Yuanwei Jing  
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Abstract. In this paper, the global exponential stability is discussed for dis-
crete-time bidirectional associative memory (BAM) neural networks with time 
varying delays. By the linear matrix inequality (LMI) technique and discrete 
Lyapunov functional combined with inequality techniques, a new global expo-
nential stability criterion of the equilibrium points is obtained for this system. 
The proposed result is less restrictive than those given in the earlier literatures, 
and easier to check in practice. Remarks are made with other previous works to 
show the superiority of the obtained results, and the simulation example is used 
to demonstrate the effectiveness of our result. 

Keywords: Discrete-time system, BAM neural network, Discrete lyapunov 
functional, Global exponential stability, Linear matrix inequality (LMI). 

1   Introduction 

The bidirectional associative memory (BAM) neural network was first introduced by 
Kosko in [1] and [2]. It is an extension of the unidirectional autoassociator of Hop-
field [3]. This class of neural network has potential application in many fields such as 
pattern recognition and artificial intelligence. Many applications of BAM neural net-
works are dependent on the stability of the equilibrium points. So it is significantly 
important in theory and practice to study the stability of BAM neural networks. And 
time delays often occur in realizing network, neural processing and signal transmis-
sion. The system can be unstable and oscillations due to time-delays. So the asymp-
totic or exponential stability analysis of BAM neural networks with time delays has 
received great attention in the past years in [4-9].  

It should be pointed out that all of the above references are concerned with con-
tinuous-time BAM neural networks. However, discretization in numerical simulations 
and practical implementations continuous neural networks is necessary. And the  
dynamics of discrete-time neural networks can be different from those of continuous-
time ones. So, it is important in theory and practice to study the stability of discrete-
time neural networks. In [10], it was studied exponential stability of discrete-time 
neural networks by M-matrix method with constant delays. Exponential stability of 
discrete-time neural networks with time varying delays was studied in [11], but it was 
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unreasonable supposition on the delay functions. But many delay functions do not 
satisfy such constraints. By using the Lyapunov functional method and LMIs tech-
nique, the exponential stability for discrete-time BAM neural networks with variable 
delays were established in [12] and [13]. But the structures of Lyapunov functional 
were simple, and no more information on the neurons was used, which directly lead to 
the conservativeness of their results. 

In this paper, we propose a new global exponential stability criterion for the dis-
crete-time BAM neural network with time-varying delays based on the LMIs tech-
nique and a new Lyapunov functional with inequality techniques. The proposed result 
has less conservativeness and is easy to be verified. Simulation example is used to 
demonstrate the effectiveness of proposed result. 

2   System Description and Preliminaries 

The discrete-time BAM neural network with time-varying delays can be described as: 

1

1

( 1) ( ) ( ( ( ))) , 1, , ,

( 1) ( ) ( ( ( ))) , 1, , .

m

i i i ij j j i
j

n

j j j ji i i j
i

u k a u k w f v k k I i n

v k b v k v g u k k J j m

τ

σ

=

=

⎧ + = + − + =⎪⎪
⎨
⎪ + = + − + =
⎪⎩

∑

∑

L

L

   (1) 

where 1,2,k = L  represents the discrete time. ( )iu k and ( )jv k  are the states 

of the i -th neuron from the neural field uF  and the j -th neuron from the neural field 

vF  at time k , respectively. ia , jb (0,1)∈  describe the stability of internal neuron 

processes on the U-layer and the V-layer, respectively. The interconnection weights 

ijw  and jiv  are real constants, which are the strengths of connectivity between the i -

th neuron from the neural field uF  and the j -th neuron from the neural field vF . 

( )jf ⋅  and ( )ig ⋅ are the activation functions of the j -th neuron from the neural field 

vF  and the i -th neuron from the neural field uF , respectively. ( )kτ and ( )kσ repre-

sent time varying delays satisfying ( )m Mkτ τ τ≤ ≤ , ( )m Mkσ σ σ≤ ≤ , 

where mτ , Mτ , mσ , Mσ are non-negative integer values. iI  and jJ denote the exter-

nal constant inputs from outside the network acting on the i -th neuron from the neu-

ral field uF  and the j -th neuron from the neural field vF , respectively. 

The activation functions are assumed to satisfy the following assumptions: 

Assumption 1. The activation functions ( )jf ⋅ and ( )ig ⋅ ( 1, , , 1, ,i n j m= =L L ) 

are bounded. And 1 2, Rζ ζ∀ ∈ , there exist positive constants 1 jl  and 2il such that 

1 2 1 1 20 ( ) ( )j j jf f lζ ζ ζ ζ≤ − ≤ − , 1 2 2 1 20 ( ) ( )i i ig g lζ ζ ζ ζ≤ − ≤ − . 
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Suppose that * * * *
1 2( , , , )T

nu u u u= L , * * * *
1 2( , , , )T

mv v v v= L are equilibrium 

points of network (1). For convenience, in network (1) we make the following trans-

formation *( ) ( )i i ix k u k u= − , *( ) ( )j j jy k v k v= − . Then it becomes: 

1

1

( 1) ( ) ( ( ( ))), 1, , ,

( 1) ( ) ( ( ( ))), 1, , .

m

i i i ij j j
j

n

j j j ji i i
i

x k a x k w f y k k i n

y k b y k v g x k k j m

τ

σ

=

=

⎧ + = + − =⎪⎪
⎨
⎪ + = + − =
⎪⎩

∑

∑

L

L

     (2) 

Obviously, the equilibrium points are changed to the origin and the activation func-

tions ( )jf ⋅ and ( )ig ⋅ satisfy the following condition: 

For any Rζ ∈ , there exist positive scalars ijl , 2il such that 

10 ( )j jf lζ ζ≤ ≤ , 20 ( )i ig lζ ζ≤ ≤ , 1, ,j m= L , 1, ,i n= L . (3) 

The system (2) can be rewritten as vector form 

( 1) ( ) ( ( ( ))) ,

( 1) ( ) ( ( ( ))) ,

x k Ax k Wf y k k

y k By k Vg x k k

τ
σ

+ = + −⎧
⎨ + = + −⎩

            (4) 

where 1( ) ( ( ), , ( ))T
nx k x k x k= L , 1( ) ( ( ), , ( ))T

ny k y k y k= L , }{ 1, , nA diag a a= L , 

}{ 1, , mB diag b b= L , ( )ij m nW w ×= , ( )ij n mV v ×= , *( ( )) ( ( )) ( )j j j j j jf y k f v k f v= − , 

1 1( ( )) [ ( ( )), , ( ( ))]T
m mf y k f y k f y k= L , *( ( )) ( ( )) ( )i i i i i ig x k g u k g u= − , 

1 1( ( )) [ ( ( )), , ( ( ))]T
n ng x k g x k g x k= L , ( ) ( )x s sφ= , 1( ) [ ( ), , ( )]T

ns s sφ φ φ= L , 

( ) ( )y s sϕ= , 1( ) [ ( ), , ( )]T
ms s sϕ ϕ ϕ= L , [ ,0]s τ∈ − , { }max ,M Mτ τ σ= . 

 
Definition 1 [13] . The BAM neural network given in (4) is said to be global exponen-
tial stable if there exist scalar 1r > , 1K > such that 

2 2 2 2

0 0
( ) ( ) ( sup ( ) sup ( ) )

M M

k

s s

x k y k K s s r
σ τ

φ ϕ −

− < < − < <
+ ≤ + , 1,2,k = L  . 

 

Lemma 1.[14]: For any real vectors x , y and any matrix 0Q > with appropriate 

dimensions, it follows that 12 T T Tx y x Qx y Q y−≤ + . 

3   Main Result 

Theorem 1. Under Assumption 1, the origin of neural network (4) is global exponen-

tial stable, if there exist positive definite matrices 1P , 2P , 1Q , 2Q , 1R , 2R , 1Z and 2Z , 

matrices jF , jM , jN and jE ( 1, , 4j = L ), and positive diagonal matrices 1D , 2D , 

such that the following LMI holds: 
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1

1

* 0 0

* *

M M mF M

Z

Z

σ σ σ⎡ ⎤Ω −
⎢ ⎥

− <⎢ ⎥
⎢ ⎥−⎣ ⎦

,                (5) 

2

2

* 0 0

* *

M M mN E

Z

Z

τ τ τ⎡ ⎤ϒ −
⎢ ⎥

− <⎢ ⎥
⎢ ⎥−⎣ ⎦

,               (6) 

where 

11 12 1 3 1 4 1

22 2 2 2

33 4 3 4

44

*
0

* *

* * *

T T

T T

F F M F M

F M M

F M M

⎡ ⎤Ω Ω − − − +
⎢ ⎥Ω −⎢ ⎥Ω = <
⎢ ⎥Ω + −
⎢ ⎥

Ω⎢ ⎥⎣ ⎦

,              ( 7 ) 

11 1 1 1 1 1 1 1( 1) ( ) ( )M T T
M m MrAP A P Q R r A I Z A I F Fσσ σ σΩ = − + − + + + − − − −

, 

12 1 1 2( )M T T
MrAPW r A I Z W Fσ σΩ = + − − , 

1 1
22 1 1 1 1 1

MT T
MrW PW r W Z W L D Lσ σ − −Ω = + − , 

( )
33 1 3 3 2 3 3

k T Tr Q F F D M Mσ−Ω = − + + + − − , 

44 1 4 4
M Tr R M Mσ−Ω = − + + , 1 2 3 4[ ]T T T T TF F F F F= , 1 2 3 4[ ]T T T T TM M M M M= , 

11 12 1 3 1 4 1

22 2 2 2

33 4 3 4

44

*
0

* *

* * *

T T

T T

N N E N E

N E E

N E E

⎡ ⎤ϒ ϒ − − − +
⎢ ⎥ϒ −⎢ ⎥ϒ = <
⎢ ⎥ϒ + −
⎢ ⎥

ϒ⎢ ⎥⎣ ⎦

,                 ( 8 ) 

11 2 2 2 2 1 1( 1) ( ) ( )M T T
P M m MrBP B P Q R r B I Z B I N Nττ τ τϒ = − + − + + + − − − − , 

12 2 2 2( )M T T
MrBPV r B I Z V Nτ τϒ = + − − , 

1 1
22 2 2 2 2 2

MT T
MrV PV r V Z V L D Lτ τ − −ϒ = + − , 

( )
33 2 3 3 1 3 3

k T Tr Q N N D E Eτ−ϒ = − + + + − − , 

44 2 4 4
M Tr R E Eτ−ϒ = − + + , 1 2 3 4[ ]T T T T TN N N N N= , 1 2 3 4[ ]T T T T TE E E E E= , 

I is an identity matrix with appropriate dimensions. 
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Proof. For the real number 1r > , consider the following discrete Lyapunov-
Krasovskii functional of system (4) as follows: 

1 2 3 4 5 6 7 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )V k V k V k V k V k V k V k V k V k= + + + + + + + , (9) 

where 

1 1( ) ( ) ( )k TV k r x k P x k= , 

1 1

2 1 1
( ) 1

( ) ( ) ( ) ( ) ( )
m

M

k k
l T l T

l k k s l k s

V k r x l Q x l r x l Q x l
σ

σ σ

−− −

= − =− + = +
= +∑ ∑ ∑ , 

1

3 1( ) ( ) ( )
M

k
l T

l k

V k r x l R x l
σ

−

= −
= ∑ , 

1 1

4 1 1 1( ) ( ) ( )M

M

k
l T

s l k s

V k r r l Z lσ

σ
η η

− −

=− = +
= ∑ ∑ , 

5 2( ) ( ) ( )k TV k r y k P y k= , 

1 1

6 2 2
( ) 1

( ) ( ) ( ) ( ) ( )
m

M

k k
l T l T

l k k s l k s

V k r y l Q y l r y l Q y l
τ

τ τ

−− −

= − =− + = +
= +∑ ∑ ∑ , 

1

7 2( ) ( ) ( )
M

k
l T

l k

V k r y l R y l
τ

−

= −
= ∑ , 

1 1

8 2 2 2( ) ( ) ( )M

M

k
l T

s l k s

V k r r l Z lτ

τ
η η

− −

=− = +
= ∑ ∑ , 

1( ) ( 1) ( )l x l x lη = + − , 2 ( ) ( 1) ( )l y l y lη = + − . 

Define ( ) ( 1) ( )V k V k V k∆ = + − , then along the solution of (4) we have 

1 1 1 1( ) [ ( )( ) ( ) 2 ( )( ) ( ( ( )))k T TV k r x k rAP A P x k x k rAPW f y k kτ∆ − + −=  

1( ( ( )))( ) ( ( ( )))]T Tf y k k rW PW f y k kτ τ+ − − ,   (10) 
( )

2 1 1( ) ( 1) ( ) ( ) ( ( )) ( ( ))k T k k T
M mV k r x k Q x k r x k k Q x k kσσ σ σ σ−∆ ≤ − + − − − , (11) 

3 1 1( ) ( ) ( ) ( ) ( )Mkk T T
M MV k r x k R x k r x k R x kσ σ σ−∆ = − − − ,      (12) 

4 1( ) { [( ) ( ) ( ( ( )))] [( ) ( )Mk T
MV k r r A I x k Wf y k k Z A I x kσ σ τ∆ ≤ − + − −  

( ) 11

1 1 1 1 1 1
( )

( ( ( )))] ( ) ( ) ( ) ( )}
M

k kk
T T

l k k l k

Wf y k k l Z l l Z l
σ

σ σ
τ η η η η

− −−

= − = −
+ − − −∑ ∑ , (13) 

By Lemma 1, we have  
1 1 1

1
1 1 1 1 1

( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) ( )
k k k

T T T T T

l k k l k k l k k

l Z l l F k k FZ F k
σ σ σ

η η η ξ ξ ξ
− − −

−

= − = − = −
− ≤ − +∑ ∑ ∑  

1
12[ ( ) ( ( ))] ( ) ( ) ( ) ( )T T T T Tx k x k k F k k k FZ F kσ ξ σ ξ ξ−= − − − +  

1
1 1 1( )( ) ( ) ( ) ( ) ( )T T T T Tk F F k k k FZ F kξ ψ ψ ξ σ ξ ξ−= − + + ,              (14) 

( ) 1 ( ) 1 ( ) 1
1

1 1 1 1 1( ) ( ) 2 ( ) ( ) ( ) ( )
M M M

k k k k k k
T T T T T

l k l k l k

l Z l l M k k MZ M k
σ σ σ

σ σ σ
η η η ξ ξ ξ

− − − − − −
−

= − = − = −
− ≤ − +∑ ∑ ∑  

1
12[ ( ( )) ( )] ( ) ( ( )) ( ) ( )T T T T T

M Mx k k x k M k k k MZ M kσ σ ξ σ σ ξ ξ−= − − − − + −  
1

2 2 1( )( ) ( ) ( ( )) ( ) ( )T T T T T
Mk M M k k k MZ M kξ ψ ψ ξ σ σ ξ ξ−= − + + − ,    (15) 
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where 1 2 3 4[ ]T T T T TF F F F F= , 1 2 3 4[ ]T T T T TM M M M M= , 1 [ 0 0]TI Iψ = − , 

2 [0 0 ]TI Iψ = − , ( ) [ ( ) ( ( ( ))) ( ( )) ( )]T T T T T
Mk x k f y k k x k k x kξ τ σ σ= − − − . 

And 5 ( )V k∆ - 8 ( )V k∆  are similar 1( )V k∆ - 4 ( )V k∆ , respectively. So we have 

5 2 2 2( ) [ ( )( ) ( ) 2 ( )( ) ( ( ( )))k T TV k r y k rBP B P y k y k rBPV g x k kσ∆ = − + −  

2( ( ( )))( ) ( ( ( )))]Tg x k k rVPV g x k kσ σ+ − − , (16) 
( )

6 2 2( ) ( 1) ( ) ( ) ( ( )) ( ( ))k T k k T
M mV k r y k Q y k r y k k Q y k kττ τ τ τ−∆ ≤ − + − − − , (17) 

7 2 2( ) ( ) ( ) ( ) ( )Mkk T T
M MV k r y k R y k r y k R y kτ τ τ−∆ = − − − ,      (18) 

8 2( ) { [( ) ( ) ( ( ( )))] [( ) ( )Mk T
MV k r r B I y k Vg x k k Z B I y kτ τ σ∆ ≤ − + − −  

( ) 11

2 2 2 2 2 2
( )

( ( ( )))] ( ) ( ) ( ) ( )}
M

k kk
T T

l k k l k

Vg x k k l Z l l Z l
τ

τ τ
σ η η η η

− −−

= − = −
+ − − −∑ ∑ , (19) 

1 1 1
1

2 2 2 2 2
( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) ( )
k k k

T T T T T

l k k l k k l k k

l Z l l N k k NZ N k
τ τ τ

η η η ζ ζ ζ
− − −

−

= − = − = −
− ≤ − +∑ ∑ ∑  

1
3 3 2( )( ) ( ) ( ) ( ) ( )T T T T Tk N N k k k NZ N kζ ψ ψ ζ τ ζ ζ−= − + + ,             (20) 

( ) 1 ( ) 1 ( ) 1
1

2 2 2 2 2( ) ( ) 2 ( ) ( ) ( ) ( )
M M M

k k k k k k
T T T T T

l k l k l k

l Z l l E k k EZ E k
τ τ τ

τ τ τ
η η η ζ ζ ζ

− − − − − −
−

= − = − = −
− ≤ − +∑ ∑ ∑  

1
4 4 2( )( ) ( ) ( ( )) ( ) ( )T T T T T

Mk E E k k k EZ E kζ ψ ψ ζ τ τ ζ ζ−= − + + − ,       (21) 

where 1 2 3 4[ ]T T T T TN N N N N= , 1 2 3 4[ ]T T T T TE E E E E= , 3 [ 0 0]TI Iψ = − , 

4 [0 0 ]TI Iψ = − , ( ) [ ( ) ( ( ( ))) ( ( )) ( )]T T T T T
Mk y k g x k k y k k y kζ σ τ τ= − − − . 

By condition (3), it is well known that there exist non-negative diagonal matri-

ces 1D and 2D , such that the following inequalities hold  

1 1
1 1 1 1[ ( ( )) ( ( )) ( ( ( ))) ( ( ( )))] 0T Ty k k D y k k f y k k L D L f y k kτ τ τ τ− −− − − − − ≥ , (22) 

1 1
2 2 2 2[ ( ( )) ( ( )) ( ( ( ))) ( ( ( )))] 0T Tx k k D x k k g x k k L D L g x k kσ σ σ σ− −− − − − − ≥ , (23) 

where 1 11 12 1{ , , , }mL diag l l l= L , 2 21 22 2{ , , , }nL diag l l l= L . 

And by (10)-(23), we can obtain that  
1 1

1 1( ) { ( )[ ( ) ] ( )k T T T
M M mV k r k FZ F MZ M kξ σ σ σ ξ− −∆ ≤ Ω + + −  

1 1
2 2( )[ ( ) ] ( )}T T T

M M mk NZ N EZ E kζ τ τ τ ζ− −+ ϒ + + − , (24) 

where Ω is defined in (5), and ϒ is defined in (6). 

Applying (5)-(8) and Schur Complement Theorem [15], we have ( ) 0V k∆ ≤ . 

Hence, ( ) (0)V k V≤ . 
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Next, we will establish the global exponential stability for network (4). 
From (9), we have 

1 1(0) (0) (0)TV x P x= 2

1
0

( ) sup ( )
M

M
s

P s
σ

λ φ
− < <

≤ , 

1 1

2 1 1
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l T l T

l s l s

V r x l Q x l r x l Q x l
σ

σ σ
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=− =− + =
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s s
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l T
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R s
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−
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−≤
−

, 

1 1 1

4 1 1 1 1 1 1 1(0) ( ) ( ) ( ) ( ) ( )M M

M M

l T l T
M M

s l s l

V r r l Z l r Z r l Z lσ σ

σ σ
η η σ λ η η

− − −

=− = =−
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2

1 1
1

1
( ) sup ( )

1

M

M

M

M M
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r
r Z s

r

σ
σ

σ
σ λ η

−

− < <−

−≤
−

, 

2 2

1
1 1

sup ( ) sup ( 1) ( )
M Ms s

s x s x s
σ σ

η
− < <− − < <−

= + −   

2 2

1
2 sup [ ( 1) ( ) ]

M s

x s x s
σ− < <−

≤ + + 2

0
4 sup ( )

M s

s
σ

φ
− < <

≤ , 

2

5 2 2
0

(0) (0) (0) ( ) sup ( )
M

T
M

s

V y P y P s
τ

λ ϕ
− < <

= ≤ , 

1 1

6 2 2
(0) 1

(0) ( ) ( ) ( ) ( )
m

M

l T l T

l s l s

V r y l Q y l r y l Q y l
τ

τ τ

−− −

=− =− + =
= +∑ ∑ ∑  

2 2

2 2
0 0

1 1
( ) sup ( ) ( ) ( ) sup ( )

1 1

M M

M M

M M m M
s s

r r
Q s Q s

r r

τ τ

τ τ
λ ϕ τ τ λ ϕ

− −

− < < − < <

− −≤ + −
− −

, 

1

7 2(0) ( ) ( )
M

l T

l

V r y l R y l
τ

−

=−
= ∑

2

2
0

1
( ) sup ( )

1

M

M

M
s

r
R s

r

τ

τ
λ ϕ

−

− < <

−≤
−
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1 1 1

8 2 2 2 2 2 2 2(0) ( ) ( ) ( ) ( ) ( )M M

M M

l T l T
M M

s l s l

V r r l Z l r Z r l Z lτ τ

τ τ
η η τ λ η η

− − −

=− = =−
= ≤∑ ∑ ∑  

2

2 2
1

1
( ) sup ( )

1

M
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M

M M
s

r
r Z s
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τ
τ

τ
τ λ η

−

− < <−

−≤
−
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2 2

2
1 1

sup ( ) sup ( 1) ( )
M Ms s

s y s y s
τ τ

η
− < <− − < <−

= + −   

2 2

1
2 sup [ ( 1) ( ) ]

M s

y s y s
σ− < <−

≤ + + 2

0
4 sup ( )

M s

s
τ

ϕ
− < <

≤ . 
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So we have 

1 2 3 4 5 6 7 8(0) (0) (0) (0) (0) (0) (0) (0) (0)V V V V V V V V V= + + + + + + +  

2 2

1 2
0 0

sup ( ) sup ( )
M Ms s

s s
σ τ

ρ φ ρ ϕ
− < < − < <

≤ + ,                                          (25) 

where 

1 1 1 1 1

1
( ) [( 1) ( ) ( ) 4 ( )]

1

M

M
M M m M M M M

r
P Q R r Z

r

σ
σρ λ σ σ λ λ σ λ

−−= + − + + +
−

, 

2 2 2 2 2

1
( ) [( 1) ( ) ( ) 4 ( )]

1

M

M
M M m M M M M

r
P Q R r Z

r

τ
τρ λ τ τ λ λ τ λ

−−= + − + + +
−

. 

On the other hand, 

      1 5( ) ( ) ( )V k V k V k≥ + 1 2( ) ( ) ( ) ( )k T k Tr x k P x k r y k P y k≥ +  

   
2 2

1 2( ) ( ) ( ) ( )k k
m mr P x k r P y kλ λ≥ + ,              ( 2 6 ) 

From (25) and (26), we can obtain 

2 2 2 2

0 0
( ) ( ) ( sup ( ) sup ( ) )

M M

k

s s

x k y k s s r
σ τ

α φ ϕ
β

−

− < < − < <
+ ≤ + , 

where 1 2max{ , }α ρ ρ= , 1 2min{ ( ), ( )}m mP Pβ λ λ= . By Definition 1, the system 

(2) is global exponential stable. This ends the proof. 

Remark 1. The novel Lyapunov functional ( )V k is employed. That is to say, 

3 ( )V k and 7 ( )V k provide the information on ( )T
Mx k σ−  and ( )T

My k τ− , 

4 ( )V k  and 8 ( )V k  provide the information on neural states change rate. Thus, this 

Lyapunov functional is more general and less conservative. 

Remark 2. In [11], exponential stability of discrete-time neural networks with time 
varying delays was studied, but it requires the assumption on the delay functions, 
1 ( 1) 1 ( )k n k n< + < + , 1 ( 1) 1 ( )l n l n< + < + , where ( )k n , ( )l n were variable 

delays. But many delay functions do not satisfy such constraints. In this paper we do 
not need this condition. 

Remark 3. Note that in our result, the conditions in Theorem 1 are expressed in the 
form of linear matrix inequality. Therefore, by using the Matlab LMI Toolbox, it is 
easy to check the feasibility of our result without tuning any parameters. Moreover, 
the conditions in Theorem 1 consider the signs of the entries in the synaptic connec-
tion weights, that is to say, the differences between the neuronal excitatory and the 
inhibitory effects have been considered, which lead to the less conservativeness of our 
result. 
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4   An Illustrative Example 

In this section, we will use an example to demonstrate the effectiveness of the present 
result. 

Consider the discrete-time BAM neural network (4) with the following parameters, 

0.8     0

  0    0.9
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
0.4      0

  0    0.7
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
-0.1   0.01

-0.2   -0.1
W

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
0.3   -0.1

-1.2    0.1
V

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

1 ( ) 3m Mkτ τ τ= ≤ ≤ = , 1 ( ) 2m Mkσ σ σ= ≤ ≤ = , 1 diag(0.3, 0.3)L = , 

2 diag(0.4, 0.4)L = .  

Pertaining to this example, Theorem 2 in [10], Theorem 1 in [11], Theorem 1 in 
[12] and Corollary 1 in [13] are not satisfied. Using Theorem 1 of the present paper, 
we have 

1

2.3832    0.0537

0.0537    2.0948
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

3.9551    0.4618

0.4618    2.5228
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1

1.4436    0.0011

0.0011    1.4337
Q

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

2

 1.1336    0.0006

 0.0006    1.1276
Q

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1

1.6649    0.0011

0.0011    1.6581
R

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

1.7266    0.0012

0.0012    1.7186
R

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

1

 2.1491   -0.0988

 -0.0988    2.4393
Z

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 2

0.5221    0.1261

0.1261    0.5594
Z

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

The other parameters are omitted due to the limited space. Therefore, the con-
cerned discrete-time BAM neural network is global exponential stable. The state 
response curves are depicted in Figure 1. 

 

Fig. 1. The state response curves of discrete time BAM neural network 
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5   Conclusion 

The global exponential stability of discrete-time BAM neural network with time vary-
ing delays is studied. A delay dependent exponential stability criterion has been ob-
tained by means of a Lyapunov functional and inequality techniques. The proposed 
result has less conservativeness and is easy to be checked. A simulation example is 
used to demonstrate the effectiveness of our result.  

Acknowledgements. This work was supported by the National Natural Science 
Foundation of China (Grant Nos. 60534010, 60572070, 60728307, 60774048, 
60774093), the Natural Science Foundation of Liaoning Province (Grant No. 
20072025), the Postdoctoral Science Foundation of China ( Grant No. 20080431150), 
and the Postdoctoral Foundation of Northeastern University (Grant No. 20080314). 

References 

1. Kosko, B.: Adaptive Bi-directional Associative Memories. Appl. Opt. 26, 4947–4960 
(1987) 

2. Kosko, B.: Bi-directional Associative Memories. IEEE Trans. Syst. Man Cybernet 18, 49–
60 (1988) 

3. Hopfield, J.: Neurons with Graded Response have Collective Computational Properties 
like Those of Two-state Neurons. Proceedings of the National Academy of Sciences of the 
United States of America 81, 3088–3092 (1984) 

4. Zhang, H.G., Wang, Z.S.: Stability Analysis of BAM Neural Networks with Time-varying 
Delays. Progress in Natural Science 17, 206–211 (2007) 

5. Guan, H.X., Wang, Z.S., Zhang, H.G.: Stability Analysis of Uncertain Bi-directional As-
sociative Memory Neural Networks with Variable Delays. Control Theory & Applica-
tions 25, 421–426 (2008) 

6. Cui, B., Lou, X.: Global Asymptotic Stability of BAM Neural Networks with Distributed 
Delays and Reaction–diffusion Terms. Chaos, Solitons & Fractals 27, 1347–1354 (2006) 

7. Cao, J., Dong, M.: Exponential Stability of Delayed Bidirectional Associative Memory 
Networks. Appl. Math. Comput. 135, 105–112 (2003) 

8. Guan, H.X., Wang, Z.S., Zhang, H.G.: Robust Stability of BAM Neural Networks with 
Delays. J. Northeastern University (Natural Science) 28, 1069–1072 (2007) 

9. ‘Sheng, L., Yang, H.: Novel Global Robust Exponential Stability Criterion for Uncertain 
BAM Neural Networks with Time-varying Delays. Chaos, Solitons & Fractals (in press) 

10. Liang, J., Cao, J.: Exponential Stability of Continuous-time and Discrete-time Bidirectional As-
sociative Memory Networks with Delays. Chaos, Solitons & Fractals 22, 773–785 (2004) 

11. Liang, J., Cao, J., Ho, D.W.C.: Discrete-time Bidirectional Associative Memory Neural 
Networks with Variable Delays. Phys. Lett. A 335, 226–234 (2005) 

12. Liu, X., Tang, M., Martin, R., Liu, X.: Discrete-time BAM Neural Networks with Variable 
Delays. Phys. Lett. A 367, 322–330 (2007) 

13. Gao, M., Cui, B.T.: Global Robust Exponential Stability of Discrete-time Interval BAM 
Neural Networks with Time-varying Delays. Appl. Math. Modell. (in press) 

14. Huang, Y.S., Wu, C.W.: A Unifying Proof of Global Asymptotical Stability of Neural 
Networks with Delay. IEEE Trans. Circ. Syst. II: Express Briefs 52, 181–184 (2005) 

15. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System 
and Control Theory. SIAM, Philadelphia (1994) 



W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 450–454, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Memory State Feedback Stabilization for Time-Varying 
Delayed Neural Networks Systems 

Aijun Zhou 1,2, Guang Ren 1, Shubo Liu 2, and Yuan Zhang 1,2
 

1 Dalian Maritime University, Dalian 116026, China 
2 Dalian Naval Academy, Dalian 116018, China  

Abstract. In order to improve speed of dynamic response, this paper studied the 
memory state feedback stabilization for time-varying delayed neural networks 
systems. By using the second method of Lyapunov, the state feedback control-
ler is given to ensure that the system is asymptotically stable. The related theo-
ries are expressed in terms of linear matrix inequalities (LMIs). An example is 
given to illustrate the effectiveness of the proposed criterion. The simulation re-
sults show that this method has excellent control effect. 

1   Introduction 

Neural networks have received considerable attention due to their extensive applications 
in various signal processing problems such as optimization, fixed-point computations, 
and other areas in the past decades[1]. Because the applications of neural networks rely 
heavily on the dynamical behaviors of the networks, the stability of delayed neural 
networks have been investigated by many researchers and presented a number of useful 
and interesting results[2,3]. LMI-based technique is a powerful tool to derive various 
stability problems for neural networks with time delays[4]. It should be noted that the 
LMI condition can be checked very easily by using the LMI toolbox of Matlab[5]. 

The neural networks systems with time-varying delay are special time-delay sys-
tems. The problem related to the stability analysis of delayed neural networks systems 
is the stabilization. The stabilization is to find a feedback controller to ensure the 
closed system stable. The feedback adopted contains the state feedback and the output 
feedback. By comparison, the state feedback, that is the complete feedback of the 
system characteristic is superior to the output feedback in characteristic. 

The design of the feedback control without memory based the second Lyapunov 
method is simple to analyse the robust stability of the closed system. But presently 
there are less researches into memory feedback controller. In this paper, a memory 
feedback state controller for time-varying delayed neural networks systems is de-
signed under this background. 

2   System Description and Main Results 

We consider the following delayed neural networks: 

1 2( ) ( ) ( ( )) ( ( ( ))) ( )x t Ax t W f x t W f x t t Du tτ= − + + − +&                       (1a) 
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The initial state is: 
           0( ) ( )x t θ φ θ+ = 0[ ,0]θ τ∀ ∈ −                                   (1b) 

Where 1 2( ) [ ( ), ( ), , ( )]T
nx t x t x t x t= K  is the neuron state vector,  

T T
1 1 2 2 1 2( ( )) [ ( ( )), ( ( )), , ( ( ))] [ ( ( )), ( ( )), , ( ( ))]n n nf x t f x t f x t f x t f x t f x t f x t= =K K ,  

(0) 0if = , Note that functions ( )if ⋅  here satisfies the following: 

1 2

1 2

( ) ( )
0 i i

i

f fξ ξ σ
ξ ξ

−
≤ ≤

−
                               1, 2, ,i n= K    

( ) nu t R∈  represents the control input matrix, ( )φ ⋅ is the continuous differentiable 

function in given interval 0[ ,0]τ− . The time delay ( )tτ , is time-varying differentiable 

function and satisfies the following condition: 

00 ( )tτ τ≤ ≤ ; ( )t dτ ≤&  

In the following, we will design a memory state feedback controller 
( ) ( ) ( ( ))u t Kx t Hx t tτ= + −  such that the closed system is asymptotically stable. 

 
Theorem 1: Assume the time-varying delay, the origin of the delayed neural net-
works in (1) is asymptotically stable under the controller 

1 1( ) ( ) ( ( ))u t MX x t NX x t tτ− −= + − , if there exist matrices 0P > , 0Q > , 0R > , 0Z >  , 

diagonal matrix, 0T > , 0S > , X , 1N , 2N , M ,such that the following LMI below 

holds: 

11 12 13 14 15 16

22 23 25 26

33 34 36

44

55

66

* 0

* * 0
0

* * * 0 0

* * * * 0

* * * * *

M M M M M M

M M M M

M M M
M

M

M

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= <⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                       (2) 

Where: 11 1 1 ;M AX X A N N Q DM M D= − − + + + + +T T T T T

12 ;T TM P X M D= − +  

13 1 2 ;TM N N DN= − + + 14 0 1;M Nτ=− 15 1 ;M W X T= +∑ 16 2 ;M W X= 22 0 ;TM X X Zτ= − − +  

23 ;M DN=  25 1 ;M WX=  26 2 ;M W X= 33 2 2(1 ) ( );TM d Q N N= − − − +  34 0 2 ;M Nτ= −  

36 ;M S= ∑ 44 0 ;M Zτ= − 55 2 ;M R T= − 66 (1 ) 2 ;M d R S= − − −  1 2( , , , );ndiag σ σ σΣ = K    

1 2( , , , );nT diag t t t= K 1 2( , , , );nS diag s s s= K TP X PX= , TR X RX= , TQ X QX= ,
TZ X ZX= , TT X TX= , TS X SX= , 1 1

TN X N X= , 2 2
TN X N X=  

Proof: Firstly, rewrite system (1) in the following equivalent descriptor system 

( ) ( )x t y t=&                                                      (3a) 

1 2( ) ( ) ( ( )) ( ( ( ))) ( )y t Ax t W f x t W f x t t Du tτ= − + + − +                     (3b) 
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Choose a Lyapunov-Krasovskii functional as follows, thinking of the closed system 
(3) under the controller ( ) ( ) ( ( ))u t Kx t Hx t tτ= + − :  

   1 2 3 4( ( ))V x t V V V V= + + +                                         (4) 

1 ( ) ( ),V x t Px t= T
2 ( )

( ) ( )
t

t t
V x s Qx s ds

τ−
= ∫

 T

 
,

0

3  
x (s) x(s)

t

t
V Z dsd

τ θ
θ

− +
= ∫ ∫

 T

  
& & ,  

4 ( )
( ( )) (( ( ))

t

t t
V f x Rf x d

τ
µ µ µ

−
= ∫

 T

 
 

Now we consider the derivation of V along the trajectories of (3).For 1 1 2, ,P N N∀ ， 

1

1 2 ( )

2 ( ) ( )

2 ( ) ( ) 2[ ( ) ( ( )) ][ ( ) ( ( )) ( ) ]
t

t t

V x t Px t

x t Py t x t N x t t N x t x t t y s ds
τ

τ τ
−

=

= + + − − − − ∫

T

T T T

& &
 

1 1 1 2

2

3 0( )

2[ ( ) ( ) ][ ( ) ( ) ( ( )) ( ( ( ))) ( )]

( ) ( ) (1 ( )) ( ( )) ( ( ))

( ) ( ) (1 ) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( ) ( ) ( )
t

t t

x t P y t P y t Ax t W f x t W f x t t Du t

V x t Qx t t x t t Qx t t

x t Qx t d x t t Qx t t

V t y t Zy t y Zy d y t Zy t
τ

τ
τ τ τ

τ τ

τ θ θ θ τ
−

+ + − − + + − +

= − − − −

≤ − − − −

= − ≤∫

T T T T

T T

T T

 T T T

 

& &

&
( )

0 0( ) ( )
0 0

4

( ) ( )

1 1
( ) ( ) ( ( ) ( ) ) ( ( ) ( ) )

( ( )) ( ( )) (1 ( )) ( ( ( ))) ( ( ( )))

( ( )) ( ( )) (1 ) ( ( ( ))) ( ( ( ))

t

t t

t t

t t t t

y Zy d

y t Zy t y Zy d Z y Zy d

V f x t Rf x t t f x t t Rf x t t

f x t Rf x t d f x t t Rf x t t

τ

τ τ

θ θ θ

τ θ θ θ τ θ θ θ
τ τ

τ τ τ
τ τ

−

− −

−

≤ −

= − − − −

≤ − − − −

∫

∫ ∫

 T

 

  T T T T

  

T T

T T

 & &

)

   

Then, we have that 

 

1 2 3 4

1 2 3 4

0

( )
0

( ( ))

2 ( ( )) ( ( )) 2 ( ) ( ( ))

2 ( ( ( ))) ( ( ( ))) 2 ( ( )) ( ( ( )))

(5)

1
[ ( ) ( ) ( ( )), ( ( ) ) , ( ( ))

t

t t

V x t V V V V

V V V V f x t Tf x t x t Tf x t

f x t t Sf x t t x t t Sf x t t

Z M Z

Z x t y t x t t x d f x t
τ

τ τ τ τ

τ θ θ
τ −

= + + +

≤ + + + − + ∑

− − − + − ∑ −
≤

= − ∫

T T

T T

T

 T T T T T

 
 ,  ,  

& & & & &

& & & &

& ( ( ( )))]f x t tτ−T T  

 

Remark 1. The shortcoming of the original design method for controller is to know 
the delay beforehand so that it limits the application in many practical engineering 
systems. The time delay, which is researched in this paper, can be unknown, time-
varying, dependent on the state before. 

3   Simulation and Results 

In this section, one example is given to show the effectiveness of the theorem pre-
sented in this paper. The LMI is solved by the LMI-Toolbox in Matlab. 

Example 1: Consider a delayed neural networks with time-varying delay in (1) with 
parameters as: 

          1 2( ) ( ) ( ( )) ( ( ( ))) ( )x t Ax t W f x t W f x t t Du tτ= − + + − +&         (6) 
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Where    
2 0

0 2
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1

1 1

1 1
W

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 2

0.8 1

1 1
W

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
1

1
D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 0.9σ = , 2 0.3σ =  

In this example, we have the activation function as 

1 2( ) ( ) [ 1 1] / 4f x f x x x= = + − − . And when 1d = , 0 3.422τ ≤ , the LMI in (2) holds. 

When 0 3.422τ = ,we solve the LMI in (2) and obtain: 

[ ]

1

186.3922 173.1872 80.6020 70.2552 0.1049 0
, ,

173.1872 224.4770 70.2552 62.1601 0 46.3884

16.3562 2.5500
, 178.8313 173.7971 ,

14.7262 27.4044

0.6967 0.4023 0.
,

0.4023 7.6299

P Q S

X M

Z N

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= = − −⎢ ⎥−⎣ ⎦

−⎡ ⎤= =⎢ ⎥−⎣ ⎦

[ ] [ ] [ ]

2

0389 6.3057 0.1998 0.0979
,

0.3040 5.3385 0.1138 2.1757

10.3388 0 2.1825 0.0954
, ,

0 235.3151 0.0954 38.8218

-18.1654 -8.0323 , -0.1366 -0.1501 , 0.0231 3.7652

N

T R

K H N

−⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
−⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

= = = − −
    We can see that the roots satisfy the conditions provided in theorem 1. 

For a given initial state [ 1,1]Tx = − , when emulating this system, we can obtain 

the simulation results as figure 1 and figure 2, where figure 1 shows that the state 
response before control, and figure 2 shows that the state response after control. 
And from the simulation curve we can conclude that the dynamical response 
speed is obviously rapid after control and easy to compute. The memory feedback 
controller is: 

[ ] [ ] 0( ) -18.1654 -8.0323 ( ) -0.1366 -0.1501 ( )u t x t x t τ= + − . 

 

 
 

 

 
 

 

 
 
 

         Fig. 1. the state curve before control                    Fig. 2. the state curve after control 
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4   Conclusion 

We can see that the system is also asymptotically stable and the control effect is im-
proved after control from the simulation result. 

The author feel that there is a lot of work to be done in this field and hope that we 
can do further research in the following aspects: 

(1) The conservation of the conclusion. The Lyapunov stable theory which we use 
as the main tool to study the stability and the stabilization of the delayed neural net-
works is a necessary and sufficient condition, but the conclusion we obtain is a suffi-
cient condition after realized using the linear matrix inequality. In addition, we bring a 
lot of conservation when quoting some lemmas during the course of proof. 

(2) The constitution of the Lyapunov function. From the proof, we can see that the 
constitution of the Lyapunov function, especially in the delayed neural networks, has 
much influence on the conclusion. Unfortunately up to now, the constitution of the 
Lyapunov function is usually established by experience. How to establish a Lyapunov 
function with less conservation is another direction we should turn toward.  

(3) The application of the stabilization. Presently, there is plenty of study on the 
stability analysis, but less on the stabilization and application in the practice.  
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Global Stability of Neural Networks with Delays and 
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Abstract. This paper is concerned with a class of neural networks with delays 
and  impulses. Some sufficient conditions are obtained for the existence and 
globally exponential stability of a unique equilibrium solution without assuming 
the activation function to be bounded, monotonic or differentiable. An example 
is given to demonstrate the effectiveness of the obtained results.  

Keywords: impulse; neural network; delay; stability. 

1   Introduction 

The dynamics of Hopfield neural networks aroused extensive researches by numerous 
scholars duo to its applicability in solving image processing, signal processing and 
pattern recognition problems. In 1988, Chua and Yang [1-2] put forward the follow-
ing model of cellular neural networks with time delay: 

1

( )
( ) ( ( )) , 1,2,

n
i

i ij j j i
j

dx t
x t a g x t I i n

dt
τ

=

=− + − + =∑ L , 

and presented the electric circuits to utilize the model. Some authors discussed dy-
namics property of this kind of neural networks in [3-7]. Cao etc [8-10] discussed 
asymptotic stability of the more general neural network of DCNN type: 

1 1

( )
( ) ( ( )) ( ( )) , 1,2, , .

n n
i

i ij j j ij j j j i
j j

dx t
x t a g x t b g x t I i n

dt
τ

= =

=− + + − + =∑ ∑ L  

Most widely used neural networks is neither purely continuous-time nor purely 
discrete-time ones, these are called impulsive neural networks. In this paper, we con-
sider the dynamics of the following neural networks with delays and impulses: 

                                                           
∗ This work is supported by Science and technology plan foundation of Guangzhou 

under Grant 2006j1-C0341. 
∗∗ Corresponding author. 
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1 1

( )
( ) ( ( )) ( ( )) ,

1,2, , ,

( ) ( ( )), 1,2, , ; {1,2, }.

n n
j

j j ij i i ij i i i j
i i

j k k j k

dx t
a x t b g x t c g x t I

dt

j n

x t I x t j n k N

τ
= =

⎧
=− + + − +⎪

⎪
⎨ =⎪
⎪ ∆ = = ∈ =⎩

∑ ∑
L

L L

              (1) 

In which, n corresponds to the number of units in the neural networks; ( )ix t  corre-

sponds to the state variable of the i-th unit at time t; 0,ja >  , ,ij ijb c  jI R∈ , ijb  

denotes the strength of the i-th unit on the j-th unit at time t, ijc  denotes the strength 

of the i-th unit on the j-th unit at time it τ− ; jI denotes the external bias on the j-th 

unit; the delays iτ  satisfy 0 ( 1,2, , ,i i nτ τ τ≤ ≤ = L  is a constant); ( ( ))i ig x t  denotes 

the output of the i-th unit at time t. ( ) ( 0) ( 0)j k j k j kx t x t x t∆ = + − − are the impulses at 

moments kt  and 1 2t t< <L  is a strictly increasing sequence such that 

lim k
k

t
→∞

= +∞ . 

Equation (1) indicates that neural cell is also subjected to outputs of other neural 
cell at past time. The system satisfies initial condition as follow: 

( ) ( )i ix s sϕ= , 0 0[ , ], 1, 2,s t t i nτ∈ − = L ,                        (2) 

where 0 0( ) ([ , ], ), 1,2, ,i C t t R i nϕ τ⋅ ∈ − = L . 

Throughout this paper, we assume that there exist constant jL (j = 1, 2, ┅ , n) such 

that 

1 2 1 2 1 2( ) ( ) , , .j j jg s g s L s s s s R− ≤ − ∈                       (3) 

As usual, vector function 

1 2( ) ( ( ), ( ), , ( ))T
nx t x t x t x t= L  

is said to be a solution of system (1), if ( )x t  satisfies (1) and (2). At the points of 

discontinuity kt  of the solution, we denote  

( ) ( 0), 1,2, , ;i k i kx t x t i n k N≡ − = ∈L ,                            (4) 

' '( ) ( 0), 1,2, , ;i k i kx t x t i n k N≡ − = ∈L .                           (5) 

For 1 2( , , , ) .T n
nw w w w R= ∈L  we define norm by  

1

.
n

l
l

w w
=

=∑                                                      (6) 
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2   Existence of  Equilibria 

Definition 1. An equilibrium solution of (1) is a constant vector * * *
1 2( , , , )T

nx x xL  

which satisfies the system 

* *

1

( ) ( ) , 1,2, ,
n

j j ij ij i i j
i

a x b c g x I j n
=

= + + =∑ L                      (7) 

when the impulsive jumps ( )kI  as assumed to satisfy *( ) 0k iI x = , 1,2, , ;i n= L  

k Z +∈ , where Z +  denotes the set of all positive integers.  
 
Theorem 1. Suppose that 

( )
1

, 1,2, , .
n

i i ij ij
j

a L b c i n
=

> + =∑ L                      (8) 

Then there exists a unique solution of the system (7). 
 
Proof. It follows from (8) that 

( )
1

1

: max 1
n

i
ij ij

i n
ji

L
b c

a
α

≤ ≤ =

⎡ ⎤
= + <⎢ ⎥

⎣ ⎦
∑ . 

Let * *, 1, 2, ,i i ia x u i n= = L  in (7), we have  

*
*

1

( ) ( ) , 1,2, , .
n

i
j ij ij i j

i i

u
u b c g I j n

a=

= + + =∑ L                        (9) 

Then the result of Theorem 1 is equivalent to that system (9) has a unique solution. 

Consider a mapping : n nR RΦ →  defined by 

1 1 1
1

2 2 2
11 2

1

( ) ( )

( ) ( )
( , , , )

( ) ( )

n
i

i i i
i i

n
i

i i i
in i

n
i

in in i n
i i

u
b c g I

a

u
b c g I

u u u a

u
b c g I

a

=

=

=

⎛ ⎞
+ +⎜ ⎟

⎜ ⎟
⎜ ⎟

+ +⎜ ⎟
Φ = ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

∑

L

M

. 

For 1 2 1 2( , , , ) , ( , , , )T T n
n nu u u u u u u u R= = ∈L L , we have 

1 1( , , ) ( , , )n nu u u uΦ − ΦL L   

1 1

( ) ( ) ( )
n n

i i
ij ij i i

j i i i

u u
b c g g

a a= =

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ ∑  
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            ( )
1 1

n n
i i

ij ij i
j i i

u u
b c L

a= =

−≤ +∑∑  

                 
1

1 1

max
n n

i
ij ij i i

i n
j ii

L
b c u u

a≤ ≤ = =

⎛ ⎞
≤ + ⋅ −⎜ ⎟

⎝ ⎠
∑ ∑  

u uα= − . 

Since 0 1α< < , then : n nR RΦ →  is a contraction mapping on nR . Hence by the 
contraction mapping principle, there exist a unique fixed point of the map 

: n nR RΦ →  which is a solution of the system (9). This completes the proof. 

3   Exponential Stability 

Definition 2. The equilibrium point *x of system (1) is said to be globally exponen-

tially stable, if there exist constants 0>β  and 0δ >  such that 

0( )
0( ) * ,t tx t x e t tδβ − −− ≤ ≥ ,                   (10) 

where ( )x t  is any solution of system (1). 

Lemma 1 [11] . Suppose that ( )x t  is a derivable function of single variable, then 

( )sgn ( ), ( ) 0, ( ) ( ) 0,

( ) ( ), ( ) 0 ( ) 0,

( ), ( ) 0 ( ) 0,

x t x t if x t o r x t x t

D x t x t if x t x t

x t if x t x t
 

where ( )D x t+ is the right upper Dini derivative of ( )x t . 

Theorem 2. Assume that conditions (3) and 

( )
1

, 1,2, , .
n

i i ij ij
j

a L b c i n
=

> + =∑ L                 (11) 

*( ( )) ( ( ) ),k j k jk j k jI x t x t xγ= − −  0 2, 1, 2, , ,jk j n k Zγ +< < = ∈L     (12) 

Hold, then system (1) has a unique equilibrium solution * * * *
1 2( , , , )T

nx x x x= L , 

moreover, this solution is globally exponentially stable. 

Proof. In view of condition (12) we have *( ) 0,k jI x =  noting condition (11), from 

Theorem 1 we know that system (1) has a unique equilibrium point. Let ( )x t =  

1 2( ( ), ( ), , ( ))T
nx t x t x tL  be an arbitrary solution of system (1). Lemma 1 yields 
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* * *

1

( ) ( )
n

j j j j j ij i i i
i

D x x a x t x b L x t x+

=

− ≤− − + −∑   

*

1

( ) ,
n

ij i i i i
i

c L x t xτ
=

+ − −∑                   (13) 

for 0, , 1, 2, , ,kt t t j n k Z +> ≠ = ∈L , and 
*

*

*

( 0)

( ) ( ( ))

(1 )( ( ) ), 1, 2, , , .

j k j

j k k j k j

jk j k j

x t x

x t I x t x

x t x j n k Zγ +

+ −

= + −

= − − = ∈L

 

Hence 
*( 0)j k jx t x+ −  

*1 ( )jk j k jx t xγ= − −  

*( ) , 1,2, , , .j k jx t x j n k Z +≤ − = ∈L  

Let iF  be defined by 

( )
1

( ) , 1,2, ,i i

n

i i i i i ij ij
j

F a L b c e i nτ ξξ ξ
=

= − − + =∑ L ,                     (14) 

where [0, )iξ ∈ ∞ . Condition (11) yields (0) 0iF > , 1, 2, ,i n= L . Since ( )iF ⋅  are 

continuous on [0, )∞  and ( )i iF ξ → −∞  as iξ → +∞ , there must exist 0η >  

and a number k Z +∈  such that ( ) 0kF η =  but ( ) 0iF t > , 0 t η≤ < , 

1, 2, , .i n= L  Let  
*( ) ( ) , [ , ), 1,2, , .t

j j ju t e x t x t j nη τ= − ∈ − ∞ = L                     (15) 

It follows from (13) and (15) that 

1

( ) ( ) ( ) ( )
n

j j j ij i i
i

D u t a u t b L u tη+

=

≤ − +∑  

1

( ), 1,2, , ,i

n

ij i i i
i

c L e u t j nητ τ
=

+ − =∑ L                            (16) 

for 0, ,kt t t k Z +> ≠ ∈ . Also 

( 0) 1 ( ) ( ),j k jk j k j ku t u t u tγ+ = − ≤ 1, 2, , , .j n k Z += ∈L    (17) 

Consider a Lyapunov function defined by 

1 1

( ) ( ) ( )i

i

n n t

i ij i it
i j

V t u t c Le u s dsητ

τ−
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ ∫ .                    (18) 
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It is clear that ( ) 0V t >  for 0t ≥ . Calculating the right upper Dini derivative of 

( )V t  along the solution of derivatives of  (16), noting 

1 1 1 1

n n n n

ij i ji j
i j i j

λ ρ λ ρ
= = = =

=∑∑ ∑∑ , 

We have  

( )
1 1

( ) ( ) ( ) ( )i

n n

i i ij ij i i
i j

D V t a u t b c e Lu tητη+

= =

⎡ ⎤
≤ − + +⎢ ⎥

⎣ ⎦
∑ ∑  

1

( ) ( ) 0, 0, , .
n

i i k
i

F u t t t t k Zη +

=

=− ≤ > ≠ ∈∑  

Also, (17) yields 

( 0)kV t +  

0

0
1 1

( 0) ( )
k

i

k i

n n t

i k ij i it
i j

u t c L e u s dsητ

τ

+

+ −
= =

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ ∑ ∫  

1 1

( ) ( )
k

i

k i

n n t

i k ij i it
i j

u t c L e u s dsητ

τ−
= =

⎛ ⎞
≤ +⎜ ⎟

⎝ ⎠
∑ ∑ ∫  

( ), .kV t k Z += ∈  

It follows that ( ) (0)V t V≤   for 0t > . Thus, (18) yields 

1

( ) ( ) (0)
n

i
i

u t V t V
=

≤ ≤∑  

0

1 1

(0) ( )i

i

n n

i ij i i
i j

u c L e u s dsητ

τ−
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ ∫                        (19) 

for 0t > . It follows from (15) and (19) that 

*

1

( )
n

i i
i

x t x
=

−∑ *

[ ,0]1 1

1 sup ( )i

n n
t

ij i i i
si j

e c L e x s xητη

τ
τ−

∈ −= =

⎡ ⎤⎛ ⎞
≤ + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  

, 0,te tηβ −≤ >  

where  

*

[ ,0]1 1

1 sup ( )i

n n

ij i i i
si j

c L e x s xητ

τ
β τ

∈ −= =

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑ . 

This completes the proof. 
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4   Example 

Example 1. Consider the following neural networks system with delays and impulses: 

 

( )
5 ( ) 2 ( ( )) ( ( )) 4,

3 ( ) 3 ( ( )) 2 ( ( )) 2,

( ) ( ( ) 1), ,

( ) ( ( ) 2), ,
k k k

k k k

dx t
x t g x t g y t

dt
dy

y t g x t g y t
dt

x t x t k Z

y t y t k Z

τ

σ

γ
γ

+

+

⎧ = − − + − +⎪
⎪
⎪ = − − + − +⎨
⎪

∆ = − − ∈⎪
⎪∆ = − − ∈⎩

                     (20) 

where ( ) , , (0, ),g u u τ σ= − ∈ ∞  and 1 2t t< <L is a strictly increasing sequence such 

that lim kk
t

→∞
=+∞, 

2
1 sin(1 )

3k kγ = + + , 21
1 cos(3 )

2k kγ = + .                     (21) 

It is easy to verify that (20) satisfies all the conditions of Theorem 2. The equilibrium 

of (20) is * *( , ) (1,1)x y = . According to Theorem 2, this equilibrium is globally 

exponentially stable. 

Example 2. Consider the following neural networks system with delays and impulses: 

 

1 1 1 2 1 1 2 2

2 2 1 2 1 1 2 2

*
1 1 1 1

2 2 2

1 1 1 1
( ) 2 ( ) ( ( )) ( ( )) ( ( )) ( ( )) 1, ,

3 2 3 2
1 1 1 1

( ) 2 ( ) ( ( )) ( ( )) ( ( )) ( ( )) 2, ,
2 3 2 3
2

( ( )) ( ( ) ), ,
3
3

( ( )) ( ( )
2

k

k

k k k

k k k

x t x t g x t g x t g x t g x t t t

x t x t g x t g x t g x t g x t t t

I x t x t x k N

I x t x t x

τ τ

τ τ

′ = − + + − − + − + ≠

′ = − + + + − − − − ≠

= − − ∈

= − − *
2), .k N

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪ ∈
⎪⎩

 (22) 

where 

( )1
( ( )) ( ) 1 ( ) 1 , 1,2, , ,

2i i i ig x x x i n⋅ = ⋅ + − ⋅ − = L                      (23) 

1 2, (0, ),τ τ ∈ ∞  and 1 2t t< <L  is a strictly increasing sequence such that 

lim kk
t

→∞
=+∞.  

Equation (23) yields  

( ) ( ) , , , 1,2, , .i ig u g v u v u v R i n− ≤ − ∀ ∈ = L  

This means that 1( 1,2)iL i= = . We can prove that (0, 1)−  is a unique equilibrium 

solution of (22). It is easy to verify that (22) satisfies all the conditions of Theorem 2. 
According to Theorem 2, this equilibrium is globally exponentially stable. 
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5   Conclusion 

In this paper, we consider the exponential stability of a class of neural networks with 
delays and impulses. Under assumption that the activation function is not bounded, 
monotonic or differentiable, we obtain some sufficient conditions for the existence 
and globally exponential stability of a unique equilibrium. An example is given to 
demonstrate the effectiveness of the obtained results.  
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Abstract. Global asymptotic stability problem for a class of recurrent neural net-
works with infinite distributed delay is investigated based on the linear matrix in-
equality (LMI) technique. Using a matrix decomposition method, a vector-matrix
form of recurrent neural networks with infinite distributed delay is obtained. Then
by constructing a suitable Lyapunov functional and using an inequality, new LMI-
based criteria are established to ensure the global asymptotic stability of the class
of neural networks, which considers the effects of neuron’s excitatory and in-
hibitory action in the term of infinite delay on the networks. The obtained results
are independent of the size of delay and are easily verified. Numerical example
shows the effectiveness of the obtained results.

1 Introduction

The dynamical characteristic such as global asymptotic stability of recurrent neural
networks plays an important role in the image processing, pattern recognition and asso-
ciative memory and optimization problems. As a consequence, many researchers have
forced their attention on the study of global stability of recurrent neural networks with-
out delays or with discrete delays[1-29]. As is well known, the use of discrete delays in
models of delayed feedback provides of a good approximation in simple circuits con-
sisting of a small number of cells. However, neural networks usually have a spatial ex-
tent due to the presence of a multitude of parallel pathways with a variety of axon sizes
and lengths, and hence there is a distribution of delays over a period of time. Thus,
there should be a distribution of conduction velocities along the sepathways, and the
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distribution of propagation is not instantaneous and cannot be modelled with discrete
delays. A more appropriate description is to incorporate continuously distributed de-
lays. At present, there are many results on global stability of recurrent neural networks
with infinite distributed delays using different analysis method, for example,M -matrix
method, matrix measure method, and differential inequality method [2,4]. However,
all above results didn’t consider the signs of the interconnection weight coefficients,
and this leads to the ignorance of the effects of the neuron’s excitatory and inhibitory
action, which increases the conservativeness of the stability results. Because the stabil-
ity results based on linear matrix inequality (LMI) method can efficiently reduce the
conservativeness of the stability results and also can be easily checked using interior al-
gorithms, the LMI-based stability results have been extensively studied in recent years
[32,33,34,35].

Nowadays, there exists many LMI-based stability results for recurrent neural net-
works with different delays, for example, discrete delay, neutral delay and infinite dis-
tributed delay etc, [2,28,30,31,32,33]. To the best of our knowledge, no LMI-based
stability result for recurrent neural networks with infinite distributed delays has been
reported in the literatures. It is important to study the LMI-based stability problem for
recurrent neural networks with infinite distributed delays as it is for recurrent neural
networks with other kind of delays. Therefore, the purpose of this paper is to propose a
novel LMI-based stability result for recurrent neural networks with infinite distributed
delays. By using the matrix decomposition method and suitably constructing the lya-
punov functional, the corresponding stability criterion is derived, which is less conser-
vative than the existing results by a numerical simulation.

2 Problem Formulation

Consider the following recurrent neural networks with continuous distributed delays,

u̇i(t) =− aiui(t) +
n∑

j=1

wijgj(uj(t)) +
n∑

j=1

w1
ijgj(uj(t− τ(t)))

+
n∑

j=1

cij

∫ t

−∞
kij(t− s)gj(uj(s))ds+ Ui, (1)

where ui(t) is the neural state, ai > 0, wij and w1
ij are connection weight coefficients

and delayed connection weight coefficients, respectively, Ui is the constant external
input, time-varying delay satisfies 0 ≤ τ(t) ≤ τM , τ̇(t) ≤ µ < 1, gj(uj(t))) is the
activation function, i, j = 1, . . . , n.

Assumption 1. The activation function gj(uj(t))) satisfies 0 ≤ (gj(ζ) − gj(ξ))/(ζ −
ξ) ≤ δj for ∀ζ 
= ξ, ζ, ξ ∈ �, δj > 0, j = 1, . . . , n

Assumption 2. The activation function gj(uj(t))) satisfies |gj(ζ)− gj(ξ)| ≤ δj |ζ − ξ|
for ∀ζ, ξ ∈ �, δj > 0, j = 1, . . . , n



LMI Based Global Asymptotic Stability Criterion for Recurrent Neural Networks 465

Obviously, Assumption 2 is rather general as it merely requires the activation function
to be Lipschitzian. In contrast, Assumption 1 requires a non-decreasing feature of the
activation function. Clearly, Assumption 1 is a special case of Assumption 2.

Assumption 3. The delay kernel kij(s), i, j = 1, · · · , n, is a real value non-negative
continuous function defined on [0,∞) and, for each i, j, it satisfies

∫∞
0
kij(s)ds = 1.

Lemma 1. [29](Cauchy’s Inequality) For continuous functions g(s) and h(s), which
are well defined in the integral interval, the following inequality holds,

(∫ b

−∞
g(s)h(s)ds

)2

≤
( ∫ b

−∞
g2(s)ds

)(∫ b

−∞
h2(s)ds

)
,

where b ≥ 0.

It is well known that the bounded activation function can always ensures that system (1)
has an equilibrium point. Let u∗i be an equilibrium point, then by state transformation
xi(t) = ui(t)− u∗i , system (1) is changed into the following form

ẋi(t) =− aixi(t) +
n∑

j=1

wijfj(xj(t)) +
n∑

j=1

w1
ijfj(xj(t− τ(t)))

+
n∑

j=1

cij

∫ t

−∞
kij(t− s)fj(xj(s))ds, (2)

or in a vector-matrix form

ẋ(t)=−Ax(t)+Wg(x(t))+W1f(x(t− τ(t)))+
n∑

i=1

Ei

∫ t

−∞
Ki(t− s)f(x(s))ds,

(3)

where fj(xj(t)) = gj(xj(t) + u∗j ) − gj(u∗j ), A = diag(a1, . . . , an), W = (wij)n×n,
W1 = (w1

ij)n×n, x(t) = (x1(t), . . . , xn(t))T , f(x(t)) = (f1(x1(t)), . . . , fn(xn(t)))T ,
f(x(t − τ(t))) = (f1(x1(t − τ(t))), . . . , fn(xn(t − τ(t))))T . C = (cij)n×n, Ei is
an n × n matrix, whose i-th row is composed by the i-th row of matrix C, and the
other rows are all zeros. Ki(t − s) = diag(ki1(t − s), ki2(t − s), · · · , kin(t − s)) is
a diagonal matrix, i = 1, . . . , n. Obviously, by Assumption 1 and Assumption 2, 0 ≤
fj(xj(t))/xj(t) ≤ δj for ∀xj(t) 
= 0, or |fj(xj)| ≤ δj |xj |, respectively, j = 1, . . . , n.

3 Global Asymptotic Stability Results

We now state and prove our main result of the paper.

Theorem 1. Suppose that Assumption 1 holds. If there exist positive definite symmet-
ric matrices P and Q, positive diagonal matrices G, D, Hi, i = 1, 2, · · · , n, such that
the following LMI holds,
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Ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 Ψ12 PW1 PE1 PE2 · · · PEn

∗ Ψ22 DW1 DE1 DE2 · · · DEn

∗ ∗ −(1− µ)Q 0 0 · · · 0
∗ ∗ ∗ −H1 0 · · · 0
∗ ∗ ∗ ∗ −H2 · · · 0
...

...
...

...
...

. . .
...

∗ ∗ ∗ ∗ ∗ · · · −Hn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4)

then the equilibrium point of system (3) is globally asymptotically stable, where ∗ de-
notes the symmetric part in a matrix,∆ = diag(δ1, . . . , δn),
Ψ11 = −PA− (PA)T ,
Ψ12 = PW − (DA)T +∆G,
Ψ22 = DW + (DW )T +Q+

∑n
i=1H

i − 2G.

Proof. Consider the following Lyapunov functional V = V1 + V2, where,

V1 = xTPx+ 2
n∑

i=1

∫ xi

0

difi(s)ds +
∫ t

t−τ(t)

fT (x(s))Qf(x(s))ds,

V2(t) =
n∑

i=1

n∑
j=1

Hi
j

∫ ∞

0

kij(s)
∫ t

t−s

f2
j (xj(θ))dθds,

di > 0, Hi
j > 0, P and Q are positive definite symmetric matrices, i, j = 1, · · · , n.

The derivative of V1(t) along the trajectories of system (3) is as follows,

V̇1(t) =2xTP [−Ax(t) +Wf(x(t)) +W1f(x(t− τ(t)))

+
n∑

i=1

Ei

∫ t

−∞
Ki(t− s)f(x(s))ds] + 2fT (x)D[−Ax(t) +Wf(x(t))

+W1f(x(t− τ(t))) +
n∑

i=1

Ei

∫ t

−∞
Ki(t− s)f(x(s))ds]

+ fT (x(t))Qf(x(t)) − (1− τ̇ (t))fT (x(t − τ(t)))Qf(x(t − τ(t))). (5)

The derivative of V2(t) along the trajectories of system (3) is as follows,

V̇2(t)=
n∑

i=1

n∑
j=1

Hi
j

∫ ∞

0

kij(s)f2
j (xj(t))ds−

n∑
i=1

n∑
j=1

Hi
j

∫ ∞

0

kij(s)f2
j (xj(t− s))ds.

(6)

By Assumption 3 and Lemma 1, we have

V̇2(t) =
n∑

i=1

n∑
j=1

Hi
jf

2
j (xj(t))−

n∑
i=1

n∑
j=1

Hi
j

∫ ∞

0

kij(s)f2
j (xj(t− s))ds

=
n∑

i=1

n∑
j=1

Hi
jf

2
j (xj(t))−

n∑
i=1

n∑
j=1

Hi
j

∫ ∞

0

kij(s)ds
∫ ∞

0

kij(s)f2
j (xj(t− s))ds
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≤
n∑

i=1

fT (x)Hif(x) −
n∑

i=1

n∑
j=1

Hi
j

( ∫ ∞

0

kij(s)fj(xj(t− s))ds
)2

=
n∑

i=1

fT (x)Hif(x) −
n∑

i=1

n∑
j=1

Hi
j

( ∫ t

−∞
kij(t− s)fj(xj(s))ds

)2

=
n∑

i=1

fT (x)Hif(x)

−
n∑

i=1

(∫ t

−∞
Ki(t− s)f(x(s))ds

)T

Hi
(∫ t

−∞
Ki(t− s)f(x(s))ds

)
, (7)

whereHi = diag(Hi
1, H

i
2, · · · , Hi

n), i = 1, 2, · · · , n.
Note that, by Assumption 1, the following inequality holds

2(fT (x)∆Gx − fT (x)Gf(x)) ≥ 0, (8)

for positive diagonal matrix G.
Combining (5), (7) and (8), we have

V̇ (t) = ζTΞζ < 0, (9)

for ζ 
= 0, where Ξ is defined in (4),

ζ =
(
x(t) f(x(t)) f(x(t− τ(t)))∫ t

−∞
K1(t− s)f(x(s))ds · · · ,

∫ t

−∞
Kn(t− s)f(x(s))ds

)T

.

V̇ (t) = 0 if and only if ζ = 0. According to Lyapunov stability theory [1], the equilib-
rium point of system (3) is globally asymptotically stable.

Now we consider the stability problem of neural network (3) under Assumption 2. re-
sult.

Theorem 2. Suppose that Assumption 2 holds. If there exist positive definite symmet-
ric matrices P and Q, positive diagonal matrices G, D, Hi, i = 1, 2, · · · , n, such that
the following LMI holds,

Ξ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̄11 Ψ̄12 PW1 PE1 PE2 · · · PEn

∗ Ψ22 DW1 DE1 DE2 · · · DEn

∗ ∗ −(1− µ)Q 0 0 · · · 0
∗ ∗ ∗ −H1 0 · · · 0
∗ ∗ ∗ ∗ −H2 · · · 0
...

...
...

...
...

. . .
...

∗ ∗ ∗ ∗ ∗ · · · −Hn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (10)

then the equilibrium point of system (3) is globally asymptotically stable, where ∗ de-
notes the symmetric part in a matrix,
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∆ = diag(δ1, . . . , δn),
Ψ̄11 = −PA− (PA)T +∆G∆,
Ψ̄12 = PW − (DA)T ,
Ψ22 = DW + (DW )T +Q+

∑n
i=1H

i − 2G.

Proof. By Assumption 2, |fj(xj)| ≤ δj |xj | or f2
j (xj) ≤ δ2jx2

j , j = 1, 2, · · · , n. It
means that the following inequality holds

fT (x)Gf(x) ≤ xT∆G∆x, (11)

for positive diagonal matrix G.
Substituting (8) by (11) in the proof of Theorem 1, in a similar manner we can

obtained the Theorem 2. The details are omitted.

Remark 1. Many stability results have been proposed for system (2) or its special case
using different mathematical methods in the literature. For example, the results in
[2,4,5,7,8,9,11,15,16,17,18,19] take absolute value operation on the interconnection
weight coefficients, which ignore the effects of the neuron’s excitatory and inhibitory
action on the networks. The results in [12,13,14] also ignore the effects of the neuron’s
excitatory and inhibitory action on the networks, and are difficult to verify due to more
unknown parameters to be tuned. LMI-based stability results are presented in [3,6],
however, the sign difference in the infinite distributed delay weight coefficients is not
considered, and the corresponding results are not easy to check. In contrast, our pro-
posed results completely consider the effects of the neuron’s excitatory and inhibitory
action on the networks, which are easy to check and are less conservative than most of
the existing results.

Remark 2. Note that the inequalities (8) and (11) represent the differences between
Assumption 1 and Assumption 2. Obviously, inequality (8) can lead to inequality (11),
i.e., fT (x)Gf(x) ≤ fT (x)G∆x ≤ xT∆G∆x. Conversely, it is not true. This means
that the general condition in Assumption 2 will lead to a relatively conservative result
(Theorem 2) than that (Theorem 1) under Assumption 1. Different Assumptions often
gives different trade-off between the conservativeness and the generality.

4 Illustrative Examples

In this section, we will use an example to show the effectiveness of the obtained results.

Example 1. Let us consider a second-order neural network (3), where τ(t) > 0 is any
bounded constant delay, fi(xi) = tanh(xi), i = 1, 2, i.e., ∆ is an identity matrix,
k11(s) = k12(s) = 2

π(1+s2) , k21(s) = k22(s) = 3e−3s. One can verify that Assump-
tion 3 holds. The other parameters are as follows,

A =
[

8.9665 0
0 0.3227

]
, W =

[
0.7340 0.3998
0.4109 0.5055

]
,

W1 =
[

0.1693 0.6412
0.5247 0.0162

]
C =

[−0.5000 0.3000
0.3000 0.2500

]
.
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Fig. 1. State response curves of Example 1. x1: solid line; x2: dash-dotted line.

Pertaining to this example, because

M = A− (|W |+ |W1|+ |C|)∆ =
[

7.5632 −1.3410
−1.2356 −0.4490

]
is not anM -matrix, Corollary 4.4 in [17] is not satisfied. Meanwhile,
‖W‖+ ‖W1‖+ ‖C‖ −min(ai) = 2.0209

is greater than 0, then Theorem 3 in [18] is not satisfied, here ‖ · ‖ denotes the 2-norm.
Therefore, the results in [17,18] can not judge the stability of the example.

Applying Theorem 1 of the present paper, we have

Q =
[

37.3598 −1.5058
−1.5058 1.4514

]
, P =

[
9.6281 −0.1194
−0.1194 0.0680

]
.

G =
[

76.5784 0
0 9.7606

]
, D =

[
0.0692 0

0 9.8066

]
.

H1 =
[

4.7524 0
0 0.4948

]
, H2 =

[
15.8058 0

0 2.5104

]
.

Therefore, the concerned neural network is globally asymptotically stable. When initial
condition is (1, − 10)T , τ(t) = 1, the state response curves are depicted in Figure 1.

5 Conclusions

Two LMI-based stability criteria are derived to ensure the global asymptotic stability
of a class of recurrent neural networks with infinite distributed delay under different
assumption on the activation function. The obtained results consider the effects of the
neuron’s inhibitory and excitatory action caused by the infinite distributed delay, which
significantly improve the stability results existed in the literature. A numerical example
is employed to demonstrate the effectiveness of the obtained result.
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Delays and Impulses
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Abstract. By using the continuation theorem of Mawhin’s coincidence
degree theory, some new sufficient conditions are obtained for the ex-
istence and stability of periodic solution of BAM neural networks with
variable delays and impulses, and without requirement of the bounded-
ness of the activation functions.

Keywords: BAM neural networks; periodic solutions; impulse; coin-
cidence degree; delays.

1 Introduction

Bi-directional associative memory (BAM) neural networks were first introduced
by Kosto [8]. It has been used in many fields such as pattern recognition and
automatic control. Recently, in Ho, Liang and James [7], Li [10], Mohamad
[14], the authors discussed the problem of stability for BAM networks with
and without axonal signal transmission delays, and some sufficient conditions
are obtained for the BAM networks. It is well known that studies on neural
dynamical systems not only involve discussion of stability property, but also
involve other dynamics behaviors such as periodic oscillatory, bifurcation and
chaos. In many applications, the property of periodic oscillatory solutions are of
great interest, see Gui and Ge [5], Li [9], Li, Liu and Huang [12]. Liu, Chen, Cao
and Huang [13] studies the periodic oscillatory solution of BAM networks with
periodic coefficients and time-varying delays by using the continuation theorem
of Mawhin’s coincidence degree theory and Grönwall’s inequality.

As a kind of dynamic systems, BAM neural systems are generally character-
ized by either continuous or discrete time. Recently, there has been a somewhat
new category of neural networks, which is neither purely continuous-time nor
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purely discrete-time and exhibits a combination of continuous and discrete char-
acteristics. These are called impulsive neural networks, see Guan and Chen [4],
Li [10,11], Xie, Wen and Li [15], Yang and Chua [16], Yang and Xu [17], Zhu
and Xu [18]. Gui, Yang and Ge [6] studies the periodic solution for BAM neu-
ral networks with impulses and without delays, and with requirement of the
boundedness of the activation functions.

In Gopalsamy and He [3], a modification of (1) called bi-directional associative
memory (BAM) networks with delays⎧⎪⎪⎨⎪⎪⎩

x′i(t) = −aixi(t) +
m∑

j=1

pjifj (yj (t− τji)) + ci, i = 1, · · · , n,

y′j(t) = −bjyj(t) +
n∑

i=1

qijgi (xi (t− σij)) + dj , j = 1, · · · ,m
(1)

has been discussed, where xi(t) and yj(t) are the state of the i-th neurons and
the j-th neurons at the time t; ai, bj are positive constants denoting the rate
with which the cell i and j reset their potential to the resting state when iso-
lated from the other cells and inputs; time delays τji and σij are nonnegative
constants, which correspond to the finite speed of the axonal signal transmission;
fj and gi are activation functions; pji, qij are the connection weights denoting
the strengths of connectivity between the cells j and i at time t− τji and t−σij ,
respectively; ci and dj denote the i-th and j-th component of an external input
source introduced from outside the network to the cell i and j, respectively.

In this paper, we will study the existence and global exponential stability of
periodic solution of the following BAM neural networks with time-varying delays
and impulses⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′i(t) = −ai(t)xi(t) +
m∑

j=1

pji(t)fj (yj (t− τji(t))) + ci(t), t > 0, t 
= tk,
 xi (tk) = Ik (xi (tk)) , i = 1, · · · , n, k ∈ Z+,

y′j(t) = −bj(t)yj(t) +
n∑

i=1

qij(t)gi (xi (t− σij(t))) + dj(t), t > 0, t 
= tk,
 yj (tk) = Jk (yj (tk)) , j = 1, · · · ,m, k ∈ Z+.

(2)
where  xi (tk),  yj (tk) are the impulses at moments tk and t1 < t2 < · · ·
is a strictly increasing sequence such that lim

k→∞
tk = +∞. The system (2) is

supplemented with initial values given by⎧⎪⎨⎪⎩
xi(s) = ϕi(s), s ∈ [−τ, 0]Z, τ = max

1≤i≤n,1≤j≤m
sup

t∈[0,ω]

{τji(t)}, i = 1, · · · , n,
yj(s) = ψj(s), s ∈ [−σ, 0]Z, σ = max

1≤i≤n,1≤j≤m
sup

t∈[0,ω]

{σij(t)}, j = 1, · · · ,m,

where ϕi(·) and ψj(·) are continuous ω-functions defined on [−τ, 0] and [−σ, 0].
As usual in the theory of impulsive differential equations, at the points of

discontinuity tk of the solution t �→ u(t) = (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ,
we assume that u (tk) ≡ u (t−k ). It is clear that, in general, the derivatives x′i (tk)
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and y′j (tk) do not exist. On the other hand, according to (2) there exist the limits
x′i
(
t∓k
)

and y′j
(
t∓k
)
. According to the above convention, we assume x′i (tk) ≡

x′i
(
t−k
)

and y′j (tk) ≡ y′j
(
t−k
)
.

Throughout this paper, we assume that
(H1) There exists positive number µf

j , µ
g
i such that

0 ≤ fj (u1)− fj (u2)
u1 − u2

≤ µf
j , fj(0) = 0,

0 ≤ gi (u1)− gi (u2)
u1 − u2

≤ µg
i , gi(0) = 0,

for each u1, u2 ∈ R, u1 
= u2, i = 1, · · · , n, j = 1, · · · ,m.
(H2) There exists a positive integer q such that tk+q = tk + ω, Ik+q(x) =

Ik(x), Jk+q(x) = Jk(x), k = 1, 2, · · ·.
(H3) ai(t) > 0, bj(t) > 0, ci(t), dj(t), pji(t), qij(t) and τji(t), σij(t) are all

continuous periodic functions with the period ω, and the delays 0 ≤ τji(t) ≤
τ, 0 ≤ σij(t) ≤ σ (i = 1, · · · , n, j = 1, · · · ,m) are bounded, and 0 ≤ τ ′ji(t) < 1,
0 ≤ σ′ij(t) < 1.

The organization of this paper is as follows. In Section 2, we introduce some
lemma needed in later sections. In Section 3, we prove the existence of the peri-
odic solutions, and we do not require that the activation functions are bounded.
In Section 4, we establish conditions under which the periodic solution is the
globally exponentially stable.

2 Preliminaries

In this section, based on the Mawhin’s continuation theorem, we shall study the
existence of at least one periodic solution of (2). To do so, we shall make some
preparations.

Let X and Z be two Banach space. Suppose that linear mapping L : DomL ⊂
X → Z is a Fredholm operator of index zero, there exist continuous projectors
P : X → kerL and Q : Z → Z/ImL such that ImP = kerL, ImL = kerQ =
Im(I −Q). It follows that mapping LP = L|DomL∩kerP : (I − P )X → ImL is
invertible. We denote the inverse of the mapping by KP . Let Ω be a bounded
open set in X , the mapping N will be called L−compact on Ω if QN(Ω) is
bounded and KP (I −Q)(Ω) is compact.

Lemma 1. (Gaines-Mawhin continuation theorem, Gaines and Mawhin [2]) Let
X and Z be two Banach space, L : DomL ⊂ X → Z be a Fredholm operator
with index zero, Assume that Ω is a bounded open set in X, and N : Ω → Z is
L−compact on Ω. Suppose that

(1) Lx 
= λNx for all x ∈ ∂Ω ∩DomL and λ ∈ (0, 1);
(2) QNx 
= 0 for all x ∈ ∂Ω ∩ kerL;
(3) deg{QN,Ω ∩ kerL, 0} 
= 0.

Then equation Lx = Nx has at lest one solution in DomL ∩Ω.
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For any nonnegative integer p, let

C(p) [0, ω; t1, · · · , tq]

=

⎧⎨⎩u : [0, ω]→ Rn

∣∣∣∣∣
u(p)(t) is continuous with respect to t 
= t1, · · · , tq;
u(p)(t+k ) and u(p)(t−k ) exist at t1, · · · , tq;
u(j) (tk) = u(j)

(
t−k
)
, k = 1, · · · , q, j = 0, 1, . . . , p.

⎫⎬⎭ .
Let X = {u ∈ C [0, ω; t1, · · · , tq] | u(t) = u(t+ ω)} , Z = X × R(n+m)×(q+1)

and ‖u‖ =
n∑

i=1

max
t∈[0,ω]

|xi(t)|+
m∑

j=1

max
t∈[0,ω]

|yj(t)| . Then it is standard to show that

both X and Z are Banach spaces.
Let r(t) be a ω-periodic continuous function defined on R. We define r− =

min
0≤t≤ω

|r(t)|, r+ = max
0≤t≤ω

|r(t)|, r = 1
ω

ω∫
0

r(t)dt, ‖r‖2 =
(

ω∫
0

|r(t)|2dt
) 1

2

.

3 Existence of Periodic Solution

Theorem 1. Assume that (H1)—(H3) holds. Then system (2) has at least one
ω-periodic solution.

Proof. In order to use continuation theorem of coincidence degree theory to
establish the existence of an ω−periodic solution of (2), we take

L : DomL ∩X → Z,Lu = (u′, ∆u (t1) , · · · , ∆u (tq) , 0)

DomL =
{
u(t) ∈ C1 [0, ω; t1, · · · , tq] | u(0) = u(ω)

}
, N : X → Z,

N(u(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A1(t)
...
...
...

An+m(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

 x1 (t1)
...

 xn (t1)
 y1 (t1)

...
 ym (t1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, · · · ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

 x1 (tq)
...

 xn (tq)
 y1 (tq)

...
 ym (tq)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

Ai(t) = −ai(t)xi(t) +
m∑

j=1

pji(t)fj (yj (t− τji(t))) + ci(t), i = 1, · · · , n,

An+j(t) = −bj(t)yj(t) +
n∑

i=1

qij(t)gi (xi (t− σij(t))) + dj(t), j = 1, · · · ,m.

It is not difficult to show that

kerL =
{
x ∈ X | x = h ∈ Rn+m

}
,
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ImL =

⎧⎨⎩z = (f, C1, · · · , Cq, d) ∈ Z | 1
ω

ω∫
0

f(s)ds+
q∑

k=1

Ck + d = 0

⎫⎬⎭ .
and ImL is closed in Z. Therefore, L is a Fredholm mapping of index zero. Take

P : X → kerL, Px =
1
ω

ω∫
0

x(t)dt,

Q : X → Z, Qz =

⎧⎨⎩ 1
ω

⎡⎣ ω∫
0

f(s)ds+
q∑

k=1

Ck + d

⎤⎦ , 0, · · · , 0, 0
⎫⎬⎭ .

It is trivial to show that P and Q are continuous projectors.
Since dim kerL = n +m = codimImL. Therefore, L is a Fredholm operator

with the index zero. Hence, ImP = kerL, ImL = kerQ = Im(I − Q), the
generalized inverse KP exists. Furthermore, we have that N is L-compact on Ω
(see Gaines and Mawhin [2]).

Now it needs to show that there exists an domain Ω, which satisfies all the
requirements given in corresponding to operator equation Lx = λNx, λ ∈ (0, 1).

We have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′i(t) = λ

[
−ai(t)xi(t) +

m∑
j=1

pji(t)fj (yj (t− τji(t))) + ci(t)

]
,

t > 0, t 
= tk,
 xi (tk) = λIk (xi (tk)) , i = 1, · · · , n, k ∈ Z+,

y′j(t) = λ
[
−bj(t)yj(t) +

n∑
i=1

qij(t)gi (xi (t− σij(t))) + dj(t)
]
,

t > 0, t 
= tk,
 yj (tk) = λJk (yj (tk)) , j = 1, · · · ,m, k ∈ Z+.

(3)

Suppose that u(t) = (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ∈ X is a solution of
system (3) for a certain λ ∈ (0, 1). Integrating (3) over the interval [0, ω], we
obtain

ω∫
0

Ai(t)dt+
q∑

k=1

Ik (xi (tk)) = 0,

ω∫
0

An+j(t)dt+
q∑

k=1

Jk (yj (tk)) = 0.

Hence

ω∫
0

ai(t)xi(t)dt =

ω∫
0

⎡⎣ m∑
j=1

pji(t)fj (yj (t− τji(t))) + ci(t)

⎤⎦ dt+
q∑

k=1

Ik (xi (tk)) .

(4)
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Let ξi ∈ [0, ω](
= tk), k = 1, · · · , q, such that xi (ξi) = inf
t∈[0,ω]

xi(t), i = 1, · · · , n.
Then, by (4) and Hölder inequality, we have

ωaixi (ξi) ≤
m∑

j=1

p+jiµ
f
j

ω∫
0

|yj (t− τji(t))| dt+ ωc+i +
q∑

k=1

|Ik (xi (tk))| .

On the other hand, let sji = t − τji(t). Then dsji

dt = 1 − τ ′ji(t) > 0, sji is
function of t. Thus there exist functions t = τ∗ji (sji), sji ∈ [−τji(0), ω − τji(ω)].
So

ω∫
0

|yj (t− τji(t))|2 dt =
ω−τji(ω)∫
−τji(0)

|yj(sji)|2
1−τ ′

ji(τ∗
ji(sji))dsji = k2

ji

ω∫
0

|yj(s)|2 ds,

where kji =
(

max
0≤t≤ω

1
1−τ ′

ji(t)

) 1
2

. Therefore

ωaixi (ξi) ≤ √ω
m∑

j=1

p+jiµ
f
j k

2
ji ‖yj‖22 + ωc+i +

q∑
k=1

|Ik (xi (tk))| .

xi (ξi) ≤ 1
ai
√
ω

m∑
j=1

p+jiµ
f
j k

2
ji ‖yj‖22 + c+i +

1
ω

q∑
k=1

|Ik (xi (tk))| , i = 1, · · · , n. (5)

Similarly, let ηj ∈ [0, ω](
= tk), k = 1, · · · , q, such that yj (ηj) = inf
t∈[0,ω]

yj(t),

j = 1, · · · ,m. Then we have

yj (ηj) ≤ 1
bj
√
ω

n∑
i=1

q+ijµ
g
j �

2
ij ‖xi‖22 + d+j +

1
ω

q∑
k=1

|Jk (yj (tk))| , j = 1, · · · ,m,

where �ij =
(

max
0≤t≤ω

1
1−σ′

ij(t)

) 1
2

.

Set t0 = t+0 = 0, tq+1 = ω. From (3), we have

ω∫
0

|x′i(t)| dt =
q+1∑
k=1

tk∫
tk−1+0

|x′i(t)| dt+
q∑

k=1

∣∣xi

(
t+k
)− xi (tk))

∣∣
≤

ω∫
0

|ai(t)| |xi(t)| dt+
ω∫
0

m∑
j=1

|pji(t)| |fj (yj (t− τji(t)))| dt

+
ω∫
0

|ci(t)| dt+
q∑

k=1

|Ik (xi (tk))|

≤ √ωa+i ‖xi‖2 +
m∑

j=1

√
ωp+jiµ

f
j kji ‖yj‖2 + c+i ω +

q∑
k=1

|Ik (xi (tk))| .
(6)

Multiplying both sides of system (3) by xi(t) and integrating over [0, ω], since
ω∫
0

xi(t)x′i(t)dt = 1
2

q∑
�=1

[
x2

i (t�)− x2
i

(
t+�
)]

= −λ
q∑

k=1

[
xi (tk) + 1

2Ik (xi (tk))
]
Ik (xi (tk)) ,
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we obtain

0 = −λ
ω∫
0

ai(t)x2
i (t)dt+ λ

ω∫
0

m∑
j=1

pji(t)fj (yj (t− τji(t)))xi(t)dt+ λ
ω∫
0

ci(t)xi(t)dt

+λ
q∑

k=1

[
xi (tk) + 1

2Ik (xi (tk))
]
Ik (xi (tk)) .

Write Ii =
q∑

k=1

[|xi (tk)|+ 1
2 |Ik (xi (tk))|] |Ik (xi (tk))|. Then

a−i
ω∫
0

|xi(t)|2 dt ≤
ω∫
0

m∑
j=1

|pji(t)| |fj (yj (t− τji(t)))| |xi(t)| dt

+
ω∫
0

|ci(t)| |xi(t)| dt+ Ii

≤ √ω
(

m∑
j=1

p+jiµ
f
j kji ‖yj‖2 + c+i

)
‖xi‖2 + Ii.

(7)

From (7) it follows that

‖xi‖22 −
√

ω

a−
i

m∑
j=1

p+jiµ
f
j kji ‖yj‖2 ‖xi‖2 +

√
ω

a−
i

c+i ‖xi‖2 − Ii

a−
i

≤ 0. (8)

Similarly, writing Jj =
q∑

k=1

[|yj (tk)|+ 1
2 |Jk (yj (tk))|] |Jk (yj (tk))|, we have

‖yj‖22 −
√

ω

b−j

n∑
i=1

q+ijµ
g
i �ij ‖xi‖2 ‖yj‖2 +

√
ω

b−j
d+j ‖yj‖2 − Jj

b−j
≤ 0. (9)

Let A = max
1≤i≤n,1≤j≤m

{
√

ω

a−
i

m∑
j=1

p+jiµ
f
j kji +

√
ω

b−j

n∑
i=1

q+ijµ
g
i �ij

}
,

B = max
1≤i≤n,1≤j≤m

{
−√

ω

a−
i

c+i ,
−√

ω

b−j
d+j

}
, C = max

1≤i≤n,1≤j≤m

{
Ii

a−
i

,
Jj

b−j

}
.

Adding both (8) and (9), we obtain(
1− A

2

)(‖xi‖2 + ‖yj‖2
)2 ≤ 2B

(‖xi‖2 + ‖yj‖2
)

+ 2C.

Case 1. If ‖xi‖2 + ‖yj‖2 < 1, then ‖xi‖2 and ‖yj‖2 are bounded;
Case 2. If ‖xi‖2 + ‖yj‖2 ≥ 1, then we have(

1− A
2

)(‖xi‖2 + ‖yj‖2
) ≤ 2B + 2C or ‖xi‖2 + ‖yj‖2 ≤

2(B + C)
1− A

2

.

Then

‖xi‖2 + ‖yj‖2 ≤ max

{
1,

2(B + C)
1− A

2

}
. (10)
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From (10), there exist R∗
i and R∗

n+j such that

‖xi‖2 ≤ R∗
i , ‖yj‖2 ≤ R∗

n+j i = 1, · · · , n, j = 1, · · · ,m.
Since, for t ∈ [0, ω],

|xi(t)| ≤ |xi (ξi) |+
ω∫

0

|x′i(s)|ds, (11)

from (5), (6) and (11), there exist n+m positive constants R� such that |xi(t)| ≤
Ri (i = 1, · · · , n). Similarly, we have |yj(t)| ≤ Rn+j (j = 1, · · · ,m). Clearly, R�

(� = 1, · · · , n + m) are independent of λ. Denote M∗ =
n+m∑
�=1

R� + M , where

M > 0 is taken sufficiently large so that

min

{
min

1≤i≤n

(
ai − µg

i

m∑
j=1

∣∣qij∣∣
)
, min
1≤j≤m

(
bj − µf

j

n∑
i=1

∣∣pji

∣∣)}M∗

>
n∑

i=1

(
ci − 1

ω

q∑
k=1

|Ik (xi (tk))|
)

+
m∑

j=1

(
dj − 1

ω

q∑
k=1

|Jk (yj (tk))|
)
.

Now we take Ω = {u(t) ∈ X | ‖u‖ < M∗}.
It is clear that Ω verifies the requirement (1) in Lemma 1. When u ∈ ∂Ω ∩

Rn+m, u is a constant vector in Rn+m with ‖u‖ =
n∑

i=1

|xi|+
m∑

j=1

|yj | =M∗. Then

QNu = (E1, · · · , En, En+1, · · · , En+m)T , where

Ei = −aixi +
m∑

j=1

pjifj (yj) + ci − 1
ω

q∑
k=1

Ik (xi (tk)) , i = 1, · · · , n,

En+j = −bjyj +
n∑

i=1

qijgi (xi) + dj − 1
ω

q∑
k=1

Jk (yj (tk)) , j = 1, · · · ,m.

Therefore

‖QNu‖ =
n∑

i=1

∣∣∣∣∣aixi −
m∑

j=1

pjifj (yj)− ci + 1
ω

q∑
k=1

Ik (xi (tk))

∣∣∣∣∣
+

m∑
j=1

∣∣∣∣bjyj − n∑
i=1

qijgi (xi)− dj + 1
ω

q∑
k=1

Ik (xi (tk))
∣∣∣∣

≥ min
1≤i≤n

(
ai − µg

i

m∑
j=1

∣∣qij∣∣
)
|xi| −

n∑
i=1

(
|ci| − 1

ω

q∑
k=1

|Ik (xi (tk))|
)

+ min
1≤j≤m

(
bj − µf

j

n∑
i=1

∣∣pji

∣∣) |yj |
−

m∑
j=1

(∣∣dj

∣∣− 1
ω

q∑
k=1

|Jk (yj (tk))|
)

> 0.
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Consequently, for u(t) ∈ ∂Ω ∩ kerL. This satisfies condition (2) of Lemma 1.
Define a continuous functions H : DomL × [0, 1] → X by Hu = −µu + (1 −

µ)QNu, where u ∈ ∂Ω∩kerL is a constant vector in Rn+m and µ ∈ [0, 1]. Thus,
‖H (x1, · · · , xn, y1, · · · , ym, µ)‖ > 0. As a result, we have deg{QN,Ω∩kerL, 0} =
deg {−u,Ω ∩ kerL, 0} 
= 0. Condition (3) of Lemma 1 is also satisfied.

We now know that Ω satisfies all the requirements in Lemma 1. Therefore,
equation (3) has at least a continuous ω periodic solutions.

This completes the proof of the theorem. �

4 Globally Exponential Stability of Periodic Solutions

According to Theorem 1, suppose u∗(t) = (x∗1(t), · · · , x∗n(t), y∗1(t), · · · , y∗m(t))T is
a periodic solution of (2).

Theorem 2. Assume that (H1)—(H3) hold. Furthermore, suppose further that
(H4) The following inequalities hold:

a−i −
m∑

j=1

q+ijµ
g
i > 0, b−j −

n∑
i=1

p+jiµ
f
j > 0;

(H5) The impulses operators Ik (xi (tk)) and Jk (yj (tk)) satisfy

Ik (xi (tk)) = −γik (xi (tk)) , 0 < γik < 2, i = 1, · · · , n, k ∈ Z+,

Jk (yj (tk)) = −σjk (yj (tk)) , 0 < σjk < 2, j = 1, · · · ,m, k ∈ Z+.

Then there exists constant α > 0 and β ≥ 1 such that all solutions of (2) satisfy
the inequality

n∑
i=1

|xi(t)− x∗i (t)|+
m∑

j=1

∣∣yj(t)− y∗j (t)
∣∣

≤ βe−αt

[
n∑

i=1

sup
s∈[−τ,0]

|xi(s)− x∗i (s)|+
m∑

j=1

sup
s∈[−σ,0]

∣∣yj(s)− y∗j (s)
∣∣] .

Proof. Limited to the length of the paper, we omit the proof. �
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Abstract. In this paper, the problem on impulsive exponential
synchronization is investigated for coupled fuzzy neural networks with
time-varying delays. Based on M -matrix theory and analytic methods, a
sufficient condition of impulsive exponential synchronization of two cou-
pled fuzzy neural networks is established. To illustrate the effectiveness
of the new scheme, a numerical example with simulation is given.

Keywords: Impulsive, Exponential synchronization, Fuzzy neural net-
works, Time-varying delays.

1 Introduction

During the last two decades, synchronization of chaotic dynamic systems has re-
ceived a great deal of interest among scientists from various research fields [1]-[5].
Since the neural networks can exhibit chaotic behavior [6], the synchronization
has received much attention for neural networks, for example, see [7]-[10] and
references therein.

On the other hand, the fuzzy neural network is also a kind of important
neural network [11], and its dynamical behaviors have been investigated, see
[11]-[17] and references therein. In [11]-[16], authors considered the stability,
periodic solutions and attracting and invariant sets for delayed fuzzy neural
network. In [17], authors studied the synchronization of fuzzy cellular neural
networks with constant delays. By the Lyapunov-Lasall principle of functional
differential equations, authors obtained two criteria on global synchronization via
adaptive control. To the best of our knowledge, there has few work studying the
impulsive effects on synchronization for fuzzy neural networks with time-varying
delays.

This work, inspired by the above works, addresses the exponential synchro-
nization problem of fuzzy neural networks with time-varying delays via

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 482–491, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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impulsive control approach. Based on the P -cone property, M -matrix theory
and analytic methods, a sufficient condition of impulsive exponential synchro-
nization of two coupled fuzzy neural networks is established. a numerical exam-
ple is given to demonstrate the effectiveness of the presented synchronization
scheme.

2 Problem Formulation and Preliminaries

In this paper, we consider the following neural network model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui(t)
dt = −ciui(t) +

n∑
j=1

aijfj(uj(t)) +
n∑

j=1

bijvj + Ji

+
n∧

j=1

αijfj(uj(t− τij(t))) +
n∨

j=1

βijfj(uj(t− τij(t)))

+
n∧

j=1

Tijvj +
n∨

j=1

Hijvj , t 
= tk,
ui(t) = pik(u1(t−), · · · , un(t−))

+qik(u1((t− τi1(t))−), · · · , un((t− τin(t))−)) + Jik, t = tk,

(1)

for i = 1, 2, · · · , n, k ∈ N , where n corresponds to the number of units in
a neural network; u(t) = (u1(t), u2(t), · · · , un(t))T , ui(t) corresponds to the
state of the ith unit at time t; fj denotes the activation function; τij(t) cor-
responds to the transmission delay along the axon of the jth unit from the ith
unit and satisfies 0 ≤ τij(t) ≤ τ (τ is a constant); C = diag(c1, c2, · · · , cn),
ci represents the rate with which the ith unit will reset its potential to the
resting state in isolation when disconnected from the network and external in-
puts; A = (aij)n×n, B = (bij)n×n, aij and bij are elements of feedback tem-
plate and feed forward template, respectively; α = (αij)n×n, β = (βij)n×n,
αij and βij are elements of the fuzzy feedback MIN template and the fuzzy
feedback MAX template, respectively; T = (Tij)n×n, H = (Hij)n×n, Tij and
Hij are elements of fuzzy feed forward MIN template and fuzzy feed forward
MAX template, respectively; V = (v1, v2, · · · , vn)T , J = (J1, J2, · · · , Jn)T , vi
and Ji denote input and bias of the ith neuron, respectively. The second part
is discrete part of model (1), which describes that the evolution processes ex-
perience abrupt change of state at the moments of time tk (called impulsive
moments), where pik(u1(t−), · · · , un(t−)) represents impulsive perturbations of
the ith unit at time tk and uj(t−) denotes the left limit of uj(t); qik(u1((t −
τi1(t))−), · · · , un((t − τin(t))−)) represents impulsive perturbations of the ith
unit at time tk which caused by transmission delays; Jik represents external im-
pulsive input at time tk, the fixed moments of time tk satisfy t1 < t2 < · · ·,
limk→+∞ tk = +∞.

From the unidirectional linear coupling approach, a response system for (1)
is constructed as follows:
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dzi(t)
dt = −cizi(t) +

n∑
j=1

aijfj(zj(t)) +
n∑

j=1

bijvj + Ji

+
n∧

j=1

αijfj(zj(t− τij(t))) +
n∨

j=1

βijfj(zj(t− τij(t)))

+
n∧

j=1

Tijvj +
n∨

j=1

Hijvj + di(zi(t)− ui(t)), t 
= tk,
zi(t) = pik(z1(t−), · · · , zn(t−))

+qik(z1((t− τi1(t))−), · · · , zn((t− τin(t))−)) + Jik, t = tk,

(2)

where D = diag(d1, d2, · · · , dn) is a controller gain matrix to be designed later.
Let y(t) = (u1(t)− z1(t), u2(t)− z2(t), · · · , un(t)− zn(t))T , then y(t) is the syn-
chronization error. Therefore, the synchronization error between (1) and (2) can
be expressed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dyi(t)
dt = −(ci + di)yi(t) +

n∑
j=1

aij(fj(uj(t))− fj(zj(t)))

+
n∧

j=1

αijfj(uj(t− τij(t))) −
n∧

j=1

αijfj(zj(t− τij(t)))

+
n∨

j=1

βijfj(uj(t− τij(t)))−
n∨

j=1

βijfj(zj(t− τij(t))), t 
= tk,
yi(t) = pik(y1(t−), · · · , yn(t−))

+qik(y1((t− τi1(t))−), · · · , yn((t− τin(t))−)), t = tk,

(3)

where pik(y1(t−), · · · , yn(t−))=pik(u1(t−), · · · , un(t−))−pik(z1(t−), · · · , zn(t−)),
qik(y1((t − τi1(t))−), · · · , yn((t − τin(t))−)) = qik(u1((t − τi1(t))−), · · · , un((t −
τin(t))−))− qik(z1((t− τi1(t))−), · · · , zn((t− τin(t))−)).

To prove our results, the following lemmas that are necessary can be found in
[5] and [11].

Lemma 1. ([5]) Let Q be n×n matrix with non-positive off-diagonal elements,
then Q is a nonsingular M -matrix if and only if there exists a vector ξ > 0 such
that ξTQ > 0.

When A is a nonsingular M -matrix, denote

Ω(A) = {ξ ∈ Rn|Aξ > 0, ξ > 0},

from Lemma 1, we know that Ω(A) is nonempty.

Lemma 2. ([5]) Let A be a nonnegative matrix, then ρ(A) is a eigenvalue of
A, and A has at least one positive eigenvector which is provided by ρ(A).

When A is an nonnegative matrix, denote

Γ (A) = {ξ ∈ Rn|Aξ = ρ(A)ξ},

from Lemma 2, we know that Γ (A) is nonempty.
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Lemma 3. ([11]) Suppose u and u′ are two state of model (1), then we have

∣∣∣ n∧
j=1

αijfj(uj)−
n∧

j=1

αijfj(u′j)
∣∣∣ ≤ n∑

j=1

∣∣∣αij

∣∣∣ · ∣∣∣fj(uj)− fj(u′j)
∣∣∣,

∣∣∣ n∨
j=1

βijfj(uj)−
n∨

j=1

βijfj(u′j)
∣∣∣ ≤ n∑

j=1

∣∣∣βij

∣∣∣ · ∣∣∣fj(uj)− fj(u′j)
∣∣∣.

3 Main Results

Theorem 1. Assume that
(H1) For function fj, there exists a positive diagonal matrix F = diag(F1, F2,
· · ·, Fn) such that

Fj = sup
x1 	=x2

∣∣∣fj(x1)− fj(x2)
x1 − x2

∣∣∣
for all x1 
= x2, j = 1, 2, · · · , n.
(H2) W = C +D − (|A|+ |α|+ |β|)F is a nonsingular M−matrix.
(H3) There exist nonnegative matrices Pk = (p(k)

ij )n×n and Qk = (q(k)
ij )n×n such

that

|pik(u1, · · · , un)− pik(v1, · · · , vn)| ≤
n∑

j=1

p
(k)
ij |uj − vj |,

|qik(u1, · · · , un)− qik(v1, · · · , vn)| ≤
n∑

j=1

q
(k)
ij |uj − vj |

for all (u1, · · ·un)T ∈ Rn, (v1, · · · vn)T ∈ Rn, i = 1, 2, · · · , n; k = 1, 2, · · · .
(H4) ∆ =

∞⋂
k=1

[
Γ (Pk)

⋂
Γ (Qk)

]⋂
Ω(W ) is nonempty.

(H5) There exists a constant λ such that

ln γk

tk − tk−1
≤ λ < ε, k = 1, 2, · · · , (4)

where the scalar ε > 0 is determined by the inequality

ξi(ε− ci − di) +
n∑

j=1

ξjFj

(
|aij |+ eετ (|αij |+ |βij |)

)
< 0 (5)

for a given ξ = (ξ1, ξ2, · · · , ξn)T ∈ ∆, and

γk ≥ max{1, ρ(Pk) + eετρ(Qk)}. (6)

Then the origin of (3) is globally exponentially stable, which imply that the two
systems (1) and (2) are globally impulsively exponentially synchronized.
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Proof. From (H2) and (H4), we know that there exists a positive vector ξ =
(ξ1, ξ2, · · · , ξn)T > 0 such that

−ξi(ci + di) +
n∑

j=1

ξjFj

(
|aij |+ (|αij |+ |βij |

)
< 0. (7)

Further, we can choose a ε > 0 such that

ξi(ε− ci − di) +
n∑

j=1

ξjFj

(
|aij |+ eετ (|αij |+ |βij |)

)
< 0. (8)

Let
xi(t) = eε(t−t0)|yi(t)|.

Calculating the upper right derivative D+xi(t) of xi(t) along the solutions of
(3), from Lemma 3 and the assumption (H1), we can get

D+xi(t) = εeε(t−t0)|yi(t)|+ eε(t−t0)sgn(yi(t))
{
− (ci + di)yi(t)

+
n∑

j=1

aij

(
fj(uj(t))− fj(zj(t))

)
+

n∧
j=1

αijfj(uj(t− τij(t)))−
n∧

j=1

αijfj(zj(t− τij(t)))

+
n∨

j=1

βijfj(uj(t− τij(t))) −
n∨

j=1

βijfj(zj(t− τij(t)))
}

≤ (ε− ci − di)xi(t) +
n∑

j=1

|aij |Fjxj(t)

+
n∑

j=1

(|αij |+ |βij |)Fje
ετxj(t− τij(t)) (9)

for i = 1, 2, · · · , n; tk−1 < t < tk, k ∈ N .
For any bounded initial condition y(s) = φ(s) ∈ PC([−τ, t0], Rn) of model

(3), let l0 = ‖φ‖
min

1≤i≤n
{ξi} , then

xi(s) = eε(s−t0)|yi(s)| ≤ |yi(s)| = |φi(s)| ≤ ‖φ‖ ≤ ξil0, s ∈ [−τ, t0] (10)

for i = 1, 2, · · · , n. In following, we prove that

xi(t) ≤ ξil0, t0 ≤ t < t1, i = 1, 2, · · · , n, (11)

hold. In fact, if inequality (11) is not true, then there must exist some i and
t∗ ∈ [t0, t1) such that

xi(t∗) = ξil0, D+xi(t∗) ≥ 0, xj(t) ≤ ξj l0, t ∈ [−τ, t∗], j = 1, 2, · · · , n.
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However, from (8) and (9), we get

D+xi(t∗) ≤
(
(ε− ci − di)ξi +

n∑
j=1

|aij |Fjξj +
n∑

j=1

(|αij |+ |βij |)Fje
ετ ξj

)
l0

< 0,

this is a contradiction. So inequality (11) is true. Thus, we have

|yi(t)| ≤ ξil0e−ε(t−t0), t0 ≤ t < t1, i = 1, 2, · · · , n. (12)

In the following, we will use the mathematical induction to prove that

|yi(t)| ≤ γ0γ1 · · · γk−1ξil0e
−ε(t−t0), tk−1 ≤ t < tk, k ∈ N, (13)

hold for i = 1, 2, · · · , n, where γ0 = 1.
When k = 1, from inequality (12) we know that inequality (13) hold.
Suppose that the inequalities

|yi(t)| ≤ γ0γ1 · · ·γm−1ξil0e
−ε(t−t0), tk−1 ≤ t < tk, i = 1, 2, · · · , n, (14)

hold for k = 1, 2, · · · ,m. From assumption (H3) and (14), the discrete part of
model (3) satisfies that

|yi(tm)| ≤
n∑

j=1

p
(m)
ij |yj(t−m)|+

n∑
j=1

q
(m)
ij |yj((tm − τij(tm))−)|

≤
n∑

j=1

p
(m)
ij γ0γ1 · · ·γm−1ξj l0e

−ε(tm−t0)

+
n∑

j=1

q
(m)
ij γ0γ1 · · · γm−1ξj l0e

−ε(tm−τij(tm)−t0)

≤
( n∑

j=1

p
(m)
ij ξj + eετ

n∑
j=1

q
(m)
ij ξj

)
γ0γ1 · · ·γm−1l0e

−ε(tm−t0)

for i = 1, 2, · · · , n. From ξ = (ξ1, ξ2, · · · , ξn)T ∈ ∆ and Lemma 2, we know that
ξ ∈ Γ (Pm) and ξ ∈ Γ (Qm), thus

Pmξ = ρ(Pm)ξ, Qmξ = ρ(Qm)ξ,

i.e.,
n∑

j=1

p
(m)
ij ξj = ρ(Pm)ξi,

n∑
j=1

q
(m)
ij ξj = ρ(Qm)ξi, i = 1, 2, · · · , n. (15)

From (14), (15) and (6), we get

|yi(tm)| ≤
(
ρ(Pm) + eετρ(Qm)

)
γ0γ1 · · · γm−1ξil0e

−ε(tm−t0)

≤ γ0γ1 · · · γm−1γmξil0e
−ε(tm−t0) (16)
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for i = 1, 2, · · · , n. This, together with (13), lead to

|yi(t)| ≤ γ0γ1 · · ·γm−1γmξil0e
−ε(t−t0), i = 1, 2, · · · , n; t ∈ [tm − τ, tm], (17)

i.e.,
xi(t) ≤ γ0γ1 · · · γm−1γmξil0, i = 1, 2, · · · , n; t ∈ [tm − τ, tm]. (18)

In the following, we will prove that

xi(t) ≤ γ0γ1 · · · γm−1γmξil0, i = 1, 2, · · · , n; t ∈ [tm, tm+1) (19)

hold. In fact, if (19) is not true, then there exist some i and t∗∗ ∈ [tm, tm+1)
such that

xi(t∗∗) = γ0γ1 · · · γm−1γmξil0, D
+xi(t∗∗) ≥ 0andxj(t) ≤ γ0γ1 · · ·γm−1γmξil0

for tm − τ < t ≤ t∗∗, j = 1, 2, · · · , n. However, from (8), (9) and (18) we get

D+xi(t∗∗) ≤
[
(ε− ci − di)ξi +

n∑
j=1

|aij |Fjξj

+eετ
n∑

j=1

(|αij |+ |βij |)Fjξj

]
γ0γ1 · · ·γm−1γml0

< 0,

this is a contradiction. So (19) holds. By the mathematical induction, we can
conclude that (13) holds. From (4), we have

γk ≤ eλ(tk−tk−1), k ∈ N.
From (13), we get

|yi(t)| ≤ ξi
min

1≤i≤n
{ξi}‖φ‖e

λ(tk−1−t0)e−ε(t−t0)

≤ ξi
min

1≤i≤n
{ξi}‖φ‖e

−(ε−λ)(t−t0)

for any t ∈ [tk−1, tk), k ∈ N , which imply

|yi(t)| ≤ ξi
min

1≤i≤n
{ξi}‖φ‖e

−(ε−λ)(t−t0), t ≥ t0.

Thus
‖y(t)‖ ≤M‖φ‖e−(ε−λ)(t−t0), t ≥ t0,

where M = max
1≤i≤n

{ξi}/ min
1≤i≤n

{ξi} ≥ 1. So the origin of model (3) is globally

exponentially stable, which imply that the two systems (1) and (2) are globally
impulsively exponentially synchronized, and the exponential convergence rate
equals ε− λ. The proof is completed.
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Remark 1. In [17], authors studied the synchronization of non-impulsive fuzzy
cellular neural networks with constant delays by the Lyapunov method. In this
paper, the synchronization of impulsive fuzzy cellular neural networks with time-
varying delays is discussed by M -matrix theory and analytic methods.

Remark 2. It should be pointed out that when the time-varying delay is not
differentiable, it may be difficult to analyze the exponential synchronization of
fuzzy cellular neural networks by the provided methods in [17].

4 An Example

Consider the following fuzzy delayed neural networks with two neurons

dui(t)
dt

= −ciui(t) +
n∑

j=1

aijfj(uj(t)) +
n∧

j=1

αijfj(uj(t− τij(t)))

+
n∨

j=1

βijfj(uj(t− τij(t))), i = 1, 2, (20)

where

C =
[

1 0
0 1

]
, A =

[
2.1 −0.1
−5.2 4.6

]
, α =

[−1.5 −0.1
−0.2 −4.4

]
, β =

[−1.7 −0.1
0.6 −3.9

]
,

fi(u) = tanh(z), τij(t) = 1, i, j = 1, 2.

The fuzzy delayed neural networks (20) exhibits a chaotic behavior with the
initial value x1(s) = −0.4, x2(s) = 2, s ∈ [−1, 0], see Figure 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

x1

x2

Fig. 1. The chaotic behavior of system (20)
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Now the impulsive response system is designed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dzi(t)
dt = −cizi(t) +

n∑
j=1

aijfj(zj(t))

+
n∧

j=1

αijfj(zj(t− τij(t))) +
n∨

j=1

βijfj(zj(t− τij(t)))
+di(zi(t)− ui(t)), t 
= tk,

zi(t) = pik(z1(t−), · · · , zn(t−))
+qik(z1((t− τi1(t))−), · · · , zn((t− τin(t))−)), t = tk,

(21)

where

p1k(z1, z2) = 0.08e0.05kz1 − 0.028e0.05kz2, q1k(z1, z2) = 0.2e0.05kz1,

p2k(z1, z2) = 0.05e0.05kz1 + 0.03e0.05kz2, q2k(z1, z2) = 0.2e0.05kz2,

d1 = 4.9, d2 = 21.5, tk = tk−1 + k, k ∈ N.
It can be verified that assumptions (H1) and (H3) are satisfied, and F =

diag{1, 1}, Pk = e0.05k

(
0.08 0.028
0.05 0.03

)
, Qk = 0.2e0.05k

(
1 0
0 1

)
.

It is easily computing that W =
(

0.6 −0.3
−6 9.6

)
is a nonsingular M -matrix,

and ρ(Pk) = 0.1e0.05k, ρ(Qk) = 0.2e0.05k, Γ (Pk) = {(ξ1, ξ2)T |ξ1 = 1.4ξ2, ξ1 >
0, ξ2 > 0}, Γ (Qk) = {(ξ1, ξ2)T |ξ1 > 0, ξ2 > 0}, Ω(W ) = {(ξ1, ξ2)T |0.5ξ2 < ξ1 <
1.6ξ2, ξ1 > 0, ξ2 > 0}. So ∆ = {(ξ1, ξ2)T |ξ1 = 1.4ξ2, ξ1 > 0, ξ2 > 0} is non-empty.

Taking ξ = (1.4, 1)T ∈ ∆, from inequality (5) we can get that a maximum
value of ε is 0.05413.

Take γk = e0.05k, λ = 0.05, then

γk ≥ max{1, 0.1e0.05k + 0.2e0.05ke0.05413}, k = 1, 2, · · · ,
and

ln γk

tk − tk−1
=

ln e0.05k

k
= λ < ε, k = 1, 2, · · · ,

Clearly, all conditions of Theorem 1 are satisfied. From Theorem 1, we know
that two systems (20) and (21) are globally impulsively exponentially synchro-
nized, and the exponential convergence rate equals 0.00413.

5 Conclusions

In this paper, the impulsive exponential synchronization has been investigated
for coupled fuzzy neural networks with time-varying delays. Based onM -matrix
theory and analytic methods, a new sufficient condition of impulsive exponential
synchronization of two coupled fuzzy neural networks has been established. An
example with simulation was also given to show the effectiveness of the obtained
result.
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Distributed Delays and Stochastic Disturbances
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Abstract. In this paper, the global synchronization problem is stud-
ied for a class of complex networks. This is the first time that both the
distributed delays and the stochastic disturbances are considered at the
same time. Based on the idea of ‘delay fractioning’, a sufficient condition
which ensures the complex system to be globally synchronized is derived
by referring to the Lyapunov functional method and the properties of
Kronecker product. The condition, which is expressed in terms of linear
matrix inequalities (LMIs), can be solved efficiently by the LMI toolbox
in Matlab. The result obtained in this paper is proved to be much less
conservative due to the fact that the delay upper bound is greatly en-
larged.

Keywords: Global asymptotic synchronization, Lyapunov functional,
Delay fractioning, Stochastic disturbance, Distributed delay.

1 Introduction

In the past decades, complex dynamical networks have become a popular re-
search subject and are attracting more and more attention from many fields of
scientific research [1-4]. Examples of complex networks include the wold wide
web, the Internet, the electrical powder grids, food webs, biological neural net-
works, telephone cell graphs, coauthorship and citation networks of scientists,
etc. The universality of complex networks naturally stimulates the current inten-
sive study of the subject. In this study, one of the basic and significant character-
istic is the synchronization of all dynamical nodes in a complex network [5-11]. In
fact, synchronization is a ubiquitous phenomenon in nature. Loosely speaking, if
two systems have something in common, a synchronization may occur between
them when they are interacted.

Since a neural network usually has a spatial nature due to the parallel path-
ways of a variety of axon sizes and lengths, it is desirable to model them by
introducing the distributed delays, see Refs. [12,13] and the references cited
therein for example. On the other hand, it is worth pointing out that, uncertain
components such as time delays, parameter uncertainties and noises are ubiq-
uitous in both nature and man-made systems, among them, the stochastic dis-
turbance effects on complex networks have drawn particular attention. In Refs.

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 492–502, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[8,9,14,15,16], the synchronization problems have been intensively investigated
for delayed complex networks with stochastic perturbation, where the criteria
ensuring the synchronization among networks have been achieved mainly on the
basis of Lyapunov approach that is capable of coping the time-delays. Therefore,
one of the main aims is how to reduce the possible conservatism induced by the
introduction of the Lyapunov functional. Recently, the so-called ‘delay fraction-
ing’ approach has been developed in [17] which is shown to lead to much less
conservative results than the most existing ones. To the best of our knowledge,
so far, the synchronization problem for complex networks with distributed delays
is still remaining as a challenging open problem.

Motivated by the above discussion, based on the Lyapunov functional method,
the properties of Kronecker product and the stochastic analysis techniques com-
bined with the ‘delay fractioning’ approach [17], our main aim in this paper is to
shorten this gap by investigating the distributed delayed complex systems with
stochastic disturbances, the derived criteria in this paper are expressed in terms
of LMIs [18]. Our results are shown to be less conservative since the conservatism
could be reduced by adding the number of delay fractions.

The rest of this paper is organized as follows. In section 2, a stochastic complex
network model with distributed delays is introduced and some preliminaries are
briefly outlined. In section 3, by utilizing the approach of ‘delay fractioning’
and the Lyapunov functional method, our main result which made the global
synchronization realized is derived. Finally in section 4, this paper is concluded.

Notations: Throughout this paper, P > 0 means that matrix P is real, symmetric
and positive definite. I and O denote the identity matrix and the zero matrix
with compatible dimensions, respectively. The Kronecker product of matrices
Q ∈ Rm×n and R ∈ Rp×q is a matrix in Rmp×nq and denoted as Q⊗R. We let
τ > 0 and C([−τ, 0]; Rn) denote the family of continuous functions ϕ from [−τ, 0]
to Rn with the norm |ϕ| = sup−τ�θ�0 ‖ϕ(θ)‖, where ‖ · ‖ is the Euclidean norm
in Rn. Moreover, let (Ω,F , {Ft}t�0,P) be a complete probability space with a
filtration {Ft}t�0 satisfying the usual conditions (i.e. the filtration contains all
P-null sets and is right continuous). Denote by Lp

F0
([−τ, 0]; Rn) the family of

all F0-measurable C([−τ, 0]; Rn)-valued random variables ξ = {ξ(θ) : −τ � θ �
0} such that sup−τ�θ�0 E|ξ(θ)|p < ∞,where E{·} stands for the mathematical
expectation operator with respect to the given probability measure P .

2 Problem Formulation and Preliminaries

Consider the following array of identical complex networks with distributed de-
lays and stochastic disturbances:

dxi(t) = [Axi(t) +B
∫ 0

−τ

f(xi(t+ s))ds+
N∑

j=1

G
(1)
ij Γ1xj(t)

+
N∑

j=1

G
(2)
ij Γ2xj(t− τ)]dt+ σi(t, xi(t), xi(t− τ))dw(t) (1)
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where i = 1, 2, . . . , N and xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn is the state
vector of the ith network at time t; A denotes a known connection matrix; B
denote the connection weight matrix; Γ1, Γ2 ∈ Rn×n are matrices describing
the inner-coupling between the subsystems at time t and t − τ , respectively;
G(1) = (G(1)

(ij))(N×N) and G(2) = (G(2)
(ij))(N×N) are the outer-coupling configura-

tion matrices representing the coupling strength and the topological structure
of the complex networks. The constant τ stands for the constant time delay,
which satisfies 0 � τ � h. Furthermore, σi(·, ·, ·) : R × Rn × Rn → Rn is the
noise intensity function vector, and ω(t) is a scalar Brownian motions defined
on (Ω,F ,P) satisfying

E{dω(t)} = 0 and E{[dω(t)]2} = dt. (2)

Finally, f(xi(t)) = (f1(xi1(t)), f2(xi2(t)), · · · , fn(xin(t)))T is an unknown but
sector-bounded nonlinear function.

Throughout this letter,the following assumptions are needed.

Assumption 1. (See [19]) The outer-coupling configuration matrices of the
complex networks (1) satisfy

G
(q)
ij = G(q)

ji � 0 (i 
= j), G(q)
ii = −

N∑
j=1,j 	=i

G
(q)
ij (q = 1, 2; i, j = 1, 2, · · · , N). (3)

Assumption 2. (See [8]) For ∀u, v ∈ Rn,the nonlinear function f(·) is assumed
to satisfy the following sector bounded condition

(f(u)− f(v)− Lf (u− v))T (f(u)− f(v)− Lf (u− v)) � 0, (4)

where Lf and Lf are real constant matrices with Lf − Lf being symmetric and
positive definite.

Assumption 3. The noise intensity function vector σi : R × Rn × Rn → Rn

satisfies the Lipschitz condition, i.e., there exist constant matrices W1 and W2

of appropriate dimensions such that the following inequality

(σi(t, u1, v1)− σj(t, u2, v2))T (σi(t, u1, v1)− σj(t, u2, v2))
� ‖W1(u1 − u2)‖2 + ‖W2(v1 − v2)‖2 (5)

holds for all i, j = 1, 2, · · · , N and u1, u2, v1, v2 ∈ Rn.

Let x(t) = (xT
1 (t), xT

2 (t), · · · , xT
N (t))T , F (x(t)) = (

∫ 0

−τ f
T (x1(t+ s))ds,∫ 0

−τ
fT (x2(t+ s))ds, · · · ,

∫ 0

−τ
fT (xN (t+ s))ds)T , σ(t) = (σT

1 (t, x1(t), x1(t− τ)),
σT

2 (t, x2(t), x2(t−τ)), · · · , σT
N (t, xN (t), xN (t−τ)))T ; with the Kronecker product

“⊗” for matrices, system (1) can be recast into

dx(t) = [(IN ⊗A+G(1) ⊗ Γ1)x(t)
+(G(2) ⊗ Γ2)x(t − τ) + (IN ⊗B)F (x(t))]dt + σ(t)dw(t). (6)
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The initial conditions associated with system (1) are given by

xi(s) = ϕi(s), −h � s � 0, i = 1, 2, · · · , N (7)

where ϕi(·) ∈ L2
F0

([−h, 0],Rn), and the corresponding state trajectory is denoted
as xi(t, ϕ1, ϕ2, · · ·ϕN ).

Definition 1. The set S = {x = (x1(s), x2(s), . . . , xN (s)) : xi(s) ∈ L2
F0

([−h, 0],
Rn), xi(s) = xj(s), 1 � i, j � N} is called the synchronization manifold of net-
work (1) or (6).

Definition 2. The synchronization manifold S is said to be globally asymp-
totically stable in the mean square (in order words,the delayed complex net-
work (1) is globally asymptotically synchronized in the mean square) if, for all
ϕi(·), ϕj(·) ∈ L2

F0
([−h, 0],Rn), the following holds:

lim
t→+∞ E‖xi(t, ϕi)− xj(t, ϕj)‖2 = 0, 1 � i < j � N. (8)

Lemma 1. (See [14])The Kronecker product has the following properties:

(1) (αA) ⊗B = A⊗ (αB);
(2) (A+B)⊗ C = A⊗ C +B ⊗ C;
(3) (A⊗B)(C ⊗D) = (AC)⊗ (BD);
(4) (A⊗B)T = AT ⊗BT .

Lemma 2. (See [20]) For scalar r > 0, let M ∈ Rm×m be a positive semi-
definite matrix and ρ : [0, r] → Rm be a vector function. If the integration
concerned are well defined, then the following inequality holds:

r

∫ r

0

ρT (s)Mρ(s)ds � (
∫ r

0

ρ(s)ds)TM(
∫ r

0

ρ(s)ds).

Lemma 3. Let U = (αij)N×N , P ∈ Rn×n, x = (xT
1 , x

T
2 , · · · , xT

N )T where xi =
(xi1, xi2, · · · , xin)T ∈Rn and y=(yT

1 , y
T
2 , · · · , yT

N )T where yi =(yi1, yi2, · · · , yin)T

∈ Rn (i = 1, 2, · · · , N). If U = UT and each row sum of U is zero, then

xT (U ⊗ P )y = −
∑

1�i<j�N

αij(xi − xj)TP (yi − yj).

3 Main Results and Proofs

In this section, we are in the position to present our main results for synchro-
nization of the delayed complex networks with stochastic disturbances.

Theorem 1. Consider the complex network (1) with time-delay τ ∈ (0, h]. For
a given integer r � 1, if there exist n×n matrices Pk > 0, Rk > 0, Qk > 0, Mk,
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S and positive scalars λ, εk (k = 1, 2) such that the following LMIs hold for all
1 � i < j � N :

P1 < λI, (9)
Θij =W1 −W2 −WT

2 +W3 +W4 +W5 < 0, (10)

where W3 = diag{Q1, Q2 −Q1,−Q2, R1, R2 −R1,−R2,−2ε1In,−2ε2In,− 2
hP2,

− 2
hP2, hP2 − S − ST },

W1 =
[

M + MT O2n×9n

O9n×2n O9n×9n

]
,W2 =

⎡⎣ M M

O11n×n O11n×5n O11n×n

O9n×2n O9n×2n

⎤⎦ ,

W4 =

⎡⎢⎢⎣
−ε⊗ L̂ ε⊗ Ľ
O4n×2n O11n×4n O11n×3n

∗ O9n×2n

O3n×2n

⎤⎥⎥⎦ ,W5 =

⎡⎣ H1 O4n×6n H2

O6n×4n

HT
2 O7n×6n O7n×n

⎤⎦
and M = diag{M1,M2}, ε = diag{ε1, ε2}, L̂ = LT

f L
f + LfT

Lf , Ľ = LT
f + LfT ,

H1 =

⎡⎢⎢⎣
Λij On×n −NG(2)

ij P1Γ1 P1B

On×n On×n On×n On×n

∗ On×n λWT
2 W2 On×n

∗ On×n On×n On×n

⎤⎥⎥⎦ , H2 =

⎡⎢⎢⎢⎣
ATST −NG(1)

ij Γ1S
T

On×n

−NG(2)
ij Γ

T
2 S

T

BTST

⎤⎥⎥⎥⎦
4n×n

Λij = P1A+APT
1 −NG(1)

ij (P1Γ1 + Γ T
1 P1) + λWT

1 W1;

then the asymptotic synchronization in the mean square for (8) is achieved.

Proof. By setting

y(t) = (IN ⊗A+G(1) ⊗ Γ1)x(t) + (G(2) ⊗ Γ2)x(t− τ) + (IN ⊗B)F (x(t)),(11)

system (6) becomes
dx(t) = y(t)dt+ σ(t)dω(t).

Based on the delay-fractioning idea, we introduce the following new matrix func-
tional candidate for the complex network (1) or (6):

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (12)

where

V1(t) = xT (t)(U ⊗ P1)x(t), V2(t) =
∫ 0

−τ

∫ t

t+θ

yT (s)(U ⊗ P2)y(s)dsdθ,

V3(t) =
∫ t

t− τ
2

xT (s)(U ⊗Q1)x(s)ds+
∫ t− τ

2

t−τ

xT (s)(U ⊗Q2)x(s)ds,

V4(t) =
∫ t

t− τ
2

FT (x(s))(U ⊗R1)F (x(s))ds +
∫ t− τ

2

t−τ

FT (x(s))(U ⊗R2)F (x(s))ds
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and

U =

⎡⎢⎢⎣
N − 1 −1 · · · −1
−1 N − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · N − 1

⎤⎥⎥⎦ .
Letting L be the weak infinitesimal operator of the stochastic process {xt =
x(t + s) | t � 0,−h � s � 0} along the trajectories of the network (1)(or(6)),
then one has

LV1(t) = 2xT (t)(U ⊗ P1)[(IN ⊗A+G(1) ⊗ Γ1)x(t) + (G(2) ⊗ Γ2)x(t− τ)
+(IN ⊗B)F (x(t))] + σT (t)(U ⊗ P1)σ(t), (13)

LV2(t) = τyT (t)(U ⊗ P2)y(t)−
∫ t

t−τ

yT (s)(U ⊗ P2)y(s)ds

� hyT (t)(U ⊗ P2)y(t)−
∫ t

t−τ

yT (s)(U ⊗ P2)y(s)ds, (14)

LV3(t) =
[
x(t)

x(t − τ
2 )

]T [
U ⊗Q1

U ⊗Q2

] [
x(t)

x(t − τ
2 )

]
−
[
x(t− τ

2 )
x(t− τ)

]T [
U ⊗Q1

U ⊗Q2

] [
x(t− τ

2 )
x(t− τ)

]
, (15)

LV4(t) =
[
F (x(t))

F (x(t − τ
2 ))

]T [
U ⊗R1

U ⊗R2

] [
F (x(t))

F (x(t− τ
2 ))

]
−
[
F (x(t− τ

2 ))
F (x(t− τ))

]T [
U ⊗R1

U ⊗R2

] [
F (x(t− τ

2 ))
F (x(t− τ))

]
. (16)

From Lemma 2, it follows that

−
∫ t

t−τ

yT (s)(U ⊗ P2)y(s)ds

� − 2
h

[(
∫ t

t− τ
2

y(s)ds)T (U ⊗ P2)(
∫ t

t− τ
2

y(s)ds)

+(
∫ t− τ

2

t−τ

y(s)ds)T (U ⊗ P2)(
∫ t− τ

2

t−τ

y(s)ds)]. (17)

From the Newton-Leibniz formula, we have that for any matrices M1, M2,

2xT (t)(U ⊗M1)

[
x(t) − x(t− τ

2
)−

∫ t

t− τ
2

y(s)ds−
∫ t

t− τ
2

σ(s)dω(s)

]
= 0,

2xT (t− τ
2
)(U ⊗M2)[x(t − τ2 )− x(t− τ)

−
∫ t− τ

2

t−τ

y(s)ds−
∫ t− τ

2

t−τ

σ(s)dω(s)] = 0. (18)
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In addition, for any matrix S, the following is true:

π =: 2yT (t)(U ⊗ S)[(IN ⊗A+G(1) ⊗ Γ1)x(t)
+(G(2) ⊗ Γ2)x(t − τ) + (IN ⊗B)F (x(t)) − y(t)] = 0. (19)

Noting that UG(i) = G(i)U = NG(i) (i = 1, 2), for any matrix H with appropri-
ate dimension, we obtain

(U ⊗H)(G(i) ⊗ Γi) = (UG(i))⊗ (HΓi) = (NG(i))⊗ (HΓi), i = 1, 2. (20)

From Lemma 3 and (13)-(20), we have

LV1(t) = −
∑

1�i<j�N

{
(xi(t)− xj(t))T [−(P1A+ATP1)−NG(1)

ij (P1Γ1 + Γ T
1 P1)]

×(xi(t)− xj(t)) + 2(xi(t)− xj(t))T [−P1B(
∫ 0

−τ

f(xi(t+ s))ds

−
∫ 0

−τ

f(xj(t+ s))ds) +NG(2)
ij P1Γ2(xi(t− τ)− xj(t− τ))

−(σi(t, xi(t), xi(t− τ)) − σj(t, xj(t), xj(t− τ)))TP1

×(σi(t, xi(t), xi(t− τ)) − σj(t, xj(t), xj(t− τ)))} , (21)

where

(σi(t, xi(t), xi(t− τ)) − σj(t, xj(t), xj(t− τ)))TP1

×(σi(t, xi(t), xi(t− τ)) − σj(t, xj(t), xj(t− τ)))
� λ[(xi(t)− xj(t))TWT

1 W1(xi(t)− xj(t))
+(xi(t− τ) − xj(t− τ))TWT

2 W2(xi(t− τ)− xj(t− τ))].(22)

LV2(t) � hyT (t)(U ⊗ P2)y(t)− 2
h

[(
∫ t

t− τ
2

y(s)ds)T (U ⊗ P2)
∫ t

t− τ
2

y(s)ds

+(
∫ t− τ

2

t−τ

y(s)ds)T (U ⊗ P2)
∫ t− τ

2

t−τ

y(s)ds]

= h
∑

1�i<j�N

(yi(t)− yj(t))TP2(yi(t)− yj(t))

− 2
h

∑
1�i<j�N

[(
∫ t

t− τ
2

yi(s)ds−
∫ t

t− τ
2

yj(s)ds)T

P2(
∫ t

t− τ
2

yi(s)ds−
∫ t

t− τ
2

yj(s)ds)

+(
∫ t− τ

2

t−τ

yi(s)ds−
∫ t− τ

2

t−τ

yj(s)ds)TP2(
∫ t− τ

2

t−τ

yi(s)ds−
∫ t− τ

2

t−τ

yj(s)ds)]

=
∑

1�i<j�N

[h(yi(t)− yj(t))TP2(yi(t)− yj(t))

− 2
h

(Pi(t)− Pj(t))T P2(Pi(t)− Pj(t))], (23)
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where

Pi(t) =

[ ∫ t

t− τ
2
yi(s)ds∫ t− τ

2
t−τ yi(s)ds

]
, P2 = I2 ⊗ P2 =

[
P2 0
0 P2

]
.

LV3(t) =
∑

1�i<j�N

[(ri(t)− rj(t))T Q(ri(t)− rj(t))

−(ri(t− τ2 )− rj(t− τ2 ))T Q(ri(t− τ2 )− rj(t− τ2 ))], (24)

where

ri(t) =
[
xi(t)

xi(t− τ
2 )

]
, Q =

[
Q1 0
0 Q2

]
.

LV4(t) =
∑

1�i<j�N

[(Fi(t)−Fj(t))T R(Fi(t)−Fj(t))

−(Fi(t− τ2 )−Fj(t− τ2 ))T R(Fi(t− τ2 )−Fj(t− τ2 ))], (25)

where

Fi(t) =

[ ∫ 0

−τ
f(xi(t+ s))ds∫ 0

−τ
f(xi(t− τ

2 + s))ds

]
, R =

[
R1 0
0 R2

]
.

From (18)∑
1�i<j�N

(xi(t)−xj(t))T (M1+MT
1 )

[
(xi(t)− xj(t))− (xi(t− τ2 )− xj(t− τ2 ))

− (
∫ t

t− τ
2

yi(s)ds−
∫ t

t− τ
2

yj(s)ds)− (
∫ t

t− τ
2

σi(s)dω(s)−
∫ t

t− τ
2

σj(s)dω(s))

]
+

∑
1�i<j�N

(xi(t− τ2 )− xj(t− τ2 ))T (M2 +MT
2 )

[
(xi(t− τ2 )− xj(t− τ2 ))

− (xi(t− τ)− xj(t− τ)) − (
∫ t− τ

2

t−τ

yi(s)ds−
∫ t− τ

2

t−τ

yj(s)ds)

− (
∫ t− τ

2

t−τ

σi(s)dω(s)−
∫ t− τ

2

t−τ

σj(s)dω(s))

]
=

∑
1�i<j�N

(ri(t)− rj(t))T (M + MT )[(ri(t)− rj(t))

−(ri(t− τ2 )−rj(t− τ2 ))−(Pi(t)−Pj(t))−(Ωi(t)−Ωj(t))]=0, (26)

where

M =
[
M1 0
0 M2

]
, Ωi =

[ ∫ t

t− τ
2
σi(s)dω(s)∫ t− τ

2
t−τ σi(s)dω(s)

]
.
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From (19)

2
∑

1�i<j�N

[
(xi(t)− xj(t))T (ATST −NG(1)

ij Γ
T
1 S

T )− (xi(t− τ)− xj(t− τ))T

×(NG(2)
ij Γ

T
2 S

T ) + (
∫ 0

−τ

f(xi(t+ s))ds −
∫ 0

−τ

f(xj(t+ s))ds)T (BTST )
]

× (yi(t)− yj(t)) −
∑

1�i<j�N

(yi(t)− yj(t))T (S + ST )(yi(t)− yj(t)) = 0. (27)

From Assumption 2, for ε1, ε2 > 0, it can be derived that

ε1

[
xi(t)− xj(t)

f(xi(t))− f(xj(t))

]T [
L̂ −Ľ
∗ 2I

] [
xi(t)− xj(t)

f(xi(t))− f(xj(t))

]
� 0,

ε2

[
xi(t− τ

2 )− xj(t− τ
2 )

f(xi(t− τ
2 ))− f(xj(t− τ

2 ))

]T [
L̂ −Ľ
∗ 2I

] [
xi(t− τ

2 )− xj(t− τ
2 )

f(xi(t− τ
2 ))− f(xj(t− τ

2 ))

]
� 0;

then we have∑
1�i<j�N

{
(ri(t)− rj(t))T

[
2(ε⊗ Ľ)(F̂i(t)− F̂j(t))− (ε⊗ L̂)(ri(t)− rj(t))

]
− (F̂i(t)− F̂j(t))T (2ε⊗ In)(F̂i(t)− F̂j(t))

}
� 0, (28)

where

F̂i(t) =
[
f(xi(t))

f(xi(t− τ
2 ))

]
.

From (21)-(28), we have

LV (t) �
∑

1�i<j�N

{(xi(t)− xj(t))T [(P1A+ATP1)−NG(1)
ij (P1Γ1 + Γ T

1 P1)]

×(xi(t)− xj(t)) + 2(xi(t)− xj(t))T [P1B(
∫ 0

−τ

f(xi(t+ s))ds

−
∫ 0

−τ

f(xj(t+ s))ds) −NG(2)
ij P1Γ2(xi(t− τ)− xj(t− τ))

+λ[(xi(t)− xj(t))TWT
1 W1(xi(t)− xj(t)) + (xi(t− τ)− xj(t− τ))T

×WT
2 W2(xi(t− τ) − xj(t− τ))] + (yi(t)− yj(t))T (hP2 − S − ST )

×(yi(t)− yj(t))− 2
h

(Pi(t)− Pj(t))T P2(Pi(t)− Pj(t)) + (ri(t)− rj(t))T

×(Q + M + MT )(ri(t)− rj(t))
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−(ri(t− τ2 )− rj(t− τ2 ))T Q(ri(t− τ2 )− rj(t− τ2 ))

−2(ri(t)− rj(t))T M[(ri(t− τ2 )− rj(t− τ2 )) + (Pi(t)− Pj(t))

+(Ωi(t)−Ωj(t))] + (Fi(t)−Fj(t))T R(Fi(t)−Fj(t))

−(Fi(t− τ2 )−Fj(t− τ2 ))T R(Fi(t− τ2 )−Fj(t− τ2 ))

+2(xi(t)− xj(t))T [ATST −NG(1)
ij Γ

T
1 S

T )(yi(t)− yj(t))
−2(xi(t− τ) − xj(t− τ))T (NG(2)

ij Γ
T
2 S

T )(yi(t)− yj(t))

+2(
∫ 0

−τ

f(xi(t+ s))ds−
∫ 0

−τ

f(xj(t+ s))ds)TBTST (yi(t)− yj(t))

+(ri(t)− rj(t))T [2(ε⊗ Ľ)(F̂i(t)− F̂j(t))− (ε⊗ L̂)(ri(t)− rj(t))]
−(F̂i(t)− F̂j(t))T (2ε⊗ In)(F̂i(t)− F̂j(t)).

Let

ξij(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri(t)− rj(t)
xi(t− τ)− xj(t− τ)
Fi(t)−Fj(t)∫ 0

−τ
f(xi(t− τ + s))ds− ∫ 0

−τ
f(xj(t− τ + s))ds

F̂i(t)− F̂j(t)
Pi(t)− Pj(t)
yi(t)− yj(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then
E{LV (t)} �

∑
1�i<j�N

ξTij(t)Θijξij < 0,

where Θij is defined in (10). From (10), it is guaranteed that all the subsystems
in (1) are asymptotically synchronized for any fixed time delay τ ∈ (0, h]. The
proof is then completed.

4 Conclusions

In this paper, we have investigated the global synchronization of complex net-
works with distributed delays and stochastic disturbances. By utilizing a ‘delay-
fractioning’ approach, firstly we built a novel Lyapunov functional, and then the
properties of Kronecker product and stochastic analysis techniques are used to
get the synchronization criteria in the form of LMIs which can be verified by the
standard numerical software-Matlab toolbox.
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Abstract. This paper considers the problems of global exponential sta-
bility and exponential convergence rate for impulsive Hopfield neural
networks with time delays. By using the method of Lyapunov functions,
M-matrix theory and inequality technique, some sufficient conditions for
ensuring global exponential stability of these networks are derived, and
the estimation for exponential convergence rate index is also obtained.
As an illustration, an numerical example is worked out to show the ef-
fectiveness of the obtained results.

1 Introduction

Hopfield neural networks have been extensively studied and developed in recent
years, and many important applications have been found in various areas (See,
e. g., [1-19]). Since the existence of delays is frequently a source of instability
for neural networks, the stability of neural networks with time delays has long
been a focused topic of theoretical as well as practical importance, and there has
been considerable attention in the literature on Hopfield type neural networks
with time delays (See, e. g., [2-4,6,7,9-11,13-19]). Besides delay effect, impulsive
effects are also likely to exist in neural networks (See, e. g., [20-27]). For instance,
in implementation of electronic networks, the state of the networks is subject to
instantaneous perturbations and experiences abrupt change at certain instants,
which may be caused by switching phenomenon, frequency change or other sud-
den noise, that is, it exhibits impulsive effects [23]. Therefore, it is necessary to
consider both impulsive effect and delay effect on dynamical behaviors of neural
networks. Some results on impulsive effect have been gained for delayed neural
networks, see [20-27] and the references therein. In this paperwe consider the im-
pulsive Hopfield neural networks with time delays. Lyapunov method, M-matrix
theory and LMI technique are employed to investigate the sufficient conditions
for the global exponential stability. This paper is organized as follows. In Section
2, impulsive Hopfield neural networks with time delays model is described and
a lemma is given. Based on the Lyapunov stability theory, in combination with
M-matrix theory, some global exponential stability criteria for neural networks
are derived in Section 3. Example and conclusions are given in Section 4 and 5,
respectively.
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2 Model Description and Preliminaries

We consider the impulsive Hopfield neural networks with time delays described
by⎧⎪⎪⎨⎪⎪⎩

Ciu̇i(t) = −ui(t)/Ri +
n∑

j=1

Tijgj(uj(t− τj)) + Ii, t 
= tk

∆ui(t) = diui(t−) +
n∑

j=1

Wijhj(uj(t− − τj)), t = tk,
i = 1, 2, · · · , n, (1)

where ∆ui(tk) = ui(tk) − ui(t−k ), ui(t−k ) = lim
t→t−k

ui(t), k ∈ Z = {1, 2, · · ·}; the

time sequence {tk} satisfies 0 < t0 < t1 < t2 < · · · < tk < tk+1 < · · · , and
lim

k→∞
tk =∞;Ci > 0, Ri > 0, and Ii are, respectively, the capacitance, resistance,

and external input of the ith neuron; Tij and Wij are the synaptic weights of
the neural networks; and τi ≥ 0 is the transmission delay of the ith neuron.

The initial condition for system (1) is given by ui(s) = ψi(s), s ∈ [t0 − τ, t0],
i = 1, 2, · · · , n where ψi : [t0 − τ, t0] → �, (i = 1, 2, · · · , n), is a continuous
function, and τ = max

1≤i≤n
{τi}.

Throughout this paper, we assume that the neuron activation functions gi(u),
hi(u), i = 1, 2, · · · , n, are continuous and satisfy the following conditions:

|gi(ui)| ≤Mi, 0 ≤ gi(ui)− gi(vi)
ui − vi ≤ Ki, ∀ ui 
= vi, ui, vi ∈ �, i = 1, 2, · · · , n,

(2)

|hi(ui)| ≤ Ni, 0 ≤ hi(ui)− hi(vi)
ui − vi ≤ Li, ∀ ui 
= vi, ui, vi ∈ �, i = 1, 2, · · · , n. (3)

By Lemma 2.1[28] ,system (1) admits at least one equilibrium point.
Let u∗ = (u∗1, u

∗
2, · · · , u∗n, )T be an equilibrium point of system (1), and set

xi(t) = ui(t)−u∗i , diu
∗
i +

n∑
j=1

Wijhj(u∗j ) = 0, fi(xi(t−τi)) = gi(ui(t−τi))−gi(u∗i ),
and ϕi(xi(t− τi)) = hi(ui(t− τi))− hi(u∗i ), i = 1, 2, · · · , n.

Then, for each i = 1, 2, · · · , n,
|fi(z)| ≤ Ki|z|, zfi(z) ≥ 0, |ϕi(z)| ≤ Li|z|, zϕi(z) ≥ 0, ∀z ∈ �. (4)

System (1) may be rewritten as follows.⎧⎪⎪⎨⎪⎪⎩
Ciẋi(t) = −xi(t)/Ri +

n∑
j=1

Tijfj(xj(t− τj)), t 
= tk

∆xi(t) = dixi(t−) +
n∑

j=1

Wijϕj(xj(t− − τj)), t = tk
, i = 1, 2, · · · , n, (5)

Define C = diag(C1, C2, · · · , Cn), R = diag(R1, R2, · · · , Rn), and
K = diag(K1,K2, · · · ,Kn).

The following lemma will be useded in the proof of our main results.
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Lemma 1.[9] Assume that the following conditions are satisfied.

(i) D+xi(t) ≤
n∑

j=1

aijxj(t) +
n∑

j=1

bijxj(t), i = 1, 2, · · · , n,

where D+ denotes the Dini derivative, xj(t) = sup
t−τ≤s≤t

xj(s),

aij ≥ 0 for i 
= j, bij ≥ 0, i, j = 1, 2, · · · , n, and
n∑

j=1

xj(t0) > 0;

(ii) G = −(aij + bij)n×n is an M matrix.

Then, there exist constants α > 0, γi > 0, i = 1, 2, · · · , n such that, for i =

1, 2, · · · , n, xi(t) ≤ γi[
n∑

j=1

xj(t0)]e−α(t−t0), for t ≥ t0.

3 Main Results

In this section, we shall obtain some sufficient conditions for global exponential
stability of impulsive Hopfield neural networks with time delays.

If u∗ = (u∗1, u
∗
2, · · · , u∗n)T is an equilibrium point of system (1), then x =

(0, 0, · · · , 0)T is an equilibrium point of system (5). To prove the global exponen-
tial stability of the equilibrium point u∗ of system (1), it is sufficient to prove
the global exponential stability of the trivial solution of system (5).

Theorem 1. Assume that the following conditions are satisfied.
(i) C−1R−1 − C−1AK is an M -matrix, where A = (|Tij |)n×n, i, j = 1, 2, · · · , n;
(ii) There exist a constant δ satisfying

δ >
ln(γρeατ )
ατ

such that inf
k∈Z

(tk − tk−1) > τδ, where α > 0, γ =
n∑

i=1

γi ≥ 1, γi > 0,

i = 1, 2, · · · , n, ρ = max
{
1, a+ beατ

}
, a = max

1≤j≤n

{|1 + di|
}
, and

b = max
1≤j≤n

{|Wij |Lj

}
.

Then, the equilibrium point u∗ of system (1) is globally exponentially stable
with convergence rate

α− ln(γρeατ )
δτ

.

Proof. For t 
= tk, we computing the Dini derivative of |xi(t)| along the trajec-
tories of system (5). By condition (2),(3) and (4), we get

D+|xi(t)||(5) = − 1
RiCi

|xi(t)|+
n∑

j=1

Tij
fj(xj(t− τj))

Ci
sgn(xi(t))

≤ − 1
RiCi

|xi(t)|+
n∑

j=1

|Tij |Kj

Ci
|xj(t− τj)|
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≤ − 1
RiCi

|xi(t)|+
n∑

j=1

Kj

Ci
|Tij ||xj(t)|,

where |xi(t)| = sup
t−τ≤s≤t

|xi(s)|.

Hence, by assumption (i) and Lemma 1, there exist constants α > 0,
γi > 0(i = 1, 2, · · · , n) such that, for each i = 1, 2, · · · , n,

|xi(t)| ≤ γi

(
n∑

j=1

|xj(tk−1)|
)
e−α(t−tk−1), for all t ∈ [tk−1, tk), k ∈ Z.

Let V̂ (t) =
n∑

j=1

|xj(t)|.

Then, |xi(t)| ≤ γiV̂ (tk−1)e−α(t−tk−1), for all t ∈ [tk−1, tk), i = 1, 2, · · · , n.

From (5) we can show that

|xi(tk)| ≤ |1 + di||xi(t−k )|+ max
1≤j≤n

{
|Wij |Lj

} n∑
j=1

|xj(t−k − τj)|

≤ ai|xi(t−k )|+ biV̂ (t−k ), i = 1, 2, · · · , n,

where V̂ (t−k ) =
n∑

j=1

|xj(t−k )|, and |xj(t−k )| = sup
tk−τ≤t<tk

|xj(t)|.

Hence,{
|xi(t)| ≤ γiV̂ (tk−1)e−α(t−tk−1), t ∈ [tk−1, tk), k ∈ Z
|xi(tk)| ≤ ai|xi(t−k )|+ biV̂ (t−k )

i = 1, 2, · · · , n (6)

We claim that, for each i = 1, 2, · · · , n,
|xi(t)| ≤ γi(γρeατ )k−1V̂ (t0)e−α(t−t0), for all t ∈ [tk−1, tk), k ∈ Z. (7)

From (6), we get
|xi(t)| ≤ γiV̂ (t0)e−α(t−t0), for all t ∈ [t0, t1), i = 1, 2, · · · , n,

i.e., inequality (7) is true for k = 1.
Assume that inequality (7) is true for k = m, i.e.,

|xi(t)| ≤ γi(γρeατ )m−1V̂ (t0)e−α(t−t0), for all t ∈ [tm−1, tm), i = 1, 2, · · · , n.
Then from (7) and assumption (ii), we have

|xi(tm)| ≤ ai|xi(t−m)|+ biV̂ (t−m)

≤ aiγi(γρeατ )m−1V̂ (t0)e−α(tm−t0) + biγ(γρeατ)m−1V̂ (t0)eατe−α(tm−t0)

= (γρeατ )m−1(aiγi + biγeατ )V̂ (t0)e−α(tm−t0)

≤ γρi(γρeατ )m−1V̂ (t0)e−α(tm−t0), i = 1, 2, · · · , n. (8)
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Hence, by (6), we obtain

|xi(t)| ≤ γiV̂ (tm)e−α(t−tm)

= γi

n∑
j=1

max
{
|xj(t−m)|, |xj(tm)|

}
e−α(t−tm)

≤ γi

n∑
j=1

max
{
γj(γρeατ )m−1V̂ (t0)eατe−α(tm−t0),

γρj(γρeατ )m−1V̂ (t0)e−α(tm−t0)

}
e−α(t−tm)

≤ γi(γρeατ )mV̂ (t0)e−α(t−t0), for all t ∈ [tm, tm+1), i = 1, 2, · · · , n.
This shows that inequality (7) is true for k = m+ 1.
Hence, by induction, it follows that for all k ∈ Z, inequality (7) is true.
By (7) and (8), we get

|xi(t)| ≤ (γρeατ )kV̂ (t0)e−α(t−t0), for all t ∈ [tk−1, tk), k ∈ Z, i = 1, 2, · · · , n. (9)

For any t ∈ �+ there exist some k ∈ Z such that t ∈ [tk−1, tk).
By assumption (ii) we can show that

(γρeατ )k−1 ≤ e ln(γρeατ )
δτ (tk−1−t0).

Thus from (9), for each i = 1, 2, · · · , n, we have

|xi(t)| ≤ γρeατ (γρeατ )k−1V̂ (t0)e−α(t−t0)

≤ γρeατ V̂ (t0)e
−
(

α− ln(γρeατ )
δτ

)
(t−t0)

, for all t ∈ [tk−1, tk), k ∈ Z.
Since t ∈ �+ is arbitrary, it follows that for all t ≥ t0,

|xi(t)| ≤ γρeατ V̂ (t0)e
−
(

α− ln(γρeατ )
δτ

)
(t−t0)

, i = 1, 2, · · · , n.
Thus

‖x(t)‖ ≤ √nγρeατ‖x(t0)‖e
−
(

α− ln(γρeατ )
δτ

)
(t−t0)

, for all t ≥ t0.
This completes the proof.

Theorem 2. Assume that
(i) There exist a constant λ > 0 such that C−1R−1 − λI − eλτC−1AK is an
M -matrix, where A = (|Tij |)n×n, i, j = 1, 2, · · · , n;

(ii) There exist a constant δ satisfying

δ >
ln(γρeλτ )
λτ
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such that inf
k∈Z

(tk − tk−1) > τδ, where γ =
n∑

i=1

γi ≥ 1, γi > 0, i = 1, 2, · · · , n,

ρ = max
{
1, a+ beλτ

}
, a = max

1≤i≤n

{|1 + di|
}
, and b = max

1≤j≤n

{
n∑

i=1

|Wij |Lj

}
.

Then, the equilibrium point u∗ of system (1) is globally exponentially stable
with convergence rate

λ− ln(γρeλτ )
δτ

.

Proof. Let yi(t) = eλtxi(t), (i = 1, 2, · · · , n).
Then for t 
= tk, by computing the Dini derivative of |yi(t)| along the trajec-

tories of system (5), it follows from the proof similar to that given for theorem
1 that

D+|yi(t)||(5) = eλtD+|xi(t)|+ λeλt|xi(t)|
= eλt

(
D+|xi(t)|+ λ|xi(t)|

)
≤ eλt

[(
λ− 1

RiCi

)
|xi(t)|+

n∑
j=1

Kj

Ci
|Tij ||xj(t)|

]

≤
(
λ− 1

RiCi

)
|yi(t)|+ eλτ

n∑
j=1

Kj

Ci
|Tij ||yj(t)|, i = 1, 2, · · · , n.

where |yj(t)| = sup
t−τ≤s≤t

|yj(s)|.
Hence, by assumption (i) and Lemma 1, there exist constants α > 0,

γi > 0(i = 1, 2, · · · , n), such that, for each i = 1, 2, · · · , n,
|yi(t)| ≤ γi

(
n∑

i=1

|yi(tk−1)|
)
e−α(t−tk−1), for all t ∈ [tk−1, tk), k ∈ Z.

Thus, for each i = 1, 2, · · · , n,

|xi(t)| ≤ γi

( n∑
i=1

|xi(tk−1)|
)
e−(α+λ)(t−tk−1)

≤ γi

( n∑
i=1

|xi(tk−1)|
)
e−λ(t−tk−1), for all t ∈ [tk−1, tk), k ∈ Z.

By the arguments similar to that used in the proof of Theorem 1, we can show
that

‖x(t)‖ ≤ √nγρeλτ‖x(t0)‖e
−
(

λ− ln(γρeλτ )
δτ

)
(t−t0)

, for all t ≥ t0.

The proof is complete.
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4 Numerical Example

Consider the following impulsive Hopfield neural network with time delays⎧⎪⎪⎨⎪⎪⎩
Ciu̇i(t) = −ui(t)/Ri +

5∑
j=1

Tijgj(uj(t− τj)) + Ii, t 
= tk

∆ui(t) = diui(t−) +
5∑

j=1

Wijhj(uj(t− − τj)), t = tk
(10)

where i = 1, 2, 3, 4, 5, while g1(u1) = tanh(0.63u1), g2(u2) = tanh(0.78u2),
g3(u3) = tanh(0.46u3), g4(u4) = tanh(0.90u4), g5(u5) = tanh(0.98u5),
h1(u1) = tanh(0.09u1), h2(u2) = tanh(0.02u2), h3(u3) = tanh(0.17u3),
h4(u4) = tanh(0.47u4), h5(u5) = tanh(0.53u5), 0 ≤ τi ≤ 0.5, i = 1, 2, 3, 4, 5,
C = diag(C1, C2, C3, C4, C5) = diag(0.05, 0.69, 0.35, 0.66, 0.44),
R = diag(R1, R2, R3, R4, R5) = diag(0.32, 0.28, 0.93, 0.58, 0.42),
D = diag(D1, D2, D3, D4, D5) = −diag(0.84, 0.11, 0.59, 0.61, 0.20),

T = (Tij)5×5 =

⎡⎢⎢⎢⎢⎣
−0.02 0.11 −0.03 −0.04 −0.09
−0.04 −0.05 0.02 −0.02 −0.12
−0.03 0.03 0.06 0.06 −0.14
0.01 0.12 −0.11 0.16 −0.02
0.02 −0.01 0.12 −0.14 0.27

⎤⎥⎥⎥⎥⎦ ,

W = (Wij)5×5 =

⎡⎢⎢⎢⎢⎣
0.03 −0.05 −0.04 −0.02 0.04
−0.01 0.05 0.01 0.05 0.00
−0.02 0.06 0.06 0.09 −0.01
0.04 −0.07 0.01 0.02 0.01
0.02 −0.04 0.02 0.02 0.07

⎤⎥⎥⎥⎥⎦ ,
In this case, M = N = (1, 1, 1, 1, 1)T ,K = diag(0.63, 0.78, 0.46, 0.90, 0.98),

L = diag(0.09, 0.02, 0.17, 0.47, 0.53), τ = 0.5, and u∗ = (0, 0, 0, 0, 0)T is an equi-
librium point of neural network (10).

We note that the matrix

C−1R−1 − C−1AK =

⎡⎢⎢⎢⎢⎣
62.248 −1.7160 −0.2760 −0.7200 −1.7640
−0.0365 5.1195 −0.0133 −0.0261 −0.1704
−0.0540 −0.0669 2.9933 −0.1543 −0.3920
−0.0095 −0.1418 −0.0764 2.3941 −0.0297
−0.0286 −0.0177 −0.1255 −0.2864 4.8099

⎤⎥⎥⎥⎥⎦
is an M -matrix. Choose constants α = 0.3, γ = 1.01 such that ρ = 1. If we set
δ = 1.15 > ln(γρeατ )

ατ = 1.0663, then, by Theorem 1, we see that the equilibrium
point u∗ of system (10) is globally exponentially stable with convergence rate
0.0218 for inf

k∈Z
{tk − tk−1} > 0.575.

There exist a constant λ = 1.2 such that

C−1R−1 − λI − eλτC−1AK =

⎡⎢⎢⎢⎢⎣
60.8408 −3.1268 −0.5029 −1.3119 −3.2142
−0.0665 3.8730 −0.0243 −0.0475 −0.3106
−0.0984 −0.1218 1.7285 −0.2811 −0.7143
−0.0174 −0.2584 −0.1397 1.0148 −0.0541
−0.0522 −0.0323 −0.2286 −0.5218 3.1155

⎤⎥⎥⎥⎥⎦
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is an M -matrix with constant γ = 1.01 such that ρ = 1.0613 > 1 in Theorem
2. If we set δ = 1.15 > ln(γρeατ )

ατ = 1.1157, then, by Theorem 2, the equilibrium
point u∗ of system (10) is globally exponentially stable with convergence rate
0.0358 for inf

k∈Z
{tk − tk−1} > 0.575.

Hence, by Theorem1 and Theorem 2, we see that the equilibrium point u∗

of system (10) is globally exponentially stable for inf
k∈Z
{tk − tk−1} > 0.575,, and

the convergence rate computed by Theorem 1 and Theorem 2 are, respectively,
0.0218 and 0.0358.

5 Conclusion

Based on M-matrix theory and Lyapunov functions, several simple sufficient
conditions ensuring the global exponential stability have been obtained for the
Hopfield neural networks with time delays and impulses. Moreover, the expo-
nential convergence rate was also estimated. The obtained results show the fact
that the stability still remain under certain impulsive perturbations for the neu-
ral network with stable equilibrium point. An example has been given to show
the effectiveness of the obtained results.
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1 Introduction

We consider the following neutral differential systems with impulse and infinite
delay ⎧⎪⎨⎪⎩

d

dt
[x− g(t, xt)] ∈ Ax(t) + F (t, xt), t ∈ J, t 
= tk

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,
x0 = φ(t) ∈ B,

(1)

where J := [0, b], A is the infinitesimal generator of an analytic semigroup of
uniformly bounded linear operators, (T (t))t≥0 on a Banach Space (X, ‖ · ‖); the
function xt : (−∞, 0]→ X , xt(θ) = x(t+θ), belongs to some abstract phase space
B defined axiomatically; g : J × B →X and F : J × B → P(X); P(X) denotes
the class of all nonempty subsets of X . 0 = t0 < t1 < · · · < tm < tm+1 = b,
Ik : X → X(k = 1, 2, . . . ,m), ∆x(tk) = x(t+k ) − x(t−k ), x(t+k ) and x(t−k ) are
respectively the right and the left limit of x at t = tk, and x(t+k ) = x(tk).

The problem of the existence and controllability for differential inclusions has
been extensively studied [1]–[6]. Benchohra et al.[2]-[1] considered the existence
of solutions for functional and neutral functional inclusions. Benchohra et al.[4]
studied the existence of solutions for integrodifferential inclusions on noncompact
intervals. Benchohra et al.[3] discussed the existence of solutions for impulsive
multivalued semilinear neutral functional differential inclusions. And Benchohra
� Corresponding author.
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et al.[5]-[6] studied the controllability of semilinear evolution and neutral func-
tional differential inclusions. In this paper, we will give the existence of solutions
for impulsive partial neutral functional differential inclusions with infinite delay.
Our approach will be based on another nonlinear alternatives of Leray-Schauder
type for multivalued maps due to D.O’Regan.

The paper is organized as follows. In Section 2, we recall some necessary
preliminaries, In Section 3, we prove the existence.

2 Preliminaries

In this paper, X will be a separable Banach space with norm ‖ · ‖. A : D(A) ⊂
X → X will be the infinitesimal generator of an analytic semigroup, (T (t))t≥0

of uniformly bounded linear operators on X , that is to say, there exists some
constant M ≥ 1 such that ‖T (t)‖ ≤ M , for every t ∈ J . For literature relating
to semigroup theory, we suggest Pazy [10]. We suppose that 0 ∈ ρ(A), for 0 <
α ≤ 1 then it is possible to define the fraction power (−A)α, as a closed linear
operator on its domainD((−A)α). Furthermore, the subspaceD((−A)α) is dense
in X , and the expression ‖x‖α = ‖(−A)α‖, x ∈ D((−A)α), defines a norm on
D((−A)α). Hereafter, let Xα denote the Banach space D((−A)α) endowed with
the norm ‖ · ‖α. For 0 < β ≤ α ≤ 1 Xα ↪→ Xβ and the imbedding is compact
whenever the resolvent operator of A is compact. Also for every 0 < α ≤ 1, there
exists a positive constant Cα such that

‖(−A)αT (t)‖ ≤ Cα

tα
, 0 < t ≤ b. (2)

We define PC by the set{
ϕ : [0, b]→ X : ϕ(·) is continuous at t 
= tk, ϕ(t+k ) = ϕ(tk), and

ϕ(t−k ) exist for k = 1, 2, . . . ,m.

}
The norm ‖·‖1 of the space PC is defined by ‖ϕ‖1 = sup0≤s≤T ‖ϕ(s)‖. It is clear
that (PC, ‖ · ‖1) is a Banach space.

In this work, we will employ an axiomatic definition of the phase space B
which is similar to that used in [11]. B will be a linear space of functions mapping
(−∞, 0] to X endowed with a seminorm ‖ · ‖B. We will assume that B satisfies
the following axioms:

(A) If x : (−∞, b] → X, is such that x0 ∈ B and x|[0,b] ∈ PC ,then for every
t ∈ [0, T ] the following conditions hold:
(1) xt is in B,
(2) ‖x(t)‖ ≤ L‖xt‖B,
(3) ‖xt‖B ≤ K(t) sup{‖x(s)‖ : 0 ≤ s ≤ t}+M(t)‖x0‖B,
where L > 0 is a constant, K,M : [0,∞) → [0,∞),K is continuous, M is
locally bounded, and L,K,M are independent of x(·).

(B) For the function x(·) in (A), xt is a B-valued function on [0, T ].
(C) The space B is complete.
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Let P(X) denote the class of all nonempty of subsets of X . Let Pbd,cl(X),
Pcp,cv(X), Pbd,cl,cv(X) and Pcd(X) denote respectively the family of all
nonempty bounded-closed, compact-convex, bounded-closed-convex and
compact-acyclic [7] subsets of X .
F is called upper semicontinuous(shortly u.s.c.) on X , if for each x∗ ∈ X ,

the set F (x∗) is nonempty, closed subset of X , and if for each open set of V
of X containing F (x∗), there exists an open neighborhood N of x∗ such that
F (N) ⊆ V . F is said to be completely continuous if F (V ) is relatively compact,
for every bounded subset V ⊆ X .

If the multivalued map F is completely continuous with nonempty compact
values, then F is u.s.c. if and only if F has a closed graph,(i.e. xn → x∗, yn →
y∗, yn ∈ F (xn) imply y∗ ∈ F (x∗)).

A point x0 ∈ X is called a fixed point of the multivalued map F if x0 ∈ F (x0).
A multivalued map F : J → Pbd,cl,cv(X) is said to be measurable if for each

x ∈ X , the function t �→ D(x, F (t)) is a measurable function on J . For more
details on the multivalued maps, see the books of Deimling [8].

Definition 1. Let F : X → Pbd,cl(X) be a multivalued map.Then F is called
a multivalued contraction if there exists a constant k ∈ (0, 1) such that for each
x, y ∈ X we have

H(F (x), F (y)) ≤ k‖x− y‖.
The constant k is called a contraction constant of F .

The consideration of this paper is based the another nonlinear alternatives of
Leray-Schauder type for multivalued maps due to D.O’Regan [9].

Theorem 1.[9] Let X be a Banach space with U an open,convex subset of X
and u0 ∈ U . Suppose

(a) F : U →Pcd(X) has closed graph, and
(b) F : U →Pcd(X) is condensing map with F (U) a subset of a bounded set in

X

hold. Then either

(i) F has a fixed point in U ; or
(ii) There exist u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u) + (1− λ){u0}.

Definition 2. A multivalued map F : J × B→ Pbd,cl,cv(X) is called L1-
Carathéodory if

(i) F (t, x) is measurable with respect to t for each x ∈ B ,
(ii) F (t, x) is u.s.c. with respect to x for each t ∈ J , and
(iii) for each q > 0, there exists a function hq ∈ L1(J, [0,∞) such that

‖F (t, v)‖ := sup{‖g‖ : g ∈ F (t, v)} ≤ hq(t), a.e. t ∈ J
for all v ∈ B with ‖v‖B ≤ q.

We need the theorem due to Lasota and Opial [13].
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Theorem 2. Let X be a Banach space, F be an L1-Carathéodory multivalued
map with SF,φ 
= ∅ where SF,φ := {g ∈ L1(J,X) : g(t) ∈ F (t, φ) a.e. t ∈
J}, for each fixed φ ∈ B, and K be a linear continuous map from L1(J,X) to
C(J,X). Then the operator K◦SF,φ : C(J,X) → Pcp,cv(C(J,X)) is a closed
graph operator in C(J,X)× C(J,X).

3 Main Result

Before stating and proving our main result, we give first the definition of mild
solution and controllable.

Definition 3. A function x : (−∞, b] → X is called a mild solution of the
system(1.1) if x(t) − f(t, xt) is absolutely continuous on [0, b) \ {t1, t2, . . . , tm},
(1.1) is satisfied and for each s ∈ [0, t), the function AT (t−s)g(s, xs) is integrable
such that

x(t) = T (t)[φ(0)− g(0, φ(0))] + g(t, xt) +
∫ t

0

AT (t− s)g(s, xs)ds

+
∫ t

0

T (t− s)f(s)ds+
∑

0<tk<t

T (t− tk)Ik(x(t−k )), (3)

where f ∈ SF,x = {f ∈ L1(J,X) : f(t) ∈ F (t, xt), t ∈ J}.
We consider the following assumptions in the sequel

(H1) The semigroup T (t) is compact for t > 0, and there exists M ≥ 1 such
that

‖T (t)‖ ≤M, for all t ≥ 0.

(H2) The multivalued map F (t, x) is an L1-Carathéodory multivalued map and
has compact and convex values for each (t, x) ∈ J × B.

(H3) There exist constants 0 < β < 1, L1, L2 > 0 such that g is Xβ-valued,
(−A)βg is continuous, and

(i) ‖(−A)βg(t, xt)‖ ≤ L1‖xt‖B, (t, x) ∈ J × B
(ii) ‖(−A)βg(t1, x1t)−(−A)βg(t2, x2t)‖ ≤ L2(|t1−t2|+‖x1t−x2t‖B), (ti, xit)

∈ J × B, i = 1, 2, with

L0 := L2

{
‖(−A)−β‖+

C1−βb
β

β

}
Kb < 1.

where Kb = sup{K(t) : 0 ≤ t ≤ b}, Mb = sup{M(t) : 0 ≤ t ≤ b}.
(H4) The impulsive functions Ik are continuous and there exist positive con-

stants βk such that ‖Ik(x)‖ ≤ βk, k = 1, 2, . . . ,m for each x ∈ X .
(H5) There exists a positive function p ∈ L1(J, [0,∞)) such that

‖F (t, φ)‖ := sup{‖v‖ : v ∈ F (t, φ)} ≤ p(t)Θ(‖φ‖B)

a.e. t ∈ J, φ ∈ B
where Θ : [0,∞)→ (0,∞) a continuous nondecreasing function.
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Theorem 3. Let φ ∈ B, If the assumptions (H1)–(H5) are satisfied, then the
system (1) has at least one solution on (−∞, b] provided that there exist a
constant N∗ with

(1−KbL1‖(−A)−β‖ −KbL1C1−βb
β/β)N∗

N1 +KbMΘ(N∗)
∫ b

0 p(s)ds
> 1, (4)

Where N1 = KbM‖g(0, φ(0))‖+MKb‖φ(0)‖+Mb‖φ‖B +MKb

∑m
k=1 βk.

Proof. Let Bb be the space of all function x : (−∞, b] → X such that x0 ∈ B
and the restriction x|J ∈ PC. For each x(t) ∈ Bb, let ‖ · ‖b be the seminorm in
Bb defined by

‖x‖b = ‖x0‖B + ‖x‖1 = ‖x0‖B + sup{‖x(s)‖ : 0 ≤ s ≤ b}
The multivalued map Φ : Bb → P(Bb) is defined by Φx the set of h ∈ Bb such

that

h(t) =

⎧⎪⎨⎪⎩
φ(t), if t ∈ (−∞, 0],
T (t)[φ(0)− g(0, φ(0))] +

∫ t

0 AT (t− s)g(s, xs)ds
+g(t, xt) +

∫ t

0 T (t− s)f(s)ds+
∑

0<tk<t
T (t− tk)Ik(x(t−k )), t ∈ J,

where f ∈ SF,x = {f ∈ L1(J,X) : f(t) ∈ F (t, xt), t ∈ J}, and Φ has a fixed
point which is then a solution of the system (1.1).

We define a function

y(t) =
{
φ(t), if t ∈ (−∞, 0],
T (t)φ(0), if t ∈ J,

Set x(t) = z(t) + y(t),−∞ < t ≤ b, It is clear that x satisfies (3) if and only
if z satisfies z0 = 0 and

z(t) = −T (t)g(0, φ(0)) + g(t, zt + yt) +
∫ t

0

AT (t− s)g(s, zs + ys)ds

+
∫ t

0

T (t− s)f(s)ds+
∑

0<tk<t

T (t− tk)Ik(z(t−k ) + y(t−k )),

where f ∈ SF,z = {f ∈ L1(J,X) : f(t) ∈ F (t, zt + yt), t ∈ J}
Let B0

b be the space of all function z : (−∞, b]→ X such that z0 ≡ 0 and the
restriction z|J ∈ PC. For each z(t) ∈ Bb, let ‖ · ‖b be the norm in B0

b defined by

‖z‖b = sup{‖z(s)‖ : 0 ≤ s ≤ b}
Thus (B0

b , ‖ · ‖b) is Banach space.
The multivalued map Φ1 : B0

b → P(B0
b) is defined by Φ1x the set of h0 ∈ Bb

such that

h0(t) =

⎧⎪⎨⎪⎩
0, if t ∈ (−∞, 0],
−T (t)g(0, φ(0)) +

∫ t

0 AT (t− s)g(s, zs + ys)ds+ g(t, zt + yt)
+
∫ t

0 T (t− s)f(s)ds+
∑

0<tk<t
T (t− tk)Ik(z(t−k ) + y(t−k )), t ∈ J,
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Step 1 Choose u0 = 0 and a set U is convex and open in B0
b .

Let λ ∈ (0, 1) and let x ∈ λΦ1x, Then exists f ∈ SF,z, such that

z(t) = λ
∫ t

0

T (t− s)f(s)ds+ λg(t, zt + yt) + λ
∫ t

0

AT (t− s)g(s, zs + ys)ds

−λT (t)g(0, φ(0)) + λ
∑

0<tk<t

T (t− tk)Ik(z(t−k ) + y(t−k )),

Then

‖z(t)‖ ≤M(‖g(0, φ(0))‖+
∫ t

0

p(s)Θ(‖zs + ys‖B)ds+
m∑

k=1

βk)

+L1‖(−A)−β‖‖zt + yt‖B + L1

∫ t

0

C1−β

(t− s)1−β
‖zs + ys‖B ds

Since
‖zt + yt‖B ≤ ‖zt‖B + ‖yt‖B

≤ Kb sup{‖z(s)‖ : 0 ≤ s ≤ t}+MKb‖φ(0)‖+Mb‖φ‖B
Set χ(t) = Kb sup{‖z(s)‖ : 0 ≤ s ≤ t} +MKb‖φ(0)‖ +Mb‖φ‖B, then the

functions χ(t) is nondecreasing in J ,
So

‖χ(t)‖ ≤ KbM(‖g(0, φ(0))‖+
∫ t

0

p(s)Θ(χ(s))ds+
m∑

k=1

βk)+MKb‖φ(0)‖+Mb‖φ‖B

+KbL1‖(−A)−β‖χ(t) +KbL1

∫ t

0

C1−β

(t− s)1−β
χ(s) ds

Consider the norm of the function χ(t), ‖χ‖ = sup{χ(t) : 0 ≤ t ≤ b}, There-
fore, we obtain the following inequality

(1 −KbL1‖(−A)−β‖ −KbL1C1−βb
β/β)‖χ‖

N1 +KbMΘ(‖χ‖) ∫ b

0 p(s)ds
≤ 1

Then by (4), there exists N∗ such that ‖χ‖ 
= N∗. Set U = {z ∈B0
b : ‖z‖b <

N∗}, From the choice of U , there is no z ∈ ∂U such that z ∈ λΦ1z for λ ∈ (0, 1).

Step 2 Φ1 has a close graph.
Let zn → z∗, hn

0 ∈ Φ1z
n and hn

0 → h∗0, we shall prove that h∗0 ∈ Φ1z
∗. Indeed,

If hn
0 ∈ Φ1z

n means that there exists fn ∈ SF,z(n) , such that

hn
0 (t) = −T (t)g(0, φ(0)) +

∫ t

0

AT (t− s)g(s, zn
s + ys)ds

+g(t, zn
t + yt) +

∫ t

0

T (t− s)fn(s)ds+
∑

0<tk<t

T (t− tk)Ik(zn(t−k ) + y(t−k )),
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We must prove that there exists f∗ ∈ SF,z∗ , such that

h∗0(t) = −T (t)g(0, φ(0)) +
∫ t

0

AT (t− s)g(s, z∗s + ys)ds+ g(t, z∗t + yt)

+
∫ t

0

T (t− s)f∗(s)ds+
∑

0<tk<t

T (t− tk)Ik(z∗(t−k ) + y(t−k )),

Clearly, we have∥∥∥{hn
0 (t) + T (t)g(0, φ(0))−

∫ t

0

AT (t− s)g(s, zn
s + ys)ds− g(t, zn

t + yt)

−
∑

0<tk<t

T (t− tk)Ik(zn(t−k ) + y(t−k ))
}
−
{
h∗0(t) + T (t)g(0, φ(0))

−
∫ t

0

AT (t−s)g(s, z∗s +ys)ds−g(t, z∗t +yt)−
∑

0<tk<t

T (t−tk)Ik(z∗(t−k )+y(t−k ))
}∥∥∥

→ 0, as n→∞,
Consider the linear and continuous operator K : L1(J,X)→ C(J,X) defined by

Kf(t) =
∫ t

0

T (t− s)f(s)ds

From Theorem 2, it follows that K ◦ SG is a closed graph operator, and

hn
0 (t) + T (t)g(0, φ(0))−

∫ t

0

AT (t− s)g(s, zn
s + ys)ds

−g(t, zn
t + yt)−

∑
0<tk<t

T (t− tk)Ik(zn(t−k ) + y(t−k )) ∈ K ◦ SF,z(n)

Since z(n) → z∗ and hn
0 → h∗0 , it follows from Theorem 2 that, there exist

f∗ ∈ SF,z∗ , such that

h∗0(t) = −T (t)g(0, φ(0)) +
∫ t

0

AT (t− s)g(s, z∗s + ys)ds+ g(t, z∗t + yt)

+
∫ t

0

T (t− s)f∗(s)ds+
∑

0<tk<t

T (t− tk)Ik(z∗(t−k ) + y(t−k )),

So we can conclude that Φ1 has closed graph.
We define two the maps. The map A : U→ B 0

b is defined by

h1(t) =
{

0, if t ∈ (−∞, 0],
−T (t)g(0, φ(0)) + g(t, zt + yt) +

∫ t

0
AT (t− s)g(s, zs + ys)ds,

(5)
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and C : U → P(B0
b) is defined by Cz the set h2(t) ∈ B0

b such that

h2(t) =
{

0 if t ∈ (−∞, 0],∫ t

0 T (t− s)f(s) ds+
∑

0<tk<t T (t− tk)Ik(z(t−k ) + y(t−k )),
(6)

Then Φ1 = A+ C.
Step 3 , we will prove that Φ1 is a condensing map.

It is easy to prove A and C maps bounded sets into bounded sets in B0
b.

A is a contraction on B0
b .

Let z1(t), z2(t) ∈ U , for h1(t) = Az1(t), h2(t) = Az2(t), by hypothesis (H3),
we have

‖h1(t)− h2(t)‖ ≤ L2{‖(−A)−β‖+
C1−βb

β

β
}Kb‖z1 − z2‖b

so
‖h1(t)− h2(t)‖b ≤ L0‖z1 − z2‖b,

Since L0 < 1 , A is a contraction map. Also it is obviously that the map A has
closed values.
C is convex for z ∈ U .
In fact, if h1

2(t), h2
2(t) belong to Cz, then exist f1, f2 ∈ SF,x such that

hi
2(t) =

∫ t

0

T (t− s)fi(s) ds+
∑

0<tk<t

T (t− tk)Ik(z(t−k ) + y(t−k ))

Since F (t, z) has convex valued, for 0 ≤ τ ≤ 1, [τf1 + (1 − τ)f2](t) belongs to
SF,x,

(τh1
2(t) + (1− τ)h2

2(t)) =
∑

0<tk<t

T (t− tk)Ik(z(t−k ) + y(t−k ))

+
∫ t

0

T (t− s)[τf1(s) + (1 − τ)f2(s))] ds

Therefore, (τh1
2(t) + (1 − τ)h2

2(t)) ∈ Cz and consequently Cz has convex values.
C maps bounded sets into equicontinuous sets in U .

Let z(t) ∈ U If h2(t) ∈ Cz(t), then exists f ∈ SF,z, such that, for each t ∈ J

h2(t) =
∫ t

0

T (t− s)f(s) ds+
∑

0<tk<t

T (t− tk)Ik(z(t−k ) + y(t−k ))

Let τ1, τ2 ∈ J, τ1 < τ2. Then we have

‖h2(τ2)− h2(τ1)‖ ≤
∫ τ2

τ1

‖T (τ2 − s)f(s)‖ds+
∑

τ1<tk<τ2

Mβk

+
{∫ τ1−ε

0

+
∫ τ1

τ1−ε

}
‖T (τ2 − s)− T (τ1 − s)‖‖f(s)‖ds
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+
∑

0<tk<τ1

‖T (τ2 − tk)− T (τ1 − tk)‖βk.

We see that ‖h2(τ2)−h2(τ1)‖ tends to zero as (τ2−τ1)→ 0 with ε sufficiently
small, Since T (t) is a strongly continuous operator and the compactness of T (t)
for t > 0 implies the continuity in the uniform operator topology. Hence, C maps
bounded sets into equicontinuous sets.

The equicontinuity for the cases τ1 < τ2 ≤ 0, or τ1 ≤ 0 ≤ τ2 ≤ b are similar.
Next we shall C maps U into a precompact set. Let 0 < t ≤ b be fixed and let

ε be a real number satisfying 0 < ε < t. For z ∈ U , we define

hε
2(t) = T (ε)

∫ t−ε

0

T (t− ε− s)f(s) ds

+T (ε)
∑

0<tk<t−ε

T (t− tk − ε)Ik(z(t−k ) + y(t−k ))

where f ∈ SF,x, Since T (t) is a compact operator, the set Yε(t) := {hε
2(t) : z ∈ U}

is precompact for every ε, 0 < ε < t. Also, for every z ∈ U , we have

‖h2(t)− hε
2(t)‖ ≤

∫ t

t−ε

‖T (t− s)‖‖f(s)‖ds+M
∑

t−ε<tk<t

βk

The right hand side of the above inequality tends to zero as ε→ 0. Since there
are precompact sets arbitrarily close to the set Y (t) := {h2(t) : z ∈ U}. Hence
the set Y (t) is precompact in X. By Arzelá-Ascoli theorem, we conclude that C
U → P(B0

b) is completely continuous.
These arguments enable us to conclude that Φ1 = A+C is a condensing map.
So, All of the conditions of Theorem 1 are satisfied. Therefore, the system (1)

has at least one solution.
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Finite Time Stability of Cohen-Grossberg
Neural Network with Time-Varying Delays

Dingguo Jiang

College of Water Conservancy and Hydropower Engineering
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Abstract. This paper considers the problem of finite time stability
(FTS) of the Cohen-Grossberg neural networks with or without delay.
Based on the Lyapunov function and linear matrix inequality (LMI)
technique, some delay-dependent and delay-independent criterions are
derived to guarantee finite-time stability. Finally, one example is given
to demonstrate the validity of the proposed methodology and to show
the differences between globally exponential stability and finite-time sta-
bility.

Keywords: Finite time stability, Lyapunov function, LMI, Time-varying
delay.

1 Introduction

In the past few decades, neural networks such as Hopfield neural network [1],
cellular neural network [2,3], Cohen-Grossberg neural networks [8-19] and bi-
directional associative memory neural network [20-22] have attracted the atten-
tion of many mathematicians, physicists, and computer scientists due to their
wide range of applications in, for example, signal processing, pattern recognition,
associative memory, and combinatorial optimization. Among them, the Cohen-
Grossberg neural network is an important one. In 1983, Cohen-Grossberg pro-
posed and studied a kind of neural network, which is now called Cohen-Grossberg
neural network(CGNN). It can be described by the ordinary differential equation
of the form:

ẋi(t) = αi(xi(t))[−ai(xi(t)) +
m∑

j=1

aijfj(xj(t)) + Ii(t)] (i = 1, . . . ,m) (1)

So many scholars have studied the stability of Cohen-Grossberg neural net-
works via Lyapunov stability theory and various inequalities and get a large
number of sufficient conditions. However, most of the results in this field relate
to stability defined over an infinite time interval. In many practical applications,
however, the main concern is the behavior of the system over a fixed finite time
interval. In this sense it is reasonable to define as stable a system whose state,
given some initial conditions, remains within prescribed bounds in the fixed time

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 522–531, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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interval, and as unstable a system which does not. In order to deal with this prob-
lem, Peter Dorato [4] presented the concept of finite time stability (FTS). Many
researchers[5,25] have studied the finite time stability problem of linear systems.
But fewer scholars[23,24] studied the finite time stability problem of nonlinear
systems.

Recently, LMI-based techniques have been successfully used to tackle various
stability problems for neural networks. The main advantage of the LMI-based
approaches is that the LMI stability conditions can be solved numerically using
the effective interior-point algorithm [3]. But fewer scholars[23,24] studied the
finite time stability problem of neural network systems. Thus, in this paper,
we shall consider the finite time stability system of (1) via LMI approach and
Lyapunov approach. Also we consider the Cohen-Grossberg neural networks with
delay described as the following form:

ẋi(t) = αi(xi(t))[−ai(xi(t))+
m∑

j=1

aijfj(xj(t))+
n∑

j=1

bijfj(xj(t− τj))+ Ii(t)] (2)

where i = 1, . . . ,m, m is the number of neurons in the network, xi denotes the
state variable associated with the neuron and ai is an appropriately behaved
function. The connection matrix A = (aij)m×m tells us how the neurons are
connected in the network and the activation functions fj shows how neurons
respond to each other. Where B = (bij)m×m indicate the strength of the neuron
interconnections within the network with time delay parameters τj .

The rest of this paper is organized as follows: in Section 2 we give some
Preliminaries and Lemmas; in Section 3 we will derive a sufficient condition to
ensure the equilibrium of system (1) is finite time stable; next, in Section 4 we
obtain a sufficient condition to ensure the equilibrium of system (2) is finite time
stable; we shall consider the Cohen-Grossberg network with time-varying delays
in Section 5; one example is given to illustrate the effectiveness of our results in
Section 6; finally, in Section 7 the concluding remarks are given.

2 Preliminaries and Lemmas

Throughout this paper,we need the following assumptions:
(H1) Functions αi(xi(t)) are bounded, positive and satisfy: 0 ≤ a−i ≤ αi(xi(t)

≤ a+i <∞.
(H2) Behaved functions ai(xi(t)) are bounded and continuous; furthermore

there exist exist γi > 0 i = 1, . . . ,m, such that xi(t)ai(xi(t)) ≥ γix
2
i (t).

(H3) Activation functions fi are bounded or globally Lipschitz continuous and
there exist Lipschitz constants σi such that (fi(µ)− fi(ν))(µ− ν) ≤ σi(µ− ν)2.

Throughout this letter, Let A(aij)m×m, B = (bij)m×m and Ii are continu-
ous functions on R. And a+ = max1≤i≤m{α+

i }, a− = max1≤i≤m{α−i }, Σ =
diag(σ1, . . . , σm), γm =min1≤i≤m{γi}, σM =max1≤i≤m{σi}, τ=max1≤j≤m{τj},
Γ = diag(γ1, . . . , γm). Define ‖A‖1 = max1≤j≤m

∑m
i=1 |aij | to be the matrix’s

1-norm. The initial condition associated with (1) is x(t) = x(0), for t ∈ R. The
initial condition associated with (2) is x(t) = φ(t), for t ∈ [−τ, 0].
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Definition 1. (FTS) System (1) is said to be finite time stable with respect to
(c1, c2, T ) (c1 < c2), if xT (0)x(0) ≤ c1 ⇒ xT (t)x(t) < c2, ∀t ∈ [0, T ].

Definition 2. (FTS) System (2) is said to be finite time stable with respect to
(c1, c2, T ) (c1 < c2), if supt∈[−τ,0] φ

T (t)φ(t) ≤ c1 ⇒ xT (t)x(t) < c2, ∀t ∈ [0, T ].

Lemma 1. For any vectors a, b ∈ Rn and any positive definite matrix Y ∈ Rn×n,
the following inequality holds 2aT b ≤ aTY a+ bTY −1b.

Lemma 2. For a symmetric matrix S = (Sij)2×2, the following conditions are
equivalent:

(i) S < 0,
(ii) S11 < 0 and S22 − ST

12S
−1
11 S12 < 0,

(iii) S22 < 0 and S11 − S12S
−1
22 S

T
12 < 0.

3 Finite Time Stable of CGNN Network without Delay

In this section, we shall consider the finite time stable of system (1) without delay.
Let x∗ = (x∗1), . . . , x

∗
m)T is the equilibrium of system (1) and x = (x1, . . . , xm)T

is an arbitrary solution of system (1). Then, by setting u = x − x∗ = (x1 −
x∗1, . . . , xm − x∗m), system (1) can be transformed into:

u̇i(t) = αi(ui(t))[−ai(ui(t)) +
n∑

j=1

aijgj(uj(t))] (i = 1, . . . ,m), (3)

where αi(ui(t)) = αi(xi(t) + x∗i ), ai(ui(t)) = ai(xi(t)) − ai(x∗i ), gj(uj(t)) =
fj(xj(t)) − fj(x∗j ). Let u(t) = (u1(t), . . . , um(t))T , A = (aij)m×n, a(u(t)) =
diag(a1(u1(t)), . . . , am(um(t))), α(u(t)) = diag(α1(u1(t)), . . . , αm(um(t))),
g(u(t)) = (g1(u1(t)), . . . , gm(um(t)))T , then (3) can be rewritten into the fol-
lowing vector form:

u̇(t) = α(u(t))[−a(u(t)) +Ag(u(t))]. (4)

Theorem 1.System (4) is FTS with respect to (c1, c2, T ) if there exists a diagonal
positive definite matrix matrices P > 0, a symmetric positive definite matrix
Y > 0 and a positive scalar α such that the following conditions hold:

Ω =
[−2PΓ +ΣTY Σ − αP ATP

PA −Y
]
< 0 (5)

and
eαa+T c1λmax(P )a+

λmin(P )a−
< c2 (6)

where P = diag(p1, . . . , pm).
Proof. Let us consider a function described as V (u(t))=2

∑m
i=1 pi

∫ ui(t)

0
s

αi(s)
ds.

Then, the time derivative of V (u(t)) along the solution of (3) gives

V̇ = 2
m∑

i=1

pi
u̇i(t)

αi(ui(t))
= 2

m∑
i=1

piui(t)[−ai(ui(t)) +
n∑

j=1

aijgj(uj(t))]
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≤ 2
m∑

i=1

[−piγiu
2
i (t) + piui(t)

n∑
j=1

aijgj(uj(t))]

≤ −2uT (t)PΓu(t) + 2uT (t)PAg(u(t)) − gT (u(t))Y g(u(t)) + uT (t)ΣTY Σu(t)

= (uT (t), gT (u(t)))Ω1

(
u(t)
g(u(t))

)
(7)

where

Ω1 =
[−2PΓ +ΣTY Σ ATP

PA −Y
]

(8)

According to

Ω = Ω1 +
[−αP 0

0 0

]
< 0 (9)

We have V̇ < αuT (t)Pu(t). According to the definition of Lyapunov function
V (u(t)), we can have:

1
a+
uT (t)Pu(t) ≤ 2

m∑
i=1

pi

ui(t)∫
0

s

αi(s)
ds = V (u(t)) (10)

Thus uT (t)Pu(t) ≤ a+V (u(t)) holds. Thereby we have

V̇ < αuT (t)Pu(t) ≤ αa+V (u(t)) (11)

Multiplying (11) by e−αa+t, it obtains that

e−αa+tV̇ − αa+e−αa+tV (u(t)) < 0 (12)

Furthermore

d

dt
(e−αa+tV ) < 0 (13)

Integrating (13) from 0 to t , with t ∈ [0, T ], we have e−αa+tV (u(t)) < V (u(0)).
Therefore

1
a+
λmin(P )uT (t)u(t) ≤ 1

a+
uT (t)Pu(t) ≤ V (u(t))

≤ 1
a−
uT (t)Pu(t) ≤ 1

a−
λmax(P )uT (t)u(t) (14)

So

1
a+
λmin(P )uT (t)u(t) ≤ eαa+tV (u(0)) ≤ e

αa+t

a−
λmax(P )uT (0)u(0)

≤ e
αa+T

a−
λmax(P )uT (0)u(0) (15)
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Namely

uT (t)u(t) ≤ e
αa+T c1λmax(P )a+

λmin(P )a−
(16)

Condition (6) implies, for all t ∈ [0, T ], uT (t)u(t) < c2. Therefore, the proof is
completed.

4 FTS of Neural Network System with Delay

In this section, we consider system (2) with delay on the basis of the proof
of Theorem 1. Let x∗ = (x∗1, . . . , x

∗
m)T is the equilibrium of system (2) and

x = (x1, . . . , xm)T is an arbitrary solution of system (2). Then, by setting u =
x− x∗ = (x1 − x∗1, . . . , xm − x∗m), and then system (1) can be transformed into:

u̇i(t) = αi(ui(t))[−ai(ui(t)) +
n∑

j=1

aijgj(uj(t)) +
n∑

j=1

bijgj(uj(t− τj))] (17)

where the definition of every parameter is similar to the definition in Section 3,
then (17) can be rewritten into the following vector form:

u̇(t) = α(u(t))[−a(u(t)) +Ag(u(t)) +Bg(u(t− τ))]. (18)

Theorem 2. System (17) is FTS with respect to (c1, c2, T ) if there exists a diago-
nal positive definite matrix matrices P > 0 and two symmetric positive definite
matrices Q > 0, Y > 0 and a positive scalar α such that the following conditions
hold:

Ω =

⎡⎣−2PΓ +ΣTY Σ − αP ATP BTP
PA Q− Y 0
PB 0 −Q

⎤⎦ < 0 (19)

and
eαa+T c1a

+(λmax(P ) + λmax(Q)λmax(ΣTΣ)a−τ)
a−λmin(P )

< c2 (20)

Proof. Let us consider another function described as

V (u(t)) = 2
m∑

i=1

pi

ui(t)∫
0

s

αi(s)
ds+

t∫
t−τ

gT (u(t))Qg(u(t))dt (21)

Then, the time derivative of V (u(t)) along the solution of (17) gives

V̇ = 2
m∑

i=1

pi
u̇i(t)

αi(ui(t))
+ gT (u(t))Qg(u(t))− gT (u(t− τ))Qg(u(t− τ))

= 2
m∑

i=1

piui(t)[−ai(ui(t)) +
n∑

j=1

aijgj(uj(t)) +
n∑

j=1

bijgj(uj(t− τj))]
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+gT (u(t))Qg(u(t))− gT (u(t− τ))Qg(u(t− τ))

≤ −2
m∑

i=1

piγiu
2
i (t) + 2uTPAg(u(t)) + 2uTPBg(u(t− τ))

+gT (u(t))Qg(u(t))− gT (u(t− τ))Qg(u(t− τ))
≤−2uT (t)PΓu(t)+2uT (t)PAg(u(t))+2uTPBg(u(t−τ))+gT (u(t))Qg(u(t))
−gT (u(t− τ))Qg(u(t− τ)) − gT (u(t))Y g(u(t)) + uT (t)ΣTY Σu(t)

= (uT (t), gT (u(t)))Ω1

(
u(t)
g(u(t))

)
(22)

Noting that the last inequality holds because gT(u(t))Y g(u(t)) ≤ uT (t)ΣTY Σu(t)
holds due to Y is positive definite and using assumption (H3). Thus

Ω1 =

⎡⎣−2PΓ +ΣTY Σ ATP BTP
PA Q− Y 0
PB 0 −Q

⎤⎦ (23)

Since

Ω = Ω1 +

⎡⎣−αP 0 0
0 0 0
0 0 0

⎤⎦ < 0, (24)

we have V̇ < αuT (t)Pu(t). According to the definition of Lyapunov function
V (u(t)), we can have:

1
a+
uT (t)Pu(t) ≤ 2

m∑
i=1

pi

ui(t)∫
0

s

αi(s)
ds ≤ V (u(t)) (25)

Thus uT (t)Pu(t) ≤ a+V (u(t)) holds. From (25),

V̇ < αuT (t)Pu(t) ≤ αa+V (u(t)) (26)

Using the same method in Theorem 1, we can derive

d

dt
(e−αa+tV ) < 0 (27)

Integrating (27) from 0 to t, with t ∈ [0, T ], we have

e−αa+tV (u(t)) < V (u(0)) (28)

Since

V (u(0)) = 2
m∑

i=1

pi

ui(0)∫
0

s

αi(s)
ds+

0∫
−τ

gT (u(t))Qg(u(t))dt
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≤ 2
m∑

i=1

pi

ui(0)∫
0

s

α−i
ds+ λmax(Q)

0∫
−τ

gT (u(t))g(u(t))dt

≤ 1
α−
uT (0)Pu(0) + λmax(Q)λmax(ΣTΣ)

0∫
−τ

uT (t)u(t)dt

≤ λmax(P )
α−

uT (0)u(0) + λmax(Q)λmax(ΣTΣ)c1τ

= c1[
λmax(P )
α−

+ λmax(Q)λmax(ΣTΣ)τ ] (29)

Therefore

1
a+
λmin(P )uT (t)u(t) ≤ 1

a+
uT (t)Pu(t) ≤ V (u(t)) (30)

Using the same method in Theorem 1, we obtain

1
a+
λmin(P )uTu ≤ eαa+tV (u(0)) ≤ c1[λmax(P )

α−
+ λmax(Q)λmax(ΣTΣ)τ ](31)

Namely

uT (t)u(t) ≤ eαa+tV (u(0)) ≤ c1a+[
λmax(P )
α−λmin(P )

+
λmax(Q)λmax(ΣTΣ)τ ]

λmin(P )
(32)

Condition (20) implies, for all t ∈ [0, T ], uT (t)u(t) < c2. Therefore, this complete
the proof.

5 FTS of Neural Networks with Time-Varying Delay

In this section, we consider the following system with time-varying delay on the
basis of the proof of Theorem 2. Now we only study the following vector form:

u̇(t) = α(u(t))[−a(u(t)) +Ag(u(t)) +Bg(u(t− τ(t)))] (33)

where the time-varying delay satisfy τ = supt∈R τj(t) and τ̇j(t) ≤ µ ≤ 1.
Theorem 3.System (33) is FTS with respect to (c1, c2, T ) if there exists a diagonal
positive definite matrix matrices P > 0 and two symmetric positive definite
matrices Q > 0, Y > 0 and a positive scalar α such that the following conditions
hold:

Ω =

⎡⎣−2PΓ +ΣTY Σ − αP ATP BTP
PA Q− Y 0
PB 0 −(1− µ)Q

⎤⎦ < 0 (34)

and
eαa+T c1a

+(λmax(P ) + λmax(Q)λmax(ΣTΣ)a−τ)
a−λmin(P )

< c2 (35)
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Proof. Let us consider another function described as

V (u(t)) = 2
m∑

i=1

pi

ui(t)∫
0

s

αi(s)
ds+

t∫
t−τ(t)

gT (u(t))Qg(u(t))dt (36)

Then, the time derivative of V (u(t)) along the solution of (33) gives

V̇ = 2
m∑

i=1

pi
u̇i

αi(ui)
+ gT (u)Qg(u)− (1− τ̇ (t))gT (u(t− τ(t)))Qg(u(t− τ(t)))

≤ 2
m∑

i=1

piui[−ai(ui) +
n∑

j=1

aijgj(uj) +
n∑

j=1

bijgj(uj(t− τj(t)))]

+gT (u)Qg(u)− (1− µ)gT (u(t− τ(t)))Qg(u(t− τ(t)))

≤ −2
m∑

i=1

piγiu
2
i (t) + 2uTPAg(u) + 2uTPBg(u(t− τ(t)))

+gT (u)Qg(u)− (1− µ)gT (u(t− τ(t)))Qg(u(t− τ(t)))
≤ −2uTPΓu+ 2uTPAg(u) + 2uTPBg(u(t− τ(t))) + gT (u)Qg(u)
−(1− µ)gT (u(t− τ(t)))Qg(u(t − τ(t))) − gT (u)Y g(u) + uTΣTY Σu

= (uT (t), gT (u(t)))Ω1

(
u(t)
g(u(t))

)
(37)

where

Ω1 =

⎡⎣−2PΓ +ΣTY Σ ATP BTP
PA Q− Y 0
PB 0 −(1− µ)Q

⎤⎦
In this section we used u instead of u(t) in order to the convenience of description.
The remaining part of the proof is similar to that of Theorem 2 and its omitted
here. This completes the proof.

It is easy to check that condition in Theorem 2 related to the matrix P and
Q is guaranteed by imposing the conditions λ1I ≤ P ≤ λ2, λ3I < Q < λ4I.
So inequality (6) can be converted to an LMI c1a+λ2 − e−αa+T c2a

−λ1 < 0.
Similarly inequality (20)and (35) can be converted to an LMI

c1a
+λ2 + c1a+λ4λmax(ΣTΣ)a−τ − e−αa+T c2a

−λ1 < 0

Form a computation point of view, it is important to notice that, once we have
fixed the value of α the feasibility of the conditions stated in Theorem 1-3 can
be turned into LMIs based feasibility problem.
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6 A Numerical Example

In this section, some numerical examples are presented to illustrate the feasibility
and effective of our results. Consider system (33) with parameters as:

α(u(t)) ≡ 1, a(u(t)) = −
(

4 0
0 6

)(
u1

u2

)
, A =

(
1 0
0 2

)
, B =

(
1 −2
−0.5 1

)
and c1 = 1, c2 = 9, f1(u) = f2(u) = 1

2 (|u+ 1| − |u − 1|), τ1(t) = τ2(t) = 1
2sin(t).

It is clear that

Γ =
(

4 0
0 6

)
, Σ =

(
1 0
0 1

)
, A =

(−1 0
0 −2

)
, B =

(−1 2
0.5 −1

)
We can get γm = 4, a− = 1, a+ = 1, σM = 1, ‖A‖1 = 2, ‖B‖1 = 3. Since
‖A‖1 +‖B‖1 > γma−

σM a+ , so the globally exponentially stable condition of Theorem
3 in [1] does not hold. However, using the conditions of Theorem 3 in our paper,
we found that the system is FTS with respect to (c1, c2, T ) for a maximum
Tmax = 0.8s, obtain for α = 1.2 with

P =
(

0.6777 0
0 0.6777

)
, Q =

(
1.1584 −0.1442
−0.1442 0.8537

)
, Y =

(
2.3338 −48.7926
48.7926 2.4563

)

7 Conclusions

This paper has studied the problems of finite time stability of the Cohen-
Grossberg neural networks with or without delay. Based on LMI technique, some
sufficient conditions are derived. Two example have been provided to illustrates
the proposed methodology and also to show that the differences between globally
exponential stability and finite-time stability.
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Abstract. In this paper, we discuss a class of impulsive evolution neu-
tral functional differential inclusions with infinite delay. The existence of
mild solutions of these evolution neutral differential systems is obtained
by using the new nonlinear alternatives of Leray-Schauder type.
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1 Introduction

In this paper, we shall disscuss the existence of mild solutions of some impulsive
evolution neutral functional differential inclusions with infinite delay in Banach
spaces described in the form⎧⎪⎨⎪⎩

d

dt
[x− g(t, xt)] ∈ A(t)x(t) + F (t, xt), t ∈ J, t 
= tk

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,
x0 = φ(t) ∈ B,

(1)

where J := [0, b], X denotes a separable Banach space with norm ‖ · ‖. A(t)
generates an evolution system, the function xt : (−∞, 0]→ X , xt(θ) = x(t+ θ),
belongs to some abstract phase space B defined axiomatically; g : J × B →X
and F : J × B → P(X); P(X) denotes the class of all nonempty subsets of
X . 0 = t0 < t1 < · · · < tm < tm+1 = b, Ik : X → X(k = 1, 2, . . . ,m),
∆x(tk) = x(t+k )− x(t−k ), x(t+k ) and x(t−k ) are respectively the right and the left
limit of x at t = tk, and x(t+k ) = x(tk).

The theory of impulsive differential and partial differential equations has be-
come an more important area of investigation in recent years; see the papers of
Erbe et al. [1], Rogochenko [3], Liu [4] and the survey papers of Rogochenko [2],
and the references therein.

The problem of the existence and controllability for differential inclusions has
been extensively studied [5]–[7]. Benchohra et al.[5] considered the existence of
solutions for functional and neutral functional inclusions. Li et al.[6] discussed
the controllability of impulsive functional systems. And Benchohra et al.[7] stud-
ied the controllability of semilinear evolution and neutral functional differential

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 532–541, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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inclusions. In this paper, we will give the existence of mild solutions for impul-
sive evolution neutral functional differential inclusions with infinite delay. Our
approach will be based on another nonlinear alternatives of Leray-Schauder type
for multivalued maps due to D.O’Regan.

The paper is organized as follows. In Section 2, we recall some necessary
preliminaries, In Section 3, we prove the existence.

2 Preliminaries

Let P(X) denote the class of all nonempty of subsets of X . Let Pbd,cl(X),
Pcp,cv(X),Pbd,cl,cv(X) andPcd(X) denote respectively the family of all nonempty
bounded-closed, compact-convex, bounded-closed-convex and compact-acyclic [8]
subsets of X .
F is called upper semicontinuous(shortly u.s.c.) onX , if for each x∗ ∈ X , the set

F (x∗) is nonempty, closed subset ofX , and if for each open set ofV ofX containing
F (x∗), there exists an open neighborhoodN ofx∗ such thatF (N) ⊆ V .F is said to
be completely continuous if F (V ) is relatively compact, for every bounded subset
V ⊆ X .

If the multivalued map F is completely continuous with nonempty compact val-
ues, then F is u.s.c. if and only if F has a closed graph,(i.e. xn → x∗, yn → y∗, yn ∈
F (xn) imply y∗ ∈ F (x∗)).

A point x0 ∈ X is called a fixed point of the multivalued map F if x0 ∈ F (x0).
A multivalued map F : J → Pbd,cl,cv(X) is said to be measurable if for each

x ∈ X , the function t �→ D(x, F (t)) is a measurable function on J .
Let {A(t) : t ∈ J} be a family of linear operators and satisfy:

(A1) The domain D(A(t)) = D of A(t) is dense in X and independent of t, A(t)
is a closed linear operator,

(A2) For each t ∈ J , the resolvent R(λ,A(t)) exists for all λ with Reλ ≤ 0 and

there exists k > 0 such that ‖R(λ,A(t))‖ ≤ k0
|λ|+ 1

,

(A3) There exist constantsH > 0 and 0 < α ≤ 1 such that for t, s, τ ∈ J , ‖(A(t)−
A(s))A−1(τ)‖ ≤ H |t− s|α.

Remark:
1. From (A3), we obtain ‖A(t)A−1(0)‖ ≤ H |b|α + 1 :=M0

2. Under the assumptions (A1)–(A3), there is a unique evolution system U(t, s)
on 0 ≤ s ≤ t ≤ b, such that, there exists a positive constant M̃ , ‖U(t, s)‖ ≤ M̃
for 0 ≤ s ≤ t ≤ b([11]).

Next, we define the set

PC([µ, τ ];X) =
{
ϕ : [µ, τ ]→ X : ϕ(·) is continuous at t 
= tk, ϕ(t+k ) = ϕ(tk)

and ϕ(t−k ) exist for k = 1, 2, . . . ,m.

}
The notation PC stands for the space formed by all functions u ∈ PC([0, b];X).
The norm ‖ · ‖PC of the space PC is defined by ‖ϕ‖PC = sup0≤s≤b ‖ϕ(s)‖. It is
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clear that (PC, ‖ · ‖PC) is a Banach space. We will employ an axiomatic definition
of the phase space B which is similar to that used in [12]. B will be a linear space of
functions mapping (−∞, 0] toX endowed with a seminorm ‖ · ‖B. We will assume
that B satisfies the following axioms:

(A) If x : (−∞, µ+σ]→ X,σ > 0 is such that xµ ∈ B and x|[µ,µ+σ] ∈ PC([µ, µ+
σ];X) ,then for every t ∈ [µ, µ+ σ] the following conditions hold:

(1) xt is in B,
(2) ‖x(t)‖ ≤ L‖xt‖B,
(3) ‖xt‖B ≤ K(t− µ) sup{‖x(s)‖ : µ ≤ s ≤ t}+M(t− µ)‖xµ‖B,
where L > 0 is a constant, K,M : [0,∞) → [0,∞), K is continuous, M is
locally bounded, and L,K,M are independent of x(·).

(B) The space B is complete.

Definition 1. Let F : X → Pbd,cl(X) be a multivalued map.Then F is called
a multivalued contraction if there exists a constant k ∈ (0, 1) such that for each
x, y ∈ X we have

H(F (x), F (y)) ≤ k‖x− y‖.
The constant k is called a contraction constant of F .

The consideration of this paper is based the another nonlinear alternatives of
Leray-Schauder type for multivalued maps due to D.O’Regan [9].

Lemma 1. [9] Let X be a Banach space with U an open,convex subset of X and
u0 ∈ U . Suppose

(a) F : U →Pcd(X) has closed graph, and
(b) F : U →Pcd(X) is condensing map with F (U) a subset of a bounded set inX

hold. Then either

(i) F has a fixed point in U ; or
(ii) There exist u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u) + (1− λ){u0}.
Definition 2. A multivalued map F : J × B→ Pbd,cl,cv(X) is called L1-
Carathéodory if

(i) F (t, x) is measurable with respect to t for each x ∈ B ,
(ii) F (t, x) is u.s.c. with respect to x for each t ∈ J , and
(iii) for each q > 0, there exists a function hq ∈ L1(J, [0,∞) such that

‖F (t, v)‖ := sup{‖g‖ : g ∈ F (t, v)} ≤ hq(t), a.e. t ∈ J
for all v ∈ B with ‖v‖B ≤ q.

We need the theorem due to Lasota and Opial [10].

Lemma 2. Let X be a Banach space, F be an L1-Carathéodory multivalued
map with SF,φ 
= ∅ where SF,φ := {g ∈ L1(J,X) : g(t) ∈ F (t, φ) a.e. t ∈
J}, for each fixed φ ∈ B, and K be a linear continuous map from L1(J,X) to
C(J,X). Then the operator K◦SF,φ : C(J,X) → Pcp,cv(C(J,X)) is a closed
graph operator in C(J,X)× C(J,X).
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3 Main Result

Before stating and proving our main result, we give first the definition of mild
solution.

Definition 3. A function x : (−∞, b] → X is called a mild solution of the
system(1) if x0 = φ ∈ B , x|J ∈ PC and for each s ∈ [0, t), the function
U(t, s)A(s)g(s, xs) is integrable such that

x(t) = U(t, 0)[φ(0)− g(0, φ)] + g(t, xt) +
∫ t

0

U(t, s)A(s)g(s, xs)ds

+
∫ t

0

U(t, s)f(s)ds+
∑

0<tk<t

U(t, tk)Ik(x(t−k )), t ∈ J.
(2)

where f ∈ SF,x = {f ∈ L1(J,X) : f(t) ∈ F (t, xt), t ∈ J}.
We consider the following assumptions in the sequel

(H1) The multivalued map F (t, x) is an L1-Carathéodory multivalued map and
has compact and convex values for each (t, x) ∈ J × B.

(H2) The impulsive functions Ik are continuous and there exist positive constants
βk such that ‖Ik(x)‖ ≤ βk, k = 1, 2, . . . ,m for each x ∈ X .

(H3) There exist constants c1, c2, L0 > 0 such that A(0)g is continuous, and
(i) ‖A(0)g(t, ψ)‖ ≤ c1‖ψ‖B + c2, (t, x) ∈ J × B,
(ii) ‖A(0)g(t, ψ1)−A(0)g(t, ψ2)‖ ≤ L0‖ψ1 − ψ2‖B, t ∈ J, ψ1, ψ2 ∈ B, with

‖A−1(0)‖L0Kb + M̃M0KbL0b < 1,

where Kb = sup{K(t) : 0 ≤ t ≤ b}, Mb = sup{M(t) : 0 ≤ t ≤ b}.
(H4) There exists a positive function p ∈ L1(J, [0,∞)) such that

‖F (t, φ)‖ := sup{‖v‖ : v ∈ F (t, φ)} ≤ p(t)Θ(‖φ‖B), a.e. t ∈ J, φ ∈ B

where Θ : [0,∞)→ (0,∞) a continuous nondecreasing function.

Theorem 1. Let φ ∈ B, If the assumptions (H1)–(H4) are satisfied, then the
system (1) has at least one solution on (−∞, b] provided that there exist a
constant N∗ with

(1 − c1Kb‖A−1(0)‖ −KbM̃M0bc1)‖χ‖
N1 +KbM̃Θ(‖χ‖) ∫ b

0
p(s)ds

> 1, (3)

Where N1=KbM̃‖A−1(0)‖(c1‖φ‖B+c2)+Kb‖A−1(0)‖c2+Mb‖φ‖B+KbM̃‖φ(0)‖
+KbM̃M0c2b+KbM̃

∑m
k=1 βk.

Proof. Let Bb be the space of all function x : (−∞, b] → X such that x0 ∈ B
and the restriction x|J ∈ PC. For each x(t) ∈ Bb, let ‖ · ‖b be the seminorm in
Bb defined by ‖x‖b = ‖x0‖B + sup{‖x(s)‖ : 0 ≤ s ≤ b}.
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The multivalued map Φ : Bb → P(Bb) is defined by Φx the set of h ∈ Bb such
that

h(t) =

⎧⎪⎨⎪⎩
φ(t), if t ∈ (−∞, 0],
U(t, 0)[φ(0)− g(0, φ)] + g(t, xt) +

∫ t

0
U(t, s)A(s)g(s, xs)ds

+
∫ t

0
U(t, s)f(s)ds+

∑
0<tk<t

U(t, tk)Ik(x(t−k )), t ∈ J,

where f ∈ SF,x = {f ∈ L1(J,X) : f(t) ∈ F (t, xt), t ∈ J}, and Φ has a fixed
point which is then a solution of the system (1).

We define a function

y(t) =
{
φ(t), if t ∈ (−∞, 0],
U(t, 0)φ(0), if t ∈ J.

Set x(t) = z(t) + y(t),−∞ < t ≤ b, It is clear that x satisfies (2) if and only
if z satisfies z0 = 0 and

z(t) = −U(t, 0)g(0, φ) + g(t, zt + yt) +
∫ t

0

U(t, s)A(s)g(s, zs + ys)ds

+
∫ t

0

U(t, s)f(s)ds+
∑

0<tk<t

U(t, tk)Ik(z(t−k ) + y(t−k )),

where f ∈ SF,z = {f ∈ L1(J,X) : f(t) ∈ F (t, zt + yt), t ∈ J}
Let B0

b be the space of all function z : (−∞, b]→ X such that z0 ≡ 0 and the
restriction z|J ∈ PC. For each z(t) ∈ Bb, let ‖ · ‖b be the norm in B0

b defined by

‖z‖b = sup{‖z(s)‖ : 0 ≤ s ≤ b}

Thus (B0
b , ‖ · ‖b) is Banach space.

The multivalued map Φ1 : B0
b → P(B0

b) is defined by Φ1z the set of h0 ∈ Bb

such that

h0(t) =

⎧⎪⎨⎪⎩
0, if t ∈ (−∞, 0],
−U(t, 0)g(0, φ) + g(t, zt + yt) +

∫ t

0 U(t, s)A(s)g(s, zs + ys)ds
+
∫ t

0 U(t, s)f(s)ds+
∑

0<tk<t
U(t, tk)Ik(z(t−k ) + y(t−k )), t ∈ J,

Step 1. Choose u0 = 0 and a set U is convex and open in B0
b.

Let λ ∈ (0, 1) and let u ∈ λΦ1u, Then exists f ∈ SF,u, such that

u(t) = −λU(t, 0)g(0, φ) + λg(t, ut + yt) + λ
∫ t

0

U(t, s)A(s)g(s, us + ys)ds

+λ
∫ t

0

U(t, s)f(s)ds+ λ
∑

0<tk<t

U(t, tk)Ik(u(t−k ) + y(t−k )),
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Then

‖u(t)‖ ≤ M̃‖A−1(0)‖(c1‖φ‖B + c2) + ‖A−1(0)‖(c1‖ut + yt‖B + c2)

+M̃M0

∫ t

0

(c1‖us+ys‖B+c2) ds+M̃
m∑

k=1

βk + M̃
∫ t

0

p(s)Θ(‖us+ys‖B) ds

And since

‖ut + yt‖B ≤ Kb sup{‖u(s)‖ : 0 ≤ s ≤ t}+Mb‖φ‖B +KbM̃‖φ(0)‖,

set χ(t) = Kb sup{‖u(s)‖ : 0 ≤ s ≤ t} +Mb‖φ‖B + KbM̃‖φ(0)‖, then the
functions χ(t) is nondecreasing in J ,

So

χ(t) ≤ KbM̃‖A−1(0)‖(c1‖φ‖B + c2) +Kb‖A−1(0)‖(c1χ(t) + c2) +Mb‖φ‖B

+KbM̃‖φ(0)‖+KbM̃M0

∫ t

0

(c1χ(s)+c2) ds+KbM̃

m∑
k=1

βk +KbM̃

∫ t

0

p(s)Θ(χ(s)) ds

Consider the norm of the function χ(t), ‖χ‖ = sup{χ(t) : 0 ≤ t ≤ b}, There-
fore, we obtain the following inequality

(1− c1Kb‖A−1(0)‖ −KbM̃M0bc1)‖χ‖
N1 +KbM̃Θ(‖χ‖) ∫ b

0
p(s)ds

≤ 1

Then by (3), there exists N∗ such that ‖χ‖ 
= N∗. Set U = {u ∈B0
b : ‖u‖b <

N∗}, From the choice of U , there is no u ∈ ∂U such that u ∈ λΦ1u for λ ∈ (0, 1).

Step 2. Φ1 has a close graph.
Let zn → z∗, hn

0 ∈ Φ1z
n and hn

0 → h∗0, we shall prove that h∗0 ∈ Φ1z
∗. Indeed,

If hn
0 ∈ Φ1z

n means that there exists fn ∈ SF,z(n) , such that

hn
0 (t) = −U(t, 0)g(0, φ) +

∫ t

0

U(t, s)A(s)g(s, zn
s + ys)ds+ g(t, zn

t + yt)

+
∫ t

0

U(t, s)fn(s)ds+
∑

0<tk<t

U(t, tk)Ik(zn(t−k ) + y(t−k )),

We must prove that there exists f∗ ∈ SF,z∗ , such that

h∗0(t) = −U(t, 0)g(0, φ) +
∫ t

0

U(t, s)A(s)g(s, z∗s + ys)ds+ g(t, z∗t + yt)

+
∫ t

0

U(t, s)f∗(s)ds+
∑

0<tk<t

U(t, tk)Ik(z∗(t−k ) + y(t−k )),
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Clearly, we have∥∥∥{hn
0 (t) + U(t, 0)g(0, φ)−

∫ t

0

U(t, s)A(s)g(s, zn
s + ys)ds− g(t, zn

t + yt)

−
∑

0<tk<t

U(t, tk)Ik(zn(t−k ) + y(t−k ))
}
−
{
h∗0(t) + U(t, 0)g(0, φ)

−
∫ t

0

U(t, s)A(s)g(s, z∗s +ys)ds−g(t, z∗t +yt)−
∑

0<tk<t

U(t, tk)Ik(z∗(t−k )+y(t−k ))
}∥∥∥

→ 0, as n→∞,
Consider the linear and continuous operator K : L1(J,X)→ C(J,X) defined by

Kf(t) =
∫ t

0

U(t, s)f(s)ds

From Lemma 2, it follows that K ◦ SF is a closed graph operator, and

hn
0 (t) + U(t, 0)g(0, φ)−

∫ t

0

U(t, s)A(s)g(s, zn
s + ys)ds

−g(t, zn
t + yt)−

∑
0<tk<t

U(t, tk)Ik(zn(t−k ) + y(t−k )) ∈ K ◦ SF,z(n)

Since z(n) → z∗ and hn
0 → h∗0 , it follows from Lemma 2 that , there exist

f∗ ∈ SF,z∗ , such that

h∗0(t)=−U(t, 0)g(0, φ)+
∫ t

0

U(t, s)A(s)g(s, z∗s +ys)ds+g(t, z∗t +yt)+
∫ t

0

U(t, s)f∗(s)ds

+
∑

0<tk<t

U(t, tk)Ik(z∗(t−k ) + y(t−k )),

So we can conclude that Φ1 has closed graph.
We define two the maps. The map A : U→ B 0

b is defined by

h1(t) =
{

0, if t ∈ (−∞, 0],
−U(t, 0)g(0, φ) + g(t, zt + yt) +

∫ t

0 U(t, s)A(s)g(s, zs + ys)ds, t ∈ J,
(4)

and C : U → P(B0
b) is defined by Cz the set h2(t) ∈ B0

b such that

h2(t) =
{

0 if t ∈ (−∞, 0],∫ t

0 U(t, s)f(s) ds+
∑

0<tk<t U(t, tk)Ik(z(t−k ) + y(t−k )), t ∈ J (5)

Then Φ1 = A+ C.
Step 3. A is a contraction on B0

b.
It is easy to prove A and C maps bounded sets into bounded sets in B0

b.
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Let z1(t), z2(t) ∈ U , for h1(t) = Az1(t), h2(t) = Az2(t), by hypothesis (H3),
we have

‖h1(t)− h2(t)‖ ≤[
‖A−1(0)‖L0Kb + M̃M0L0Kbb

]
‖z1 − z2‖b

By the assumption (H3) , A is a contraction map. Also it is obviously that the
map A has closed values.

Step 4. C is convex for z ∈ U .
In fact, if h1

2(t), h
2
2(t) belong to Cz, then exist f1, f2 ∈ SF,x such that

hi
2(t) =

∫ t

0

U(t, s)fi(s) ds+
∑

0<tk<t

U(t, tk)Ik(z(t−k ) + y(t−k ))

Since F (t, z) has convex valued, for 0 ≤ τ ≤ 1, [τf1 + (1 − τ)f2](t) belongs to
SF,x,

(τh1
2(t) + (1− τ)h2

2(t)) =
∑

0<tk<t

U(t, tk)Ik(z(t−k ) + y(t−k ))

+
∫ t

0

U(t, s)[τf1(s) + (1− τ)f2(s))] ds

Therefore, (τh1
2(t) + (1 − τ)h2

2(t)) ∈ Cz and consequently Cz has convex values.

Step 5. C maps bounded sets into equicontinuous sets in U .
Let z(t) ∈ U If h2(t) ∈ Cz(t), then exists f ∈ SF,z, such that, for each t ∈ J

h2(t) =
∫ t

0

U(t, s)f(s) ds+
∑

0<tk<t

U(t, tk)Ik(z(t−k ) + y(t−k ))

Let τ1, τ2 ∈ J, τ1 < τ2. Then we have

‖h2(τ2)− h2(τ1)‖ ≤
∫ τ2

τ1

‖U(τ2, s)f(s)‖ds+
∑

τ1<tk<τ2

M̃βk

+
{∫ τ1−ε

0

+
∫ τ1

τ1−ε

}
‖U(τ2, s)−U(τ1, s)‖‖f(s)‖ds+

∑
0<tk<τ1

‖U(τ2, tk)−U(τ1, tk)‖βk.

We see that ‖h2(τ2)−h2(τ1)‖ tends to zero as (τ2−τ1)→ 0 with ε sufficiently
small, Since U(t, s) is a strongly continuous operator and the compactness of
U(t, s) for t > 0 implies the continuity in the uniform operator topology. Hence,
C maps bounded sets into equicontinuous sets.

The equicontinuity for the cases τ1 < τ2 ≤ 0, or τ1 ≤ 0 ≤ τ2 ≤ b are similar.
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Step 6. Next we shall C maps U into a precompact set.
Let 0 < t ≤ b be fixed and let ε be a real number satisfying 0 < ε < t. For

z ∈ U , we define

hε
2(t) =

∫ t−ε

0

U(t, ε+ s)U(ε+ s, s)f(s) ds+
∫ t

t−ε

U(t, s)f(s) ds

+
∑

0<tk<t−ε

U(t− tk)Ik(z(t−k ) + y(t−k ))

where f ∈ SF,x, Since U(t, s) is a compact operator, the set Yε(t) := {hε
2(t) : z ∈

U} is precompact for every ε, 0 < ε < t. Also, for every z ∈ U , we have

‖h2(t)− hε
2(t)‖ ≤

∫ t

t−ε

‖U(t, s)‖‖f(s)‖ds+ M̃
∑

t−ε<tk<t

βk

The right hand side of the above inequality tends to zero as ε→ 0. Since there
are precompact sets arbitrarily close to the set Y (t) := {h2(t) : z ∈ U}. Hence
the set Y (t) is precompact in X. By Arzelá-Ascoli theorem, we conclude that C
U → P(B0

b) is completely continuous.
By step 5 and 6, we conclude that Φ1 = A+ C is a condensing map.
So, All of the conditions of Lemma 1 are satisfied. Therefore, the system (1)

has at least one solution.
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Abstract. In this paper, the passivity is investigated for neural net-
works with time-varying delays of neutral type and generalized activa-
tion functions. By using Lyapunov method, Newton-Leibniz formulation
and linear matrix inequality (LMI) technique, several delay-independent
sufficient conditions in LMI are obtained to guarantee the passivity of the
addressed neural networks. The proposed passivity criteria do not require
the monotonicity of the activation functions and the differentiability of
the time-varying delays, which means that our results generalize and
further improve those in the earlier publications. An example is given to
show the effectiveness and less conservatism of the obtained conditions.

Keywords: Passivity, Neural networks, Time-varying delays, Neutral
type.

1 Introduction

In the past few years, various classes of neural networks have been increasingly
studied due to their practical importance and successful applications in many
areas such as combinatorial optimization, signal processing and communication
[1]-[4]. These applications greatly depend on the stability of the underlying neural
networks [5]. As is well known, time delay may occur in the process of informa-
tion storage and transmission in neural networks. In electronic implementation
of neural networks, the time delay is often time-variant, and even varies dramat-
ically with time because of the finite switch speed of amplifiers and faults in the
electrical circuits. Up to now, the stability analysis for delayed neural networks
has attracted considerable attention, and a large amount of results have been
available in the literature, see [1]-[15] and the references therein for some recent
publications.

On the other hand, the passivity theory is another effective tool to the sta-
bility of nonlinear system [16]. The main idea of passivity theory is that the
passive properties of system can keep the system internal stability [17]. Thus,
the passivity theory has received a lot of attention from the control community
since 1970s [18]. Recently, the passivity theory for delayed neural networks was
investigated, some criteria checking the passivity were provided for certain or

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 542–549, 2009.
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uncertain neural networks with time-varying delays, see [19]-[21] and references
therein. It is worth pointing out that, the given criteria in [19]-[21] have been
based on the following assumptions: 1) the time-varying delays are continuously
differentiable; 2) the derivative of time-varying delay is bounded and is smaller
than one; and 3) the activation functions are bounded and monotonically nonde-
creasing. However, time delays can occur in an irregular fashion, and sometimes
the time-varying delays are not differentiable. In such a case, the methods devel-
oped in [19]-[21] may be difficult to be applied, and it is therefore necessary to
further investigate the passivity problem of neural networks with time-varying
delays under milder assumptions. To the best of our knowledge, few authors have
considered the passivity problem for neural networks with time-varying delays
of neutral type as well as generalized activation functions.

Motivated by the above discussions, the objective of this paper is to study
the passivity of neural networks with time-varying delays of neutral type as well
as generalized activation functions by employing a combination of Lyapunov
method, Newton-Leibniz formulation and the free-weighting matrix technique.
The obtained sufficient conditions require neither the differentiability of time-
varying delays nor the monotony of the activation functions, and are expressed
in terms of LMIs, which can be checked numerically using the effective LMI
toolbox in MATLAB. An example is given to show the effectiveness and less
conservatism of the proposed criterion.

2 Problem Formulation and Preliminaries

In this paper, we consider the following neural network of neutral type:
d

dt
(x(t)− Cx(t − τ(t))) = −Dx(t) +Af(x(t)) +Bf(x(t− τ(t))) + u(t) (1)

for t ≥ 0, where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the state vector of the
network at time t, n corresponds to the number of neurons; D = diag(d1, d2, · · · ,
dn) is a positive diagonal matrix, A = (aij)n×n, B = (bij)n×n and C = (cij)n×n

are the interconnection weight matrices; f(x(t)) = (f1(x1(t)), f2(x2(t)), · · · ,
fn(xn(t)))T denotes the neuron activation at time t; u(t) = (u1(t), u2(t), · · · ,
un(t))T ∈ Rn is a varying external input vector; τ(t) > 0 is the time-varying
delay, and is assumed to satisfy 0 ≤ τ(t) ≤ τ , where τ is constant.

The initial condition associated with model (1) is given by

x(s) = φ(s), s ∈ [−τ, 0]. (2)

Let x(t, φ) denote the state trajectory of model (1) from the above initial
condition and x(t, 0) is the corresponding trajectory with zero initial condition.

Throughout this paper, we make the following assumption:
(H).([6]) For any j ∈ {1, 2, · · · , n}, fj(0) = 0 and there exist constants F−

j and
F+

j such that

F−
j ≤

fj(α1)− fj(α2)
α1 − α2

≤ F+
j

for all α1 
= α2.
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Definition 1. ([19]) System (1) is called globally passive if there exists a scalar
γ > 0 such that

2
∫ tp

0

fT (x(s))u(s)ds ≥ −γ
∫ tp

0

uT (s)u(s)ds

for all tp ≥ 0 and for all x(t, 0).

To prove our result, the following lemma is necessary.

Lemma 1. ([14]) For any constant matrix W ∈ Rm×m, W > 0, scalar 0 <
h(t) < h, vector function ω : [0, h] → Rm such that the integrations concerned
are well defined, then(∫ h(t)

0

ω(s)ds
)T

W
(∫ h(t)

0

ω(s)ds
)
≤ h(t)

∫ h(t)

0

ωT (s)Wω(s)ds.

3 Main Results

For presentation convenience, in the following, we denote

F1 = diag(F−
1 F

+
1 , · · · , F−

n F
+
n ), F2 = diag(

F−
1 + F+

1

2
, · · · , F

−
n + F+

n

2
),

Theorem 1. Under assumptions (H), model (1) is passive if there exist a scalar
γ > 0, a symmetric positive definite matrices P , two positive diagonal matrices
L and S, and matrices M , N and W such that the following LMI holds:

Ω =

⎡⎢⎢⎢⎢⎢⎢⎣
Ω1 PA+ F2L PB P W −MT DPC +N −MT

∗ −L 0 −I 0 ATPC
∗ ∗ −S 0 0 F2S +BTPC
∗ ∗ ∗ −γI 0 PC
∗ ∗ ∗ ∗ −W −WT −N −WT

∗ ∗ ∗ ∗ ∗ −F1S −N −NT

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (3)

where Ω1 = −PD −DP − F1L+M +MT .

Proof. Consider the following Lyapunov functional as

V (t) = (x(t)− Cx(t − τ(t)))TP (x(t) − Cx(t− τ(t))), (4)

Calculating the time derivative of V (t) along the trajectories of model (1), we
obtain

dV (t)
dt

= xT (t)(−PD −DP )x(t) + 2xT (t)PAf(x(t))

+2xT (t)PBf(x(t − τ(t))) + 2xT (t)Pu(t)
+2xT (t− τ(t))CTPDx(t) − 2xT (t− τ(t))CTPAf(x(t))
−2xT (t− τ(t))CTPBf(x(t− τ(t))) − 2xT (t− τ(t))CTPu(t). (5)
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From assumption (H), we have(
fi(xi(t)) − F−

i xi(t)
)(
fi(xi(t))− F+

i xi(t)
)
≤ 0, i = 1, 2, · · · , n,

which are equivalent to[
xi(t)
fi(xi(t))

]T
[
F−

i F
+
i eie

T
i −F−

i +F+
i

2 eie
T
i

−F−
i +F+

i

2 eie
T
i eie

T
i

][
xi(t)
fi(xi(t))

]
≤ 0, i = 1, 2, · · · , n,

where er denotes the unit column vector having 1 element on its rth row and
zeros elsewhere. Let

L = diag{l1, l2, · · · , ln}, S = diag{s1, s2, · · · , sn},

then

n∑
i=1

li

[
xi(t)
fi(xi(t))

]T
[
F−

i F
+
i eie

T
i −F−

i +F+
i

2 eie
T
i

−F−
i +F+

i

2 eie
T
i eie

T
i

] [
xi(t)
fi(xi(t))

]
≤ 0,

that is [
x(t)
f(x(t))

]T [
F1L −F2L
−F2L L

] [
x(t)
f(x(t))

]
≤ 0. (6)

Similarly, one has[
x(t− τ(t))
f(x(t− τ(t)))

]T [
F1S −F2S
−F2S S

] [
x(t− τ(t))
f(x(t− τ(t)))

]
≤ 0. (7)

From Newton-Leibniz formulation x(t) − x(t − τ(t)) − ∫ t

t−τ(t)
ẋ(s)ds = 0, we

have

0 = 2
(
x(t)− x(t− τ(t)) −

∫ t

t−τ(t)

ẋ(s)ds
)T

×
(
Mx(t) +Nx(t− τ(t)) +W

∫ t

t−τ(t)

ẋ(s)ds
)
. (8)

It follows from (5)-(8) that

dV (t)
dt

− 2fT (x(t))u(t) − γuT (t)u(t)

≤ xT (t)(−PD −DP )x(t) + 2xT (t)PAf(x(t))
+2xT (t)PBf(x(t− τ(t))) + 2xT (t)Pu(t)
+2xT (t− τ(t))CTPDx(t)− 2xT (t− τ(t))CTPAf(x(t))
−2xT (t− τ(t))CTPBf(x(t− τ(t))) − 2xT (t− τ(t))CTPu(t)
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−
[
x(t)
f(x(t))

]T [
F1L −F2L
−F2L L

] [
x(t)
f(x(t))

]
−
[
x(t− τ(t))
f(x(t− τ(t)))

]T [
F1S −F2S
−F2S S

] [
x(t − τ(t))
f(x(t− τ(t)))

]
+2

(
x(t)− x(t− τ(t)) −

∫ t

t−τ(t)

ẋ(s)ds
)T

×
(
Mx(t) +Nx(t− τ(t)) +W

∫ t

t−τ(t)

ẋ(s)ds
)

−2fT (x(t))u(t) − γuT (t)u(t)
= αT (t)Ωα(t), (9)

where

α(t) =
(
xT (t), fT (x(t)), fT (x(t− τ(t))), uT (t),

∫ t

t−τ(t)

ẋ(s)ds, xT (t− τ(t))
)T

.

We get from (3) and (9) that

dV (t)
dt

− 2fT (x(t))u(t) − γuT (t)u(t) ≤ 0. (10)

From (10) and the definition of V (t), we have

2
∫ tp

0

fT (x(s))u(s)ds ≥ −γ
∫ tp

0

uT (s)u(s)ds

for all tp ≥ 0. The proof is completed.

When C = 0, model (1) turns to the following neural network:

dx(t)
dt

= −Dx(t) +Af(x(t)) +Bf(x(t− τ(t))) + u(t) (11)

For model (11), we have the following result.

Corollary 1. Under assumptions (H), model (1) is passive if there exist a scalar
γ > 0, a symmetric positive definite matrices P , two positive diagonal matrices
L and S, and matrices M , N and W such that the following LMI holds:

Π =

⎡⎢⎢⎢⎢⎢⎢⎣
Ω1 PA+ F2L PB P W −MT N −MT

∗ −L 0 −I 0 0
∗ ∗ −S 0 0 F2S
∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ −W −WT −N −WT

∗ ∗ ∗ ∗ ∗ −F1S −N −NT

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (12)

where Π1 = −PD −DP − F1L+M +MT .
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Remark 1. Assumption (H) was first proposed in [6] and [7]. The constants F−
j

and F+
j (i = 1, 2, · · · , n) in assumption (H) are allowed to be positive, negative

or zero. Hence, Assumption (H) is weaker than the assumption in [19]-[21]. In
addition, the conditions in [19]-[21] that the time-varying delay is differentiable
and the derivative is smaller than one have been removed in this paper.

4 An Example

Consider a two-neuron neural network (11), where

D =
[
3.4 0
0 2.8

]
, A =

[−0.1 −0.2
0 0.2

]
, B =

[
0.1 0
0.3 −0.1

]
,

f1(z) = tanh(0.2z), f2(z) = tanh(−0.1z), τ(t) = 5| sin t|.
It can be verified that assumption (H) is satisfied, and F1 = 0, F2 = diag

{0.1,−0.05}.
By the Matlab LMI Control Toolbox, we find a solution to the LMI in (12)

as follows:

P =
[

0.0025 −0.0007
−0.0007 0.0002

]
, L =

[
0.0133 0

0 0.0049

]
,

S = 10−5

[
0.0731 0

0 0.2975

]
, M = 107

[−1.0257 −2.2472
2.3666 −4.7193

]
,

N =W = 107

[
1.0257 2.2472
−2.3666 4.7193

]
, γ = 1.5682× 108.

Therefore, by Corollary 1, we know that the considered model (11) is passive.
It should be pointed out that the conditions in [19]-[21] can not be applied to
this example since it requires the differentiability of the time-varying delay.

5 Conclusions

In this paper, the passivity has been investigated for neural networks with time-
varying delays of neutral type as well as generalized activation functions. By
employing a combination of Lyapunov method, Newton-Leibniz formulation and
LMI technique, a new delay-independent criterion for the passivity of the ad-
dressed neural networks has been established in terms of LMI, which can be
checked numerically using the effective LMI toolbox in MATLAB. The obtained
results generalize and improve the earlier publications, and remove the tradi-
tional assumptions on the differentiability of the discrete time-varying delay and
the boundedness of its derivative. An example has been provided to demonstrate
the effectiveness and less conservatism of the proposed criterion.
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Abstract. In the paper, adaptive exponential synchronization scheme for a class 
of reaction-diffusion neural networks with continuously distributed delays and 
stochastic influence are considered. An adaptive synchronization controller is 
derived to achieve the exponential synchronization of the drive-response struc-
ture of neural networks. Lyapunov stability theory, stochastic Fubini theorem 
and semimartingale theorem are used in our approach. It is shown that the ap-
proaches developed here extend and improve the ideas presented in recent  
literatures. 

Keywords: Stochastic neutral networks, Delays, Exponential synchronization. 

1   Introduction 

Chaos synchronization has attracted increasing attention in both theory and applica-
tions since its introduction by Pecora and Carroll in 1990 [1,2]. Research on the syn-
chronization of coupled chaotic systems has received considerable attention in the last 
decade due to its potential applications in many different areas including secure 
communication, chaos generators design, chemical reactions, biological systems, 
information science. A wide variety of approaches have been proposed for the syn-
chronization of chaotic systems which include impulsive control method [3,4], adap-
tive design control [5,6], feedback control [7-9], and so on. Since artificial neural 
networks can exhibit some complicated dynamics and even chaotic behaviors, syn-
chronization of chaotic neural networks has also become an important area of study. 
Nowadays, some authors pay attention to the synchronization of neural networks [10-
21].However, strictly speaking, diffusion effects cannot be avoided in the neural net-
works when electrons are moving in asymmetric electromagnetic fields. So we must 
consider that the activations vary in space as well as in time. In [15-18], the stability 
of neural networks with diffusion terms, which are expressed by partial differential 
equations, has been considered. In this paper we will further consider the stochastic 
influence in the reaction–diffusion neural networks with continuously distributed 
delays. In fact a real system is usually affected by external perturbations which in 
many cases are of great uncertainty and hence may be treated as random, as pointed 
out by [19] that in real nervous systems synaptic transmission is a noisy process 
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brought on by random fluctuations from the release of neurotransmitters, and other 
probabilistic causes. To the best of our knowledge, however, there are few results 
about stochastic effects to the synchronization property of neural networks with de-
lays in the literature today. In this paper, the problem of exponential synchronization 
is investigated for the class of stochastic neural networks with time varying and dis-
tributed delays and reaction-diffusion terms based on the drive-response synchroniza-
tion concept and Lyapunov stability theory. By using adaptive control approach in 
stead of the common linear coupling scheme, and by using Lyapunov stability theory, 
Stochastic Fubini theorem and semimartingale theorem, the suitable parameters up-
date laws are proposed and the analytic results are developed to ensure exponential 
synchronization of the delayed neural networks with all the parameters unknown. 
Some comparisons are provided to illustrate that our results improve and general 
some of existing results. 

2   Problem Statements and Preliminaries 

In this section, we will give preliminary knowledge for our main results. Since most 
of the synchronization methods belong to master –slave (drive-response) type by one 
system driving another we mean that the two systems are coupled so that the behavior 
of the second is influenced by the behavior of the first one. But the behavior of the 
first one is independent of the second. The first system will be called the master  
system or drive system, and the second system will be the slave system or response 
system. In this paper, the object is to design a controller to let the slave system  
synchronize with the master system. Now we consider the reaction diffusion neural 
networks with continuously disturbed delays, which are described by the following 
partial differential equations:  
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1 1
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where 1 2( , , , )T l
nx x x x G R= ∈ ⊂… , G  is a bounded compact set with smooth bound-

ary G∂  and 0mesG >  in space lR ; ( , )iu t x  is the state of the i-th unit at time t  and in 

space x , ( )if ⋅  denotes the signal functions of the i th neurons at time t  and in space 

x ; iJ denotes the external inputs on the i th neurons; 1 2( , , , )nD diag d d d= … is a di-

agonal matrix with 0id > , and denotes the rate with which the i-th neuron will reset its 

potential to the resting state in isolation when disconnected from the networks and ex-
ternal inputs; ( )ij n nA a ×= , ( )ij n nB b ×= and ( )ij n nC c ×= are real matrices, which denote 

the weights of neuron interconnections. ( ), 1,2, ,j t j nτ = … are time-varying delays of 

the neural network satisfying 0 ( )j tτ τ≤ ≤  and 0 ( ) 1j tτ σ≤ ≤ <� ; ( ), , 1,2, ,ij i j nκ ⋅ = …  

are delay kernels. Smooth function ( , , ) 0ik ikD D t x u= ≥ corresponds to the transmission 

diffusion operator along the i-th neuron. 
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The boundary conditions and initial conditions are given by  

                                        
( , )

0, , ( , )iu t
i t G+∂

= ∈ ∈ ×∂
∂

x
x

n
RN                                                           

                                        ( , ) ( , ) , ( ,0]i iu s s i sφ= = ∈ −∞x x N                                                         

We assume that the activation functions and delay kernels functions satisfy the fol-
lowing properties: 
(H1) the neurons activation functions ( )if ⋅ , 1, 2, ,i n= …  and ilσ are Lipschitz-

continuous, with Lipschitz constants 0iL > and 0ilL > , respectively, and 

                                         
1

il
l

L
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=

< ∞∑ , for ( 1,2, , , )i n l N= ∈…  

(H2) The delay kernels functions :[0, ) [0, ) ( , 1,2, )ij i j nκ ∞ → ∞ = … are real- 

valued nonnegative continuous functions that satisfy the following conditions: 

(i) 
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0

( )ijs s dsκ
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< ∞∫  

(ii) there exists a positive number µ  such that 
0

( )s
ijse s dsµ κ

∞
< ∞∫  

In this paper, we consider mode (1) as the master system. For drive system (1), we 
construct the response system as follows: 
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where the parameters 1 2( , , , )nD diag d d d= … , ( )ij n nA a ×= , ( )ij n nB b ×= and  

( )ij n nC c ×= are completely unknown. ( , )iu t x�  denotes the state variable of the re-

sponse system, ( )iv t indicates the external control inputs that will be appropriately 

design for a control objective. Moreover, { ( )}ilw t  are independent scalar standard 

Wiener processes on the complete probability space ( ), , ( ) ,t t I∈Ω PF F  with the natu-

ral filtration 0{ }t t≥F  generated by the standard Wiener process{ ( )}w s  which is inde-

pendent of ( )ilw t ,where we associate Ω  with the canonical space generated by ( )w t , 

and denoteby F the associated σ -algebra generated by ( )w t  with the probability 

measure P .The initial condition of system (4) is given in the following  form: 
( , ) ( , ), ( ,0], 1,2, , ,i iu t x s x s i nϕ= ∈ −∞ =� … The goal of control is to design and 

implement appropriate controller ( )iv t for the response system and parameters adap-

tive estimation laws of , ,D A B and C , such that the controlled response system (4) 
could be synchronous with the drive system (1)and all the parameters 

, ,D D A A B B→ → → and C C→ as t → +∞ .Inspired by the ideas in[21], the  
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control inputs in the response system are taken as ( ) ( , )i i iv t e t xε= , where iε varies 

with the synchronization error ( , )ie t x ,the synchronization error ( , )e t x be defined 

as 1 2( , ) ( ( , ), ( , ), , ( , ))ne t x e t x e t x e t x= … ,Where ( , ) ( , ) ( , )i i ie t x u t x u t x= −� .Therefore the 

error dynamics between (1) and (2) can be expressed by 
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Where ( ( , )) ( ( , )) ( , )) ( ( , ))j j j j j j jg e t x f e t x u t x f u t x= + − .According to the assumption 

(H1), ( )jg ⋅ possesses the following properties: 

( ( , )) ( ,i i i ig e t x L e t x≤  and (0) 0ig = , 1, 2, ,i n= "  

Throughout this paper, we denote 1( , , )T
nu u u= … and 2 ( )L G  is the space of scalar 

value Lebesgue measurable functions on G which is a Banach space for the 2L -norm 

( ) 1
2 2

2
( ) ( )
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v v x dx v L G= ∈∫ ， .  

Then we define the norm 
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To give our main results in the following section, we need the following definition. 
 
Definition 1. the system(1) and the uncontrolled system(4) are said to be exponen-
tially synchronized in mean square if there exists a pair of positive constants µ and 

M such that 
2 2

( , ) ( , ) ( , ) ( , ) 0tu t x u t x M s x s x e tµϕ φ −− ≤ − ≥�E E                         (4)                       

In this case 

( )21
limsup ln ( , ) ( , )

t

u t x u t x
t

µ
→∞

− ≤ −�E                                                            (5)                                      

The left-hand side of (5) is called the Lyapunov synchronization exponent of system 
(1) and system(2). 

3   Criteria of Synchronization 

In this section, based on the Lyapunov–Krasovskii stability theorem and a stochastic 
analysis approach, new criteria are presented for the global asymptotical stability of 
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the equilibrium point of system (3), and thus the drive system (1) synchronize with 
the response system (3). We have the following theorem: 
 
Theorem 1. Under the assumptions (H1) and (H2), the stochastic response system (4) 
is globally exponentially synchronized in mean square with the drive system (1), if 
the feedback strength 1( , , )ndiagε ε ε= … with the undated law is chosen as  

2t
i i ie eµε δ= −�  

and the parameters adaptive laws of  
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where 0µ ≥ a real number is properly selected, 0, 0, 0,i i ijδ ρ α> > >  

0,ijβ > 0ijγ > are arbitrary constants. 
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We construct a Lyapunov auxiliary functional as 
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Obviously, ( , ( , ))V t e t x  is positive definite and it is a compound function of stochastic 

process. By using ˆIto  differential formula, we obtain that 
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It is easy to calculate by the boundary condition and Green formula that 
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By Young’s Inequality and (H2), we have 
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 According to (H2), if  
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We can choose a small number 0µ > such that 
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Integrating the two sides of the above inequality from 0 to t  and taking mathematical 
expectation, we obtain that 
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So we conclude that the drive system (1) and the response system (2) are exponen-
tially synchronized in mean square. And the Lyapunov synchronization exponent 
is µ . This completes the proof.  

Now we compare our results with the previous results derive in the literature for 
the usual continuous distributed delay without diffusion or stochastic perturbation. Set 

0ilσ = , then system(1) becomes the deterministic continuously distributed delayed 

reaction diffusion neutral networks which have been extensively studied in[21]. Set 
0ikD = , then the system(1) reduces to the following usual delayed neural networks 

1 1

( ) ( ) ( ( )) ( ( ( )))
n n

i i i ij j j ij j j j i
j j

u t d u t a f u t b f u t t Jτ
= =

= − + + − +∑ ∑�  Which have been exten-

sively studied in [5,6,8,12,14]. It is easy to see that our results expanded the models in 
[5,6,8,12,14] 
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Global and Local Synchronization of General
Multi-linked Delayed Complex Dynamical

Networks

Yongqing Zhao and Minghui Jiang
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Abstract. This paper investigates the phenomena of a new and general
multi-linked complex network with delayed nodes and couplings. Via con-
structing Lyapunov-Krasovskii function and using inequality technique,
the criteria for locally exponential synchronization and globally asymp-
totical synchronization are derived. The latter neither requires the outer-
coupling configuration matrix to be symmetric and irreducible nor needs
the network to be linearized at its synchronization state, it is obtained
by Kronecker product method. Finally, a numerical example illustrates
the theoretical results.

Keywords: Complex networks, Synchronization, Delayed couplings,
Delayed nodes, Multi-links.

1 Introduction

In recent decades, complex networks occur in different fields, such as physics,
biology, neuroscience, chemistry and social science, etc. All kinds of dynamics
of complex networks have been extensively investigated, among them, synchro-
nization which was discovered by Pecora and Carroll in 1990 [1], have received
much attention from the scientific community [1,2,3,4,5,6,7,8,9,10,11,12].

Recently, Wang and Chen introduced an uniform complex network model
and also investigated its synchronization phenomena in small-world and scale-
free networks [2,3,4]. To a certain extent, this model reflects the complexity
of networks, but time delay which exists in real world more commonly was
not considered. [5,6,7,8,9,10] studied general complex networks with coupling
delay and derived some synchronization conditions respectively. In [11], a general
complex dynamical network with delayed nodes was discussed and an adaptive
feedback controller for synchronization was designed. Global synchronization of
complex dynamical networks with time-varying delayed nodes was investigated
in [12].

Note that in most of these works, linearizing the network locally at its syn-
chronization state is the main approach used to analyze the synchronization
phenomena of a complex dynamical network. It is why they only obtained local
synchronization criteria. We can also find that all the papers above did not con-
sider the more general complex dynamical networks which contain both delayed

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 560–569, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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nodes and delayed couplings. Furthermore, all the network models discussed in
the above works just have single link. These simplicities can not reflect the real
world very well.

In this paper, a new general multi-linked complex dynamical network model
with both delayed nodes and delayed couplings is introduced, and then we in-
vestigated its synchronization phenomena. Criteria for exponentially synchro-
nization and globally asymptotical synchronization are derived, and the globally
asymptotical synchronization criterion obtained in this paper does not require
the coupling configuration matrix to be symmetric and irreducible. Furthermore,
the Kronecker product method is used instead of linearizing the network locally
at its synchronization state.

Notation: λmax(P ) and λmin(P ) denote the maximum and minimum eigen-
values of matrix P respectively. A⊗B denotes the Kronecker product of matrixes
A and B.

2 Mathematical Preparation

In this paper, we consider a new delayed dynamical network with multi-links, this
network is consisted of N linearly and diffusively coupled identical nodes, and
each node of the network is an n-dimensional time-delayed dynamical system.
The state equations of the entire network are

ẋi(t) = f1(xi(t)) + f2(xi(t− τ0)) + ε1
N∑

j=1

a(1)ijΓ1xj(t− τ1)

+ε2
N∑

j=1

a(2)ijΓ2xj(t− τ2), i = 1, 2, . . . , N, (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state variable of the ith
node. Γk (k = 1, 2) is the inner-coupling matrix which describes the individual
coupling between two connected nodes of the kth subnetwork, τ0 ≥ 0 is the
time delay of individual node, τ1 ≥ 0 and τ2 ≥ 0 are the coupling time delays,
fk : Rn → Rn (k = 1, 2) are vector-valued function describing the dynamics
of an individual node, ε1 and ε2 describe the time-invariant coupling strength.
Ak = a(k)ij ∈ Rn×n (k = 1, 2) is the outer-coupling configuration matrix. It is
described as follow: from node i to node j (i 
= j), a(k)ij ≥ 0 and

a(k)ii = −
N∑

j=1j 	=i

a(k)ij , k = 1, 2, i = 1, 2, . . . , N. (2)

Lemma 1. [10] Suppose the outer-coupling configuration matrix A ∈ RN×N is
symmetric and irreducible, then there exists a unitary matrix U=(u1, u2, . . . , uN)
such that A = UΛUT , where UTU = I, Λ = diag(λ1, λ2, . . . , λN ), 0 = λ1 > λ2 ≥
. . . ≥ λN .
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Lemma 2. [7] Let V (t) > 0 for t ∈ R, τ ∈ [0,∞) and t0 ∈ R. Suppose that

V̇ (t) ≤ −aV (t) + b sup
t−τ≤α≤t

V (α) (3)

for all t > t0. If a > b > 0, there exist two constants γ > 0 and k > 0, such that

V (t) ≤ ke−γ(t−t0), t > t0. (4)

Lemma 3. [7] Suppose P ∈ Rn×n is a real symmetric matrix, and w ∈ Rn is a
real vector, then

λPminw
Tw ≤ wTPw ≤ λPmaxw

Tw. (5)

Lemma 4. [13] For any vectors x, y ∈ Rn and positive definite matrix Q ∈
Rn×n, the following matrix inequality holds:

2xT y ≤ xTQx+ yTQ−1y. (6)

Definition 1. [5] The delayed multi-linked dynamical network (1) is said to
achieve(asymptotical) synchronization if

x1(t) = x2(t) = . . . = xN (t) = s(t), as t→∞, (7)

where s(t) ∈ Rn is a solution of the individual system, or a periodic orbit, or an
orbit of a chaotic attractor, namely,

ṡ(t) = f1(s(t)) + f2(s(t− τ0)). (8)

Definition 2. In this paper, the vector-valued function f is called to be DLC
(Double-Lipschitz Continuous), if there exist two nonnegative constants α and
β such that

β‖y(t)− x(t)‖ ≤ ‖f(y(t))− f(x(t))‖ ≤ α‖y(t)− x(t)‖
holds for any t. Here x(t), y(t) are time-varying vectors, and the norm ‖ · ‖ of a
vector is defined as ‖x‖ = (xTx)1/2.

3 Main Results

3.1 Locally Exponential Synchronization

In this part, we suppose the outer coupling configuration matrixes A1 = A2 =
A ∈ RN×N and A is symmetric and irreducible. By Lemma (1), one has that
ATU = UΛ, where UTU = I, Λ = diag(λ1, λ2, . . . , λN ), and 0 = λ1 > λ2 ≥
. . . ≥ λN . Under this assumption, the network (1) becomes

ẋi(t) = f1(xi(t)) + f2(xi(t− τ0)) + ε1
N∑

j=1

aijΓ1xj(t− τ1)

+ε2
N∑

j=1

aijΓ2xj(t− τ2), i = 1, 2, . . . , N, (9)
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Theorem 1. Suppose that fk(x(t))(k = 1, 2) is continuously differentiable at
the synchronous state s(t) ∈ Rn, if the following N linear time varying delayed
differential equations is exponentially stable about their zero solutions:

η̇i(t) = J1(t)ηi(t) + J2(t− τ0)ηi(t− τ0)
+ε1λiΓ1η(t− τ1) + ε2λiΓ2η(t− τ2), i = 1, 2, . . . , N. (10)

where J1(t) = Df1(s(t)) and J2(t − τ0) = Df2(s(t − τ0)) are the Jacobians of
f1(x) at s(t) and f2(x) at s(t − τ0) respectively, then the network (9) achieves
exponential synchronization.

Proof. Let

xi(t) = ξi(t) + s(t), (11)

then substitute (8) and (11) to (9), and linearize (9) about its synchronous state
S(t), then one has

ξ̇i(t) = Df1(s(t))ξi(t) +Df2(s(t− τ0))ξi(t− τ0) + ε1
N∑

j=1

aijΓ1ξj(t− τ1)

+ε2
N∑

j=1

aijΓ2ξj(t− τ2), i = 1, 2, . . . , N, (12)

we can write (12) in matrix form

ξ̇(t) = Df1(s(t))ξ(t) +Df2(s(t− τ0))ξ(t− τ0) + ε1Γ1ξ(t− τ1)AT

+ε2Γ2ξ(t− τ2)AT , (13)

Let η(t) = ξ(t)U , then we have

η̇(t) = Df1(s(t))η(t) +Df2(s(t− τ0))η(t − τ0) + ε1Γ1η(t− τ1)Λ
+ε2Γ2η(t− τ2)Λ, (14)

when 1 ≤ i ≤ N, it hodes

η̇i(t) = J1(t)ηi(t) + J2(t− τ0)ηi(t− τ0) + ε1λiΓ1η(t− τ1)
+ε2λiΓ2η(t− τ2), i = 1, 2, . . . , N. (15)

Therefore, the stability of these n-dimentional linear time-varying delayed sys-
tems about their zero solutions is equivalent to the lolally exponential synchro-
nization of the network (9). Thus, the proof is completed.

Theorem 2. Suppose that fk(x(t))(k = 1, 2) is continuously differentiable at the
synchronous state s(t) ∈ Rn, if there exist four n × n real symmetric matrixes
P > 0, R1 > 0, R2 > 0, R2 > 0, such that

P [J1(t)T + J1(t) + J2(t− τ0)R−1
1 J2(t− τ0)T + ε21λ

2
iΓ1R

−1
2 Γ

T
1

+ε22λ
2
iΓ2R

−1
3 Γ

T
2 ]P +R1 +R2 +R3 ≤ −cIn, i = 1, 2, . . . , N, (16)
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and

λmin(P ) >
3∑

i=1

τi−1λmax(Ri),

where c is a positive number, J1(t) = Df1(s(t)) and J2(t) = Df2(s(t− τ0)) are
the Jacobians of f1(x) at s(t) and f2(x) at s(t− τ0), then the state s(t) ∈ Rn of
(1) is delay-dependent exponentially stable.

Proof. Define a Lyapunov-Krasovskii function for the ith individual time-varying
system as follow:

Vi(t) = ηT
i (t)Pηi(t) +

∫ t

t−τ0

ηi(s)R1ηi(s)ds+
∫ t

t−τ1

ηi(s)R2ηi(s)ds

+
∫ t

t−τ2

ηi(s)R3ηi(s)ds, (17)

where ηi(t) ∈ Rn. By Lemma 4, the derivative of V along the trajectory of the
ith individual time-varying delayed system in (10) is

V̇i(t) = ηT
i (t)J1(t)TPηi(t) + ηT

i (t− τ0)J2(t− τ0)TPηi(t)
+ε1λiη

T (t− τ1)Γ T
1 Pηi(t) + ε2λiη

T (t− τ2)Γ T
2 Pηi(t)

+ηT
i (t)PJ1(t)ηi(t) + ηT

i (t)PJ2(t− τ0)ηi(t− τ0)
+ε1λiη

T
i (t)PΓ1η(t− τ1) + ε2λiη

T
i (t)PΓ2η(t− τ2) + ηT

i (t)R1ηi(t)
−ηT

i (t− τ0)R1ηi(t− τ0) + ηT
i (t)R2ηi(t)− ηT

i (t− τ1)R2ηi(t− τ1)
+ηT

i (t)R3ηi(t)− ηT
i (t− τ2)R3ηi(t− τ2)

= ηT
i (t)(PJ1(t) + J1(t)TP +R1 +R2 +R3)ηi(t)

+2ηT
i (t− τ0)J2(t− τ0)TPηi(t) + 2ε1λiη

T (t− τ1)Γ T
1 Pηi(t)

+2ε2λiη
T
i (t)PΓ2η(t− τ2)− ηT

i (t− τ0)R1ηi(t− τ0)
−ηT

i (t− τ1)R2ηi(t− τ1)− ηT
i (t− τ2)R3ηi(t− τ2)

≤ [P (J1(t)T + J1(t) + J2(t− τ0)R−1
1 J2(t− τ0)T + ε21λ

2
iΓ1R

−1
2 Γ

T
1

+ε22λ
2
iΓ2R

−1
3 Γ

T
2 )P +R1 +R2 +R3]‖ηi(t)‖2 ≤ −c‖ηi(t)‖2. (18)

From (18), by Lemma 3, we can further get

V̇i(t) ≤ −c
λmax(P )

Vi(t) +
c(
∑3

i=1 τi−1λmax(Ri))
λmin(P )λmax(P )

sup
t−max(τ0,τ1,τ2)

Vi(α). (19)

Then, by Lemma 2, when

λmin(P ) >
3∑

i=1

τi−1λmax(Ri),

the ith individual delayed time-varying system is exponetially stable about its
zero solution. By theorem 1, the network (9) is exponentially synchronizous
about the state s(t) ∈ Rn. The proof is completed.
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In particular, if P = R1 = R2 = R3 = In, Theorem 2 reduced to the following
simple and useful corollary.

Corollary 1. If the following N conditions

J1(t)T + J1(t) + J2(t)J2(t)T + ε21λ
2
iΓ1Γ

T
1 + ε22λ

2
iΓ2Γ

T
2

≤ −(c+ 3)In, i = 1, 2, . . . , N (20)

and

3∑
i=1

τi−1 < 1 (21)

are satisfied, then the network (9) is delay-dependent exponentially stable at
the state s(t) ∈ Rn.

3.2 Globally Asymptotical Synchronization

Consider the network (1), suppose s(t) is a solution of an individual nodes of
(1). Let

xi(t) = ωi(t) + s(t), (22)

then substituting (22) into (1), and from (8), one has

ω̇i(t) = f1(ωi(t) + s(t))− f1(s(t)) + f2(ωi(t− τ0) + s(t− τ0))− f2(s(t− τ0))

+ε1
N∑

j=1

a(1)ijΓ1ωj(t− τ1) + ε2
N∑

j=1

a(2)ijΓ2ωj(t− τ2),

i = 1, 2, . . . , N. (23)

Let

g1(ωi(t)) = f1(ωi(t) + s(t))− f1(s(t)),
g2(ωi(t− τ0)) = f2(ωi(t− τ0) + s(t− τ0))− f2(s(t− τ0)),

(24)

since fk(x(t))(k = 1, 2) is DLC, it’s easy to obtain

β‖x‖ ≤ ‖gk(x)‖ ≤ α‖x‖, k = 1, 2. (25)

Substituting (24) into network (23), we get the following

ω̇i(t) = g1(ωi(t)) + g2(ωi(t− τ0)) + ε1
N∑

j=1

a(1)ijΓ1ωj(t− τ1)

+ε2
N∑

j=1

a(2)ijΓ2ωj(t− τ2), i = 1, 2, . . . , N. (26)
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By Kronecker product, we can further rewrite system (1) in a compact form as

ω̇(t) = g1(ω(t)) + g2(ω(t− τ0) + ε1(A1 ⊗ Γ1)ω(t− τ1)
+ε2(A2 ⊗ Γ2)ω(t− τ2), i = 1, 2, . . . , N, (27)

where ω(t) = (ω1(t), . . . , ωN(t))T ∈ RnN , ω(t − τ0) = (ω1(t − τ0), . . . , ωN(t −
τ0))T ∈ RnN , g1(ω(t − τ1)) = (g1(ω1(t − τ1)), . . . , g1(ωN (t − τ1)))T ∈ RnN ,
g2(ω(t− τ2)) = (g2(ω1(t− τ2)), . . . , g2(ωN(t− τ2)))T ∈ RnN , It is convienient to
use (27) than (26) sometimes.

Theorem 3. Suppose that fk(x(t))(k = 1, 2) is DLC(Definition 2), if there
exists a diag matrix P > 0, three real symmetric matrixes R1 > 0, R2 > 0,
R3 > 0, such that

λmax(Θ) < −λmax(R1)α2 + λmax(R2 +R3)
β2

,

where Rk ∈ RnN×nN(k = 1, 2, 3), P = diag{p1, . . . , pN} ∈ RN ,

Θ = ΛP (2Λ−1
P +R−1

1 + ε21Σ1R
−1
2 Σ

T
1 + ε22Σ2R

−1
3 Σ

T
2 )ΛP , (28)

ΛP = P ⊗ In, Σk = Ak ⊗ Γk(k = 1, 2), Then the state s(t) of the network (1) is
asymptotically synchronized.

Proof. Define a Lyapunov-Krasovskii function as follows:

V (t) = V1(t) + V2(t) + V3(t) + V4(t),

where

V1(t) = 2
N∑

i=1

pi

∫ ωi(t)

0

gT
1 (s)ds, V2(t) =

∫ t

t−τ0

gT
2 (ω(s))R1g2(ω(s))ds,

V3(t) =
∫ t

t−τ1

ω(s)R2ω(s)ds, V4(t) =
∫ t

t−τ2

ω(s)R3ω(s)ds,

pi > 0(i = 1, . . . , nN), R1 > 0, R2 > 0, R3 > 0, are all real symmetrical positive
definite matrixes. The time derivative of V along the trajectory of (27) is given
by

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t). (29)
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Let P = diag(p1, . . . , pnN), by Lemma 4, we have

V̇1(t) = 2
N∑

i=1

pig
T
1 (ωi(t))ω̇i(t) = 2gT

1 (ω(t))(P ⊗ In)ω̇(t)

= 2gT
1 (ω(t))(P ⊗ In)g1(ω(t)) + 2gT

1 (ω(t))(P ⊗ In)g2(ω(t− τ0))
+2gT

1 (ω(t))(P ⊗ In)ε1(A1 ⊗ Γ1)ω(t− τ1)
+2gT

1 (ω(t))(P ⊗ In)ε2(A2 ⊗ Γ2)ω(t− τ2)
≤ 2gT

1 (ω(t))(P ⊗ In)g1(ω(t)) + gT
2 (ω(t− τ0))R1g2(ω(t− τ0))

+gT
1 (ω(t))(P ⊗ In)R−1

1 (P ⊗ In)g1(ω(t)) + ωT (t− τ1)R2ω(t− τ1)
+gT

1 (ω(t))ε21(P ⊗ In)(A1 ⊗ Γ1)R−1
2 (A1 ⊗ Γ1)T (P ⊗ In)g1(ω(t))

+ωT (t− τ2)R3ω(t− τ2)
+gT

1 (ω(t))ε22(P ⊗ In)(A2 ⊗ Γ2)R−1
3 (A2 ⊗ Γ2)T (P ⊗ In)g1(ω(t)), (30)

V̇2(t) = gT
2 (ω(t))R1g2(ω(t))− gT

2 (ω(t− τ0))R1g2(ω(t− τ0)), (31)
V̇3(t) = ω(t)TR2ω(t)− ωT (t− τ1)R2ω(t− τ1), (32)
V̇4(t) = ω(t)TR3ω(t)− ωT (t− τ2)R3ω(t− τ2). (33)

Let ΛP = P ⊗ In, and Σk = Ak ⊗ Γk(k = 1, 2), from (30) (31) (32) (33), we can
easily get

V̇ (t) ≤ gT
1 (ω)(ΛP (2Λ−1

P +R−1
1 + ε21Σ1R

−1
2 Σ

T
1 + ε22Σ2R

−1
3 Σ

T
2 )ΛP )g1(ω)

+gT
2 (ω(t))R1g2(ω(t)) + ω(t)T (R2 +R3)ω(t). (34)

By Lemma 3, from equation (28) and inequality (25), we can further obtain

V̇ (t) ≤ (λmax(Θ)β2 + λmax(R1)α2 + λmax(R2 +R3))‖ω(t)‖2. (35)

Since

λmax(Θ) < −λmax(R1)α2 + λmax(R2 +R3)
β2

,

then V̇ (t) < 0, by Lyapunove stability theorem, the state s(t) of the network (1)
is asymptotically stable. The proof is thus completed.

4 Examples

Consider a time-delayed multi-linked network consisting of 4 nodes, with each
node is a 3-dimensional nonlinear system. The individual system is described as
follow ⎧⎪⎨⎪⎩

ẋ1 = −5x1 + x2
2 + x1(t− τ0)

ẋ2 = −6x2 + x2(t− τ0)
ẋ3 = −7x3 + x2

1 + x3(t− τ0).
(36)
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Obviously, this system is asymptotically stable at s(t) = 0, and the Jacobian at
s(t) = 0 are

J1 =

⎡⎣−5 0 0
0 −6 0
0 0 −7

⎤⎦ , J2 =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ .
For simplicity, in (9), let the outer-coupling configuration matrix

A =

⎡⎢⎢⎣
−3 1 1 1
1 −3 1 1
1 1 1 −3
1 1 1 −3

⎤⎥⎥⎦ ,
and τ0 = 0.1, τ1 = 0.2, τ2 = 0.3, ε1 = 0.001, ε2 = 0.002, Γ1 = Γ2 = I3, the
eigenvalues of A are λ1 = 0, λ2 = λ3 = λ4 = −4. It is easy to verify that the
two inequality conditions of corollary 2 are both satisfied. Fig. 1 shows that this
network realizes synchronization.
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Fig. 1. Exponential synchronization of network (1)

5 Conclusion

Since delays and different kinds of links exist commonly in networks in real world.
It is important to research networks with delays and multi-links. In this paper,
we introduce a new more general multi-linked complex dynamical networks with
both delayed nodes and delayed couplings and then investigate its phenom-
ena. Via constructing Lyapunov-Krasovskii function and using some inequality
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technique, we have obtained criteria for locally exponential synchronization and
globally asymptotical synchronization. The latter does not require the outer-
coupling configuration matrixes to be symmetric and irreducible. Meanwhile,
it is obtained by Kronecker product method which is different from other pa-
pers’ method–linearizing the network at its synchronization state. So the results
obtained in this paper are more general.
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Abstract. In this paper, we investigate a class of impulsive fuzzy cellu-
lar neural networks with delays and reaction-diffusion terms. By apply-
ing Lyapunov functional method and using inequality techniques, some
sufficient conditions ensuring the global exponential stability of equilib-
rium point for impulsive fuzzy cellular neural networks with delays and
reaction-diffusion terms are established. An illustrative example is given
in the end to guarantee the validity of our theory.

Keywords: Cellular neural networks, Equilibrium point, Exponential
stability, Reaction-diffusion, Lyapunov functional.

1 Introduction

Since cellular neural networks(CNNs) was firstly proposed by Chua and Yang
[1], many researchers have done extensive work on this subject due to their ex-
tensive applications in many fields such as pattern recognize, signal and image
processing. Another group of fundamental neural networks, fuzzy cellular neu-
ral networks(FCNNs), introduced by Yang et al. [2], integrate fuzzy logical into
structure of traditional cellular neural networks and maintain local connected-
ness. Study have shown the potential of FCNNs in image processing and pattern
recognize. Such applications heavily depend on the dynamical behaviors. Thus,
the analysis of the dynamical behaviors such as stability, especially exponential
stability, is a necessary step for practical design of FCNNs. Some result have
be reported on dynamical behaviors of FCNNs [3-6]. In the factual operations,
however, the diffusion phenomena could not be ignored in neural networks and
electric circuits once electrons transport in a nonuniform electromagnetic field.
Hence, it is essential to consider the state variables varying with the time and
space variables. In [7, 8], the authors have obtain some sufficient conditions for
the global exponential stability of the equilibrium point of FCNNs with reaction-
diffusion terms.

On the other hand, in the real world, many evolutionary processes are not con-
tinuous and often be changed abruptly at certain moment due to man-made con-
trol or environmental perturbation, which called impulsive phenomena. We need

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 570–578, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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to consider the effect of impulsion on FCNNs too. To the best of our knowledge,
few authors have consider the global exponential stability of impulsive fuzzy cel-
lular neural networks with delays and reaction-diffusion terms. Motivated by the
above discussion, the aim of the present paper is to consider a class of impulsive
fuzzy cellular neural networks with delays and reaction-diffusion terms, which
is more general. Under the hypothesis that the system have unique equilibrium
point, by utilizing the method of Lyapunov functional, we shall establish some
sufficient conditions for the global exponential stability of the equilibrium point
of such neural networks.

2 Model Description and Preliminaries

Firstly, in order to simplify our description, we introduce some notations as
follows. Let Ω ⊂ Rm is a bounded open set with smooth boundary ∂Ω and
mesΩ > 0, PC[J × Ω,Rn] � {u(t, x) : J × Ω → Rn | u(t, x) is continuous
at t 
= tk , u(t+k , x) = u(tk, x) and u(t−k , x) exists for tk ∈ J k ∈ N},
PC[J,Rn] � {u(t) : J → Rn | u(t) is continuous at t 
= tk , u(t+k ) = u(tk) and
u(t−k ) exists for tk ∈ J k ∈ N}, where J ⊂ R is a interval.

Furthermore, let PC(Ω) � {φ(s, x) : [−τ, 0] × Ω → Rn | φ(s+, x) = φ(s, x)
for s ∈ [−τ, 0); φ(s−, x) exists for s ∈ (−τ, 0], φ(s−, x) = φ(s, x) for all but finite
number of points s ∈ [−τ, 0] }, PC � {φ(s) : [−τ, 0] → Rn | φ(s+) = φ(s) for
s ∈ [−τ, 0); φ(s−) exists for s ∈ (−τ, 0], φ(s−) = φ(s) for all but finite number
of points s ∈ [−τ, 0]}.

For u(t, x) = (u1(t, x), u2(t, x), · · · , un(t, x))T ∈ Rn , we define ‖u(t, x)‖2 =√∑n
i=1 ‖ui(t, x)‖22 , where ‖ui(t, x)‖2 = (

∫
Ω
|ui(t, x)|2dx) 1

2 , i = 1, 2, · · · , n.
For φ(s, x) = (φ1(s, x), φ2(s, x), · · · , φn(s, x))T ∈ PC(Ω), we define ‖φ‖2 =
(
∑n

i=1 ‖φi‖22)
1
2 , where ‖φi‖2 = (

∫
Ω
|φi(s, x)|2τdx)

1
2 , |φi(s, x)|τ = sup−τ<s≤0

|φi(s, x)|. Then PC(Ω) is a Banach space.
For any A,B ∈ Rm×n, we define Schur product by A ⊗ B = (aijbij)m×n.

Denote |A| = (|aij |)m×n, and A ≥ B (A > B) if and only if aij ≥ bij (aij > bij).
We consider the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

m∑
l=1

∂
∂xl

(Dil(
∂ui(t,x)

∂xl
))− αi(ui(t, x))[βi(ui(t, x))

−
n∑

j=1

aijfj(uj(t, x))−
n∑

j=1

bijµj − Ii −
n∧

j=1

αijfj(uj(t− τij(t), x))

−
n∨

j=1

βijfj(uj(t− τij(t), x)) −
n∧

j=1

Tijµj −
n∨

j=1

Hijµj ], t 
= tk
ui(t+, x) = ui(t−, x) + Iik(ui(t−, x)), t = tk
∂ui(t,x)

∂n : = (∂ui(t,x)
∂x1

, ∂ui(t,x)
∂x2

, · · · , ∂ui(t,x)
∂xm

)T = 0, (t, x) ∈ [−τ,∞)× ∂Ω
ui(s, x) = φi(s, x), (s, x) ∈ [−τ, 0]×Ω,φi(s, x) ∈ PC(Ω)

i = 1, 2, · · · , n
(1)

where n is the number of neurons in the networks, x = (x1, x2, · · · , xm)T ∈
Ω ⊂ Rm, ui(t, x) corresponds to the states of the ith neural unit at time t in
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space x ; Dil = Dil(t, x) ≥ 0 corresponds to the transmission diffusion oper-
ator alone the ith neuron; αi(ui(t, x)) represents an amplification function at
time t; βi(ui(t, x)) is an appropriately behaved function at time t; fj(uj(t, x))
denote the activation function of the jth neurons at time t and in space x;
αij , βij are elements of fuzzy feedback MIN template and fuzzy feedback MAX
template respectively; Tij , Hij are elements of fuzzy feedforward MIN tem-
plate and fuzzy feedforward MAX template, respectively; aij , bij are elements
of feedback template and feedforward template respectively;

∨
and

∧
de-

note the fuzzy AND and fuzzy OR operation, respectively; τij(t) correspond
to transmission delays along the axon of jth unit from the i th unit and satisfy
0 ≤ τij(t) ≤ τij ≤ τ , µi and Ii denote input and bias of ith unit respectively;
tk satisfy 0 < t1 < t2 < · · · and limk→+∞ tk = +∞.

Throughout this paper, we introduce the following assumptions.
( H1). Each function αi(u) is a positive bounded functions, i.e. there exist

constants αi > 0, αi > 0, such that

0 < αi ≤ αi(u) ≤ αi < +∞ for all u ∈ R, i = 1, 2, · · · , n.

( H2). There exist constants βi > 0, such that βi(u)−βi(v)
u−v > βi for all u, v ∈

R, i = 1, 2, · · · , n.
( H3).There exist positive constants Fi > 0, i = 1, 2, · · · , n, such that

|fi(u)− fi(v)|
|u− v| < Fi, for all u, v ∈ R and u 
= v.

( H4). Let hik(ui) = ui + Iik(ui) be Lipschitz continuous in Rn, that is, there
exist constants γik > 0, such that

|hik(ui)− hik(vi)| ≤ γik|ui − vi|, i = 1, 2, · · · , n; k = 1, 2, · · · .

Definition 1. The equilibrium point u∗ = (u∗1, u∗2, · · · , u∗n)T of system (1) is
side to be globally exponentially stable, if there exist constants ε > 0 and
M ≥ 1 such that

‖u(t, x)− u∗‖2 ≤M‖φ− u∗‖2e−εt

for all t ≥ 0. where u(t, x) is a solution of system (1) with initial value φ(s, x) ∈
PC(Ω) .

Lemma 1. [3] For any aij ∈ R, xj , yj ∈ R, i, j = 1, 2, · · · , n, we have the
following estimation.

|
n∧

j=1

αijxj −
n∧

j=1

αijyj | ≤
n∑

j=1

(|aij | · |xj − yj|)

|
n∨

j=1

αijxj −
n∨

j=1

αijyj | ≤
n∑

j=1

(|aij | · |xj − yj |).
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Lemma 2. [9] Let τ > 0, a < b ≤ +∞ . Suppose that v(t) = (v1(t), v2(t), · · · ,
vn(t))T ∈ C[[a, b), Rn] satisfies the following differential inequality

D+v(t) ≤ Pv(t) + (Q⊗ V (t))en t ∈ [a, b)
v(a+ s) ∈ PC s ∈ [−τ, 0]

where P = (pij)n×n, pij ≥ 0 i 
= j, Q = (qij)n×n ≥ 0, V (t) = (vj(t −
τij(t)))n×n, en = (1, 1, · · · , 1)T ∈ Rn. If the initial condition satisfies v(t) ≤
Kξe−λ(t−a) K ≥ 0, t ∈ [a − τ, a], where ξ = (ξ1, ξ2, · · · , ξn)T > 0 and
constants λ > 0 is determined by the following inequality

[λE + P +Q⊗ ε(λ)]ξ < 0

where ε(λ) = (eλτij )n×n. Then v(t) ≤ Kξe−λ(t−a), for t ∈ [a, b).

3 Global Exponential Stability of Equilibrium Point

We suppose that system (1) have unique equilibrium point u∗=(u∗1, u∗2, · · · , u∗n)T ,
then we have the following result.

Theorem 1. Under assumptions (H1)-(H4) , if the following conditions hold:
(A1). There exist a vector ξ = (ξ1, ξ2, · · · , ξn)T > 0 and a positive number

λ > 0 such that

[λE − αβ + α|A|F + α(|A|+ |B|)F ⊗ ε(λ)]ξ < 0,

where α = diag(α1, · · · , αn), α = diag(α1, · · · , αn), A = (aij)n×n, A =
(αij)n×n, B = (βij)n×n, F = diag(F1, F2, · · · , Fn), β = diag(β1, β2, · · · , βn),
ε(λ) = (eλτij )n×n,

(A2). η = supk∈N{ ln ηk

tk−tk−1
} < λ, ηk = max1≤i≤n{1, γik}, k ∈ N ,

then the equilibrium point u∗ is globally exponentially stable, and its exponen-
tial convergence rate equals λ− η .

Proof. Let wi(t, x) = ui(t, x) − u∗ i = 1, 2, · · · , n, where u(t, x) is a solu-
tion of system (1) with initial value φ(s, x) ∈ PC(Ω). Then system (1) can be
transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wi(t,x)
∂t =

m∑
l=1

∂
∂xl

(Dil(
∂wi(t,x)

∂xl
))−α̃i(wi(t, x))[β̃i(wi(t, x))−

n∑
j=1

aij f̃j(wj(t, x))

−
n∧

j=1

αij f̃j(wj(t−τij(t), x))−
n∨

j=1

βij f̃j(wj(t− τij(t), x))] t 
= tk
wi(t+, x) = h̃ik(wi(t−, x)) t = tk
∂wi(t,x)

∂n : = (∂wi(t,x)
∂x1

, ∂wi(t,x)
∂x2

, · · · , ∂wi(t,x)
∂xm

)T = 0, (t, x) ∈ [−τ,∞)×Ω
wi(s, x) = φi(s, x) (s, x) ∈ [−τ, 0]×Ω φi(s, x) ∈ PC(Ω)

i = 1, 2, · · · , n
(2)



574 X. Li and H. Jiang

Where α̃i(wi(t, x)) = αi(wi(t, x)+u∗i ), β̃i(wi(t, x)) = βi(wi(t, x)+u∗i )−βi(u∗i ),
f̃j(wj(t, x)) = fj(wj(t, x) + u∗j ) − fj(u∗j ), h̃ik(wi(t, x)) = hik(wi(t, x) + u∗i ) −
hik(u∗i ).

For all t 
= tk , we multiply both sides of equation by wi(t, x) and integrate
it on Ω, then we have∫

Ω

wi(t, x)
∂wi(t, x)
∂t

dx =
∫

Ω

wi(t, x)
m∑

l=1

∂

∂xl
(Dil(

∂wi(t, x)
∂xl

))dx

−
∫

Ω

wi(t, x)α̃i(wi(t, x))β̃i(wi(t, x))dx

+
n∑

j=1

aij

∫
Ω

α̃i(wi(t, x))wi(t, x)f̃j(wj(t, x))dx

+
∫

Ω

α̃i(wi(t, x))wi(t, x)
n∧

j=1

αij f̃j(wj(t− τij(t), x))dx

+
∫

Ω

α̃i(wi(t, x))wi(t, x)
n∨

j=1

βij f̃j(wj(t− τij(t), x))dx.

(3)
By the boundary conditions of system (2), we have

∫
Ω

wi(t, x)
m∑

l=1

∂

∂xl
(Dil(

∂wi(t, x)
∂xl

))dx

=
∫

Ω

m∑
l=1

∂

∂xl
(Dilwi(t, x)

∂wi(t, x)
∂xl

)dx−
∫

Ω

m∑
l=1

Dil(
∂wi(t, x)
∂xl

)2dx

=
∫

∂Ω

m∑
l=1

(Dilwi(t, x)
∂wi(t, x)
∂xl

) cos(−→n , xl)dS −
∫

Ω

m∑
l=1

Dil(
∂wi(t, x)
∂xl

)2dx

= −
∫

Ω

m∑
l=1

Dil(
∂wi(t, x)
∂xl

)2dx.

(4)

From assumptions (H1),(H3) and Holder inequality, we have

aij

∫
Ω

wi(t, x)α̃i(wi(t, x))f̃j(wj(t, x))dx

≤ |aij |αiFj

∫
Ω

|wi(t, x)||wj(t, x)|dx ≤ |aij |αiFj‖wi(t, x)‖2 · ‖wj(t, x)‖2.
(5)

Base on Lemma 1, we have∫
Ω

α̃i(wi(t, x))wi(t, x)
n∧

j=1

αij f̃j(wj(t− τij(t), x))dx

≤
∫

Ω

α̃i(wi(t, x))|wi(t, x)||
n∧

j=1

αij f̃j(wj(t− τij(t), x))|dx
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≤ αi

∫
Ω

|wi(t, x)|
n∑

j=1

|αij ||f̃j(wj(t− τij(t), x))|dx

≤ αi

∫
Ω

n∑
j=1

|αij |Fj |wi(t, x)||wj(t− τij(t), x)|dx

≤ αi

n∑
j=1

|αij |Fj‖wi(t, x)‖2‖wj(t− τij(t), x)‖2.

(6)

By the same way, we obtain that∫
Ω

α̃i(wi(t, x))wi(t, x)
n∨

j=1

βij f̃j(wj(t− τij(t), x))dx

≤ αi

n∑
j=1

|βij |Fj‖wi(t, x)‖2‖wj(t− τij(t), x)‖2.
(7)

Noting
∫

Ω
wi(t, x)

∂wi(t,x)
∂t dx = 1

2
d
dt

∫
Ω

(wi(t, x))2dx = 1
2

d
dt‖wi(t, x)‖22, combining

(4)-(7) into (3), for all t 
= tk , we have

D+‖wi(t, x)‖2 ≤ −αiβi‖wi(t, x)‖2 + αi

n∑
j=1

|aij |Fj‖wj(t, x)‖2

+αi

n∑
j=1

(|αij |+ |βij |)Fj‖wj(t− τij(t), x)‖2
(8)

Let vi(t) = ‖wi(t, x)‖2, i = 1, 2, · · · , n , then we have

D+vi(t) ≤ −αiβivi(t) + αi

n∑
j=1

|aij |Fjvj(t) + αi

n∑
j=1

(|αij |+ |βij |)Fjvj(t− τij(t)).

(9)

Let P = −αβ + α|A|F, Q = α(|A|+ |B|)F, v(t) = (v1(t), v2(t), · · · , vn(t))T ,
V (t) = (vj(t− τij(t)))n×n, then we have

D+v(t) ≤ Pv(t) + (Q⊗ V (t))en t 
= tk. (10)

From condition (A1) , we can obtain

[λE + P +Q⊗ ε(λ)]ξ < 0. (11)

Let K = ‖φ−u∗‖2
min1≤i≤n{ξi} , it is easily obtained that v(t) ≤ Kξe−λt − τ ≤ t ≤

t0 = 0. Then from Lemma 2, we obtain v(t) ≤ Kξe−λt, for t ∈ [t0, t1).
Suppose that

v(t) ≤ Kη0η1 · · · ηl−1ξe
−λt, 1 ≤ l ≤ k, t ∈ [tl−1, tl) (12)
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where η0 = 1, k ≥ 2. When l = k + 1 , from (H4) and (A2), we have

vi(t+k ) = ‖wi(t+k , x)‖2 = ‖h̃ik(wi(t−k , x))‖2 ≤ γik‖wi(t−k , x)‖2
= γikvi(t−k ) ≤ γikKη0η1 · · · ηk−1ξie

−λtk ≤ Kη0η1 · · · ηk−1ηkξie
−λtk .

(13)
By (12), (13) and ηk ≥ 1, we have

v(t) ≤ Kη0η1 · · · ηk−1ηkξe
−λt, t ∈ [tk − τ, tk]. (14)

Combining (10), (11), (14) and Lemma 2, we have

v(t) ≤ Kη0η1 · · · ηk−1ηkξe
−λt, t ∈ [tk, tk+1). (15)

Applying mathematic induction, we conclude that

v(t) ≤ Kη0η1 · · · ηk−1ηkξe
−λt, t ∈ [tk−1, tk), k ∈ N. (16)

Form (A2) , we have

v(t) ≤ Keηt1eη(t2−t1) · · · eη(tk−1−tk−2)ξe−λt ≤ Kξeηte−λt = Kξe−(λ−η)t

for all t ∈ [tk−1, tk) and k ∈ N, which implies that

‖u(t, x)−u∗‖2=(
n∑

i=1

‖ui(t, x)−u∗i ‖22)
1
2≤K(

n∑
i=1

ξ2i )
1
2 e−(λ−η)t=M‖φ−u∗‖2e−(λ−η)t

where M = (
∑n

i=1 ξ2
i )

1
2

min1≤i≤n{ξi} ≥ 1.
It means that the equilibrium point u∗ of system (1) is globally exponentially

stable, and its exponential convergence rate equals λ− η .

Corollary 1. Under assumption (H1)− (H4), if the following conditions hold:
(A′

1). There exist a vector ξ = (ξ1, ξ2, · · · , ξn)T > 0 and a positive λ > 0 ,
such that

[λE − αβ + α|A|F + α(|A|+ |B|)F · eλτ ]ξ < 0,

(A2). η = supk∈N{ ln ηk

tk−tk−1
} < λ, ηk = max1≤i≤n{1, γik}, k ∈ N,

then the equilibrium point u∗ is globally exponentially stable, and its expo-
nential convergence rate equals λ− η .

Proof. Since eλτ ≥ eλτij , by the condition (A′
1) , we have condition (A1)

holds. This complete the proof.

Corollary 2. Under assumption (H1)− (H4) , if the following conditions hold:
(A1). There exist a vector ξ = (ξ1, ξ2, · · · , ξn)T > 0 and a positive λ > 0 ,

such that
[λE − αβ + α|A|F + α(|A|+ |B|)F ⊗ ε(λ)]ξ < 0,
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(A′
2). γik ≤ 1, i = 1, 2, · · · , n k ∈ N,

then the equilibrium point u∗ is globally exponentially stable, and its exponen-
tial convergence rate equals λ.

Proof. Since γik ≤ 1, ηk = max1≤i≤n{1, γik} = 1, i = 1, 2, · · · , n k ∈ N .
Therefore, η = 0 < λ which implies that (A2) hold.

4 An Illustrative Example

Example⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t =

3∑
l=1

∂
∂xl

(Dil(
∂ui(t,x)

∂xl
))−αi(ui(t, x))[βi(ui(t, x))−

2∑
j=1

aijfj(uj(t, x))

−
2∑

j=1

bijµj − Ii −
2∧

j=1

αijfj(uj(t− τij(t), x))

−
2∨

j=1

βijfj(uj(t− τij(t), x)) −
2∧

j=1

Tijµj −
2∨

j=1

Hijµj ] t 
= tk
ui(t+k , x) = ui(t−k , x)− (1 + e0.005k)(ui(t−k , x)− 1) tk = tk−1 + 0.5k, t0 = 0
∂ui(t,x)

∂n = (∂ui(t,x)
∂x1

, ∂ui(t,x)
∂x2

, · · · , ∂ui(t,x)
∂xm

)T = 0 (t, x) ∈ [−τ,∞)× ∂Ω
ui(s, x) = φi(s, x) (s, x) ∈ [−4, 0]×Ω φi(s, x) ∈ PC(Ω), i = 1, 2

(17)
where α1(x) = 2 + 0.1 cosx, α2(x) = 2 + 0.1 sinx, β1(x) = β2(x) = x, f1(x) =
f2(x) = 1

2 (|x + 1| − |x − 1|), αij = βij = Tij = Hij = aij = bij = 0.1 i =

1, 2 j = 1, 2, I = (0.2, 0.2)T , u = (1, 1)T , (τij(t)) =
(

cos2 t 2 sin2 t
3 cos2 t 4 sin2 t

)
. It is

easily obtained that α =
(

1.9 0
0 1.9

)
, α =

(
2.1 0
0 2.1

)
, β =

(
1 0
0 1

)
,

F =
(

1 0
0 1

)
, A =

(
0.1 0.1
0.1 0.1

)
, A =

(
0.1 0.1
0.1 0.1

)
, B =

(
0.1 0.1
0.1 0.1

)
, ε(λ) =(

eλ e2λ

e3λ e4λ

)
γ1k = γ2k = e0.005k, ηk = max{1, e0.005k} = e0.005k > 1, η = supk∈N{ ln ηk

tk−tk−1
} =

0.01
Let λ = 0.1, ξ = (1, 1)T . Obviously η < λ . By computing we have

[λE − αβ + α|A|F + α(|A|+ |B|)F ⊗ ε(λ)]ξ < 0

From theorem 1, we know that the equilibrium point u∗ = (1, 1)T of the system
(17) is globally exponentially stable, and its exponential convergence rate is not
less than λ− η = 0.09 .

5 Conclusion

In this paper, we have investigated the global exponential stability for a class
of impulsive fuzzy cellular neural networks with delays and reaction-diffusion
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terms. Using Lyapunov functional method and inequality technique, we gave a
sufficient criterion ensuring the global exponential stability of the equilibrium
point.
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Abstract. In this paper, we report the results concerned with the nonnegative
periodic dynamics of the delayed Cohen-Grossberg neural networks with dis-
continuous activation functions and periodic interconnection coefficients, self-
inhibitions, and external inputs. Filippov theory is utilized to study the viability,
namely, the existence of the solution of the Cauchy problem. The conditions of
diagonal dominant type are presented to guarantee the existence and the asymp-
totical stability of a periodic solution. Numerical examples are provided to illus-
trate the theoretical results.

1 Introduction

Research on the dynamical behavior of the recurrently connected neural networks is
an important topic in neural network theory. Among them, Cohen-Grossberg neural
networks were proposed in pioneering works of Cohen and Grossberg [1], and can be
modeled by the following differential equations:

dxi(t)
dt

= Ai(xi(t))
[
− dixi(t) +

n∑
j=1

aijgj(xj(t)) + Ji

]
, i = 1, · · · , n (1)

where xi(t) denotes the state variable of the potential of the i-th neuron, di represents
the self-inhibition with which the i-th neuron will reset its potential to the resting state
in isolations when disconnected from the network, aij denotes the connection strength
of j-th neuron on the i-th neuron, gi(·) denotes the activation function of i-th neuron, Ji

denotes the external input to the i-th neuron, and Ai(·) denotes amplification function
of the i-th neuron. There are a lot of papers in literature discussing the local and global
stability of this system as well as the well-know Hopfield neural networks [2]:

dxi(t)
dt

= −dixi(t) +
n∑

j=1

aijgj(xj(t)) + Ji, i = 1, · · · , n (2)

� This work was supported by the National Natural Sciences Foundation of China under Grant
Nos. 60774074 and 60804044, and sponsored by Shanghai Pujiang Program No. 08PJ14019.

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 579–588, 2009.
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which can be regarded as the special case of the system (1) by letting Ai(ρ) = 1,
i = 1, · · · , n. For reference, see [1,3,4,5,6] and many others.

In practice, time delays inevitably occur due to the finite switching speed of the
amplifiers and communication time. Thus, the neural networks can be modeled by the
following delayed differential equations:

dxi(t)
dt

= Ai(xi(t))
[
− dixi(t) +

n∑
j=1

aijgj(xj(t)) +
n∑

j=1

bijgj(xj(t− τij)) + Ji

]
,

i = 1, · · · , n, (3)

where bij denotes the delayed feedback of the j-th neuron on the i-th neuron. There are
also many papers discussing the stability of delayed neural networks. See
[7,8,9,10,11,12,13]for references. In these papers, various conditions based on Lya-
punov functionals were given guaranteeing the global stability.

Furthermore, the interconnections may be asynchronous, namely, the interconnec-
tion weights aij , bij , self-inhibitions di and inputs Ji should vary through time.
Therefore, we need to study the non-autonomous dynamical systems with time-varying
self-inhibitions, connections, and inputs:

dxi(t)
dt

= Ai(xi(t))
[
− di(t)xi(t) +

n∑
j=1

aij(t)gj(xj(t)) +
n∑

j=1

bij(t)gj(xj(t− τij))

+ Ji(t)
]
, i = 1, · · · , n. (4)

Recently, a number of researchers have investigated the existence and global attraction
of the periodic solution ([14,15,16,17,18,19] )or almost periodic solution([20,21] )for
these non-autonomous delayed differential systems, assuming that the system is peri-
odic or almost periodic respectively. Among them, several methods (such as the fixed
point theorem) have been used to obtain the existence of the solutions.

However, all the results obtained in these papers were based on the assumption that
amplifier functionAi(·) is always positive (see [23,6] ), even greater than some positive
numberAi(·) ≥ Ai > 0 (see [22,23] ). But in their original paper, [1,24,25] , they pro-
posed this model as a kind of competitive-cooperation dynamical system for decision
rules, pattern formation, and parallel memory storage. Hereby, each state of neuron xi

might be the population size, activity, or concentration, etc. of the ith species in the sys-
tem, which is always nonnegative for all time. To guarantee the positivity of the states,
one should assume Ai(ρ) > 0 for all ρ > 0 and Ai(0) = 0 for all i = 1, · · · , n.
[1,25] provided the pioneering study on the dynamics of such neural network model
with assuming Ai(ρ) > 0 for all ρ > 0 and Ai(0) = 0 for all i = 1, · · · , n and without
considering any time delay. [26,27] studied the global stability of nonnegative equilib-
rium or nonnegative periodic solution of the Cohen-Grossberge neural networks with
assuming Ai(ρ) > 0 for ρ > 0 and Ai(0) = 0, i = 1, · · · , n.

In addition, the works mentioned above were based on the assumption that the
activation functions are continuous even globally Lipshitz. As mentioned by [28] a
brief review on some common neural network models reveals that neural networks
with discontinuous activations are of importance and do frequently arise in practice.
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In the last few years, there arise several papers studying neural networks with discon-
tinuous activations. [28] discussed the absolute stability of Hopfield neural networks
(2) with bounded and discontinuous activations. [29] proved the global convergence
for Cohen-Grossberg neural networks with unbounded and discontinuous activations.
Also, [30,31] studied the dynamics of delayed neural networks. [32] discussed the pe-
riodic solution of the periodic delayed neural networks with discontinuous activations
and periodic parameters and [33] studied almost periodic dynamical behaviors of de-
layed neural networks with almost periodic coefficients. However, these works are all
concerned with Hopfield neural networks or Cohen-Grossberg networks with always
positive amplifiers.

Continuing with our previous work [29,31,33], the aim of this paper is to study the
nonnegative periodic dynamical behaviors of the delayed Cohen-Grossberg neural net-
work system:

ẋi = Ai(xi)
[
− di(t)xi(t) +

n∑
j=1

aij(t)gj(xj(t) +
n∑

j=1

bij(t)gj(xj(t− τij)) + Ji(t)
]
,

i = 1, · · · , n. (5)

with discontinuous activations, periodic coefficients, and without assuming the positiv-
ity of the amplifier functions. Hereby, we focus our study of the dynamical behaviors on
the first orthant: Rn

+ = {(x1, · · · , xn)� ∈ Rn : xi ≥ 0, i = 1, · · · , n} and consider
all trajectories initiated in the first orthant Rn

+ instead of the whole space Rn. We in-
troduce the concept of solutions in the Filippov sense for delayed dynamical system (5)
and prove its existence in the first orthant by the idea introduced by Filippov [34]. Then,
we present sufficient condition to guarantee the existence of a nonnegative periodic so-
lution and the global exponential stability of this periodic solution. Since a constant can
be viewed as a special periodic function with arbitrary period, the results also apply
to the stability of nonnegative equilibrium of the systems with constant self-inhibition,
connection weights and outer inputs.

2 Preliminaries

In this section, we present the necessary hypotheses for the model description, defini-
tions, and notations, which will be used in the following part of this paper.

2.1 Model Hypotheses

In this paper, we consider the differential equations (5). The amplifier functions Ai(·)
is assumed to satisfy the condition below to guarantee the positivity of the solution(see
lemma 2).
H1: For all i = 1, 2, . . . , n, Ai(s) is continuous and for s ≥ 0 with Ai(s) > 0 for

s > 0 and Ai(0) = 0, and ∫ ε

0

ds

Ai(s)
= +∞, i = 1, . . . , n

where ε is an arbitrary positive number.



582 X. He, W. Lu, and T. Chen

The self-inhibitions are assumed to be always positive.
H2: For all i = 1, 2, . . . , n, di(t) ≥ Di, where Di is a positive constant for i =

1, 2, . . . , n.
The activation functions have isolated points of discontinuity:
H3: Let g(x) = (g1(x1), g2(x2), . . . , gn(xn))T . gi(·) is non-increasing and in every

compact set of R, each gi(·) has only finite discontinuous points. Therefore, in any
compact set in R, except a finite points {ρk}, where there exist finite right and left limit
gi(ρ+) and gi(ρ−) with gi(ρ+) > gi(ρ−), gi(·) is continuous. Moreover, we assume
gi(·) is bounded, i.e. there exist a positive numberG > 0, such that gi(·) ≤ G.

The time-varying coefficients, including the self-inhibitions, interconnection coeffi-
cients, and the external inputs, are all periodic with the same period.
H4: di(t), aij(t), bij(t), and Ji(t) are all continuous function and satisfy

di(t+ ω) = di(t), aij(t+ ω) = aij(t), bij(t+ ω) = bij(t), Ji(t+ ω) = Ji(t)

for all t ∈ R and i, j = 1, · · · , n.
The following diagonal dominant conditions lie at the key position of the existence

and its stability of the periodic solution of the delayed system (5).
H5: There exist positive constants ξ1, ξ2,. . . ξn such that for all i = 1, 2, . . . , n, the

following conditions are satisfied:

ξiaii(t) +
n∑

j=1,j 	=i

ξj |aji(t)|+
n∑

j=1

ξj |bji(t+ τij)| < 0. (6)

2.2 Sense of the Solution and Its Stability

Here, we present the sense of the solution of the Cauchy problem of the delayed dif-
ferential system (5) according to positive initial conditions φi(θ) > 0, θ ∈ [−τM , 0].
The existence of the solution of the Cauchy problem is studied with the Filippov theory
[34], which is based on the set-valued map analysis.

Definition 1. Suppose E ⊂ Rn. Map x �→ F (x) is called a set-value map from E ↪→
Rn, if to each point x of a set E ⊂ Rn, there corresponds to a non-empty set F (x) ⊂
Rn. A set-value map F with non-empty value is said to be upper semicontinuous at
x0 ∈ E, if for any open set N containing F (x0), there exists a neighborhoodM of x0

such that F (M) ⊂ N . F (x) is said to have closed (convex, compact) image, if for each
x ∈ E, F (x) is closed (convex, compact).

More details can be found in [35].
The sense of the solution of the dynamical system (5) with delays and discontinuous

activations comes from the Filoppov’s definition [34]. Denote the convex closure of
gj(ρ) byK[gj(ρ)]. That is, for a point of discontinuity of gj : ρ∗, K[gj(ρ)] = [gj(ρ∗ −
0), gj(ρ∗+0)]. Similar to [31,33], we define the Filippov solution of Eqs. (5) as follows:

Definition 2. A solution of Cauchy problem of the system (5) with respect to contin-
uous initial conditions φ(θ) = [φ1(θ), · · · , φn(θ)]�, θ ∈ [−τM , 0], is an absolutely
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continuous function x(t) on [0, T )(T might be +∞) such that x(θ) = φ(θ), for θ ∈
[−τM , 0], and satisfies⎧⎪⎪⎨⎪⎪⎩

dxi

dt = Ai(x)[−di(t)xi(t) +
∑n

j=1 aij(t)γj(t)
+
∑n

j=1 bij(t)γj(t− τij) + Ji(t)] a.e.t ∈ [0, T )

γj(t) ∈ K[gj(xj(t))] a.e.t ∈ [0, T )
(7)

Thus, the asymptotical stability of a nonnegative periodic solution x∗(t) (if existing) is
defined in the first orthant.

Definition 3. x∗(t) is said to be asymptoticallyRn
+-stale if for any positive initial con-

ditions φi(θ), θ ∈ [−τM , 0] and i = 1, · · · , n, the solution x(t) satisfies

lim
t→∞ |xi(t)− x∗i (t)| = 0, i = 1, · · · , n.

A basic condition is used to derived the existence of such solution in Filippov’s sense.

3 Main Results

In this section, we firstly study the existence of the positive solution of the Cauchy
problem of the system (7) with respect to positive initial conditions. Second, we discuss
the existence of nonnegative periodic solution. Finally, we investigate the Rn

+-stability
of the nonnegative solution. Due to the limit of spaces, all the proofs are omitted and
will be presented somewhere else in our future paper.

Definition 4. [34] A set valued map F:Rn × R+ �→ Rnis said to satisfy the basic
conditions in a domain G ⊂ Rn × R+, if for any (x, t) ∈ G, F (x, t) is non-empty,
bounded, closed and convex, and F is upper semicontinuous in (x, t).

Lemma 1. [34] If a set-valued map F (x, t) satisfies the basic conditions in the inte-
rior of the domainG, then for any point (x0, t0) ∈ G, there exists a solution inG of the
following differential equation: {

ẋ ∈ F (x, t)
x(t0) = x0

(8)

over an interval [t0, t
′
) for some t

′
> t0. Moreover, If F (x, t) satisfies the basic condi-

tions in a closed bounded domain D, then each solution of the system (8) lying within
D can be continued on both sides up to the boundary of the domainD.

The assumptionH1 can lead that each solution trajectory (if existing) of the system (7)
is positive if the initial data are positive.

Lemma 2. (Positivity) Under the assumption H1, H4, if initial date is positive, i.e.,
xi(0) > 0 for all i = 1, · · · , n, then each solution of the system (7) is positive within
the duration time.
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Also, the boundedness of the activation functions can imply that the solution is bounded
in the whole duration time interval.

Lemma 3. (Boundedness) Under the assumptions H2, H3, H4, any positive solution
x(t) of system (7) is bounded on its duration time interval.

Therefore, we are in the position to give the theorem of viability.

Theorem 1. (Viability) Under the assumption H1−4, for each positive initial condi-
tions, the system (7) admits one positive bounded solution of which the duration time
interval is [0,+∞).

Lemma 1 tells us that there exists one solution on [0, τm], lemma 2 and lemma 3 restrict
the solution in Rn

+. By regrading the value of xi(t) on (−∞, τm] as initial condition of
system (7), the solution can be extended to [τm, 2τm]. Continuing this phase can lead
that the solution of the system (7) exist in the whole time interval [0,+∞) and belongs
to the domain Rn

+.
For convenient citation, we rewrite the solution of the delayed Cohen-Grossberg

neural networks with discontinuous activations as follows:

dxi

dt
=Ai(xi(t))

[
− di(t)xj(t)+

n∑
j=1

aij(t)γj(xj(t))+
n∑

j=1

bij(t)γj(t−τij)+Ji(t)
]
,

i = 1, · · · , n
γj(t) ∈ K[gj(xj(t))], j = 1, · · · , n, (9)

for almost every t ≥ 0, where K[gj(xj(t))] = [g(xj(t) − 0), gj(xj(t) + 0)], j =
1, · · · , n.

With diagonal dominant conditionH5, we can obtain the existence of a nonnegative
periodic solution as well as its Rn

+-stability.

Theorem 2. Under the assumptionsH1−5, the system (9) has a nonnegativeω-periodic
solution x∗(t) and this periodic x∗(t) is globally asymptotically stable for the system
(9).

Let xm(t) = x(t+mω). Define a candidate Lyapunov function:

L(t) =
n∑

i=1

ξi|zi(t)| +
n∑

i,j=1

ξi

∫ t

t−τij

|bij(s+ τij)||wi(s)|ds, (10)

where zi(t) =
∫ xi(t+ω)

xi(t)
dρ

ai(ρ) and wi(t) = γi(t+ω)−γi(t). Differentiating it, we have

dL(t)
dt

≤ −
n∑

i=1

Diξi|xi(t+ ω)− xi(t)|+
n∑

i=1

[
ξiaii(t) +

n∑
j 	=i

ξjaji(t)

+
n∑

j=1

ξj |bji(t+ τij)|
]|wi(t)| ≤ −α

n∑
i=1

|xi(t+ ω)− xi(t)|,
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(the last inequality holds by H5) where α = mini ξiDi. This indicates∫ +∞

0

|xi(t+ ω)− xi(t)| ≤ L(0)
α

< +∞,

which implies that {xm(t)}∞m=0 is a Cauchy sequence in the space L1([0, ω], Rn).
Therefore, there exists an ω-periodic functionx∗(t) ∈ L1([0, ω], Rn) such that
limm→∞

∫ ω

0
|x(t + mω) − x∗(t)|dt = 0. By Arzela-Ascoli lemma and Mazur con-

vexity theorem, we can proof that x∗(t) is a solution of solution of system (9). The
globally asymptotical stability can be obtained by a similar Lyapunov function.

The case of constant coefficients can be regarded as special case of periodic ones.

Corollary 1. Under the assumptions H1,2,3,5, if all di, aij , bij , Ji, i, j = 1, · · · , n,
are constants, the the system (9) admits a positive solution for each positive initial
conditions; moreover, there exists a nonnegative equilibrium of the system (9) which is
asymptotically Rn

+-stale.

4 Numerical Illustrations

In this section, we present two examples of two dimensions to verify theoretical results
given in previous sections.

Example 1
Consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x1(t)[−x1(t) + (−3 + cos t)sign(x1(t)− 2)
+(1− cos t)sign(x1(t− 1)− 2)
+(1 + sin t)sign(x1(t− 1)− 2) + 7 + sin(t)]

ẋ2 = x2(t)[−x2(t) + cos tsign(x1(t)− 2)
+(−5 + cos t)sign(x2 − 2)
+ sin(t)sign(x1(t− 1)− 2)
+(1 + cos t)sign(x2(t− 1)− 2) + 5 + sin t]

(11)

Here, the activation function is picked as sign(ρ− 2), where sign is the sign function.
Assumptions H1-H4 are obviously satisfied, Thus we only need to verify H4, and by
choosing ξ1 = ξ2 = 1, assumptionH5 can be rewritten as the inequities:{

(−3 + cos t) + | cos t|+ |1− cos(t+ 1)|+ | sin(t+ 1)| < 0
(−5 + cos t) + |1 + sin(t+ 1)|+ |(1 + cos(t+ 1)| < 0,

which holds for any t ≥ 0 via direct algebras. Therefore, from Theorems 2, one can see
that the system (11) has a nonnegative 2π-periodic solution which is globally asymp-
totically stable. As shown in Fig. 1, the two components converge two positive periodic
functions respectively.

We can see that the solution of the system (11) is positive, and the next example
shows that the solution can be nonnegative under assumptionsH1-H5.
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Fig. 1. Dynamics of the system (11) with initial condition xi(θ) = 1 for θ ∈ [−1, 0]
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Fig. 2. Dynamics of the system (12) with initial condition xi(θ) = 1 for θ ∈ [−1, 0]

Example 2
Consider the other system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x1(t)[−x1(t) + (−3− cos t)sign(x1(t)− 2)
+(1 + cos t)sign(x2(t))
+(1 + cos t)sign(x1(t− 1)− 2)
+(1 + sin t)sign(x2(t− 1)) + 2]

ẋ2 = x2(t)[−x2(t) + cos tsign(x1(t)− 2)
+(−3− sin t)sign(x2(t))
+ sin tsign(x1(t− 1)− 2) + sin t]

. (12)
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where the assumptionH5 can be rewritten as:{
(−3− cos t) + | cos t|+ |1 + cos(t+ 1)|+ | sin(t+ 1)| < 0
(−3− sin t) + |1 + cos t|+ |1 + sin(t+ 1)| < 0,

which holds for any t ∈ R. Therefore by Theorem 2, system (15) has a nonnegative
2π-periodic solution which is globally asymptotically stable. As shown in Fig. 2, one
component converges to a positive periodic solution but the other converges to zero.
This illustrate that even though each solution is positive due to the positive initial con-
ditions, the terminal limit may be zero.

5 Conclusions

In conclusion, we study the nonnegative periodic dynamics of the delayed Cohen-
Grossberg neural networks with discontinuous activations, periodic coefficients, and
without assuming the positivity of the amplifiers. We use the Filippove theory to prove
that the existence of a positive solution with respect to positive initial conditions and
Lyapunov methods to investigate the existence and asymptotical Rn

+-stability of the
nonnegative periodic solution. That is to say, the all positive solutions asymptotically
converge to a periodic solution, which can be positive or zero. We present numerical
examples to illustrate that both cases are possible.
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Abstract. As the core component of the Icing Detection System of aircrafts, the 
reliability of Diaphragm Icing Sensor is a key factor for the ice detection system 
to work normally. This paper makes use of Neural Network and Autoregressive 
Exogeneous Model (ARX) to set up the output prediction model of the dia-
phragm icing sensor. Compare the predicted output of the model with the actual 
output to diagnose sensor faults of the sensor. According to the data acquiring 
from our experiment platform of Diaphragm Icing Sensor, it has been proved 
that this method is effective for fault diagnosis of the Diaphragm Icing Sensor. 

Keywords: Diaphragm icing sensor, Diaphragm icing sensor, Fault diagnosis. 

1   Introduction 

As the core component of the Icing Detection System of aircrafts, the Diaphragm 
Icing Sensor is a kind of safety equipment for airplane flight. However, due to the 
harsh environment of airplane flight, the sensitivity and linearity of the sensor may 
decline, severe zero drift also happens, causing frequent fault of the sensor. According 
to the application of the icing detection system, the reliability of the system mainly 
depends on the diaphragm sensor and the circuits. Therefore, in order to improve the 
reliability of detection system and ensure flight safety, it is of great significance to 
have research on the methods of the diaphragm icing sensor fault diagnosis. 

Neural Network is widely applied into sensor fault diagnosis because of its distin-
guished advantages such as self-adapting, self-learning and dealing with complex 
model. Literature [1] and [2] investigate the fault diagnosis of sensor based on Neural 
Network Pattern Recognition and get favorable fault diagnosis through laboratory 
simulation. Literature [3] studies the fault diagnosis of sensor from the aspect of Neu-
ral Network Observer. According to the experimentation results, Neural Network is 
effective in sensor fault diagnosis. 

Different from the sensor operating principle discussed above, since the accurate 
input and output of the diaphragm icing sensor is available (the operating principle of 
the diaphragm icing sensor is discussed in the next section), because of the excellent 
nonlinear mapping ability of Neural Network and the favorable anti-jamming capabil-
ity of autoregressive exogeneous model(ARX), it is feasible to set up the input-output 
model of the diaphragm icing sensor based on Neural Network and ARX (NNARX) 
model. When sensor fault happens, information about it can be obtained from the 
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residual between predicted output and the actual output of the model to have fault 
diagnosis of the sensor. Because NNARX is good at predicting and fast network con-
vergence, the diaphragm icing sensor model can realize the on-line and off-line fault 
diagnosis of the sensor so as to provide solid technical support for reliable operation 
of the airplane ice detection system. 

2   Operating Principle and Fault Modes of the Diaphragm Icing 
Sensor 

2.1   Operating Principle of the Diaphragm Icing Sensor 

The icing sensor in this study is a diaphragm sensor based on piezoelectric resonance 
principle. Piezoelectric resonance is a kind of electrical-mechanical transformation. The 
main element of the piezoelectric resonator component is diaphragm mechanical oscilla-
tor made from piezoelectric material. The piezoelectric resonant sensor is based on 
piezoelectricity. The input voltage from the electrodes is transformed into mechanical 
stress of the mechanical oscillator through converse piezoelectric effect; on the contrary, 
the deformation of the mechanical oscillator caused by mechanical stress produces 
output charge on the electrodes through piezoelectric effect. Electric actuating signals 
can be inputted to cause mechanical vibration, also electric signals in direct proportion 
to vibration amplitude is output. Generally, the sensor in this study is based on piezo-
electric effect, converse piezoelectric effect and mechanical resonance principle. 

This sensor utilizes a three-electrode diaphragm piezoelectric device. As shown in 
Fig.1,  

 

Fig. 1. Structure of the Piezoelectric Element 

where electrode a is a metal plate, electrode b is another one, electrode c is a third 
electrode etched out of electrode b, d is piezoelectric element. When it is used as icing 
sensor, polar plate a is installed with support leg, the face of the polar plate is upwards 
for ice detection (see Fig. 2) 

 

Fig. 2. Structure of the Sensor 
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When alternating voltage is added on polar plate a and b, the piezoelectric element 
will experience a radial expansion vibration. This system can be regarded as a signal-
order mechanical vibration system.  

m
kCf =0

. 
(1) 

where the corresponding relation between its resonant frequency, effective mass m, 
and equivalent stiffness k is prescribed as Eq.(1), where C is a constant. 

This kind of piezoelectric device is able to work as icing sensor because when 
there is no additional mass on plate b, the piezoelectric element does a radial expan-
sion vibration at its own resonant frequency in coordination with certain sort of cir-
cuit. When icing occurs on the plate, which will greatly increase the stiffness k of the 
system, as we know from Eq. (1), the resonant frequency will also be increased. That 
is, as the thickness of ice increases, the stiffness k increases and eventually the reso-
nant frequency increase. Therefore, the ice thickness will be measured if we can de-
tect the resonant frequency.  

Piezoelectric ceramics has both electricity and elasticity, which means it has inher-
ent resonant frequency. As for certain piezoelectric resonant diaphragm, when the 
frequency of the excitation voltage deviates from resonant frequency, the current in 
the excitation electrode loop is small, while the frequency of excitation voltage ap-
proaching certain resonant frequency of the piezoelectric sensor, the mechanical vi-
bration amplitude increases and reaches the peak value at the resonant frequency 
because of positive effect, then the charge on electrodes is scaling up.  

While viewing the piezoelectric resonant diaphragm as a two-port network, if al-
ternating voltage with frequency of f is inputted, charge will be produced on the elec-
trodes through converse piezoelectric effect and piezoelectric effect, the charge can be 
amplified into voltage u, which is in proportion to the amplitude of mechanical vibra-
tion and the resonance voltage is measured. Thus, the resonance frequency will be 
obtained according to the vibration principle mentioned above, realizing the meas-
urement of ice thickness. 

2.2   Fault Modes of the Diaphragm Icing Sensor 

After years of research and observation on the sensor, there are generally several fault 
modes of the diaphragm icing sensor, as shown in the output voltage u, constant, 
constant bias and significant mutation, etc. 
(1) Constant output u, the sensitive diaphragm of the sensor fails to vibrate and the 
output of the sensor is constant C, this fault mode is constant output voltage u. Obvi-
ously, when constant output happens, the diaphragm icing detection system is almost 
useless, causing the diaphragm icing sensor out of control among the safety detection 
system of the airplane. 
(2) Constant bias y∆ , slow drift of the sensor happens because of the environment 

factors, that is, in a certain period of time (several hours or more), there is constant 
bias y∆ in the output u of the sensor, and this fault mode leads to false alarm of the 

detection system.  
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(3) Significant mutation, if the surface of the diaphragm is polluted, the significant 
mutation fault mode can happen. In this case, the work of the detection system is 
extremely unstable, the output u is either far beyond the limits or far less than the 
allowable value, so the quality of the safe detection is damaged. 

3   Neural Network Model of the Diaphragm Icing Sensor 

By the discussion above, it is feasible to set up the prediction model between input f 
and output u of the diaphragm icing sensor. In this study, to adapt the dynamic char-
acteristics of the diaphragm icing sensor under harsh environment during airplane 
flight, the model between input f and output u of the sensor is set up based on Autore-
gressive Exogeneous (ARX). ARX Model is one of the “Black-Box” methods; it can 
set up the sensor model with the input and output information of the system while the 
internal mechanism is not necessary. The system identification method of combining 
ARX Model and Neural Network takes advantage of the excellent non-linear mapping 
capability of Neural Network and the concept of time serials of ARX Model to ensure 
good dynamic characteristics and anti-jamming capability of the NNARX Model. 
With NNARX Model, the Diaphragm Icing Sensor Prediction Model is of favorable 
prediction ability.     

3.1   NNARX Model Structure 

A dynamic system can be represented by 

( ) ( ) ( ) ( ) ( )nky t q G q u t H q e t−= + . (2) 

where ( ) ( )nkq G q u t−  term refers to noise-free output and ( ) ( )H q e t  refers to dis-

turbance term. q  as an argument of ( )G q and ( )H q is the negative shift operator, 

which is equivalent to 1q−  represented by nkq−  and can be demonstrated by 
1 ( ) ( 1)q x t x t− = − . nk is the time delay in sampling instant between the process 

input and the output. 
The ARX model structure is given by 

( ) 1
( ) ( ) ( )

( ) ( )
nk B q

y t q u t e t
A q A q

−= + . (3) 

where the polynomials A(q) and B(q) are given by 

1
1

1
0 1

( ) 1 ...

( ) ...

na
na

nb
nb

A q a q a q

B q b b q b q

− −

− −

= + + +

= + +
. (4) 

In estimating the nonlinear counterpart of the ARX structure, the neural network can 
be utilized. The multilayer perceptron (MLP) is among of the popular neural network  
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structures especially in identification of a nonlinear system. The neural network ver-
sion of ARX model structure is denoted as the neural network ARX (NNARX). As-
suming the input delay 1nk = .The general NNARX model structure is as shown in 
the Fig.4. 

( 1)Y t

( )Y t na

( 1)U t

( )U t nb

( )Y t

[ ( ), ]g f t

 

Fig. 3. The general NNARX model structure 

The input-output relationship of NNARX model structure can be represented by 

( ) [ ( ), ] ( )y t g t e tϕ θ= + . (5) 

The one-step-ahead-prediction of the NNARX model structure is given by 

$( | ) [ ( ), ]y t g tθ ϕ θ= . (6) 

where ( )tϕ is the regression vector,θ is the parameter vector, g is the function real-

ized by the neural network, ( )e t is the noise, ( )y t is the system output and $( | )y t θ is 

the predicted output based on the parameter vectorθ . 
Considering Eq.(2) and for simplicity, assuming unity time delay, the 1-Step-Ahead-
Prediction is given by 

$ 1 1( | 1) ( ) ( ) ( ) [1 ( )] ( )y t t H q G q u t H q y t− −− = + − . (7) 

3.2   Neural Network Prediction Model of the Diaphragm Icing Sensor 

In this paper, diaphragm icing sensor neural network prediction model is a Three-
layer neural network as in Fig. 4. The regressors are past frequency inputs and 
past sensor outputs; the transfer function in the hidden layer is the hyperbolic 
tangent function, as shown in Fig.5, the transfer function in the output layer is the 
sigmoid function, as shown in Fig.6. Since all the information data {y(k),(k)} can 
be made available as inputs to this model any non-linear system can be approxi-
mated well. 
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Fig. 4. Three-layer NNARX model of Diaphragm Icing Sensor 

The advantageous and distinguishing feature of neural networks is their ability to 
learn. The network in the adaptive mode abstracts and generalizes the function char-
acter in the process of learning from training patterns. The learning algorithm is an 
optimization method capable of finding weight coefficients and thresholds for a given 
neural network and a training set. Because Levenberg-Marquardt back propaga-
tion(LMBP) method generally has less computational burden and faster convergence, 
This paper uses LMBP algorithm for training neural network load models in off-line 
as well as in real-time. Please refer to literature [4] for specific details of the LMBP 
algorithm.  

jn

jy

               

jy

 

Fig. 5. Hyperbolic tangent transfer function              Fig. 6. Sigmoid transfer function 

4   Fault Diagnosis of the Diaphragm Icing Sensor  

4.1   Principle of Fault Diagnosis of the Diaphragm Icing Sensor  

As for the fault modes of diaphragm icing sensor discussed above, the principle of 
diagnosis of diaphragm icing sensor based on neural network prediction model is as 

shown in Fig.7. Calculate the difference between the predicted output voltages 
$( )y k  

and actual output ( )y k  of the sensor at the moment of k and compare the residual 
deviation with certain detection threshold to decide the sensor fault.  
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( )y k

( )y k

 

Fig. 7. The structure of Fault Diagnosis of the Diaphragm Icing Sensor 

If the residual deviation between the predicted output voltages 
$( )y k  and actual out-

put ( )y k  of the sensor at the moment of k is less than the threshold, the sensor works 
normally, otherwise, sensor fault exists. 

4.2   Threshold Design 

Both the linear and nonlinear procedures described require a priori knowledge of 
faults to be detected; following the study of the statistics of the residual signal, a sta-
tistical approach has been followed in the design of the thresholds. The residual is a 
non-stationary stochastic process but does approximate to a Gaussian distribution [5]. 

Considering the variation of the residual ie
with input amplitudes, the mean and vari-

ance of the residual can be expressed according to the stochastic theory: 

1

1 n

i
i

e
n

η
=

= ∑  (8) 

2 2

1

1
( )

1

n

i
i

e
n

δ η
=

= −
− ∑ . (9) 

From the statistical theory [6], the confidence limits of the mean that represent a 
confidence of (1-a) is 

{ } 1P z z aη σ η η σ− < < + = − . (10) 

where a is the confidence level, and z is the coefficient related to the confidence level. 
The confidence (1-a) is typically selected to be 95–99% in practice. In this study, the 
confidence level is 97%, i.e. a=0.03 and then the coefficient z=2.17. 
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From Eq.(10), the threshold can be calculated as 

2.17thδ η σ= ± . (11) 

In addition, the residual is also influenced by many factors; therefore, enabling the 

influence of both the model error and the random disturbances to be considered，it is 
suggested that the basic form of the threshold is 

( 2.17 )thδ η σ= Ψ ±  (12) 

where Ψ are coefficients modifying the mean and variance, in this paper, Ψ ,mean 
and variance are decided through experiment results. 

5   Experiments and Results 

5.1   Description of the Experiment Platform 

In order to justify the fault diagnosis method of diaphragm icing sensor discussed in 
this study, we use diaphragm sensor experiment platform to collect experiment data. 
As shown in the Fig.8, in this experiment platform, the drive circuit and signal proc-
essing circuit produce the input excitation voltage f and collect and transform into the 
output voltage u, and then these data is transmitted through serial communication to 
the PC for analysis and display.  

As for this experiment platform, one of the most important factors is the simulation 
of real icing condition during airplane flight. And under this requirement, the High-
Low-Temperature Box and the Spray System play the key roles.  

 

Fig. 8. Experiment Platform of Diaphragm Sensor 

The four key elements of airplane icing are: Velocity (V), Temperature (T), Liquid 
Water Content (LWC) and Liquid Drop Mean Effective Diameter (MVD) [7], which 
determine the types and geometry of ice and can be regulated according to actual 
conditions. It is impossible to simulate all of the four elements under current labora-
tory situation; however, the T and MVD are relatively easy to be controlled. The 
principle of this experiment platform is to simulate the atmosphere icing through the 
adjustment of T and MVD while other environmental elements remain constant, 
which is generally justified by experiments.  



 Research on the Application of Neural Network 597 

  

Fig. 9. High-Low-Temperature Box 

 

Fig. 10. Structure of the Spray System 

On one hand, the control of temperature is realized with High-Low-Temperature 

Box(see Fig.9), which provides the condition of temperature between -70℃  and  

+150℃, meeting the temperature requirements. During the experiments, piezoelectric 
diaphragm icing sensor is placed in the box for low icing temperature.  
On the other hand, the Spray System is able to control the MVD, which generally 
consists of diaphragm pump, pressure storage tank, and electromagnetic valve, pres-

sure regulating valve, sprayer and controller,as shown in Fig.10. This system can 
produce effective tiny liquid drop for the diaphragm icing sensor to experience icing 
process.        

5.2   Off-Line Learning Neural Network Fault Diagnosis 

Take the off-line input and output data of the sensor without faults as input samples 
for neural network training. In order to research the drift fault diagnosis of the dia-
phragm icing sensor, add a deviation signal to the sensor’s output. The learning  
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Fig. 11. Predicted Output and Residual Deviation of Off-line Learning Neural Network 

precision can be very high because of the neural network off-line learning. According 
to Eq. (12), the threshold here is -0.3-0.3. As shown in Fig. 11. The residual of the 
35th sampling point gets beyond the fault diagnosis threshold, meaning that sensor 
fault happens from the 35th sampling point.  

5.3   On-Line Learning Neural Network Fault Diagnosis 

First, take the first m sets of data of the sensor’s input and output as input sample of 
the neural network until certain iteration times or the network converges to the ex-

pected precision. Then, predict the (m+1) output 
$( 1)y m + of the sensor and compare it 

with the actual output ( 1)y m +  of the sensor. If the residual is less than certain 
threshold, the sensor works normally; otherwise if the residual gets beyond the 
threshold, fault exists. The neural network convergence speed is fast enough to meet 
the real-time requirement. In order to research the drift fault diagnosis of the dia-
phragm icing sensor, add a deviation signal to the sensor’s output after the neural 
network’s training. Because the learning precision of on-line neural network is not as 
high as off-line neural network, the threshold here is -0.5-0.5 as a matter of experi-
ence. Fig.12 shows the sensor’s bias fault diagnosis with on-line learning neural net-
work predictor. As shown in the Fig.12, the residual deviation of the 34th sampling 
point gets beyond the fault diagnosis threshold, meaning that sensor fault happens 
from the 34th sampling point.  
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Fig. 12. Predicted Output and Residual Deviation of On-line Learning Neural Network 

6   Conclusion 

The diagnosis method in this study is proved to be effective with the experiments of 
the fault diagnosis of diaphragm icing sensor. The sensor fault diagnosis method dis-
cuss in this study has the following characteristics: ① only the sensor signal is needed 
to diagnose the sensor fault; ② not only the constant bias fault can be simulated as in 
this study, the method can also be applied into the diagnosis of other types of sensor 
faults such as drift, collision, hardware failure, etc. 
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The Periodic Solution of a Class of Two Neurons
Hopfield Network with Distributed Delay
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Abstract. This paper considers the two neurons Hopfield network with
distributed delay, which can be transformed into the three-dimensional
differential system. Then we use the result of competitive system to get
the periodic solution of the system. We also show that existence and
uniqueness of equilibrium point, and if the equilibrium is unstable, then
an orbitally asymptotically stable periodic solution exists.

Keywords: Neural network, Equilibrium point, Periodic solution, Com-
petitive system, Distributed delay.

1 Introduction

The study of neural networks began with the early work of Hopfield who used an
electronic circuit implementation of such a network. In recent years, to under-
stand better the dynamical behavior of neural networks, various complications
have been included [1]-[7]. A typical model can be expressed as the following the
two neurons Hopfield network

{
ẋ1(t) = −a1x1(t) + b11f1(x1(t)) + b12f2(x2(t)) + I1
ẋ2(t) = −a2x2(t) + b21

∫ t

−∞ δf1(x1(τ))e−δ(t−τ)dτ + b22f2(x2(t)) + I2
(1)

where xi(t) is the state of the ith neuron, ai, bij (i, j = 1, 2) are the connection
weight constants, δ > 0, and Ii is an external input(bias) to the ith neuron,
i = 1, 2. In this letter, we assume that the activation functions fi(·) ∈ C(i = 1, 2)
satisfy

fi(ξ) =

⎧⎨⎩
ui −∞ < ξ < pi

f̄ ′(ξ) pi ≤ ξ ≤ qi
vi qi < ξ <∞,

where pi, qi, ui, vi are constant. The initial conditions associated with the model
(1) are of the form

xit0 (θ) = ϕi(t0 + θ) for θ ∈ (−∞, 0] and ϕi ∈ C((−∞, 0], R). (2)

Let

x3(t) =
∫ t

−∞
δf1(x1(τ))e−δ(t−τ)dτ.
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The system (1) can be transformed into the following differential equation.⎧⎨⎩
ẋ1(t) = −a1x1(t) + b11f1(x1(t)) + b12f2(x2(t)) + I1
ẋ2(t) = −a2x2(t) + b21x3(t) + b22f2(x2(t)) + I2
ẋ3(t) = δf1(x1(t))− δx3(t)

(3)

We understand the relationship between the systems (1) and (3) as follows.
If (x1(t), x2(t)) : (−∞,∞) → R2 is the solution of (1) corresponding initial

conditions (2), then (x1(t), x2(t), x3(t)) : (−∞,∞)→ R3 is a solution of (3) with
initial conditions

x1(t0) = x1(t0), x2(t0) = x2(t0), x3(t0) =
∫ t0

−∞
f1(ϕ1(s))eδ(s−t0)ds.

In this paper, we shall consider the system (3) with the result of competitive
system [8]-[15] to get the periodic solution.

2 Positively Invariant Sets and Equilibrium Points

The cube

D1 = {(x1, x2, x3) : ((b11 + b12)u1 + I1)/a1 < x1 < ((b11 + b12)v1 + I1)/a1;

((b21 + b22)u2 + I2)/a2 < x2 < ((b21 + b22)v2 + I2)/a2; u1 < x3 < v1}
is positively invariant set of (3), that is, any solution of (3) at time t0 which lies
inside D1 always remains there for all t > t0, since the vector field points strictly
inward on the boundary of D1.

We first prove that there exists a unique equilibrium point in the invariant
set under certain condition, then analysis the local stability of the system. At
first, we make a hypothesis:

H(1) : (bijvi + bijvi)/ai + Ii < qi, and (bijui + bijui)/ai + Ii > pi. i, j = 1, 2.

Theorem 1. If H(1) holds, then the system (3) has a unique equilibrium point
that locates in the invariant set D1.

3 Asymptotic Stability

In this part, we consider the equilibrium point of the system (3) in the positive
invariant set, and we shall analysis the stability of the equilibrium point in the
D1.

If E∗ = (x∗1, x
∗
2, x

∗
3) is the equilibrium point of system (3) in D1, then the

Jacobian matrix J∗ = J(x∗1, x
∗
2, x

∗
3) of the system (3) at E∗ takes the form of⎛⎝−a1 + b11f ′1(x∗1) b12f

′
2(x∗2) 0

0 − a2 + b22f2(x∗2) b21
δf ′1(x

∗
1) 0 − δ

⎞⎠
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The characteristic equation of this Jacobian matrix is

λ3 +Q1λ
2 +Q2λ+Q3 = 0

where the coefficients
Q1 = a1 + a2 + δ − b11k1 − b22k2,
Q2 = (a1 − b11k1)(a2 − b22k2) + (a1 + a2 − b11k1 − b22k2)δ,
Q3 = (a1 − b11k1)(a2 − b22k2)δ − b12b21k1k2δ,

and k1 = f ′1(x
∗
1), k2 = f ′2(x

∗
2).

Note that Q1 > 0, Q3 > 0 if
H(2): a1 + a2 + δ > b11k1 + b22k2 and (a1 − b11k1)(a2 − b22k2) > b12b21k1k2.

Furthermore,
∆ = Q1Q2 −Q3

= (a1+a2+δ−b11k1−b22k2)[(a1−b11k1)(a2−b22k2)+(a1+a2−b11k1−b22k2)δ]
− (a1 − b11k1)(a2 − b22k2)δ + b12b21k1k2δ

By the Routh-Hurwitzcriterion, we know that E∗ is locally asymptotically
stable if H(2) holds and

(a1 +a2 + δ− b11k1− b22k2)[(a1− b11k1)(a2− b22k2)+ (a1 +a2− b11k1− b22k2)δ]

> (a1 − b11k1)(a2 − b22k2)δ − b12b21k1k2δ (4)

4 Main Facts on Three-Dimensional Competitive System

In this section, we will summarize the main facts related to our research. Let us
consider the system of differential equations

Ẋ = F (X), X ∈ D, (5)

where D is an open subset on R3 and F is twice continuously differentiable
in D. The solution of (5) satisfying X(t0) = X0 is denoted as X(t,X0). The
positive (negative) semi-orbit through X0 is denoted as ϕ+(X0)(ϕ−(X0)), and
the orbit throughX0 is denoted as ϕ(0) = ϕ+(X0)∪ϕ−(X0). We use the notation
ω(X0)(α(X0) to denote the positive (negative) limit set of ϕ+(X0)(ϕ−(X0)).

System (3) is competitive, if for some diagonal matrix H = diag(ε1, ε2, ε3),
where εi is either 1 or -1, H(DF(X))H has nonpostive off-diagonal elements for
X ∈ D, where DF(X) is the Jacobian matrix of (3). It is shown in [9] that if D
is convex, then the flow of such a system preserves for t < 0 the partial order in
R3, which is defined by the orthant

K1 = {(X1, X2, X3) ∈ R3 : εiXi ≥ 0}
Hirsch and Smith proved that three-dimensional competitive systems that

live in convex sets have the Poincare-Bendixson property; that is, any nonempty
compact omega limit set that contains no equilibria must be a closed orbit.

Theorem 2. Let (3) be a competitive system in D1 ⊂ R3 and D1 contains a
unique equilibrium point X∗, which is hyperbolic and assume that DF (X∗) is
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irreducible. Suppose further that W s(X∗), the stable manifold of X∗, is one
dimensional. If q ∈ D \W s(X∗) and φ+(q) has compact closure in D, then ω(q)
is a nontrivial periodic orbit.

We introduce the following hypotheses:
(S1) System (3) is dissipative: For each X ∈ D1, ϕ+(X0) has compact closure

in D. Moreover, there exists a compact subset B of D with property that for
each X ∈ D there exists T (X) > 0 such that X(t,X) ∈ B for t ≥ T (X).

(S2) System (3) is competitive and irreducible in D1.
(S3) D1 is an open, p-convex subset of R3.
(S4) D1 contains a unique equilibrium point X, and det(DF (X∗)) < 0.
The following result holds [12]:

Theorem 3. Let (S1)-(S4) hold. Then one of following holds:
(a) X∗ is stable
(b) there exists a nontrivial orbitally stable periodic orbit in D1.

In addition, let us assume that F is analytic in D1. If X∗ is unstable, then
there is at least one but no more than finitely many periodic orbits for (3) and
at least one of these is orbitally asymptotically stable.

Remark 1. It is clear that if the system (3) is a competitive system, the system

dx
dτ = −F (x)

where −τ = t, is cooperative system.

5 Existence of a Stable Periodic Orbit

Out main result below gives sufficient conditions that almost every solution is
asymptotically periodic.

Theorem 4. Let δ > 0, then the equilibrium point of (3) is locally asymptotically
stable if H(1) and H(2) hold. There exists a one-dimensional stable manifold
W s(E∗) if (4) is reversed. Furthermore, there exists an orbitally asymptotically
stable periodic orbit, and the omega limit set of every solution (x1(t), x2(t), x3(t))
with their initial values and (x1(t0), x2(t0), x3(t0)) /∈ W s(E∗) is a nonconstant
periodic orbit.

Proof. We apply Theorems 2 and 3 to the following transform system. By looking
at its Jacobian matrix and choosing the matrix H as

H =

⎛⎝1 0 0
0 − 1 0
0 0 − 1

⎞⎠
we can see that system (3) is competitive in D1, with respect to the partial order
defined by the orthant K1 = {(X1, X2, X3) ∈ R3|X1 ≥ 0, X2 ≥ 0, X3 ≤ 0}.
(x∗1, x∗2, x∗3) in R3 is an equilibrium point of system (3), since the inequality H(2)
is reversed.
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The analysis shows that (x∗1, x
∗
2, x

∗
3) is unstable and det(DF (X∗)) = −Q3 < 0.

Furthermore, we see that the stable manifold of X∗ is one dimensional. The ex-
istence of an orbitally asymptotically stable periodic orbit follows from Theorem
3. Note that S(1)-S(4) hold. Theorems 2 and 3 imply the final assertion.

6 Numerical Examples

In this section, we give two examples to illustrate the conditions required in our
theorems.
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Fig. 1. The positive equilibrium point p = (0.1601, 0.04, 0.1281) of system (1) is locally
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Example 1. Consider the system (1) with a1 = 5, a2 = 1, a11 = b22 = 0, a12 =
1, a21 = −20, f(x(t)) = (|(x(t) + 1)| − |(x(t) − 1)|)/2, I1 = 0.000001,
I2 = 0.00000002, δ = 1. Then, the equilibrium point of the system (1) is locally
asymptotically stable, see Fig. 1.

Example 2. Consider the system (1) with a1 = 0.004, a2 = 0.005, a11 = b22 =
0, a12 = 0.2, a21 = −0.3, f(x(t)) = (|(x(t) + 1)| − |(x(t) − 1)|)/2, I1 = 0,
I2 = 0, δ = 1. Then, there exists an orbitally asymptotically stable periodic
orbits in the system (1), see Fig. 2.
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Abstract. The degree of success of many oil and gas drilling, completion, and 
production activities depends on the accuracy of the models used in the reser-
voir lateral prediction and description. In this paper, a hybrid MPSO-BP-RBFN 
model for predicting reservoir from seismic attributes is proposed. The model in 
which every particle consists of binary and real parts is able to simultaneously 
search for optimal network topology (the number of hidden nodes) and parame-
ters, as it proceeds. The model has been used to reservoir lateral prediction of a 
reservoir zone and proved the model’s applicability. 

Keywords: Reservoir lateral prediction; Seismic attributes; Particle swarm op-
timization; Multi-encoding; Radial basis function neural networks; Adaptive. 

1   Introduction 

Reservoir lateral prediction is also one important contents of the reservoir characteri-
zation, especially in the cross-cutting nature of the reservoir area; it provides an accu-
rate basis for computing proved reserves. Lateral reservoir prediction can also provide 
a basis for developing programs. As the seismic data contains very rich reservoir 
information, and more continuity than drilling information, the reservoir lateral pre-
diction are based mainly on seismic information, which can more accurately reflect 
the reservoir lithology, physical properties and characterization of oil and gas. In the 
application of seismic data for reservoir prediction, operators usually use conventional 
statistics methods to establish the relationship between the seismic attributes [1-3] and 
reservoir characteristics, and then precede lateral reservoir prediction based on the 
relationship. Besides statistical methods, artificial neural networks (ANN), or more 
specifically, multilayer perceptions (MLP), have become increasingly popular in 
reservoir prediction [4-7]. This intelligent technique is non-linear and non-parametric, 
and has been applied to reservoir prediction from seismic attributes. Radial basis 
function networks (RBFN) is a popular technique of ANN. As a simple structure, well 
established theoretical basis and fast learning speed, RBFN became a popular tech-
nique since the 1980s in real applications [8-11]. However, there are still some diffi-
culties with building RBFN. One of the main problems with RBFN is determining the 
number of radial basis functions. Another problem is how to get the parameters such 
as the centers, widths and the weights more efficient. Different approaches can be 
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categorized as follows: (1) two-phase approach. This is most popular training tech-
nique, which use a hybrid training strategy, using an unsupervised algorithm to pick 
the centers, followed by a supervised one to obtain the output weights [12-13]. The 
proper network structure is selected by trial and error, since the k-means technique 
does not provide any rational means for choosing the number of hidden nodes. (2) 
Online RBFN self-generate method which the structure of network determines auto-
matically by training process. Most of these methods grow the final net from an ini-
tially empty one to which hidden neurons are added until a given condition is reached. 
One of such methods is orthogonal least squares (OLS) algorithm [14]. Although this 
algorithm is widely used, Shwrstinsky[15] studied the algorithm from the perspective 
of the energy compression, found that OLS algorithm would not be able to design a 
structure with minimal network. (3) Evolutionary computation techniques, in which 
the network structure and parameters are selected simultaneously by employing opti-
mization methods based on genetic algorithms [16]. In recent years, considerable 
progress has been made in evolutionary strategies; especially Particle swarm optimi-
zation (PSO) algorithm which is used to train artificial neural network as a global 
search method, and has few parameters to adjust and is easier to implement compared 
with other stochastic methods. 

The objective of this paper is to propose a new methodology for predicting reser-
voir from seismic attributes using our integrated multi-encoding particle swarm opti-
mization, back propagation, and radial basis function networks (MPSO-BP-RBFN). 
The proposed method can self-adapt to the network structure and updates its weights 
according to the performance of the networks. With the advantages of global optimi-
zation ability of MPSO and the rapid local approximation of BP algorithm, the new 
algorithm fully shows the ability of nonlinear approach of multilayer feed forward 
network, improves the performance of RBFN, and successful for lateral reservoir 
prediction. 

2   Introduction to PSO 

2.1   Background of PSO 

PSO developed by Kennedy and Eberhart [17] is a stochastic global optimization tech-
nique inspired by social behavior of bird flocking. The algorithm models the explora-
tion of a problem space by a population of individuals or particles. In PSO, each single 
solution is a particle in the search space. During the flight, every particle adjusts its 
position according to its own experience, as well as the experience of neighboring 
particles, using the best position encountered by itself and its neighbors. The swarm 
direction of a particle is defined by its history experience and the experience of its 
neighbors. A particle status on the search space is characterized by two factors: its 
position and velocity. Given that a swarm consists of m  particles in a D -dimensional 
problem space, the position and velocity of the i th particle is presented as: 

),,,( 21 iDiii xxxx L= ,   ,,,2,1 mi L=  

),,,( 21 iDiii vvvv L=  
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),,,( 21
t
iD

t
i

t
i

t
i pppP L=  represents the best previous position of particle i has obtained 

until iteration t ; ),,,( 21
t
gD

t
g

t
g

t
g pppP L= represents the best position obtained from t

iP  

in the swarm (gbest) or local neighborhood (lbest) at iteration t . 
The continuous PSO algorithm is formulated as in Eq. (1) and Eq. (2). 
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11 ++ += t
id

t
id

t
id vxx                                                        (2) 

where, 1+t
idv  is the velocity of the i th particle at the t th iteration, 1c  and 2c are posi-

tive constant parameters called acceleration coefficients that control the maximum 
step size, and w  is called the inertia weight that controls the impact of the previous 
velocity of the particle on its current 1rand and 2rand are two independently distrib-

uted random variables with range [0,1]; t
idx is the current position of the i th particle. 

   To ensure the convergence of the search, Clerc [18] introduced a constriction factor 
into the standard PSO algorithm. Eq. (1) being converted into: 
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id xPrandcxPrandcvkv −××+−××+⋅=+                  (3) 

ϕϕϕ 42

2
2 −−−

=k                                               (4) 

Where 4,21 >+= ϕϕ cc . 

From Eq. (4), k  is constricted by 1c  and 2c . Due to k , there is no need of the 

maximum search velocity maxv  and the search convergence is ensured mathemati-

cally. In other words, the vibration amplitude of the particle decreases when it is near 
to the best position. But Eberhart and Shi [19] found constricted maxmax XV = can 

obtain better performance. Obviously, the constriction factor in the PSO algorithm 
can produce the solution better than that of the standard PSO. 

2.2   Background of PSO 

In order to optimize featuring discrete or qualitative distinctions between variables , 
Kennedy and Eberhart [20] developed a discrete version of PSO. Discrete PSO essen-
tially differs from the original (or continuous) PSO in two characteristics. First, the 
particle is composed of the binary variable. Second, the velocity must be transformed 
into the change of probability, which is the chance of the binary variable taking the 
value one.  

By Eq. (4), each particle moves according to its new velocity. Recall that particles 
are represented by binary variables. For the velocity value of each bit in a particle, 
Kennedy and Eberhart claim that higher value is more likely to choose 1, while lower 
value favors the 0 choice. Furthermore, they constrain the velocity value to the inter-
val [0, 1] by using the following sigmoid function: 

)exp(1

1
)( t

id

t
id v

vs
−+

= ,                                                 (5) 
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Where )( t
idvs  denotes the probability of bit t

idx  taking 1. The velocity update formula 

of discrete PSO is the same with continuous PSO, namely in Eq. (1) or (3); where the 
position is formulated as: 

If ))(()( n
idvsrand <  then 11 =+n

idx ; 

Else 01 =+n
idx                                                     (6) 

()rand is a random variable with range [0, 1]. 

Since the stochastic PSO algorithm has been found to be able to find the global op-
timum with a large probability and high convergence rate [21, 22], it is adopted to 
train the RBFN in this study. 

3   Design of the Model to PSO 

The goal of the multi-encoding PSO-BP-RBFN based evolutional learning method is 
to choose appropriate RBFN as well as to use the fewest number of radial basis func-
tions. First of all, design as followings must be done in this section. 

3.1   Multi-encoding 

In PSO one particle is corresponding to a solution of a problem to solve. So every 
particle in this algorithm should include the information of the structure and parame-
ters of the network, namely the number of hidden nod nohid _ , the center ic and the 

width iσ  of each hidden unit as well as the weight value iw . Divide the whole particle 

to two parts ],[ 21 parparpart =  which binary part 1par  corresponding to each hidden 

node and real part 2par  corresponding to, ic , iσ and iw .If  the max number of hidden 

nod is nodmax_ , the  input vector X is n dimensions, the output number is l ,then 

total length of every particle is )1( ++⋅ lnm .If the value coded in binary system, is  

“1,” the neuron is selected, on the contrary, if the value is “0,” the neuron is unse-
lected. For example, let the max hidden nod is 7, the masking binary string encoded 
 

 

Fig. 1. (a). RBFN particle structure; (b). an example of 4 nods and corresponding RBF parame-
ters selected 
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as [1 0 1 1 0 0 1] presents that the 1, 3,4and 7 hidden nods should be kept, and the 
others nods should be removed. The real part codes the weights and bias parame-
ters which may be in values of [-1, 1]. Therefore, the structure of a particle is and 
an example of 4 hidden nods and corresponding RBF parameters selected are 
shown in Fig.1. 

3.2   Fitness Function 

To train the RBFN structure is to make it have the simplest network form at an allow-
able accuracy. It means that we let the accuracy and complexity of the network attains 
the minimum. Thus, a fitness value is given by Eq. (7). 

nodhideEfitness _⋅+= α                                           (7) 

Where ∑
=

−=
n

j

jjd xfxyE
1

2)()( ))()((
2

1
 means the actual error between the desired 

output )( )( jd xy and the actual output )( )( jxf of the RBFN, which is determined 

by the individual parameter set S . It’s should point out, in Eq. (7), E  may be 
instead by other network performance function such as recognition rate of a 
model recognition problem in some applications. The complexity of the network, 
which is decided by the number of hidden nodes nodhide _ , while 

)01.00(, << αα  is an influential coefficient of the number of hidden layer nods. 

Furthermore, one hidden layer nod must be selected at least in every particle, 
namely, 1_ ≥nodhide .In this manner, the proposed MPSO-BP algorithm can find 

the best RBFN which approach higher accuracy (i.e. smaller E ) with fewer num-
ber of radial basis functions with the guidance of the proposed fitness function 
corresponding to the same input. Therefore, the RBFN with very good perform-
ance can be automatically generated by the multi-encoding PSO method as  
compared with the time-consuming, traditional trial-and error methods used to 
determining appropriate RBFN parameters.  

4   The Algorithm Approach of Adaptive Optimize Parameters of 
RBFN 

The simultaneous optimization training method of the topology structure and parame-
ters of the network are used, in which the Gaussian function is adopted as the radial 
basis function. More details are described as following and illustrated by the flow-
chart in Fig. 2.  

(1) Initialize prior parameters of the model: the size of population sizepop _ , the 

max generation gmax_ and kmax_ , the max number of hidden nod 

nodmax_ ,and the epoch of BP learning epochBP _ . 

(2) Randomly generate initial particles ],[ 21 parparpart = which randomly initialize 

particle positions of binary variables in 1par  and continuous real variables in  
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2par .Particle velocities are also initialized by continuous real variables 

in ],0[ maxv . 

(3) If max_gg ≤ , evaluate objective function ftness for all particles, else go to step 9 

(4) Update the personal best value iDPpar _1 , iDPpar _2 for binary part 1par  and real 

part 2par of particles, respectively. The global best value gDP  is also renewed for 

all particles. 
(5) Renew position and velocity for 1par  using Eq. (4) and (5). 

(6) In order to get the optimal network parameters iii wc ,,σ  based on a fixed struc-

ture, optimize the real part of particle using continuous PSO in further.  
(6.1) Let 1=k , if kk max_≤ , evaluate objective function fitness for all particles, 

otherwise go to step 7. 
(6.2) Update the personal best value iDPpar _2  for real part 2par of particles and 

the global best value gDP . 

(6.3) Renew position and velocity for 2par  by using Eq. (5) and (8). 

(6.4) 1+= kk  and go to step (6.1). 
(7) Back propagations algorithms are used to adjust  the position of 2par ,namely 

parameters iii wc ,,σ  of RBFN by following formulas:  
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(8) Let 1+= gg and go to step 3. 

(9) Stop and the global best solution will be selected to generate the final parameter 
set { }iliiiinii wwwcccnohidS ,,,,,,,,,_ 2121 LL σ= ; then, the desired RBFN sys-

tem can be developed. 

From the above descriptions, the only carefully predetermined parameter is max 
node of RBF which mainly depends on the complexity of the problem. Usually, the 
more complexity of the problem, the more max nodes of RBF is needed. The other 
parameters such as max generation and pop size of PSO related to the search range 
and precision level, which influence only on the utilization of the computational 
resources. 
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Fig. 2. The flowchart of MPSO-BP-RBFN 

5   MPSO-BP-RBFN for Lateral Reservoir Prediction  

In this article, we select an oil zone which belongs to JiangHan basin, center of China 
and extract 15 seismic attributes in certain window length along the line 167 which 
have 15 wells on or near. The seismic attribute values will be used as inputs sand the 
thickness of reservoir will be the target. The test line includes 500 CDP points, which 
every CDP distance is 50 meters. the object layer of the prediction is the top oil 
group. There are 12 oil well holes near the line. Sample data using the result of seis-
mic attribute optimization in Ref [23], which are six optimized attributes as follows: 
the average amplitude trough, the summation of positive amplitude, main frequency, 
instantaneous frequency, instantaneous phase, positive amplitude to negative ampli-
tude ratio from sixteen seismic attributes which are used to networks inputs. The 
output is the thickness of the reservoir. This case study, we select the seismic attrib-
utes of 12 wells and 10 seismic trace nearby as training samples and then the total 
samples are 120, and the remaining 380 samples, as forecast. The RBF model is 5  
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Fig. 3. Average fitness value and the number of hidden nodes 

 

Fig. 4. ML1 test line reservoir thickness 

inputs and 1 output. The maximum number of radial basis functions is 6. The length 
of every particle is 54, in which 48 parameters { , , ,1 6,1 6}in i ic w i nσ ≤ ≤ ≤ ≤ and 6 

selective genes of hidden nods are required to be efficiently chosen from the solution 
space. The pop size of PSO and BP iterations are 50 and 100, respectively. The influ-
ential coefficient of the number of hidden layer nods 01.0=α . 10 runs have been 
implemented randomly using the above parameters. The average fitness value of 10 
runs is shown in Fig. 3 (a). Fig.3 (b) depicts the best hidden nodes across iterations. 
The average forecast results of the entire line are shown Fig. 4. From Fig.3 (a), the 
best number of hidden nodes is 4. The training MSE is 0.0341 in the well hole when 
the algorithms terminated. 

6   Conclusions 

A novel hybrid model, based on a hybrid of MPSO and BP, has been presented and 
discussed in this paper for training RBFN to reservoir lateral prediction. The combi-
nation of the search capabilities of a global and a fast local optimization method has 
been explored. Adopting multi-encoding, the model can optimize the number of 
RBFN, centers, widths and weights of RBFN dynamically and adaptively by choosing 
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a special fitness function. A case study have been conducted using the proposed 
model and achieved good results. 
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Abstract. A semi-supervised learning algorithm is proposed based on
label propagation through submanifold. The algorithm assumes that
samples lying in a local neighborhood share the same labels and the
global labels changing among submanifolds is sufficiently smooth. The
algorithm firstly introduces a k-nearest neighbor graph to describe local
neighborhood among the data set. And then, a cost function and a con-
straint equation are proposed, which stand for the global smoothness of
the class labels’ changing and the labeled samples’ information respec-
tively. The final semi-supervised learning task is converted to a typical
quadratic program, whose optimal solution can minimize the cost func-
tion and satisfy the supervised constraint. Experimental results of the
algorithm on toy data, digit recognition, and text classification demon-
strate the feasibility and efficiency of the proposed algorithm.

Keywords: Semi-supervised learning, K-nearest neighbor graph,
Quadratic program, Classification.

1 Introduction

In many practical applications of pattern classification and data mining, unla-
beled samples can be obtained easily while the acquisition of labeled training
data is costly and time consuming. Semi-supervised learning, which firstly learns
from both labeled and unlabeled samples and then classifies unlabeled samples
into existing categories, has been the focus of much research in the last few years.

Most recent semi-supervised learning algorithms work by formulating the as-
sumption that ”nearby” samples, and samples in the same structure (e.g., a
manifold or a cluster), are prone to have the same label [1,2,3,4]. The main differ-
ences between the various semi-supervised learning algorithms, such as spectral
methods [5,6,7], random walks [4], graph mincuts [8] and transductive SVM [9],
lying in their ways of realizing the assumption.

In this paper, a semi-supervised learning algorithm based on Label Propaga-
tion through Submanifold (LPS) is proposed. The concept of submanifold derives
from manifold, which is a mathematical space where every point belongs to the
same class and can be expressed by its neighbors. The LPS algorithm assumes
that (1) samples in one submanifold have the same labels, and (2) the class label
changing among all the submanifolds is sufficiently smooth. The first assumption

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 617–623, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is local, which means nearby samples are tend to be in the same class. And the
second assumption is global, which describes the smoothness of all submanifolds.
The essence of the algorithm is to make the labeled data propagate their class
labels smoothly through the submanifold and ensure the resulted label infor-
mation is smooth along the geodesics in the intrinsic geometry of the labeled
data. In brief, the LPS algorithm let every labeled sample propagate its label
information to its neighbors until a global optimal state is achieved.

The remainder of this paper will be organized as follows. The analysis of pro-
posed semi-supervised classification algorithm based on Label Propagate through
Submanifold (LPS) is proposed in section 2. The algorithm’s applications on toy
data, digit recognition, and text classification are presented in section 3. Section
4 provides the conclusion.

2 The Semi-supervised Classification Algorithm

Let’s first describe the m-class semi-supervised learning task briefly. Suppose
there is a set of n data samples X = {x1,x2, · · · ,xl,xl+1, · · · ,xn}, xi ∈ Rd×1,
the first l points are labeled while the remaining samples are unlabeled. A data
xi (1 ≤ i ≤ l) is labeled by a binary vector yi = {y(1)i , · · · , y(c)i , · · · , y(m)

i }, where
y
(c)
i = 1 and y(j)i = 0 for j 
= c, indicating that data xi belongs to the c th class.

Let matrix Y = {yT
1 , · · · ,yT

l ,y
T
l+1, · · · ,yT

n }T denote the label indicator matrix
of the data set. The object of our semi-supervised classification algorithm is to
predict a globally optimized label indicator matrix Y ∈ Rn×m by the data set
X and some labels {yT

1 , · · · ,yT
l }T .

The proposed algorithm has two steps. The first step is to construct the local
structure of the data, which can be implemented by a weight graph. The second
step is to obtain a global optimal label indicator matrix satisfying the global
optimal smoothness assuption and the labeled constraints.

The weighted graph is defined as G = {V,S}, where each vertex vi ∈ V
represents a data sample, and each edge (i, j) is assigned a weight Sij ∈ S to
reflect the similarity between the data i and j. The value of Sij is computed as
follows,

Sij =
{
e−

‖xi−xj‖2

2σ2 , if xj ∈ Nk(xi) ∨ xi ∈ Nk(xj)
0, otherwise.

(1)

where the set Nk(xi) is composed of k nearest neighbors of xi, and σ is a selected
constant. The nearer the two data are, the larger Sij they share.

LPS algorithm assumes that two nodes with a larger weight edge tend to have
the larger probability to be the same label, and overall label changing among
samples in the same submanifold is expected to be sufficiently smooth. With
this notion, the cost function can be defined as follows,

η =
∑
ij

‖ 1√
Dii

yi − 1
Djj

yj‖2 · Sij (2)
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Dii is the degree of sample i and Dii =
∑

j Sij . Dii measures the similarity
among sample xi and all the other samples in the data set. η is the total chang-
ings of all the data’s labels from their k nearest neighbors’ label. η reflects the
smoothness of the label submanifold structure. Obviously, a smaller value of η
denotes a better classification result. At the same time, there is some super-
vised information, that is the label vector yi of xi while 1 ≤ i ≤ l. This labeled
information can be written in the matrix form

A ·Y = b (3)

where A is a m × n coefficient matrix, Y is the n × m label indicator matrix
of the data set, and b is a m × m diagonal matrix. To be more exactly, A =
{yT

1 ,y
T
2 , · · · ,yT

l ,0
T , · · · ,0T }, Y = {yT

1 ,y
T
2 , · · · ,yT

l ,y
T
l+1, · · · ,yT

n }T , and b is a
diagonal matrix, the value of bjj equals to the number of labeled samples of the
j th class.

Then the semi-supervised classification task is transformed to the following
programs,

min
Y

∑
i,j

‖ 1√
Dii

yi − 1√
Djj

yj ‖2 ·Sij (4)

s.t. A ·Y = b (5)

The object function in (4) can be reduced to∑
i,j

‖ 1√
Dii

yi − 1√
Djj

yj ‖2 Sij

=
∑
i,j

(
1√
Dii

yi − 1√
Djj

yj)(
1√
Dii

yi − 1√
Djj

yj)TSij

= 2
n∑

i=1

yiyT
i − 2

∑
i,j

Sij
1√

Dii

√
Djj

yiyT
j

= 2trace{YTY −YT D− 1
2 SD− 1

2 Y}
= 2trace{YT (I−D− 1

2 SD− 1
2 )Y} (6)

where S is a symmetrical affinity matrix and D is a diagonal matrix with Dii.
If we set matrix C = I − D− 1

2 SD− 1
2 , the task of semi-supervised learning is

the following problem: Finding the global optimal matrix Y with binary-valued
elements that minimizes (7) and satisfies (8).

min
Y

trace{YTCY} (7)

s.t. A ·Y = b (8)

Generally, solving this optimization problem has been proven to be NP-hard.
However, if we relax all the elements of label indicator vector Y from binary
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values to real values, the above optimization problem becomes a typical quadratic
program and can be easily solved by Lagrangian method directly.

The Lagrangian function is defined as

L(Y, λ) = trace{YTCY} − λ(AY − b) (9)

where λ is a constant. Let ∇YC(Y, λ) = 0 and ∇λC(Y, λ) = 0. We can get
following equation array, {

CY −ATλ = 0
−AY + b = 0 (10)

These equations can be rewritten to[
C −AT

−A 0

] [
Y
λ

]
=
[

0
−b

]
The inverse matrix of the coefficient matrix can be denoted as,[

C −AT

−A 0

]−1

=
[

Q −RT

−R S

]
If the inverse of matrix L exists, the matrix Q, R, and S can be expressed as,

Q = C−1 −C−1AT(AC−1AT)−1AC−1

R = (AC−1AT)−1AC−1

S = −(AC−1AT)−1

(11)

Through the inverse of coefficient matrix, the solution of label indicator matrix
Y is

Y = RTb (12)

From above steps, the optimal label indicator matrix Y can be acquired. How-
ever, Y takes real values for its elements and does not directly indicate the class
membership of each data sample. In order to derive the final label information from
Y, we have to make Y’s elements binary. For each row of matrix Y, the largest
value is set to be “1” and others are set to be “0”. After this step, each rowyi of ma-
trix Y indicates the class label corresponding to data xi. The detailed description
of the algorithm is proposed in the following Table 1.

3 Performance Evaluations

In this section, three experiments are proposed to evaluate the performance of
the proposed algorithm for semi-supervised learning. The tasks include toy data
classification, digits recognition, and text classification.

The proposed algorithm is compared with k-NN, Zhou’s consistency [1], and
harmonic gaussian field method [4]. To best of our knowledge, there is no reliable
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Table 1. Description of LPS algorithm

Input: The data matrix X ∈ Rd×n which has n samples in all, and the

labeled (class) information of l samples.

Output: The binary-valued matrix Y ∈ Rn×m, whose row indicates the

classification result of each sample.

1. Form the affinity matrix S defined in equation (1) and set Sii = 0.

2. Construct the matrix A and b according to the labeled information.

3. Compute the solution of label indicator matrix Y through quadratic

optimization described in equation(12).

4. Convert the elements of the indicator matrix Y to be binary. For each

row of Y, let Yij = 1 if Yij = arg max1≤q≤c Yiq, and Yij = 0 otherwise.
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Fig. 1. Classification on the two moons patterns

approach for model selection if very few labeled samples are available. Hence we
let all algorithms use their respective optimal parameters. In Zhou’s method, α
is fixed at 0.99 as in [1]. The parameter σ is 0.15 in Zhou’s consistency, Harmonic
Gaussian, and LPS algorithm. The parameter k for weighted graph in all three
semi-supervised algorithms is set to 3.

An experiment on toy data set is given to illustrate intuitively the power
of the LPS algorithm. The data set is shown in Fig.1(a), which looks like two
moons. There are only 2 labeled and 127 unlabeled samples in each class. The
classification result of 1-nearest neighbor classifier, SVM and LPS are shown
in Fig.1(b), (c), and (d). It is clear that LPS is capable of learning the intrin-
sic structure of the data set and classifing the data correctly with few labeled
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Fig. 2. (a) Accuracy rates of digit recognition with USPS data set, (b) Micro-F1 value
of text classification using 20ng data set

samples. However, traditional classification algorithms, such as 1-nn classifier
and SVM, fail to obtain the correct classification result.

Next, we focus on the problem of classifying hand-written digits. The data
set we adopt is the USPS handwritten 1616 digits data set [10]. The images of
digits ”0” to ”9” are used in this experiment as ten classes, and there are 100
samples in each class, with a total of 1000. Each image is expressed as a 256
dimensional vector. The evaluation measure is accuracy rate, which is the ratio
of correctly classified samples and the total number of samples. The comparison
results are illustrated in Fig.2(a), where the horizontal axis represents the percent
of randomly labeled samples. The vertical axis is the corresponding accuracy rate
which is an average value of 20 independent runs. The results show that LPS
outperforms k-NN, Harmonic Gaussian, and Consistency algorithms in general.
It can be noted that LPS method is more stable, because it can get a higher
accuracy rate when there is only 1% labeled samples.

The task of text classification using 20-newsgroups data set is also proposed.
The topic “rec”, containing “autos”, “motorcycles”, “baseball” and “hockey”
branches, is chosen from the data 20news-18828. The articles were preprocessed
by the same procedure as in [1]. The resulted 3970 document vectors are in an
8014-dimensional space. Finally the document vectors are normalized into TF-
IDF representation. The performance of each algorithm is measured by F1 value
which is based on precision and recall across documents (micro-average)[11].
The comparison results are illustrated in Fig.2(b), where the horizontal axis
represents the percent of randomly labeled samples. The vertical axis is the
corresponding micro F1 value which is an average value of 20 independent runs.
Experimental results show that the efficiency of LPS algorithm is superior to
other algorithms under all the percent of labeled samples.

4 Conclusions

In this paper, a semi-supervised classification algorithm named LPS is proposed.
It discovers the structure of the data set through the labeled data propagate their
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intrinsic label information to their neighbors smoothly in the submanifold. Ex-
perimental results on toy data, digit recognition, text classification demonstrate
the feasibility of the proposed algorithm. In our future research, we will focus
on theoretical analysis and accelerating issues of our LPS algorithm.
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Abstract. A novel Bayesian-Gaussian neural network (BGNN) is proposed in 
this paper for the nonlinear modeling of hydraulic turbine which is difficult to 
obtain its mathematical model because of its complex and nonlinear characteris-
tics. The topology and connection weights of BGNN can be set immediately 
when the training samples are available. The threshold matrix parameters of 
BGNN are updating based an improved E.Coli foraging optimization algorithm 
(IEFOA) which is an evolutionary optimization algorithm imitating the behav-
iors of E.Coli bacteria. Simulation results for the nonlinear model of hydraulic 
turbine generating unit are provided and demonstrate the effectiveness and 
shorter training time and more effective self-tuning compared with the BP neu-
ral network for the identification of hydraulic turbine generating unit.  

Keywords: Hydraulic turbine, BGNN, Improved E.Coli foraging optimization 
algorithm, Nonlinear modeling. 

1   Introduction 

The hydraulic turbine generating unit (HTGU) is a complex and essence nonlinear 
system [1] and it is difficult to obtain its model through mathematical analytical 
method. Moreover the often change of operating situation also affects the characteris-
tics of the HTGU and the dynamic reposing procedure of the whole hydraulic turbine 
control system. So it is vital to the reconstruction of HTGU characteristics for the 
design of HTGU control system.  

In the nonlinear modeling techniques, artificial neural network (ANN) plays an 
important role for the reason that ANN has been proven that it can approximate any 
nonlinear system [2] and ANN has been successful used in some fields [3][4][5]. In 
the research of hydraulic turbine generating unit, many artificial neural networks also 
have been presented to the model identification of the HTGU. In the references 
[6][7][8], multilayer perception (MLP) network, BP neural network and RBF neural 
network used for the modeling of the HTGU have been reported and their results 
show that ANN could obtain the nonlinear model of the HTGU.  

Regardless of above inspiring developments for neural networks applications in the 
nonlinear model of the HTGU, there are the intrinsic vulnerable points of these neural 
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networks. First, the topology needs to be defined by trial and error. Second, the train-
ing object required to adjust so many connection weights in error function minimiza-
tion inevitably results in a complex error surface and a long training time. The lack of 
self-tuning ability of these networks makes them less helpful in on-line model based 
applications to some special process, for example, time-variant systems. To overcome 
the shortcomings of neural networks, a Bayesian-Gaussian neural network (BGNN) 
[9] is proposed which is a posteriori probability model based on the Bayesian theory 
and Gaussian hypothesis. Its topology and connection weights can be set immediately 
when training samples are available. This simplifies the design of BGNN and reduces 
the training time compared with traditional BP and RBF neural networks. So in this 
paper, the BGNN is developed to the nonlinear modeling of the HTGU and compared 
with the BP and RBF neural networks.  

Based on the chemotatic behaviors of E.Coli, a random optimization algorithm 
named the E.Coli foraging optimization algorithm is first introduced in the reference 
[10] which can be used for the parameter optimization problems effectively 
[10][11][12]. In this paper, an improved E.Coli foraging optimization algorithm (IE-
FOA) [13] is presented which only reserves the stage of chemotactic while eliminat-
ing other stages. At the same time, a new tracing operator is proposed in the improved 
algorithm and the optimal positions of individual E.Coli are adopted to update the 
locations of swarm, which enhances the random ability of algorithm and speed to the 
global optimal goal. The IEFOA is used to update the threshold matrix parameters of 
the Bayesian-Gaussian network for nonlinear model of the HTGU. 

This paper is organized as follows. In section 2 the identified variables relations of 
hydraulic turbine generating unit (HTGU) is described first. Then section 3 gives the 
proposed improved E.Coli foraging optimization (IEFOA). In section 4, the BGNN 
and its weights training algorithm are depicted in details and summarizes the proce-
dure of nonlinear model identification of the HTGU based on the BGNN. Simulation 
results and discussion are given in section 5. The final section 6 contains some con-
clusions and further work. 

2   Identification Problem of Hydraulic Turbine Characteristics 

The structure of hydraulic turbine generating unit (HTGU) is shown in Fig.1.  Servo-
mechanism, penstock system, water turbine and generator are four main parts of the 
HTGU of water power plant. 

u y

q h

tM

+

gM

−
xWater

turbine

Penstock
system

GneratorServomechanism

 

Fig. 1. Illustration structure of hydraulic turbine generating unit 
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The servomechanism can be approximately expressed as a first order equation with 
its translating function model described in formula (1). Ty is inertia time constant of 
servomechanism and y denotes the output of servomechanism. 

In dynamic process, the characteristics of water turbine running vary with the 
change of operating condition. The movable Francis turbine is nonlinear in essence. 
The nonlinear characteristics of movable Francis turbine can be depicted as the equa-
tion (2) as follows:  

⎩
⎨
⎧

=
=

),,(

),,(

hxyqq

hxyfmt
, (2) 

where q is flow and mt denotes the movable turbine moment. h is water head and x is 
the speed of rotation (generally x is expressed as frequency). The function relations of 
f and q are nonlinear and difficult to obtain through mathematical analysis method. 
Neural network as a black modeling technique can be used to the nonlinear model 
identification. So BGNN in this paper is suitable for the above nonlinear characteris-
tics modeling of the HTGU. 

The dynamic characteristic of penstock system is complex and nonlinear between 
the water head h and flow q. Due to the difficulty of establishing the precise nonlinear 
math model, BGNN is also used to learn the nonlinear relation listed as the following 
equation (3). 

)(qhh = . (3) 

Dynamic equation of generator taking account of load characteristics is often sim-
plified as the follows: 
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1

gt
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mm
esT

x −
+

= , (4) 

where Ta is inertia time constant of generator and en denotes the adjusting coefficient 
of load. Those parameters vary with water turbine wok situation and need to be identi-
fied. 

Therefore the identification problem of HTGU in this paper is to obtain the dy-
namic nonlinear models described in the equation (2), the equation (3) and the  
equation (4).  

3   Improved E.Coli Foraging Optimization Algorithm (IEFOA) 

The E.Coli foraging optimization algorithm is an evolutionary random optimization 
algorithm first proposed in the reference [10] which imitates the behaviors of E.Coli 
bacteria. In the previous work [13], we presented an improved E.Coli foraging opti-
mization algorithm (IEFOA) and used it to the identification of a nonlinear model 
parameters obtaining effective results. 
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3.1   The Operators of IEFOA 

The IEFOA adopts three operators listed as follows. 

① Swim operator (Swim) 
The change of positions of individual E.Coli in chemotactic behavior is called 

“Swim”. The role of the swim operator is to update the positions of E.Coli individual 
in optimization field space. The number of swimming step in swim operator is set 

as sN , which determines the swimming number of E.Coli individual in towards to the 

direction of optimization values. 

② Tumble operator (Tumble) 
When the fitness function based on the current positions is less than the former step 

position, the swimming direction of E.Coli individual will be changed, which is called 
tumbling operator in the improved foraging optimization algorithm. The role of tum-
bling operator is to ensure the random ability of the improved foraging optimization 
algorithm in order to escape local minimum to assure the global optimization ability 
of the IEFOA.  

③ Trace operator of optimal value (Tracing of optimal value) 
In the basic E.Coli foraging optimization algorithm, the E.Coli individual throws 

away its history position formation whereas this information is very important for 
guiding its chemotactic behaviors. In order to accelerate the optimization process, the 
optimal history position values is utilized to update the position values of the E.Coli 
swarm in IEFOA. The details about the tracing operator are listed in the following 
introduction of the principle of the improved E.Coli foraging optimization algorithm 
in the next section. 

To describe expediently, the term of “Chemotactic step” denotes the tumbling pro-
cedure closely following the previous tumbling operator or the previous swimming 
operator. 

3.2   Principle of the Improved E.Coli Foraging Optimization Algorithm 

It is assumed that there is an optimization problem with p dimensions and parameters 

θ ( ],,,[ 21 pθθθθ L= ) to be estimated or optimized. Accordingly, θ  are the coun-

terparts of the positions of E.Coli in foraging field and all the possible values of θ  
consist of the values space in the optimization problem, namely the environmental 
space of E.Coli foraging. 

S  is the size of E.Coli swarm. p
ipiii RxxxX ∈= Γ),,,( 21 L denotes the posi-

tions of E.Coli individuals in foraging optimization space, where Si LL2,1= . 

)( ii Xfeval =  is the fitness function that denotes the badness or goodness of the 

individual position of the thi E.Coli. Commonly, the fitness function is selected as the 

function value to be optimized problem.  
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Γ= ),,,( 21
pbest

ip
pbest

i
pbest
i

pbest
i pppP L  denotes the historical best fitness function 

value experienced by the thi  E.Coli individual and its counterpart position.  

Assume the step number of E.Coli lifecycle is cN , which is also set as the step 

number of chemotactic step in the improved E.Coli foraging optimization algorithm. 

In the )( cth Nnn ≤  chemotactic step, every position of E.Coli individual is updated 

according to the following shown in formula (5a) and (5b). 
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where, )(iC  is the step length of swimming operator in the swimming direc-

tion )(nφ ; )(nφ  denotes a random number distributing the field of [-1, 1] generated 

by the tumbling operator. )( epw in equation (5c) denotes a constant determined by a 

probability eP . 

The tracing operator of optimization value is defined as: If the fitness function 

value )( 11 ++ = n
i

n
i Xfeval  at the position 1+n

iX  is better than the one n
ieval  at the 

position n
iX , the value of )(nφ  is kept and the position of E.Coli individuals is up-

dated according to the formula (5a) by the swimming operator until to the maximum 

swimming step length sN . Otherwise, the position is updated by the thi  E.Coli history 

optimal position value according to the formula (5b). 

4   Description of BGNN Based on IEFOA 

The Bayesian-Gaussian neural network (BGNN) [9] is proposed which is a posteriori 
probability model based on Bayesian theory and Gaussian hypothesis. 

Compared with the traditional recurrent neural networks and feedforward neural 
networks such BP and RBF neural networks, the BGNN neural networks can easily 
determine the topology of neural network and weights of BGNN. The details of the 
BGNN and some theorems proofs can be found in the reference [10]. The structure 
and training algorithm of BGNN are illustrated in the following sections. 

4.1   The Bayesian-Gaussian Neural Network 

The topology and connection weights of a BGNN are shown in Fig. 2.  
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Fig. 2. Topology and connection weights of a BGNN 

The main structure of the BGNN is described below. Let (Xi, yi) i=1, 2,…, N, be 
the training data set, where N is the number of samples, Xi is the sample input and is 

represented by m ×1 vector. Xi= (Xi1, Xi2, …, Xim)丅 and yi is the sample output. The 
new output y corresponding to the new input X is generated using the measure of 
belief view of probability. 

Under the Gaussian hypothesis, when the combined information source (Xi, yi), 
i=1, 2,…, N, is known, the probability distribution of Y(X) will be approximately 

2

2

)(

))('(1

21
)(2

),...,,|( N

NyY

N e
N

c
YYYYp σ

σπ

−−

= , (6) 

where c is a normalizing constant. 
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where D is input threshold matrix and d11, d12,…, dmm are named the input factors, 
which will be evaluated through the network training. 
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The criterion of minimize is similar the Prediction Error method: 
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where N is the net order, while iy and '
iy  are denoted as the desired output and the 

network output for sample i respectively. 
Although there are many choices for the training of the BGNN, in this paper the 

above IEFOA is employed in this research. In the IEFOA, the evaluation function of 
each E.Coli individual should be selected carefully according to special problem. The 

fitness function of IEFOA 1+n
ieval is set as )(DVN . The parameter D is correspond-

ing to the positions of the ith E.Coli individual. 

4.2   Procedures of BGNN Based on IEFOA Used for Identification of Hydraulic 
Turbine 

The BGNN combined the IEFOA can be used for the nonlinear characteristics identi-
fication of HTGU and the procedures is described as the following steps. 

Step 1: Obtain the training sample set and initial the parameters needed in the 

BGNN and IEFOA, including 0σ , the network order N, the threshold matrix parame-

ter D, the value range of optimized parameters θ , chemotactic step number cN , 

swimming operator step number sN  and step length )(iC , the size of swarm S , the 

probability eP  and the stop criterion of the algorithm.  

Step 2: For every E.Coli individual, update its position according to the formula 

(5a) and evaluate its fitness function value 1+n
ieval . 

Step 3: If n
i

n
i evaleval <+1 , set the swimming counter as zero and keep the swim-

ming direction )(nφ constant. Keep the swimming operator to the maximum swim-

ming step number sN or the condition n
i

n
i evaleval <+1  dissatisfied. At the same 

time, update the parameters pbest
iP .  

Step 4: If n
i

n
i evaleval >+1 , update the position of E.Coli individual according the 

formula (5b). 
Step 5: If the stop criterion is met, then exit; otherwise, continue the procedure. 
Step 6: Loop to Step 2 until the position of every E.Coli individual in the swarm 

updated. 
Step 7: Go on the next chemotactic step until the stop criterion is met. 

5   Simulation Results and Discussion 

The nonlinear characteristics of the HTGU needed to be identified are the three equa-
tions (2) (3) and (4). Therefore three BGNNs should be adopted. The first BGNN to 
identify the nonlinear characteristic in equation (2) has three input variables y, x and h  
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and two output mt and q named BGNN_1.  The second BGNN called BGNN_2 adopts 
only one input q and one output h which relationship is shown in equation (3). The 
third BGNN employs two inputs mt, mg and one output x described in equation (4) 
denoted as BGNN_3. 

In the compared BP neural networks, the first structure of BP neural network 
BP_1 is 3-10-2 which owns the inputs and outputs same as the first BGNN and one 
hidden layer with 10 neurons. The second BP neural network is the structure of 1-5-
1 called BP_2 and the third structure of the BP neural network is 2-6-1 as BP_3. 
The three BP neural networks all adopt one hidden layer with different neurons 
number. The training algorithm of the BP neural networks adopts the back-
propagation algorithm.  

5.1   Training Date Generation 

In the simulation experiments, we consider a training set which is generated by the 
system under close-loop control with a reasonable PID controller shown in Fig.3. 
Instead of generating random input sequences to the HTGU process, training set ob-
tained from the close-loop control system can excite the dynamic characteristics of 
the HTGU as soon as possible and this is more practical in the application of the 
HTGU control. 
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Fig. 3. Generation structure of training set from the control system of the HTGU 

where, r is the input exciting signal which takes the normal work situation operating 
value with random Gaussian white noise. In the control of the HTGU, the training 
samples u, y, q, h, mt, mg, and x are samples in the operation of the HTGU with the 
typical work situation changed which denotes the nonlinear characteristics of the 
HTGU. Therefore the nonlinear model of the HTGU can be obtained based on the 
BGNN and the training samples. 

5.2   Off-Line Training of the BGNN and BP Neural Network for the HTGU  

From the above generation system of training data, 1000 samples are obtained which 
will be used to the training of the BGNN and BP neural networks of the HTGU. The 
first 500 samples are used to the off-line training neural networks and the last 500 
samples are employed to test the BGNN and BP neural networks. All the samples are 
needed to be pretreatment and normalized. Table.1 shows the off-line training per-
formances and iterations.  
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Table 1. Comparison between BGNN and BP neural network in off-line training 

No. VN Iteration number 
BGNN_1 5.8e-4 18 
BP_1 1.3e-3 1080 
BGNN_2 6.2e-5 12 
BP_2 4.7e-4 220 
BGNN_3 0.6e-4 28 
BP_3 1.3 e-3 350 
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Fig. 4. Identified mt output by BP neural network and BGNN model with 10% decreasing load 
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Fig. 5. Identified q output by BP neural network and BGNN model with 10% decreasing load 

It can be seen from the table.1 that the BGNN in the off-line training of the nonlin-
ear model of HTGU all saves a large amount of time. After the off-line training, the 
testing samples are applied to demonstrate the effectiveness of the BGNN and BP 
neural networks. The testing results are shown in Fig. 4 to Fig. 6. It can be seen that 
the BGNN and BP neural networks all obtained the nonlinear relations of inputs and 
outputs of the HTGU. But the BGNN can obtain higher accuracy. So the BGNN pro-
vides a more effective method for the identification of nonlinear characteristics of the 
HTGU compared with the BP neural network.   
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Fig. 6. Identified x output by BP neural network and BGNN model with 10% decreasing load 

6   Conclusions 

The BGNN is employed to the nonlinear model identification of HTGU in this paper. 
The random evolutionary algorithm IEFOA is used to update the input factors of 
BGNN. Compared with the BP neural network, the BGNN shows its predominance 
such as topology setting and weights tuning time.      

Only off-line neural network training method is developed for the modeling of 
HTGU. The further work will focus on the using of self-tuning BGNN to the nonlin-
ear model of HTGU and to the control strategy design of HTGU based on the BGNN 
on-line identified model. 
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A Hybrid Recurrent Neural Network for Machining 
Process Modeling 
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Abstract. A new hybrid recurrent neural network (HRNN) for machining proc-
ess modeling is presented based on the diagonal recurrent neural network 
(DRNN). In order to overcome the weakness of back propagation (BP) algo-
rithm, a generalized entropy square error (GESE) criterion is defined and a dy-
namic recurrent back propagation algorithm is developed to guarantee the global 
convergence. The HRNN based on the GESE is then used for nonlinear system 
identification and neural network modeling of the machining process. The nu-
meral experiments results show that the HRNN has better approximate effec-
tiveness, tracking and dynamic performance than traditional BP neural network. 

Keywords: Machining process, Modeling, Hybrid recurrent neural network, 
Generalized entropy square error. 

1   Introduction 

Machining process has high nonlinearity, time-variability and uncertainty. It is very 
difficult to be described with accurate mathematical models and conventional control 
methods based on the plant model may not accordingly yield satisfactory results. The 
neural network is a new approach for modeling of machining process. The neural 
network has stronger nonlinear approximating, self-organizing, self-learning, and 
self-adapting ability. It shows enormous potential in solving high nonlinearity and 
uncertainty problems and is an effective tool for modeling and controlling of nonlinear 
system. However, the feedforward network’s defects, namely, slow convergence speed 
and easy getting into local minima are gradually discovered. The feedforward network 
comprises static mapping, and input-output relations based on it are also static [1]. 
Therefore, the modeling using the feedforward network cannot truly describe per-
formances of nonlinear dynamic process. 

In the last few years the neural network with dynamic structure was introduced in 
system identification and control [2], [3]. The recurrent neural network comprises 
dynamic mapping which is more suitable for dynamic systems than the feedforward 
network. New network architecture, called a hybrid recurrent neural network is pre-
sented for the modeling of machining process in this paper. At the same time, in order 
to overcome the drawback of the mean square error criterion of BP algorithm, the 
generalized entropy square error (GESE) is defined, and a dynamic back propagation 
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training algorithm is developed to train the HRNN. The simulation results show that the 
HRNN has better performance than the conventional BP neural network (BPNN) in 
machining process identification and modeling. 

2   Hybrid Recurrent Neural Network and Learning Algorithm 

2.1   Hybrid Recurrent Neural Network 

Ku and Lee [4] presented the diagonal recurrent neural network for dynamic systems 
control. But the DRNN only has self-feedback connections among the neurons in the 
hidden layer; it cannot capture the dynamic behavior of the whole system [5]. In order 
to make the most of the dynamic information of the system, a hybrid recurrent neural 
network by adding the output feedback is constructed for machining process modeling. 

Figure 1 shows a 3-layer structure of hybrid recurrent neural network that is com-
posed of an input layer, a hidden layer and an output layer. A neuron of the hidden layer 
is recurrent neuron. Suppose there is a neuron in the output layer, and the output in the 

discrete time (t-1) feeds back to the hidden. ijw , jkw , d
jw , and r

kw  represent input, 

output, recurrent, and feedback weight vectors respectively. 

M

M

i

k

j

ijw

jkw

kyix

d
jw

Z- 1

M

r
kw

 

Fig. 1. Hybrid recurrent neural network structure 

2.2   Learning Algorithm of HRNN 

For each the discrete time t, xi(t) is the ith input, Sj(t) is the sum of inputs of the jth 
recurrent neuron, Oj(t) is the output of the jth recurrent neuron, net0 is the sum of inputs 
of the output neuron and yk(t) is the output of the network. The mathematical models of 
HRNN can be inferred as: 
                              ∑+−+−=

i
iij

r
j

d
jj txwtywtOwtS )()1()1()(  ,                          (1) 

))(()( tSftO jj = ,                                                  (2) 
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where )(⋅f is the activation function which is often unsymmetrical sigmoid function 

f(x)=1/(1+e-x). 
In order to improve the convergent speed, there are a lot of studies on error function 

structure. The error function of BP algorithm is the mean square error (MSE), namely, 
E=(yd-yk)

2/2, but the surface of the MSE is a multidimensional super-surface, it has 
many flat area and the vale of local minima. So this influences the convergent speed 
and falls into local minima. Karayiannis proposed the entropy error function to solve 
the incorrect saturation existing in training course of the conventional error function 
[6]. The entropy error function was defined as follows: 

∑
=

−−+−=
K

k
kdkd yyyyE

1

)]1ln()1(ln[ ,                              (5) 

However, the entropy error function suffers from overspecialization for training 
patterns since the error signal for correctly saturated is too strong. Afterward, 
Sang-Hoon Oh improved the entropy error function to resolve the incorrect saturation 
problem [7]. In this sense, the modified function becomes: 
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Although the entropy error function has active significance on accelerating the 
convergent speed, it is only one-order convergence. So we propose the modified en-
tropy error function and define the generalized entropy square error to improve the 
convergent speed and to achieve two-order convergence. 

Shannon entropy is defined as ∑
=

−=
n

k
kk ppxH

1

ln)( . In this paper, the generalized 

entropy is expressed as ∑
=

−=
n

k k

k
k p

q
qxR

1

ln)( . Then, the generalized entropy square 

error (GESE) is defined as follows: 
,      (7) 

 
The dynamic recurrent BP algorithm presented can be used to calculate the optimal 

weight vector w of the HRNN. In each iteration step, the weight vector is updated by: 
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where η  is the learning rate, α  is the momentum factor. The partial derivatives of 

every parameter are as follows: 
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where )(]
1
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Based on the above discussion, an efficient algorithm of the HRNN can be described 
by following steps: 

Step 1. Initialize weights and all parameters: weights, goal error, learning rate, and 
momentum factor. 

Step 2. Calculate the nodes of hidden and output layers according to (1)~(4). 

Step 3. Calculate Pj(t)、Qij(t)、R(t) according to (13)~(15). 
Step 4. Update the weights of the HRNN using (8). 
Step 5. Go back to step 2 cyclically until the error converges. 

2.3   Convergence and Stability Analysis 

The stability of the hybrid recurrent neural network is relative to the learning rate η . 

For a small value of η  the convergence is guaranteed but the convergent speed is very 

slow, on the contrary, if η  is too big, the network becomes unstable. In order to train 

neural network effectively, a guideline for proper choice of the learning rate based on 
the discrete-type Lyapunov function is developed in this section. 
 
Theorem 1. The convergence is guaranteed as long as the learning rate η  satisfied 

20 << η . 
 

Proof. A discrete-type Lyapunov function can be defined as follows: 
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where e(t) represents the error in the learning process. Then, the change of Lyapunov 
function can be expressed by 
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The error difference due to the learning process can be obtained by 
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where 
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Let ΔV(t)<0, then the convergence is guaranteed if η  is chosen as 20 << η . 

3   Machining Process Modeling Based on HRNN 

3.1   Nonlinear System Identification 

Consider a nonlinear system described by 

2
3

)1(1

]1)1()[2()1(
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ky

kykyky
kuky  ,                          (20) 

where the input )4sin(5.0)( tku π= . 

The sampling period is 0.001s. The initial learning rate is 0.35. The output of the 
plant, the HRNN trained by the GESE and the error are shown in Fig. 2. The simulation 
results of the BPNN trained by the MSE are shown in Fig. 3. It can be seen that the 
precision of identification using the HRNN and the proposed method is much superior 
to that obtained using the BPNN. 
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Fig. 2. Identification results of HRNN Fig. 3. Identification results of BPNN 

3.2   HRNN Modeling for Machining Process 

The machining process usually consists of servo system, cutting process, sensor and so 
on. The input-output can be separately expressed as follows [8]: 

u
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where Vf is feed velocity (mm/s), u is the servo input (V), Kn is the servo gain 

(mm/(Vs)), nω  is the servo natural frequency (rad/s), î is the servo damping ratio, f is 

feed rate (mm/r), n is the spindle speed (r/min), Ks is the gain of the cutting feed 
(N/mm2), a is the cutting depth (mm), Ke is the conversion factor. Fs is stead-state 
cutting force, F is the measured cutting force, and m is the index, generally speaking, 
0.6<m<1. So the machining process is non-linear and time-variant. 

Total gain of cutting process K=60KnKsKeafm-1/(pn), from (21) to (24), the model of 
machining process can be expressed as follows: 
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Total gain of cutting process K varies with the cutting depth, the spindle speed, and 
the feed rate, so the cutting process has nonlinearity and time-variability. In this 
simulation, the parameters of a turning process as follows: n=600r/min, Kn=1mm/(V.s), 

Ks=1670 N/mm2, Ke＝1.5, ξ＝0.5, ωn＝20 rad/s. We have established the non-linear 
model of the machining process when m=0.7. The machining process is non-linear 
system if m≠1. 

In fact, the force feedback control model of machining process is a high-order sys-
tem. It may be simplified to a two-order system for the convenience of calculation and 
simulation. Therefore, there are four inputs and one output. Input vector is defined by 

TtututFtFx )]2(),1(),2(),1([ −−−−=   ,                        (26) 

The HRNN model for machining process is shown in Fig. 4. The neuron number of 
the input, hidden and output layer is 4, 5, and 1 respectively. The activation function of 
input layer is linear, and the activation functions of the hidden and output layer are 
sigmoid function. 

Input signal is shown in Fig. 5. The initial weights of the networks are random 
numbers between -0.3 and 0.3. Fig. 6 shows the HRNN tracking results, and Fig. 7 is 
the BPNN tracking results. 
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Fig. 4. HRNN model for machining process Fig. 5. Input signal 

 
By comparing Fig. 6 with Fig. 7, it can be seen that the HRNN can approximate the 

plant better accurately than the BPNN. The output of the HRNN is almost the same as 
that of actual process. However, The output of the BPNN fluctuates when the input 
voltage changes suddenly. 
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Fig. 6. Outputs of HRNN and actual process Fig. 7. Outputs of BPNN and actual process 

4   Conclusions 

This paper constructs a hybrid recurrent neural network with better performance than 
BP neural network. In order to overcome the drawback of the mean square error crite-
rion of BP algorithm, the generalized entropy square error is defined. A dynamic re-
current back propagation algorithm is presented to guarantee the global convergence. 
The HRNN based on GESE is then utilized for nonlinear system identification and 
neural network modeling. Numeral experiments for the force control model of ma-
chining process show the HRNN has better approximate effectiveness in the identifi-
cation and control for dynamic systems. 
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Abstract. In this paper, a new parameters estimation method is pro-
posed based on the ill-condition separation method and the alternating
iterative projection algorithm for the problem of column multi-
collinearity of design matrix in the multiple regression and multivari-
ate time series mixed models. Furthermore, the parameters estimation is
improved according to the character of model. Therefore, the improved
estimated parameters have better character.

Keywords: Multivariate time series regression, Ill-condition separation,
Alternating iterative, Parameters estimation.

1 Introduction

Multivariate time series models were improved more reasonable and more per-
fect based on the alternating iterative multivariate regression models and the
multivariate time series models. Simplex multivariate time series mixed models
can only reflect the relation on multivariate random vector and bypast values,
and can not reflect the relation on present value of every variable and present
values of other variables. Simplex multivariate regression model can only re-
flect the relation on present values of certain variable and present values of
other variables, and can not reflect the relation on present values and bypast
values. The improved alternating iterative multivariate regression and the mul-
tivariate time series models do not only show a relation between the current
value of the one variable and the past value of all variables, but also show
a relation between the current value and the past value of one variable. Be-
cause the relation of the observed value in the model is very complex and the
excellent property of the estimated parameter is difficult to ensure, there are
many new problems to estimate the parameters in the model. When the de-
sign matrix is column multi-collinear[1], the parameters estimation of model
is discussed in this paper through the character of model, based on the ill-
condition separation of design matrix X [2] and interative algorithm of interactive
projection[3-10].
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2 A Brief Introduction of Models

Consider the alternating iterative multiple regression and multivariate time series
mixed models

yt = α+Θ0yt +Θ1yt−1 +Θ2yt−2 + ...+Θpyt−p + εt, (1)

where

yt−s =

⎛⎜⎜⎜⎝
y1(t−s)

y2(t−s)

...
yn(t−s)

⎞⎟⎟⎟⎠ , α =

⎛⎜⎜⎜⎝
α1

α2

...
α3

⎞⎟⎟⎟⎠ , εt =

⎛⎜⎜⎜⎝
ε1t

ε2t

...
ε3t

⎞⎟⎟⎟⎠ ,

Θ0 =

⎛⎜⎜⎜⎝
0 a012 · · · a01n

a021 0 · · · a02n

. . .
a0n1 a0n2 · · · 0

⎞⎟⎟⎟⎠ ,

Θs =

⎛⎜⎜⎜⎝
as11 as12 · · · as1n

as21 as22 · · · as2n

. . .
asn1 asn2 · · · asnn

⎞⎟⎟⎟⎠ , s = 1, 2, · · · , p.

εt is an n dimensional random variable with independent and identical distribu-
tion, Where E(εt) = 0, D(εt) = (εtεt′) = Ω.

Obviously, model (1) can be expanded to the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1t = α1 + 0 y1t + a012y2t + · · ·+ a01nynt

+a111y1(t−1) + · · ·+ a11nyn(t−1)

+a211y1(t−2) + · · ·+ a21nyn(t−2) + · · ·
+ap11y1(t−p) + · · ·+ ap1nyn(t−p) + ε1t

y2t = α2 + a021y1t + 0 y2t + · · ·+ a02nynt

+a121y1(t−1) + · · ·+ a12nyn(t−1)

+a221y1(t−2) + · · ·+ a22nyn(t−2) + · · ·
+ap21y1(t−p) + · · ·+ ap2nyn(t−p) + ε2t

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ynt = αn + a0n1 y1t + a0n2y2t + · · ·+ 0 ynt

+a1n1y1(t−1) + · · ·+ a1nnyn(t−1)

+a2n1y1(t−2) + · · ·+ a2nnyn(t−2) + · · ·
+apn1y1(t−p) + · · ·+ apnnyn(t−p) + εnt

Suppose that we continue to observe yi for T times. The number of the sample
that actually is used to regression algorithm in every equation above is only T−p
because the time is late for p. For equation i(i = 1, 2, ..., n), let

y(i) = (yi(p+1), yi(p+2), · · · , yi(T ))′
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X =

⎛⎜⎜⎜⎜⎝
1 y1(p+1) · · · yn(p+1) y1p · · · ynp

1 y1(p+2) · · · yn(p+2) y1(p+1) · · · yn(p+1)

1 y1(p+3) · · · yn(p+3) y1(p+2) · · · yn(p+2)

· · · · · · · · · · · · · · · · · · · · ·
1 y1(T ) · · · ynT y1(T−1) · · · yn(T−1)

y1(p−1) · · · yn(p−1) · · · y11 · · · yn1

y1(p) · · · yn(p) · · · y12 · · · yn2

y1(p+1) · · · yn(p+1) · · · y13 · · · yn3

· · · · · · · · · · · · · · · · · · · · ·
y1(T−2) · · · yn(T−2) · · · y1(T−p) · · · yn(T−p)

⎞⎟⎟⎟⎟⎠ ,

β(i) = (αi, a0i1, · · · , a0i(i−1), 0, a0i(i+1), · · · , a0in, a1i1,

a1i2, · · · , a1in, a2i1, a2i2, · · · , a2in, · · · , api1, · · · , apin)′,

ε(i) = (εi(p+1), εi(p+2), · · · , εi(T ))′.

Hence, the equation i in the model above can be expressed by

y(i) = Xβ(i) + ε(i). (2)

3 Parameter Estimation of the Models

3.1 The Order of the Models

In order to estimate parameters of the model, we can get the order of the model
through the following equations

AIC(p) = ln det(Σ̂n) + 2n2p/T,

BIC(p) = ln det(Σ̂n) + n2p lnT/T,

where n is the number of the variable in the model, T is the time to observe the
sample, p = 1, 2, 3,... . Σ̂n is the estimate of the residual matrix and its element
is

σ̂ij =
(y(i) −Xβ̂i)− (y(j) −Xβ̂j)

T
.

The order p is the integer p when AIC(p) or BIC(p) reaches least.One the
one hand, in order to determine the order number of model, we need to cal-
culate the regression coefficient. On the other hand, in order to determine the
regression coefficient, we need to calculate the order number of model. So we set
p = 1, 2, 3, · · · , and calculate the regression coefficient, then calculate AIC(p)
and BIC(p). When the least value is got, the calculation is over.
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3.2 Column Multi-collinearity Parameters Estimation of Design
Matrices

The analysis of the models’character. According to the character of the
models, the two sides of the equation have yt. If we directly estimate the pa-
rameter α,Θ0, Θ1, · · · , Θp with OLS, the estimate is not associative and valid.
In order to improve the better property of the parameters estimate, we can use
2LSE, 3LSE. But the design matrix is column multi-collinear, we can not be
easy to get the better property of the estimated parameters with the method
showed above. Hence, we can improve the parameters estimation with extended
ridge estimate. What’s more, because there exists yt in the left and the right of
the equation, we can not prove that the parameter estimated by extended ridge
estimate is better than the parameter estimated by 2LSE, 3LSE.

We will estimate the parameters by the iterative algorithm of ill-condition sep-
aration method for the problem of column multi-collinearity of design matrices
in the multiple regression and multivariate time series mixed models.

Column multi-collinearity parameters estimation of design matrices.
For the equation i,

y(i) = Xβ(i) + ε(i),

it can be expressed as
‖y(i) −Xβ(i)‖ → min,

which can be considered as an projection from a point y(i) to an np + 1 di-
mensional linear subspace Xβ(i), β(i) ∈ R(np+1). If the design matrix is column
multi-collinear, we can separate the design matrix by ill-condition and split X
and β(i) into X = (X1|X2), β(i)′ = (β(i)′

1 |β(i)′
2 ), such that the linear correlation

column separated. Hence, we can get

‖y(i) −X1β
(i)
1 −X2β

(i)
2 ‖ → min . (3)

X2β
(i)
2 is a linear subspace ( β(i)

2 ∈ Rp2 , p1 + p2 = np + 1. Let p1 = p2 when
np+ 1 is even ). It’s easy to prove that y(i) −X1β

(i)
1 (β(i)

1 ∈ Rp1) is a close and
convex set. So (3) can be considered as the distance between a close convex set
and a linear subspace by alternating projection algorithm method.

Put initial value β(i)
11 . One has y(i)1 = y(i) − X1β

(i)
11 . So the model can be

transformed to

‖y(i)1 −X2β
(i)
2 ‖ → min . (4)

With common method to compute the least squares estimator of the parame-
ter, we can obtain the projection X2β

(i)
21 of the point y(i)−X1β

(i)
11 from the close

convex y(i) −X1β
(i)
1 to the subspace X2β

(i)
2 .

From (4), we can get β(i)
21 . Substituting into (3) yields, we can obtain y(i)2 =

y(i) −X2β
(i)
21 . So the model (3) can be transformed to

‖y(i)2 −X1β
(i)
1 ‖ → min .
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With the same methods, we can get β(i)
12 . Hence, one has the projection y(i)−

X1β
(i)
12 of the point X2β

(i)
21 from the linear subspace X2β

(i)
2 to the close convex

set y(i) −X1β
(i)
1 .

By analogy, we can obtain the sequence

β
(i)
11 , β

(i)
21 , β

(i)
12 , β

(i)
22 , · · · , β(i)

1k , β
(i)
2k · · ·

Given a parameter ε > 0, one has the asymptotic solution of the equation i
in the model when ‖β(i)

1(k+1) − β(i)
1k ‖ ≤ ε, ‖β(i)

2(k+1)− β(i)
2k ‖ ≤ ε, where the solution

is
β

(i)′

k = (β(i)′

1k |β(i)′

2k ).

So we can get the estimation α̂, Θ̂0, Θ̂1, · · · , Θ̂p of the parameters α,Θ0, Θ1, · · · ,
Θp in model (1). But from (1), we know that the left and the right in the equation
have yt. Obviously, the property of the obtained estimation α̂, Θ̂0, Θ̂1, · · · , Θ̂p is
very poor. Hence, the parameter estimation needs improvement.

The improvement of parameter estimation. The first improvement: put
α̂, Θ̂0, Θ̂1, · · · , Θ̂p into model (1) and get the estimation ŷt of yt and then does
the second regression. At that time, in model (1), the left is the observed
value yt and the right is the estimation ŷt. With the method OLS, we can
get ˆ̂α, ˆ̂Θ0,

ˆ̂
Θ1, · · · , ˆ̂Θp. If the design matrix is column multi-collinear, we can get

ˆ̂α, ˆ̂Θ0,
ˆ̂
Θ1, · · · , ˆ̂Θp by ill-condition separation method mentioned above.

The second improvement: put the value ˆ̂α, ˆ̂
Θ0,

ˆ̂
Θ1,· · ·, ˆ̂

Θp which are ob-
tained in the first improvement into model (1), we can obtain the covariance
matrix estimation Σ̂(i), i = 1, 2, · · · , n of the equation i and then get β̂(i)

GL =
(X ′Σ̂(i)X)−1X ′y(i) by using the extended least squares estimation with Σ̂(i).

4 Properties of the Parameter Estimation in the Model

Property 1. The sequence {β(i)
k } is convergent to the least square solution β̂(i)

L

of the model (1).
In order to prove this property, the proof process of convergence for interactive

projection are given firstly.
Let Ω be a inner product space, d be the distance in Ω which defined from

inner product . Then the definition of projection from one point to a closed set
is given as follows.

Definition 1. Suppose that b ∈ Ω,closed set A ⊂ Ω,a0 ∈ A,a ∈ A.If

d(b, a0) = inf
a∈A

d(b, a) = d(b, A).

Then point a0 is called a projection from point b to a closed set A.
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Obviously, if A is a subspace, the above definition is just the same definition
of projection in generic inner product space. Next the definition of local distance
between two closed sets.

Definition 2. Let A and B be two closed sets, and A ⊂ Ω,B ⊂ Ω.For any point
a ∈ A,b ∈ B,if they satisfy

d(a, b) = d(a,B) = d(b, A),

then d(a, b) is called the local distance between A and B.
Furthermore, some conclusions are given.

Theorem 1. Let A and B be two closed convex set in inner product space, and
d(a, b) be the local distance between A and B.Then d(A,B) = d(a, b).

Proof. If d(a, b) = 0,then the Theorem 1 is obvious. Suppose that d(a, b) 
= 0,
based on a and b,two hyperplane πA and πB are plotted , and they are perpen-
dicular to line segment ab. A and B are situated in the exterior of πA and πB

respectively. d(a, b)is the distance between πA and πB ,and the same time,d(a, b)
is also the distance between A and B. The theorem is proved.

Theorem 2. The process of interactive projection for two closed convex set A
and B is convergent

Proof. Suppose that A and B be two closed convex set in inner product space.
For any a0 ∈ A,determining the projection b0 at B of a0, then determining the
projection a1 at A of b0,· · ·. By analogy, when we get the projection bi at B
of ai, then we determine projection ai+1 at A of bi. Finally, we can obtain the
sequence

a0, b0, a1, b1, · · · , ak, bk, · · ·
Obviously, we have

d(a0, b0) ≥ d(a1, b0) ≥ d(a1, b1) ≥ · · ·

≥ d(ak, bk) ≥ d(ak+1, bk) ≥ · · ·
There exists infimum for the monotone decreasing bounded sequence of number.
Suppose that it converge to d(a∗, b∗). On the one hand, because A and B are
closed set, so the distance is accessible, a∗ ∈ A, b∗ ∈ B.On the other hand,
because A and B are convex set, so d(a∗, b∗)is also the global distance between
A and B,namely,there exists a∗ ∈ A, b∗ ∈ B,when k → ∞ , we have ak →
a∗, bk → b∗, and d(a∗, b∗) = d(A,B).The theorem is proved.

Next the proof of Property 1 is given.
According to formula (3), we can conclude that to determine the distance from

Y (i) to subspace Xβ(i) can be transform into determining the distance from one
closed convex set to a subspace, and this subspace can be regarded as a closed
convex set. By Theorem 2, we know that the process of interactive projection
for them is convergent. Because X,X(i)

1 , X
(i)
2 are all column nonsingular, so the
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least squares estimate is unique. Thus, the sequence
{
β

(i)
k

}
is convergent to the

least square solution
{
β̂

(i)
L

}
of the model (1).

Property 2. ˆ̂α, ˆ̂Θ0,
ˆ̂
Θ1, · · · , ˆ̂Θp have asymptotic associativity.

By property 1, we know β
(i)
k → β

(i)
L as k → ∞. By the first method, one

has ˆ̂α, ˆ̂Θ0,
ˆ̂
Θ1, · · · , ˆ̂Θp. Obviously, they are approximate two-stage least square

solution of α,Θ0, Θ1, · · · , Θp.

In the second regression of the first method, we can get ˆ̂α, ˆ̂Θ0,
ˆ̂
Θ1, · · · , ˆ̂Θp

with common least square method if the design matrix has not column multi-
collinearity. Because β(i)

k → β
(i)
L , β(i)

k is approximately equal to β(i)
L as k → ∞,

the second regression is obtained by least square method. So ˆ̂α, ˆ̂Θ0,
ˆ̂
Θ1, · · · , ˆ̂Θp

has asymptotic associativity.
In the second regression of the first method, design matrix still has column

multi-collinearity, we can get ˆ̂α, ˆ̂Θ0,
ˆ̂
Θ1, · · · , ˆ̂Θp still with the ill-condition sepa-

ration method mentioned above. The two solution are, respectively, convergent
to least square solution. According to the analysis to the condition above, we
know that ˆ̂α, ˆ̂Θ0,

ˆ̂
Θ1, · · · , ˆ̂Θp are approximate two-stage least square solution of

α,Θ0, Θ1, · · · , Θp. Hence, it has asymptotic associativity. In a word, Property 2
holds.

Property 3. β̂(i)
GL has asymptotic validity.

The second method is said to a improvement to parameters estimation again
based on the first method. Because the parameter ˆ̂α, ˆ̂Θ0,

ˆ̂
Θ1, · · · , ˆ̂Θp obtained

by the first method are approximately equal to two-stage least square solution
of α,Θ0, Θ1, · · · , Θp, together with the second method, it’s easy to know β̂(i)

GL is
approximate three-stage least square solution of β(i). According to validity of
three-stage least square, we can know β̂

(i)
GL has asymptotic validity more than

β̂
(i)
L .

5 Conclusions

In the alternating iterative multiple regression and multivariate time series mixed
models, there are many variables and date is complex, so it is very more complex
if the design matrix is column multi-collinear. In this paper, a new parameters
estimation method is proposed by the iterative algorithm of ill-condition separa-
tion for the problem of column multi-collinearity of design matrix. Furthermore,
the properties of the parameters estimation are discussed such that the method
of parameter estimation more perfect.
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Abstract. In this paper, a new co-training style semi-supervised algorithm is 
proposed, which employs Bagging based multimodal perturbation to label the 
unlabeled data. In detail, through perturbing the training data, input attributes 
and learning parameters together, the algorithm generates accurate but diversity 
k-nearest neighbor classifiers. These classifiers are refined using unlabeled  
examples which are labeled if the other classifiers agree on the labeling. Ex-
perimental results show that the semi-supervised algorithm could effectively 
improve the classification generalization by utilizing the unlabeled data. 

Keywords: Machine Learning, Semi-Supervised Learning, Co-training, En-
semble Learning, Multimodal Perturbation. 

1   Introduction 

The traditional supervised learning employs a large amount of labeled data to train the 
model. However, in many practical learning scenarios such as nature language process-
ing, image retrieval and web-page classification, labeled data are often difficult, expen-
sive, as they require the experienced human effort. Meanwhile the unlabeled may be 
relatively easy to collect. Therefore, semi-supervised learning that exploits the unlabeled 
data to reduce the need for expensive labeled data has become a hot topic [1]. 

Various semi-supervised learning methods have been proposed [2]: EM with gen-
erative mixture methods, self-training, transductive support vector machines, and 
graph-based methods. Blum and Mitchell [3] introduced another semi-supervised 
learning paradigm named co-training, which trains two separate classifiers with the 
labeled data and lets them label the unlabeled examples for each other. Each classifier 
is retrained with the additional training examples given by the other classifier. In the 
standard co-training algorithm, the attributes should be split into two redundant views 
both of which are sufficient for perfect classification. Co-training makes strong as-
sumptions on the splitting of features. Goldman and Zhou [4] proposed an algorithm 
to relax the conditions. It used two learners of different type but both takes the whole 
feature set, and essentially employing time-consuming statistic test to identify one 
learner’s high confidence data points. 

Zhou and Li [5] proposed the tri-training algorithm which uses three classifiers. If 
two of them agree on the classification of an unlabeled example, the classification is 
used to teach the third classifier. The approach thus avoids the need of explicitly 
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measuring label confidence of any classifiers. It can be applied to dataset without 
different views, or different types of classifiers. Moreover, it is possible to exploit 
ensemble learning to help improve generalization. 

In co-training style semi-supervised learning, it is obvious that the generalization 
ability degrades as the unlabeled examples are misclassified. Li and Zhou [6] per-
formed the random forest ensemble learning algorithm to label the unlabeled exam-
ples and obtained better generalization. Therefore, the ensemble learning algorithm to 
determine the most confident examples by two or more classifiers might help improve 
the generalization ability of the learned hypothesis. 

Ensemble learning algorithm succeeds in improving the accuracy of the whole 
when the component learners are with high accuracy as well as high diversity. Bre-
iman [7] indicated that although Bagging with the help of bootstrap sampling could 
work well on unstable base learners such as decision trees and neural networks, it 
could hardly improve nearest neighbor classifiers. This is because nearest neighbor 
classifiers are robust with respect to perturbation of the training data. Zhou and Yu [8] 
proposed the FASBIR algorithm which builds ensembles through multimodal pertur-
bation to obtain accurate and diverse k-nearest neighbor (k-NN) classifiers. 

In this paper, we tackle the problem of how to classify the unlabeled examples 
through the multimodal perturbation ensemble method. In practice, the ensemble of  
k-NN classifiers with perturbation on training data, input attributes and learning pa-
rameters determines the confidence of unlabeled examples in each iteration and pro-
duces the final hypothesis. Experiments on UCI data sets show that the co-training 
style algorithm Co-BRSRP (Bagging based Random Subspaces and Random Parame-
ters) for semi-supervised learning could effectively exploit unlabeled data to enhance 
the learning performance. 

The remaining of this paper is organized as follows. Section 2 introduces the mul-
timodal perturbation methods. Section 3 presents the Co-BRSRP algorithm. Section 4 
reports the experimental study on UCI data set. Finally, an outlook and a discussion in 
section 5 conclude the paper. 

2   Ensemble Method through Multimodal Perturbation 

Krogh and Vedelsby [9] derived a famous equation E E A= −  that clearly demon-
strates that the generalization ability of the ensemble is determined by the average 
generalization ability and the average ambiguity of the component learners. It means 
that the ambiguity in combination can be used to select new training data to be labeled 
in the semi-supervised learning schema. Although k-NN classifiers are very robust 
with respect to variation of the training data, the methods are sensitive to features, and 
to the chosen distance function. Therefore, we utilize multimodal perturbation method 
[8] to construct the ensembles of k-NN classifiers. 

2.1   Random Subspace in Input Attributes 

The random subspace method, introduced by Ho [10], randomly selects different 
feature dimension and constructs ensembles on multiple smaller subsets. For the k-NN 
algorithm, it means that only a randomly selected subset of the whole feature space 
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contributes towards the distance computation. Geometrically this is equivalent to 
projecting all the instances to the selected subspace, and finding the nearest neighbors 
in the projected distances. The label of new instances are classified via majority vot-
ing through the ensemble, where the k-NN classifiers are combined in each randomly 
selected subspace. 

Given a d-dimension feature space, the feature vector can be represented as 

1 2{ , , , }dX x x x= L . Then the random subspace 1 2{( , , , ) | }s
sX x x x s d= <L  with size 

s is randomly selected. For base learner ( 1, , )iC i N= L , all instances are projected 

onto the chosen subspace s
iX , where N is the number of nearest neighbor classifiers. 

By combining the k-NN classifiers which are trained in the subspace s
iX  respectively, 

discriminative power on the unlabeled examples is improved. 

2.2   Random Parameters in Distance Metrics 

We use the heterogeneous distance function HVDM [11] for the nearest neighbor 
classifiers as in FASBIR algorithm [8]. The distance between two input vectors x and 
y can be computed as follows:  

1/

1
( , ) ( ( , ))

m p p
p a a aa

HVDM x y d x y
=

= ∑  , (1) 

where m is the number of attributes. The function ( , )ad x y  returns a distance between 

the values x and y on attribute a and is defined as: 

( , ), if a is continuous .
( , )

( , ), if a is nominal .
a

a
a

Minkowsky x y
d x y

VDM x y

⎧
= ⎨
⎩

 (2) 

The Minkowsky function shown in (3) is used to measure the distance between dif-
ferent instances described by continuous attributes. Here x and y are d-dimensional 
continuous attribute vectors. 

1/
, ,1

( , ) ( )
pd p

a a n a nn
Minkowsky x y x y

=
= −∑  . (3) 

A simple version of the Value Difference Metric (VDM) shown in (4) is defined to 
deal with the nominal attributes. Let ,a xN  denote the number of instances that have 

value x for the nominal attribute a, , ,a x cN denote the number of instances holding 

value x on a and outputting classc, and C is the number of output classes. 

, ,, , 1/

1
, ,

( , ) ( )

p

C a y ca x c p
a c

a x a y

NN
VDM x y

N N=
= −∑  . (4) 

Note that HVDM can be adapted to different distance metrics through setting dif-
ferent values to p . For instance, an alternative function, the Manhattan distance  
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function, is obtained where 1p = . Co-BRSRP achieves the diversity of NNk − learn-

ers by random selection of p  values. 

3   Co-BRSRP 

In co-training style semi-supervised learning, base learners label the unlabeled in-
stances for each other. Co-BRSRP combines the semi-supervised learning with en-
semble learning to classify the unlabeled instances. 

Let L  and U  denote the labeled instances set and unlabeled instances set respec-
tively. In order to construct the ensemble C, the k-NN classifier ( 1, , )iC i N= L  can 

be trained through multimodal perturbation, where N is the number of classifiers. At 
first, we get labeled instances set iL  from L via bootstrap sampling. Then, random 

subspace s
iX  is selected from input feature space. Finally, we randomly set ip  value 

of the distance function. The initial classifier iC  with the random subspace s
iX  and 

the random parameter ip  is trained on the iL  data set. 

iC  is retrained by the new labeled data set '
i iL L∪ , where '

iL  is chosen from the 

unlabeled data set U and labeled by the ensemble *C  which denotes that all individual 
classifiers are combined except iC . When each example in U is checked, *C  labels 

the new data for iC if the number of component classifiers in *C  voting for a particu-

lar label exceeds a pre-set threshold θ .  
If all of examples are added into the training set, the classification noise rate may 

be increased because of the mislabeled data. Fortunately, the condition for refreshing 
the training set has been obtained in the co-forest algorithm. According to Li and 
Zhou [6], in the two iterations (( 1t − )-th and t-th, 1t > ), the requirement (5) should 

be satisfied, which is used by the ensemble *C  to determine whether an unlabeled 

example could be labeled and placed into the '
iL  or not. It means that the classifica-

tion error rate 1t tξ ξ −<  after iC  is trained on '
, 1i i tL L −∪  and '

,i i tL L∪ . 

, , 1

, 1 ,

ˆ
1

ˆ
i t i t

i t i t

e W

e W
−

−

< <  . (5) 

Let ,î te  denote the error rate of *C  on '
,i tL  and , ,î t i te W  is the weighted number of mis-

labeled examples by *C  on '
,i tL . Under the assumptions , , 1ˆ ˆi t i te e −<  and , 1 ,i t i tW W− < , 

, 1 , 1
,

,

ˆ

ˆ
i t i t

i t
i t

e W
W

e
− −<  should be satisfied via getting the subsample from '

,i tL  to make (5) hold. 

Co-BRSRP algorithm repeats the following iterations until all of the component 
classifiers on '

iL  do not change. Then the ensemble of the refined component classifi-

ers produces the final hypothesis. Detailed pseudo-code for our Co-BRSRP algorithm 
is given in table 1. 
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Table 1. The Co-BRSRP algorithm 

Algorithm: Co-BRSRP (L,U,T,N,P, )
Input: the labeled set L, the un abel led set U, the test set 
T, the number of component learners N, the distance order set 
P, the confidence threshold 

for {1, , }i N  do 

L apSam ( )i , ,* ( )i iL RandomSubspace LBootstr ple L

( )ip RandomSelect P

i iC Learn L HVDM  %construct initial k-NN

d of for 

for

SubSa U

for t

*( , )
ip

en
0t

Repeat until none of the learner component changes 
1t t

, , } do {1i N

U mpled'
, ( )i t

'
,u ix U  do 

   ( e C x    if fidenc ( , )i uCon )

          ' '
, ,i t i t uL L x , , , ( , )i t i tW i uW Confidence C x

  if ( , 1ˆ ˆi t i t i te W

     end of for 
end of for 

} do for {1, ,i N

, 1i te W, , )

( , )
ii i pLearn L   %refresh k-NN

for
end

Out 1
iy label i C x y

        ,i tC L HVDM* '

end of 
of repeat 

* axput: ( ) arg mH x : ( )  %majority voting 
 

4   Experiments 

For our experiments we used 12 data sets from UCI machine learning repository [12]. 
The detailed information of these data sets is tabulated in table 2. 10 runs of 10-fold 
cross validation is performed on each data set, and the results are averaged. In each 
fold, the training data are randomly separated into two groups, i.e. labeled set L and 
unlabeled set U. The unlabeled rates are set to 80%, 60%, 40% and 20% respectively. 
For instance, if training data consists of 1000 examples, the unlabeled rate 80% will 
produce 200 labeled examples while remaining 800 examples will be put into U with-
out label. 

In the experiments, ten k-NN classifiers are contained in the ensemble used by Co-
BRSRP. Moreover, the parameter k is set to 1. The distance metric is randomly se-
lected from {1, 2, 3} as done in [8]. Here the random subspace rate is set to 0.66, i.e.  
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Table 2. Experimental data sets 

Attributes Data set Size 
Continuous Nominal

Class 

colic 368 7 15 2 
diabetes 768 8 0 2 
hepatitis 155 6 13 2 
vote 435 0 16 2 
sonar 208 60 0 2 
ionosphere 351 34 0 2 
segment 2310 19 0 7 
credit-a 690 6 9 2 
anneal 898 6 32 6 
heart-c 303 6 7 5 
breast-w 699 9 0 2 
soybean 683 0 35 19 

 
each component learner trains on about 2/3 attributes. The confidence threshold is set 
to θ =0.75 as done in [6], i.e. an example in U can be confidently labeled if more than 
3/4 of all learners agree on a particular label. 

For comparison, two prevailing semi-supervised algorithms, i.e. co-training and 
self-training, are conducted. The self-training is an incremental algorithm that the 
most confidently predicted unlabeled data is converted and added as a training exam-
ple by itself. The standard co-training algorithm applies the setting where two disjoint 
sets with almost equal size are randomly spited. Note that the termination criteria of 
self-training and co-training are modified to be similar to that of Co-BRSRP. Two 
degenerated variants of Co-BRSRP are also compared. Co-BRS (Bagging based Ran-
dom Subspaces) perturbs the training data and the input attributes without perturba-
tion on the learning parameters. Co-BRP (Bagging based Random Parameters) per-
turbs the training data and the learning parameters without perturbation on the input 
attributes. BRSRP is used as the baseline for comparison with multimodal perturba-
tion, just like what is done in Co-BRSRP, but the component learners are trained only 
on labeled data set L without unlabeled examples. Moreover, the performance of 
single k-NN classifier and standard ensemble algorithm Bagging [7] trained on L are 
also evaluated. 

Table 3 to Table 6 present the average error rates of Co-BRSRP and the other com-
pared algorithms under different unlabeled rates, where the best performances on each 
data set have been boldfaced. Note that the experimental results have been truncated. 
The results show that Co-BRSRP achieves the best performance on 67% (32/48) data 
sets under different unlabeled rates. In detail, BRSRP employing the multimodal 
perturbation on labeled data set L achieves an overall 0.140 average error rate. It is 
obvious that BRSRP is better than Single k-NN and Bagging in supervised learning. 
However, Co-BRSRP uses the unlabeled data to reduce the average error rate down to 
0.133 under different unlabeled rates. These observations indicate that Co-BRSRP 
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with multimodal perturbation can effectively use the unlabeled data to improve classi-
fication generalization. 

Moreover, Table 3 to Table 6 compare the performance improvements of Co-
BRSRP and the degenerated variants algorithms, i.e. Co-BRS and Co-BRP. For 
comparison, BRSRP whose component classifiers are trained only on L is used as 
the baseline. In the columns of three semi-supervised learning algorithms, Final 
shows the average error rates with the help of the unlabeled data. The perform-
ance improvement is denoted by Improv., which presents the reduction of the 
average error rates over that of the baseline. The highest improvement on each 
data set has been boldfaced. From these results, we certainly conclude that Co-
BRSRP successfully utilizes the unlabeled data to improve the classification accu-
racy, as the performance improvement achieved by Co-BRSRP is greater than the 
others on most of the data sets. In detail, Co-BRSRP achieves an overall 6.7% 
performance improvement while Co-BRS obtains only 1.5% and Co-BRP is even 
worse than BRSRP. 

Table 3. Comparison on average error rates under the unlabeled rate of 80% 

Supervised Co-BRS Co-BRP Co-BRSRPData set 
Single Bagging BRSRP 

Self- 
training

Co-
training Final  Improv. Final  Improv. Final  Improv. 

colic .224 .204 .201 .218 .299 .191 5.0% .189 6.0% .189 6.0% 

diabetes .319 .307 .300 .319 .336 .285 4.7% .304 -1.5% .284 5.0% 

hepatitis .210 .209 .201 .210 .281 .193 4.6% .204 -1.5% .192 4.8% 

vote .072 .068 .072 .070 .117 .066 9.4% .078 -8.0% .063 12.4% 

sonar .273 .281 .276 .271 .312 .270 2.3% .279 -0.9% .273 1.2%

ionosphere .178 .178 .142 .193 .139 .155 -8.9% .169 -18.5% .145 -2.0% 

segment .073 .076 .061 .085 .116 .056 7.4% .060 1.0% .055 8.9% 

credit-a .198 .168 .176 .203 .311 .176 -0.1% .179 -1.8% .167 5.5% 

anneal .056 .057 .052 .066 .132 .053 -0.6% .053 -1.5% .050 3.8% 

heart-c .261 .246 .221 .262 .307 .214 3.4% .228 -3.3% .208 6.1% 

breast-w .056 .054 .045 .055 .080 .036 20.7% .051 -15.5% .035 21.1% 

soybean .302 .330 .203 .295 .335 .244 -20.0% .193 -4.9% .171 16.1% 

Average .185 .181 .163 .187 .230 .161 2.3% .166 -4.2% .153 7.4% 
 

Table 4. Comparison on average error rates under the unlabeled rate of 60% 

hepatitis .218 .210 .193 .210 .285 .188 2.6% .194 -0.9% .185 4.2% 
vote .071 .065 .063 .057 .113 .063 0.3% .077 -21.8% .060 5.7%
sonar .195 .204 .214 .203 .236 .218 -2.0% .212 1.2% .216 -0.9%
ionosphere .147 .146 .116 .160 .109 .129 -10.9% .136 -17.3% .120 -3.6%
segment .051 .052 .058 .059 .096 .046 19.4% .050 13.7% .046 20.0% 
credit-a .196 .170 .173 .200 .304 .174 -0.3% .186 -7.4% .165 4.6% 
anneal .035 .036 .030 .044 .106 .029 2.3% .033 -9.0% .028 8.0% 
heart-c .244 .238 .207 .246 .295 .203 1.8% .219 -5.7% .198 4.4% 
breast-w .051 .051 .040 .049 .087 .034 17.1% .047 -15.1% .034 16.3% 
soybean .206 .234 .115 .254 .270 .138 -19.3% .114 0.9% .097 16.2% 

Average .161 .158 .140 .168 .210 .140 1.2% .146 -5.5% .133 6.9% 

Supervised Co-BRS Co-BRP Co-BRSRPData set
Single Bagging BRSRP

Self-
training

Co-
training Final Improv. Final Improv. Final Improv.

colic .210 .189 .194 .214 .294 .191 1.6% .189 2.4% .183 5.5% 
diabetes .311 .306 .276 .314 .331 .271 1.8% .295 -6.7% .271 1.9% 
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Table 5. Comparison on average error rates under the unlabeled rate of 40% 

Supervised Co-BRS Co-BRP Co-BRSRPData set 
Single Bagging BRSRP 

Self- 
training

Co-
training Final  Improv. Final  Improv. Final  Improv. 

colic .200 .179 .189 .205 .281 .186 2.0% .188 0.9% .184 3.0% 

diabetes .299 .293 .278 .309 .325 .285 -2.4% .303 -8.8% .282 -1.3% 

hepatitis .197 .195 .181 .218 .273 .188 -3.9% .191 -5.2% .171 5.5% 

vote .068 .063 .060 .055 .109 .056 6.9% .069 -15.6% .056 5.9%

sonar .169 .175 .192 .191 .191 .189 1.6% .189 1.7% .191 0.6%

ionosphere .137 .135 .109 .145 .098 .112 -3.0% .126 -15.9% .107 2.2% 

segment .042 .043 .053 .049 .084 .039 26.0% .038 27.9% .036 31.3% 

credit-a .191 .167 .180 .193 .296 .160 10.8% .179 0.7% .160 10.8% 

anneal .023 .026 .027 .030 .088 .022 16.1% .025 6.7% .020 23.6% 

heart-c .243 .227 .185 .243 .283 .191 -3.2% .202 -9.0% .190 -2.8% 

breast-w .050 .049 .039 .049 .081 .033 15.0% .043 -10.3% .033 15.8% 

soybean .165 .185 .084 .199 .226 .105 -24.6% .097 -14.2% .081 4.4% 

Average .149 .145 .131 .157 .194 .131 3.4% .137 -3.43% .126 8.2% 
 

Table 6. Comparison on average error rates under the unlabeled rate of 20% 

Supervised Co-BRS Co-BRP Co-BRSRPData set 
Single Bagging BRSRP 

Self- 
training

Co-
training Final  Improv. Final  Improv. Final  Improv. 

colic .196 .169 .175 .200 .272 .187 -6.9% .185 -5.7% .178 -1.5% 

diabetes .298 .295 .299 .303 .322 .280 6.5% .308 -2.9% .279 6.8% 

hepatitis .198 .198 .174 .212 .272 .172 1.0% .185 -6.8% .167 3.6% 

vote .075 .066 .057 .070 .112 .055 4.5% .068 -18.5% .056 2.4%

sonar .150 .146 .159 .163 .161 .160 -0.4% .169 -5.9% .169 -6.2%

ionosphere .129 .129 .098 .136 .090 .107 -9.4% .117 -19.4% .094 4.1% 

segment .034 .036 .031 .042 .078 .034 -9.7% .035 -12.9% .030 3.3% 

credit-a .191 .169 .177 .195 .277 .169 4.5% .182 -3.0% .164 7.1% 

anneal .015 .018 .024 .022 .080 .021 12.7% .020 18.9% .020 20.1% 

heart-c .233 .222 .197 .234 .276 .194 1.7% .202 -2.3% .190 3.8% 

breast-w .049 .049 .037 .049 .075 .037 1.3% .047 -27.0% .035 6.4% 

soybean .144 .160 .078 .168 .201 .092 -18.7% .078 0.0% .077 0.8% 

Average .143 .138 .126 .149 .185 .126 -1.1% .133 -7.1% .121 4.3% 
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Fig. 1. Performance improvements over different ensemble sizes varying from 10 to 100 
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Fig. 2. Performance improvement over different k values varying from 1 to 9 

Figure 1 shows the average performance improvements of Co-BRSRP on the two 
data sets, i.e. hepatitis and credit-a with different ensemble sizes, where the value of 
N is set from 10 to 100. In the figure, although costly, Co-BRSRP cannot perform 
well on the large ensemble size. However, the highest improvements are always 
achieved on the small ensemble sizes. For instance, the negative improvement even 
appears in the hepatitis data set when the ensemble size is 80 under the unlabeled rate 
80%. The results indicate that, with large size of the ensemble, the diversity between 
individual classifiers may drops down and hence it can result in a decrease in the 
classification accuracy on the unlabeled examples. 

Figure 2 shows that the average performance improvements of Co-BRSRP on the 
two data sets, i.e. breast-w and credit-a with different k values, where the number of 
k-NN classifiers is fixed to 10. It can be seen that Co-BRSRP obtains the best per-
formance while the value of k is not too big. However, the average performance im-
provements degrade with the rising of the value of k, e.g. when the value of k is set to 
9 on credit-a, the average classification accuracy reduces by 3.18% under the unla-
beled rate 80% and by 0.91% under the unlabeled rate 60% respectively. These results 
show that the generalization ability is better under smaller k values. 

5   Conclusions 

This paper proposes to use the ensemble method with multimodal perturbation to 
label the unlabeled data in the co-training style semi-supervised algorithm. In detail, 
Co-BRSRP employs the perturbation on the training data, the input attributes and the 
learning parameters together to build the ensemble of k-NN classifiers with high di-
versity, which labels the unlabeled instances for each other. Experiments show that 
such an approach could effectively utilize the unlabeled instances to improve gener-
alization ability. 

Ensemble learning technology has been successfully introduced into semi-
supervised learning. It seems that different ensemble methods might contribute to 
semi-supervised learning. Exploring more powerful ensemble methods for co-training 
style semi-supervised learning is an interesting issue for future work. 
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Weights Updated Voting for Ensemble of Neural 
Networks Based Incremental Learning 

Jianjun Liu, Shengping Xia, Weidong Hu, and Wenxian Yu 

State Lab of Automatic Target Recognition, National University of Defense Technology, 
Changsha, 410073, China 

Abstract. In this paper, an ensemble of neural networks based incremental 
learning algorithm with weights updated voting is described. The algorithm de-
fines the class kernel function of the training database of the component neural 
network in the ensemble. The voting weights are updated based on the distance 
between the test instance and the kernel function. This method can adaptively 
update the voting weights according to the classification performance of the 
component neural network on the test pattern and it is more optimal than the 
stable weights voting strategy. Experimental results show that the ensemble of 
neural networks based incremental learning algorithm with weights updated 
voting is more promising than that with stable weights voting rule. 

Keywords: Machine learning, Neural networks, Neural network ensemble,  
Incremental learning. 

1   Introduction 

It is well known that the performance of neural network classifiers relies heavily on 
the availability of the representative set of training examples. But acquisition of a 
representative training data set is difficult and time consuming in many pattern recog-
nition applications. As a result, it is common to get such representative data in small 
batches over a period of time. In such settings, it is necessary to learn incrementally. 
Incremental learning[1] accommodates new data without compromising classification 
performance on preceding data. Incremental learning in neural network classifiers can 
be achieved by modifying the classifier weights or growing/pruning the classifier 
architecture[1,2]. Also, it can be achieved by combining neural network classifiers[3]. 
Due to the promising potency of incremental learning, it is worth to research on neu-
ral network ensemble. 

Neural network ensemble is a learning paradigm where a collection of a finite 
number of neural networks is trained for the same task[4]. The generalization ability 
of a neural network system can be significantly improved through ensembling a num-
ber of neural networks[5]. Inspired by the AdaBoost[6] algorithm, one of the most 
successful implementations of the ensemble approach, Polikar et al. propose an en-
semble of neural networks based incremental learning algorithm, named learn++[3]. 
The algorithm generates a set of neural networks and combines them through 
weighted majority voting of the classes predicted by the individual hypotheses. The 
hypotheses are generated by training weak neural network classifiers, using instances 
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drawn from iteratively updated distributions of the training database. The distribution 
updating rule used by learn++ is designed to accommodate additional data sets, in 
particular those that introduce previously unseen classes. Each classifier is trained 
using a subset of examples drawn from a weighted distribution that gives higher 
weights to examples misclassified by the previous ensemble. 

The voting weights are stable in learn++ algorithm[3], which are determined on the 
performances of the component neural network classifiers on their own training in-
stances. This voting strategy is suboptimal. A more optimal voting rule is that if a 
component classifier in the ensemble is likely to correctly classify the test instance, 
the component classifier would have higher voting weight. Otherwise, the voting 
weight would be lower. In pattern recognition theory, the class kernel function dis-
tance, which is the distance between the test instance and the class kernel function of 
the training database of the classifier, can be used to estimate the classification per-
formance of the classifier on the test instance. In this paper, we define the class kernel 
functions of the training data sets of the component classifiers, and update the voting 
weights by computing the kernel function distances between the test instance and the 
class kernel functions. Experimental results show that the weights updated voting rule 
is more promising than the stable weights voting strategy. 

2   Neural Network Ensemble Based Incremental Learning 

2.1   Neural Network Ensemble 

Neural network ensemble has been widely researched due to its excellent generaliza-
tion ability. Recently research on neural network ensemble is concentrated on training 
a number of component neural networks and combining the component predictions. 

The most prevailing approaches for training component neural networks are Boost-
ing[8] and Bagging[9]. Boosting[8] generates a series of component neural networks 
whose training sets are determined by the performance of former ones. Training in-
stances that are wrongly predicted by former neural networks will have more oppor-
tunity to be selected in the training of later networks. Freund et al propose 
AdaBoost[6], which is improved from Boosting and widely used in real applications. 
Bagging[9] is based on bootstrap sampling. It generates several training sets from the 
original training set and then trains a component neural network from each of those 
training sets. 

The most prevailing approaches for combining the predictions of the component 
neural networks are plurality voting and majority voting[5] for classification tasks, 
and simple averaging and weighted averaging for regression tasks. In addition, 
Jimenez[10] uses dynamic weights determined by the confidence of the component 
networks to combine the predictions. 

Research in neural networks ensemble is predominantly concentrated on improving 
the generalization performance in complex problems. Feasibility of neural networks 
ensemble in incremental learning has been largely unexplored. Inspired by AdaBoost 
algorithm, Polikar et al[3] propose a neural networks ensemble based incremental 
learning approach, named learn++. 
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2.2   Learn++ Algorithm 

Learn++[3] generates an ensemble of weak neural network classifiers to incremen-
tally learn new information that may later become available. Each of the weak classi-

fier trained with different subsets of the data. For each database kD , 1, ,k K= " that 

becomes available, the inputs to learn++ are (1) km training data in-

stances {( , ) | 1, , }k i i kS x y i m= = "  (2) a weak classification algorithm to generate 

weak classifiers, (3) an integer kT specifying the number of classifiers to be generated 

for that database.  
Learn++[3] initializes a set of weights for the training data, and a initial distribu-

tion obtained from the weights. At each iteration t , 1, , kt T= " , a training sub-

set tTR and a test subset tTE are drawn according to the current distribution, where 

k t tS TR TE= ∪ . The weak classification algorithm is trained with the training sub-

sets. A hypothesis th is obtained as the tht classifier, whose error tε is computed on the 

database kS simply by adding the distribution weights of the misclassified instances 

: ( )

( )
t i i

t t
i h x y

D iε
≠

= ∑ . (1) 

If 
1

2tε > , th  is discarded and a new tTR and tTE are selected. Else the error is 

normalized and computed as 

/(1 )t t tβ ε ε= − , 0 1tβ≤ ≤ . (2) 

Hypotheses generated in all previous iterations are then combined using weighted 

majority voting[11] to form a composite hypothesis tH  

: ( )

1
arg max log

t

t
y Y

t h x y t

H
β∈ =

= ∑ , (3) 

where the sum of weights associated with each classifier is computed for every class 
present in the classification task. A higher weight is given to classifiers that perform 

better on their specific training sets. The composite hypothesis tH is obtained by 

assigning the class label to an instance ix that receives the largest total vote. The com-

posite error made by tH  is then computed as 

1

( )[| ( ) |]
m

t t t i i
i

E D i H x y
=

= ≠∑ . (4) 
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where [| |]i  evaluates to 1, if the predicate holds true. A normalized composite er-

ror tB  is computed as: 

/(1 )t t tB E E= − , 0 1tB≤ ≤ . (5) 

The weights of instances are updated to obtain 1tD + , which is used for the selection 

of the next training and testing subsets, 1tTR + and 1tTE + , respectively. The distribution 

update rule which comprises the heart of the algorithm is given by 

1

, ( )
( ) ( )

1,
t t i i

t t

B H x y
w i w i

otherwise+

=⎧
= ×⎨

⎩
 . (6) 

This rule reduces the weights of those instances that are correctly classified by the 

composite hypothesis tH , so that their probability of being selected into the next 

training subset is reduced. When normalized during iteration 1t + , the weights of 

misclassified instances are increased relative to the rest of the dataset. After kT  hy-

potheses are generated for each database kD , the final hypothesis is obtained by 

weighted majority voting[11] of all composite hypotheses 

1 : ( )

1
arg max log

t

K

final
y Y

k t H x y t

H
B∈ = =

= ∑ ∑ . (7) 

2.3   Weights Updated Voting Rule 

From section 2.2, we have seen, in learn++, the voting weights are stable and deter-
mined on individual performances of hypotheses on their own training data subset. 
This voting rule is sub optimal. A more optimal voting rule is that which hypotheses 
in the ensemble are likely to correctly classify the test instance, the voting weights for 
those hypotheses would be higher. Otherwise the voting weights would be lower. 
Gangardiwala et. al[7] propose an algorithm to dynamically update the voting weights 
based on the Mahalanobis distance between a test instance and the training data used 
to train the component hypotheses. 

In pattern recognition theory, the class kernel function distance can be well used to 
estimate the classification performances of the component classifiers in the ensemble 
on the test instance. In this paper, we dynamically update the voting weights based on 
the class kernel function distance. We define the class kernel functions of the training 
database of the component neural networks in the ensemble system and determine the 
voting weights by computing the class kernel function distances. If the kernel function 
distance between the test instance and the class kernel function of the training data-
base of a component neural network is small, the component neural network would be 
likely to correctly classify the test instance, the voting weight of the component neural 
network should be higher. Otherwise the voting weight should be lower. 
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Assumed that there are c  classes of training data in k
tTR , where k

tTR  is the train-

ing subset of the tht iteration of database kS , 1, ,k K= " , 1, , kt T= " , then 

1

c
k k
t ti

i
TR TR

=
= ∪ . The kernel function of the thi class training data in k

tTR is defined as 

1
1/ 2/ 2

1 1
( , ) exp[ ( ) ( ) ( )]

2(2 ) i

k k k
i i ti ti ti

n k
ti

K x V x m C x m
Cπ

−′= − − − . (8) 

where k
tim  is the mean of k

tiTR . k
tiC  is the covariance matrix of k

tiTR . 

1

i i

k
ti i

x wi

m x
n ∈

= ∑ . (9) 

1
( )( )

1
i i

k k k
ti i ti i ti

x wi

C x m x m
n ∈

′= − −
− ∑ . (10) 

where in is the number of instances in the thi class of the training subset. Then the 

kernel function distance between instance x and the class kernel function of the 
thi class of the training database k

tTR  is 

11 1
( ) ( ) ( ) log

2 2
k k k k k
ti ti ti ti tiD x m C x m C−′= − − + . (11) 

After the c kernel function distances of the training database k
tTR have been com-

puted. We get the voting weight k
tW  of the component neural network that is gener-

ated in the tht iteration of the database kS  

1

min( )
k

t k
ti

W
D

= , 1, ,i c= " . (12) 

From equation (12), we can see that the voting weight of the tht  component neural 
network is the reciprocal of the minimum kernel function distance. If the distance is 
small, the component neural network is likely to correctly classify the test instance. Its 
voting weight is high. Otherwise if the distance is large, its voting weight is low. This 
is more optimal than the fixed weights voting rule. Also the computing of the distance 
only need the means and the covariance matrices, the original training database of the 
component neural networks need not be stored in the memory, which is in accordance 
with the definition of the incremental learning. 



666 J. Liu et al. 

Note that in the definition of the kernel function, we assume the training data 
sets of the component neural networks are drawn from a normal distribution, 
which may not be the case in general. However, the experimental results in section 
3 show that the weights updated voting rule is more favorable than the weights 
fixed voting rule. 

The steps of the neural network ensemble based incremental learning algorithm 
with weights updated voting are as follows. 

Inputs: (1) {( , ) | 1, , }k i i kS x y i m= = " , a sequence of km  training instances. 

(2) a weak classification algorithm to generate weak classifiers, (3) an integer kT  

specifying the number of classifiers to be generated for that database. 

Do for each of the database kS , 1, ,k K= " : 

For 1, , kt T= " , do step1 to step5, where t  is the tht  iteration. 

Step1. Initialize the weights ( )w i for the database kS , and a distribution tD is obtained 

Step2. Draw a training subset tTR and a test subset tTE according to tD . 

Step3. Train the weak classification algorithm with tTR and a hypothesis th is ob-

tained. Compute the error tε of th on the database kS using equation (1). If 

1/ 2tε > , th  is discarded. Go to sep2 and a new tTR and tTE are selected. Compute 

normalized error tβ using equation (2). 

Step4. Combine the hypotheses generated in previous iterations to form a compos-

ite hypothesis tH using equation (3), the voting weights are obtained using equation 

(12). Compute the composite error tE using equation (4). If 1/ 2tE > , go to step2. 

Step5. Compute normalized composite error tB  using equation (5). Update the dis-

tribution tD of the weights for the database using equation (6). 

After kT  hypotheses are generated for each kS , the final hypothesis is obtained us-

ing equation (7), where the voting weights are calculated using equation (12). 

3   Simulation Results 

We compare the performances of the neural network ensemble based incremental 
learning with weights updated voting algorithm to the original learn++ on IRIS data-
base and a real radar database. To simulate incremental learning, the training is done 
in sessions, where only the most recently available database is shown to the algorithm 
during the current training session. We use back-propagation neural network training 
algorithm as the weak classification algorithm, whose weakness can be easily con-
trolled via network size and error goal. 
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3.1   IRIS Database 

IRIS database[12] was created by Fisher. R.A in 1936, which is widely used in pattern 
recognition experiments. The database consists of 4 features and a total of 150 in-
stances from 3 classes. Each class has 50 instances. 90 instances were used for train-
ing and all remaining instances were used for validation. IRIS database was used to 
evaluate the performance on incremental learning without introducing new classes. 

The training database of 90 instances was divided into three subsets, 1 3~S S , each 

with 30 instances containing all 3 classes to be used in three sessions. In each training 
session, only one of these datasets was used. Table 1 and 2 illustrate the training and 
generalization performances of neural network ensemble based incremental learning 
with weights updated voting algorithm and the original learn++ algorithm. Each  
column indicates the performance on the current and previous training datasets as 
additional data were introduced. Previous datasets were not used for training in sub-
sequent training sessions, but they were only used to evaluate the algorithm perform-
ance on previously seen instances. The last rows show the classification performance 
on the validation dataset. 

Table 1. Neural network ensemble based incremental learning with weights updated voting 
performance on IRIS database 

Dataset Training 1 Training 2 Training 3 
S1 96.83% 95.90% 94.79% 
S2 ¯ ¯ ¯  95.87% 93.66% 
S3 ¯ ¯ ¯  ¯ ¯ ¯  92.57% 

Test 82.58% 86.42% 93.94% 

Table 2. Lean++ performance on IRIS database 

Dataset Training 1 Training 2 Training 3 
S1 96.32% 94.98% 92.84% 
S2 ¯ ¯ ¯  95.23% 92.14% 
S3 ¯ ¯ ¯  ¯ ¯ ¯  90.91% 

Test 80.17% 83.39% 91.72% 

From table 1 and 2 we can see that the two algorithms achieved incremental learn-
ing ability. Neural network ensemble based incremental learning with weights up-
dated voting performed better than the original learn++ algorithm. Due to stability-
plasticity dilemma, there were some decline in training performances over three train-
ing sessions in the two algorithms. 

3.2   Real Radar Database 

The radar database consists of 41 features which are the video features extracted from 
the target return and the skeleton features extracted from the target micro B image. 
The real radar database was used to test the performances of the algorithms on incre-
mental learning when new classes were introduced. The database consisted of 3839 

instances from 3 classes, which was divided into three training datasets, 1S  through  
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Table 3. Neural network ensemble based incremental learning with weights updated voting 
performance on real radar database 

Dataset Training 1 Training 2 Training 3 
S1 90.63% 87.26% 86.57% 
S2 ¯ ¯ ¯  89.43% 88.73% 
S3 ¯ ¯ ¯  ¯ ¯ ¯  88.28% 

Test 64.85% 71.57.% 87.46% 

Table 4. Lean++ performance on real radar database 

Dataset Training 1 Training 2 Training 3 
S1 87.24% 83.19% 82.53% 
S2 ¯ ¯ ¯  85.24% 83.21% 
S3 ¯ ¯ ¯  ¯ ¯ ¯  84.64% 

Test 64.09% 70.17.% 83.93% 

 

3S , and a validation dataset. 1S  had 1800 instances from each of the classes 1 and 2. 

2S  had 1800 instances from each of the classes 1 and 3. 3S  had 1800 instances from 

all three classes. The validation set had 1200 instances from all three classes. Table 3 
and 4 illustrate the training and generalization performances of neural network en-
semble based incremental learning with weights updated voting algorithm and the 
original learn++ algorithm.  

Table 3 and table 4 show that the two algorithms were able to learn the new informa-
tion and the new classes. Neural network ensemble based incremental learning with 
weights updated voting algorithm performed better than the original learn++ algorithm 
for the real radar database, and it was able to retain more of its previously acquired 
information than the original learn++ algorithm along the stability-plasticity dilemma. 

4   Conclusions 

This paper introduces a neural network ensemble based incremental learning with 
weights updated voting algorithm. The voting weights updating rule is based on the 
distance between the test instance and the class kernel function of the training data-
base of the component neural network in the ensemble. If the distance is small, the 
component neural network is likely to correctly classify the test instance. Then its 
voting weight is high. Otherwise if the distance is large, its voting weight is low. It is 
more optimal than the fixed weights voting rule in the original learn++ algorithm. The 
effectiveness of the weights updating voting rule is demonstrated in two experiments 
on IRIS dataset and real radar dataset. 
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Abstract. Process neural network (PNN) dealing with process inputs
is widely used. Currently, the learning method of PNN is mainly based
on base functions expansion. However, selecting base functions and their
parameters is much difficult, and moreover, the corresponding learning
method is time consuming due to integral with numbers of base func-
tions. A numerical learning method (NL) for PNN was proposed in this
study. It represented PNN’s inputs and weights functions in numerical
forms and trained the network in a numerical way so that NL avoided the
selections of base functions and their parameters. Experiments showed
that NL based PNN was more accurate and had lower computation com-
plexity.

Keywords: Process neural network, Base function expansion, Numeri-
cal learning method.

1 Introduction

Research of neural networks has been lasting for several decades and there are
many kinds of neural network models, such as perceptron [1], self organization
mapping networks [2]. In recent years, more neural network models with new
structures, new computing or training methods have been proposed, including
RBF networks [3], fuzzy networks [4] etc. All these models are widely used in
scientific fields and practical applications, such as machine learning [5], pattern
recognition [6], industrial control [7].

For all the above models, the inputs of the networks are constant independent
of time. However, the trends of inputs are usually meaningful because systems
outputs are related to inputs accumulation for a period of time. He Xingui et al.
proposed process neural network (PNN) dealing with process inputs [8]. The in-
puts and weights of PNN can be time-varying functions, representing the inputs
processes. Further, some new forms of PNN arise, e.g. multi-aggregation PNN [9]
and complex number PNN [10]. PNN has been applied in many real scenarios,
such as simulation of oil reservoir exploitation [11], worm harm prediction [12],
and churn prediction in mobile communication[13].
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Currently, the widely used learning method of PNN expands the weights func-
tions to coefficients by base functions; the coefficients are gained after training[8].
We call this learning method base function learning method (BFL). However,
there are difficulties in applying BFL:

– Base functions and parameters: It is hard to choose suitable basic functions
and their parameters before knowing the concrete forms of weights functions.

– Computational complexity: The computational complexity of BFL depends
on the number of base functions. The number is usually large and will grow
by exponential order with the increase of dimension and resolution of the
problem.

To tackle the shortcoming of the existing learning method, we proposed a
numerical learning method (NL) for PNN in this study. In a numerical way, NL
represented the inputs and weights functions and trained the network, so that
selections of base functions and their parameters were avoided. Computational
complexity of NL mainly depended on inputs dimension increasing linearly with
problems’ dimension. Experiments showed that NL based PNN was more accu-
rate than those based on BFL and the time complexity of NL was low.

The rest of this paper was organized as follows. Section 2 introduced PNN
theory and the base function learning method. Section 3 presented the numer-
ical learning method. Experiments were reported in section 4. Section 5 was
conclusion.

2 Preliminaries

Before introducing the proposed learning method, we first review PNN theory
and base function learning method (BFL) briefly.

2.1 Process Neural Network

A process neuron (Fig. 1) has similar structure with a traditional artificial neu-
ron. They are different mainly in two aspects. First, inputs and weights of the
process neuron could be time-varying functions, which enables PNN to deal with
process inputs. Second, the process neuron has both time accumulation and space
aggregation operators(see below), whereas the traditional artificial neuron has
only the space aggregation operator. Relation between inputs and outputs of the
process neuron can be expressed as

y = f
(∑

(
∫

(W (t), X(t))− θ)
)

(1)

where X(t) is the vector of inputs functions and W (t) is the vector of weights
functions; y is the output; θ is the threshold; f(·) is the excitation function;

∫
is a

time accumulation operator, such as integral;
∑

is a space aggregation operator
such as sum, max, min. Consider the most familiar form where

∫
is integral
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Fig. 1. A process neuron

and
∑

is weight sum. Then (1) can be rewritten as (2), where T is the time
interval for t. The net structure of PNN can be the same with traditional neural
networks. There are some property theorems of PNN [14], including continuity,
function approximation ability and computational capacity.

y = f

(
n∑

i=1

∫
t∈T

wi(t)xi(t)dt− θ
)

(2)

The process functions x(t) and w(t) in PNN do not necessarily rely on time,
they can be functions with one or more other arguments, such as spatial lo-
cation, temperature. Process neural network with multidimensional arguments
is a more generalized model named multi-aggregation process neural network
[9], whose neuron expressed by (3), and we will use multi-aggregation PNN in
the experiments. All the theories and learning algorithms of PNN can be ex-
tended to multi-aggregation PNN. For convenience, models and algorithms are
demonstrated based on single argument PNN.

y = f

(
n∑

i=1

∫
· · ·

∫
tk∈Tk

wij(t1, · · · , tp)xi(t1, · · · , tp)dt1 · · · dtp − θ
)

(3)

2.2 Base Function Learning Method for Process Neural Network

As wij(t) can be any kind of functions, it is almost impossible to obtain their
analytic forms without assumptions. According to BFL, wij(t) is assumed to be
composed of a series of base functions, that is, wij(t) =

∑L
l=1 w

(l)
ij bl(t) where

bl(t) is a base functions, and L is the number of base functions. Then (2) can be
rewritten as

y = f

(
n∑

i=1

L∑
l=1

w
(l)
ij

∫
t∈T

bl(t)xi(t)dt− θ
)

(4)

Then
∫

t∈T
bl(t)xi(t)dt can be computed, and the network can be trained by

back propagation algorithm used in [11]. The most difficult part of BFL is select-
ing base functions and their parameters without the concrete forms of weights
functions. Then we proposed the numerical learning method for PNN, which
avoided the difficult selections.
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3 Numerical Learning Method for Process Neural
Network

Numerical learning method is illustrated in this section. Avoiding base function
selections, NL is more simple and accurate than BFL.

3.1 Structure of NL Based PNN

Unlike BFL representing functions in analytical forms, NL does it in a discrete
numerical way so that NL does not expand the weight functions. Considering
a NL based feedforward process neural network with a hidden layer showed in
Fig. 2, the relation between inputs and outputs is

Fig. 2. A NL based feedforward process neural network

y = g

⎛⎝ m∑
j=1

vjf

(
n∑

i=1

∫
t∈T

w̃ij(t)x̃i(t)dt− θj
)
− θ

⎞⎠ (5)

where x̃(t) and w̃(t) are series of discrete values and
∫

t∈T
w̃ij(t)x̃i(t)dt can be

computed by numerical integration. In most real-world scenarios, the inputs ob-
tained are usually discrete values rather than functions, so NL is more practical.

NL represents functions in numerical forms. It does not change PNN’s net
structure nor conflict with PNN theories, so NL based PNN maintain all the
properties of PNN.

3.2 Numerical Learning Method (NL)

BP learning algorithm is widely used in feedforward neural networks. It also can
be used in PNN in different ways from traditional neural networks.

Assume the training data set being like:⎡⎢⎢⎢⎣
x11(t), x12(t), ..., x1n(t), d1
x21(t), x22(t), ..., x2n(t), d2

...
...

xK1(t), xK2(t), ..., xKn(t), dK

⎤⎥⎥⎥⎦
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where xij(t) is a function or a sequence; di is the i-th desired output. The
numerical learning method is based on the basic idea of BP algorithm. The
error function is

E=
K∑

k=1

(yk−dk)2 =
K∑

k=1

⎛⎝g
⎛⎝ m∑

j=1

vjf

(
n∑

i=1

∫
t∈T

w̃ij(t)x̃i(t)dt− θj
)
− θ

⎞⎠− dk

⎞⎠2

(6)
The modifying rules are

vj = vj + α∆vj , j = 1, 2, · · · ,m (7)
wij = wij + β∆wij , i = 1, 2, · · · , n; j = 1, 2, · · · ,m; (8)
θj = θj + γθj , j = 1, 2, · · · ,m (9)

For convenience, denote ukj =
∑n

i=1

∫
t∈T
w̃ij(t)x̃i(t)dt−θj , zk =

∑m
j=1 vjf(ukj)−

θ so that

∆vj = − ∂E
∂vj

= −2
K∑

k=1

(g(zk)− dk)g′(zk)f(ukj) (10)

∆w̃ij(t) = − ∂E

∂w̃ij(t)
= −2

K∑
k=1

(
(g(zk)− dk)g′(zk)vjf ′(ukj)

∫
x̃ki(t)dt

)
(11)

∆θj = − ∂E
∂θj

= −2
K∑

k=1

m∑
j=1

vjf(ukj − dk)vjf ′(ukj) (12)

∫
x̃ki(t)dt in (11) is computed by numerical integration. If f, g are sigmoid func-

tions, f(u) = (1 + e−u)−1 then f ′(u) = f(u)(1− f(u)).
The main steps of the learning algorithm are:
step 1 Set precision ε, maximum number of iterationsM , accumulated learn-

ing iterations s initialized as zero.
step 2 Initialize weights wij , vj and thresholds θj .
step 3 Compute error E, if E < ε or s > M , go to step 5, else go to step 4.
step 4 Update weights wij , vj and thresholds θj ; s = s+ 1.
step 5 Test the model or apply it to real scenarios.

4 Experiments

We compared our method with the existing learning methods in traffic flow
prediction scenario on a real data set; the accuracy and time cost were compared.

4.1 Application Scenario and Data

Traffic flow forecast was important to many applications in intelligent trans-
portation system. Traffic flow showed a continuous process in both time and
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Fig. 4. Spatial process of the flow

space, as in Fig. 3 and Fig. 4. We tried to forecast future traffic flow on basis of
past flow. The forecast model can be expressed as

flow(tpre, sk) = Fforecast(flow([ta, tb], [si, sj ])) (13)

where flow(tpre, sk) was the traffic flow at time tpre and on the detector sk, while
flow([ta, tb], [si, sj ]) represented the flow matrix during time interval [ta, tb] and
on the detector from si to sj .

We used real traffic volume data in the State of California, USA; the data was
from the project Freeway Performance Measurement System (PeMS) [17]. We
chose a two-way six lanes freeway labeled ”I605-S” crossing the seventh district
with five consecutive loop detectors numbered 716810, 717898, 717896, 717894
and 717887. All the detectors recorded the volume travel though them in the
south-east three lines every 30 seconds and PeMS provided 5 minutes volume by
aggregation.

We used flow of all five detectors to forecast future flow on the third detector.
That was, in (13), tpre = tb + 1, sk = s3, [si, sj ] = [s1, s5]. From experience
obtained from the experiments, flow during five consecutive time intervals, 25
minutes, was enough to represent the traffic condition at that time, so tb − ta =
5. We focused on noontime traffic flow, from 10:00 to 15:00 when the traffic
was heavy and fluctuant. Take March 28, 2007, Wednesday as an example. We
used noontime flow data of March 7, 14, 21, three Wednesdays, in the past
three weeks to train the network, and forecasted the noontime traffic flow of
March 28.

4.2 Experiments Settings

On basis of the scenario and data above, four methods, including traditional
artificial neural network (ANN), PNN based on polynomial BFL, PNN based
on wavelet BFL and NL, were carried out in the contrast experiments. The
accuracy, time cost and convergent speed of the methods were compared through
five groups of experiments done for five days, March 26 to 30, Monday to Friday.
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For ANN, because it lacked the ability of handling processes, tb− ta = 1, and
five detectors’ data was input into five independent neurons. Suitable numbers
of neural networks’ hidden neurons were set based on repeated trials, so did all
the other methods.

All the PNN in the experiments has one input node for the process input
matrix and one output node for the forecast result.

For PNN based on polynomial BFL, bivariate cubic polynomial base functions
were used as they had been used in previous work [8].

For PNN based on wavelet BFL, two-dimension Haar Wavelet base functions
{φjn(x)ψjm(y), ψjn(x)φjm(y), ψjn(x)ψjm(y)}j,m,n∈Z were used, where parame-
ter j determined the resolution and m, n determined the functions translations.

NL did not have to do base function expension and added no extra parameters
to the model.

Mean Absolute Percentage Error (MAPE) was used to estimate the accuracy
of the forecast, defined as

MAPE(y, y′) =
1
N

N∑
i=1

|yi − y′i|
yi

(14)

where y was the real flow value, and y′ was the forecasted one.

4.3 Experimental Results

Comparisons of accuracy, time cost and convergent speeds of four methods were
showed in Fig. 5, Fig. 6 and Fig. 7. Fig. 8 showed the influence of parameters
settings on PNN based on wavelet BFL.

Polynomial base functions had a simple form. However, PNN based on poly-
nomial BFL was not accurate in traffic flow forecast (Fig. 5) mainly because the
base functions were too simple in such a complex environment like transporta-
tion.

PNN based on wavelet BFL was more accurate compared to PNN based on
polynomial BFL since wavelet base functions had more powerful approximation
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ability with a proper resolution. Fig. 8 shows the accuracy and time cost of
wavelet BFL with different resolutions; in the experiment showed in Fig. 5,
the resolution of wavelet base functions was set as 4, with which the model
performance was the best. However, the number of base functions would increase
exponentially with the increase of resolution, and the computational complexity
would increase at the same speed, leading to high computational complexity
(Fig. 6). On the other hand, it introduced more parameters, making the network
more complicated, which limited the accuracy.

NL based PNN were more accurate than the other three models (Fig. 5), as it
avoided the error introduced by selections of base functions and their parameters.
NL’s computational complexity was acceptable (Fig. 6), higher than the most
simple BFL (with poor performance, however), much lower than wavelet BFL.
All the neural networks had fast convergent speeds (Fig. 7) as their learning
algorithms were all belonged to back propagation.

5 Conclusion

A numerical learning method (NL) for process neural network (PNN) was pro-
posed. Different from usually used base function learning methods (BFL), NL
represented PNN’s input and weight functions in a numerical way, so that it
avoided selections of base functions and their parameters. Experiments showed
that NL based PNN had a higher accuracy and lower computational
complexity.

Process neural network enhanced information processing capability of tradi-
tional neural network, and could be applied in many scenarios with processes.
NL provided a practicable learning method for PNN, which would extend PNN’s
potential usage. In the future work, we will focus on how to define the most ef-
fective process inputs and time accumulation operators, which would be helpful
to both PNN theories and applications.
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Specialized Affine Approximation for Nonlinear Systems 
Output Tracking Using Neural Networks 

Tsurng-Jehng Shen, Chorng-Shyr Jou, Meng-Jey Youh, and Chia-Tang Chen 

Hsing Wu College, No. 101, Sec.1, Fenliao Rd., LinKou, 
Taipei County 244, Taiwan, China 
shentj@ms2.hinet.net 

Abstract. A special model of artificial neural networks has been developed for the 
purpose of output tracking of a class of nonlinear systems and an original training 
structure basing on the error back-propagation algorithm is introduced. This ap-
proach which, on the ground of input-output observations, turns feasible the use of 
inverse control techniques appears much simpler than other existing neural control 
approaches for inverse control problem. Simulation results reveal that the proposed 
approach presents rapid training and good tracking performances. 

Keywords: Multilayered feedforward neural network, Affine approximation, 
Inverse control, Trajectory tracking. 

1   Problem Statement 

Consider a class of nth order single input single output (SISO) nonlinear system de-
fined in a bounded input bounded output (BIBO) compact domain 2( 1)vU −⊂ ℜ , and 
assume that the external dynamic[1] of this plant can be precisely described by fol-
lowing affine difference equation : 

 ( ) ( ) ( ) ( )1y k f Y k g Y k u k+ = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (1.1) 

where ( )1, :f g ν −ℜ → ℜ  and  are smooth functions with arguments 

( ) ( ) ( ) ( ), 1 ,..., 1
T

Y k y k y k y k v= − − +⎡ ⎤⎣ ⎦  being past and present measurements of the 

plant’s output and input at stage k , while nν ≤  is observation index of the plant.  
Here the considered control problem is to make the output of system (1.1) asymp-

totically track a desired trajectory ( 1)dy k +  that been assumed uniformly bounded in 

the domain U . If the functions f and g are both known, it follows directly that at 

stage k , ( )u k can be computed from a knowledge of ( )Y k as follows: 

 ( ) ( )( ) ( )
( )( )

f Y k w k
u k

g Y k

− +
=  (1.2) 

with ( ) ( ) ( ) ( )
1

1

1
v

d i d
i

w k y k a y k i y k i
−

=

= + − − − −⎡ ⎤⎣ ⎦∑ , then with this control input can 

assure a stable error dynamic for the desired output tracking: 
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1

1

( 1) ( ) 0
v

i
i

e k a e k i
−

=

+ + − =∑  (1.3) 

where ( ) ( ) ( )de k y k y k≡ − . 

Even the mentioned nonlinear control technique proposes a convenient output 
tracking solution to affine nonlinear systems, since, in practical case, f  and g  are 

normally not well known, the inverse control formulation can hardly applied directly 
to any practical affine systems. 

For sometime, researches are interested in using neural networks to approximate 
the input/output mapping of affine nonlinear systems. In this kind of applications, 
neural networks are mostly used to independently approximate f  and g  of not well 

known affine systems[2,3]. When necessary accuracy of system's input/output map-
ping is obtained by suitable training, the mentioned control law formulation can be 
again applied to output tracking. 

Definition 1. A Specialized Affine Model for the external dynamics of the nonlinear 
system (1.1) defined in a compact neighborhood ( iV ) of an operating condition 

( )iY k is defined to take the form: 

 ( ) ( )( ) ( )( ) ( ) ( )ˆˆˆ 1 iy k F Y k G Y k u k Y k V U+ = + ∀ ∈ ⊂  (1.4) 

such that for a required precision value 0ε > , different from other neural input/output 
modelization approaches, the following two expressions should be simultaneously 
made to be satisfied: 

 
( ) ( )
( ) ( ) ( )

ˆ1 1

ˆ i

y k y k

u k u k Y k V

ε

ε

⎧ + − + ≤⎪
⎨

− ≤ ∀ ∈⎪⎩
 (1.5) 

where denotes a vector norm and 
( ) ( )( )

( )( )
ˆ1

ˆ( )
ˆ

y k F Y k
u k

G Y k

⎡ ⎤+ −⎣ ⎦≡  with F̂  and Ĝ  

two continuous functions of ( )Y k  defined in iV  and 

 
( )( ) ( )1 2

1 2

ˆ

0

k G Y k k Y k U

k k

> > ∀ ∈

>
 (1.6) 

Condition (1.5) will assure that (1.4) can not only approximate the system’s in-
put/output relation, but also its inverse (output/input) relation in a stable affine form,. 

Basing on the specialized affine model of the considered system and supposing that  
system's initial external states are well known, the tracking of a desired output trajec-
tory, ( )1dy k + , can be obtained with the following inverse control law: 

 
( )( ) ( )

( )( ) ( )
ˆ 1

( )
ˆ

i d

i

i

F Y k y k
c k Y k V U

G Y k

− + +
= ∀ ∈ ⊂  (1.7) 

Substitute ( )u k by ( )c k in (1.4), we have ( ) ( )ˆ 1 1dy k y k+ = + , which implies: 

 ( ) ( )1 1dy k y k ε+ − + <  (1.8) 
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In the case asymptotic tracking is to be performed, following control law can be  
applied: 

( )( ) ( ) ( ) ( )

( )( ) ( )

1

1

ˆ ˆ1

( ) ,
ˆ

v

i d i d
i

i

i

F Y k y k a y k i y k i

c k Y k V U
G Y k

−

=

⎡ ⎤− + + − − − −⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦= ∀ ∈ ⊂
∑

 (1.9) 

In both cases desired output tracking can be either directly or asymptotically ob-
tained while its final precision is related to the resulted precision of the specialized 
affine modelization. Notice that in (1.9) ( )ŷ k i−  can be replaced by output meas-

urement of the plant:, then the tracking precision being a consequence of the special-
ized affine modelization error can be improved. 

2   Quasi-Affine Modelization Using Neural Networks 

Definition 2. A Neural Network who takes ( )Y k as input vector, ( )ˆˆ ,
T

F G  as output 

vector (so F̂ , Ĝ  are continuous functions of  ( )Y k and W which denotes connection 

weights and the bias of each neuron of the neural network ) and is trained to verify 
(1.5) for ( ) ,Y k U ε +∀ ∈ ∈ℜ is called a  Specialized Affine Neural Model of degree 

ε of the considered systems and is noted as sysN  

We propose sysN
 
to be a L-layer ( 2L ≥ ) feedforward neural network of type 

1 2 12( 1), , , ,2L

L
v i i iN

−− L  (Narendra’s notation) with hyperbolic tangent activation functions in 

hidden layers, and the following sigmoid function in output layer : 

 

)

)

F X a
b a

e

G X c
d c

e

X

X

( )
( )

( )
( )

= + −
+

= + −
+

−

−

1

1

 (2.1) 

When sufficient large range is chosen for F̂ and Ĝ , Specialized Affine Neural Net-
work can  be taken as an universal approximator[4,5] of any continuous mapping.  

2.1   Distal Teachers Group for Quasi-Affine Neural Networks 

For the considered class of systems, there is no way to directly train a quasi-affine 

neural network by minimizing the error between ˆˆ( , )TF G and its target func-

tions ( , )F G . The neural networks can only be trained on the basis of available exam-

ples from the past and present input/output measurements of the plant. For this reason, 
a distal teacher[6] i

DTN is needed to be designed to train sysN in a local operation  

domain iV . 

The distal teacher i
DTN , who takes ˆˆ( , )TF G  as input and ˆ( ( 1), ( ))T

i iy k u k+)
 as out-

put vector, is designed here to be an additional neural layer to Nsys  with two linear 
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neurons. Actually i
DTN  represents a 2 2×  matrix whose elements (connection 

weights) having no need to be tuned by training are systematically calculated from 
available values as : 

 2

1 ( )

1/ ( , ( )) ( 1) / ( , ( ))
ii

DT
i i i

u k
N

G W Y k y k G W Y k

⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

) )  (2.2) 

here ( )iY k denotes the thi input pattern of the trained neural network. 

 

( )( ), iG W Y k
)

( )( ), iF W Y k
)

i
DTN

( )iY k

sysN

( )iy k d+)

( )iu k
)

 

Fig. 1. ( )i
sys DTN Na ; sysN  trained by specific distal teacher i

DTN  

Now basing only on available input/output examples of the plant, a quasi-affine neu-
ral network can be trained by connecting sysN  and i

DTN  in series (Fig.1) and using the 

following performance index : 

 2 21
ˆ( 1) ( 1)) ( ( ) ( ))

2i i i i iE y k y k u k u k⎡ ⎤= + − + + −⎣ ⎦
)

 (2.3) 
 

Result 1. The distal teacher i
DTN  can train sysN  to be a local affine neural approxima-

tor of system (1.1), the neural structure is then noted as ( )i
sys DTN Na  

Suppose the neural network is trained over a enough small neighborhood iV of some 

operation point ( )iY k , such that only the input-output pair ( )iY k  is required for the 

neural network training. 
Since i

DTN  is simply a linear layer (a 2 2×  matrix), the potential of sysN
 
to be an 

universal approximator is not lost. To proof that sysN  can be a local affine neural 

approximator, it is sufficient to show that ( )i
sys DTN Na has a suitable input-output 

structure which can be trained to satisfy the condition (1.5), and that the forward 

mapping of the connected neural network is not divergent during training ( ˆ 0G ≠ ). 

The output vector of ( )i
sys DTN Na is calculated as follows : 

 
1

ˆˆˆ ˆ( , ( )) ( , ( )) ( )ˆ ( , ( ))( 1)
ˆ ˆˆˆ( ) ( , ( )) ( 1)( , ( ))

i i iii i
DT

í i ii

F W Y k G W Y k u kF W Y ky k
W

u k G W Y k y k FG W Y k
−

⎡ ⎤+⎡ ⎤+⎡ ⎤ ⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥+ −⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (2.4) 

Since by choosing the range parameters c and d, ˆ
iG can be limited to a range which ex-

cludes zero, ˆ( ( 1), ( ))i iy k u k+)
which approximates the input-output pairs for a BIBO sys-

tem can be kept finite. Besides, the chosen error index (2.3) and relation (2.4) assure that 
when the neural network is satisfactorily trained, condition (1.5) is met, i.e. :  
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1

ˆˆ ˆ( , ( )) ( , ( )) ( ) ( 1)
ˆ ˆ ( )( , ( )) ( 1)

i i i i

ii i

F W Y k G W Y k u k y k

u kG W Y k y k F
ε

−

⎡ ⎤+ +⎡ ⎤⎢ ⎥ − <⎢ ⎥⎡ ⎤⎢ ⎥+ − ⎣ ⎦⎣ ⎦⎣ ⎦
 (2.5) 

However, a neural approximator trained by using only one single input-output pattern 
( )iY k  will have a very poor generalization performance. So, to have a more general 

quasi-affine neural approximator (valid for a larger domain iV ) or a global neural 

approximator (valid for the whole BIBO domain U ), a complete training data set 
should be used for batch training. 

 

M

D

1F
)

1G
)

sysN  

1
DTN

1( )y k r+)

1( )u k
)

P 

pF
)

pG
)

p
DTN

( )py k r+)

( )pu k)

Q

 

Fig. 2. The global training structure for sysN in domain U  

Consider now batch training is applied using a data set contains p well excited (ir-
regularly placed) input-output pairs ( ( ), 1,2 ,Y k i p= K ) of the continuous system in 

U, such that the union of the p neighborhoods covers U ( 1 2 pV V V U∪ ∪ ∪ =L ), 

then for each training data pair ( )iY k we use a specific ( ( )i
sys DTN Na ) training 

structures. This is shown in (Figure 02), with D  represents decomposition function of 
a p columns matrix into p separate vectors, where: 

 1 2, , , pP Y Y Y⎡ ⎤= ⎣ ⎦K  (2.6) 

with { }( ) ( ( ), , ( 1), ( ), , ( 1)) | ( )T
i i i i i i i iY Y k y k y k v u k u k v Y k V U= ≡ − + − + ∀ ∈ ⊂K K , 

and 

 
   

withQ
F F F

G G G
p

p

L
N
MM

O
Q
PP

1 2

1 2

,

,
, ,...,

F F W Y

G G W Y
i

i i

i i

R
S|
T|
b g
b g

1 2 p  (2.7) 

 
Result 2. Let U be an admissible BIBO domain for the nonlinear system (1.1). Let Vi, 
i=1,2...,p, be compact neighborhoods of p well excited input-output pairs defined over 
U with V V V Up1 2∪ ∪ ∪ =K . Let Nsys

 be a quasi-affine Neural Network which has 

1 2, , , pY Y Y⎡ ⎤⎣ ⎦K as batch training input matrix, [( , ) , ( , ) ,..., ( , ) ]
) ) ) ) ) )
F G F G F GT T

p p
T

1 1 2 2
as batch 

output matrix. Let 
1

p

G i
i

E E
=

=∑  be a global error index. Then, since the system is sup-

pose smooth and the training set is well excited, a good multilayer neural network will 
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generalize input/output relation which are not explicitly specified in the training data 
set, that means, it is possible to find and train a N sys to be a global quasi-affine neural 

approximator of (1.1) through p distal teachers, i
DTN , i=1,2,...,p. The corresponding 

neural structure is written 
( )N

N

N

N

sys

DT

DT

DT
p

a
M

1

2 . 

2.2   Modified Error Backpropagation for Quasi-Affine Neural Networks  

Since the traditional structure of the error back-propagation training algorithm can 
only use one distal teacher to train one input-output mapping, to train N sys  to glob-

ally satisfy the condition (1.5), the error backpropagation algorithm is modified as 
follow to adapt the structure which applies, in the same time, p distal teachers. 

 

$T

WDT
1

WDT
p

WDT

2

( )WDT
T1

( )WDT
p T

( ) WDT
T2

N sys 

Modified Error Backpropagation

D emux 
Mux 

Mux D emux 

TQ P 
EG ( )

EG  

− ∇η w ( )

Er ror  gradien t

 

Fig. 3. Architecture of Modified Error Back-propagation for the training of Quasi-affine neural 
networks 

Defining Demux a decomposition function of a p columns matrix into p separate 
vectors and Mux its inverse function, a Modified  Error Back-propagation architec-
ture is proposed in graphical representation (Fig.3). All the connections drawn in 
thick lines represent the standard neural network signals forward propagation and the 
error back-propagation paths, with: 

 1 2

1 2

( 1)( 1) ( 1)

( )( ) ( )
p

p

y ky k y k
T

u ku k u k

++ +⎡ ⎤
= ⎢ ⎥
⎣ ⎦

L

L
 (2.8) 

 

) ) )
L

)
T t t t p= 1 2  (2.9) 

and 

 t W
F

G
ii DT

i i

i

p
L
NM
O
QP

1 2, ...,  (2.10) 
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The global error index used for training is defined as E EG i
i

p

=
=
∑

1

, where Ei is defined  

by (2.3).  

3   Asymptotic Output Tracking 

Once the system (1.1) is represented by a quasi-affine model and all the initial values 
of the system states can be exactly set to required initial condition, the inverse con-
troller (1.7) can be applied to perform output tracking while provides a tracking preci-
sion of ( 1) ( 1)dy k y k ε+ − + <  with ε  the quasi-affine modelization error. 

Since in practical case, the system states can hardly set to arbitrary condition, the 
following asymptotic tracking could be applied to convert both the modelization and 
initial state errors: 

 c k

F W Y k y k r a y k r m y k r m

G W Y k

d r m d
m

r

( )

,

,

L
NM

O
QP

b gc h b g b g b gc h
b gc h

1   (3.1) 

with a m rr m− =, , ,...,1 2  the Hurwitz coefficients [7]. 

N W Y ksys , b gc h
y kb g

c
y F

G
k d

k rb g
N DT

TDL TDL

System

G

F F

G
c k rb g

c kb g

c kb g
y k rd b g

y kb g

Z r

Z r

Z r

Optional on-line training structure

W

W

 

Fig. 4. Output Tracking control loop using affine neural approximator 

4   Simulation Example 

In this paragraph a simulation study using example already treated in [3] is presented. 
The considered plant is described by : 

 3
2

( )
( 1) ( )

1 ( )

y k
y k u k

y k
+ = +

+
 (4.1) 

The goal is to track the following desired trajectory : 

 ( ) sin(2 / 25) sin(2 /10)dy k k kπ π= +  
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In [3] the internal structure of the plant (4.1) was considered exactly known 

( 2 3( ) / 1 ( ) , ( )F y k y k G u k⎡ ⎤= + =⎣ ⎦ ) while input-output measurements were also avail-

able. To track the desired trajectory Narendra used two neural networks of type 
3
1,20,10,1N  to separately approximate F and G . Then an additional neural controller of 

type 3
1,20,10,1N  was trained to control the system. Besides, to get a precise tracking, 

on-line adaptation techniques were also necessary. 
In this example, we use only one off-line trained quasi-affine neural network of 

type 3
2,32,10,2N  which modelizes the plant under the form : 

 
ˆˆˆ( 1) ( , ( )) ( , ( ), ( )) ( )

ˆˆˆ( ) ( ( 1) ( , ( ), ( ))) / ( , ( ), ( ))

y k F W u k G W y k u k v k

v k y k F W y k u k G W y k u k

+ = +

= + −
 

where 3( ) ( )v k u k≡ .  

For training phase, the plant is excited with random u(k) and y(k) which are uni-

formly distributed over [ ] [ ]{ }( ), ( ) | ( ) 2,2 , ( ) 10,10U u k y k u k y k= ∀ ∈ − ∀ ∈ −  , and 100 
input-output patterns (p=100) was generated. After a training of 5000 iterations, a 
very accurate tracking has been obtained by using the following tracking controller: 

 1ˆ ˆ( ) ( ( 1)dc k G y k F−= + −  (4.2) 

it can be revealed from the simulation results that the effect of a difference between 

Ĝ  and G  is dynamically compensated by F̂ . This implies that a precise output 
tracking can be realized by using the proposed approach, even if the parameter con-

vergence ( ˆˆ( , ) ( , )T TF G F G→ ) cannot be obtained. 

Actually, it is clear that (4.1) is not a standard affine system, but (4.1) can anyway 
be globally represented into a quasi-affine form as: 

 ( 1) ( ( )) ( ( )) ( )y k F y k G u k u k+ = + ⋅  with 
2

2

( ) ( ) /1 ( ))

( ) ( )

F k y k y k

G k u k

⎧ = +⎪
⎨

=⎪⎩
 (4.3) 

Note that, when u(k) is zero G is also zero. This means that when the control input 
is zero the representation (4.3) is not invertible. 
To modelize the system in a quasi-affine form, a sysN of type 3

2,40,20,2N and  

200 (p=200) uniformly distributed input-output pairs in 

[ ] [ ]{ }( ), ( ) | ( ) 15,15 , ( ) 5,5U u k y k u k y k= ∀ ∈ − ∀ ∈ − were used. Then the proposed 

quasi-affine neural approximator would modelize the plant in following form: 

 
ˆˆˆ( 1) ( , ( ), ( )) ( , ( ), ( )) ( )

ˆˆˆ( ) ( 1) ( , ( ), ( )) / ( , ( ), ( ))

y k F W y k u k G W y k u k u k

u k y k F W y k u k G W y k u k

+ = +

⎡ ⎤= + −⎣ ⎦
 

After a training 10,000 iterations a satisfying result has been carried out. Simula-
tion results are shown in (Figure 0), where the system is made to track a programmed 
output trajectory using the inverse control law: 
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 1ˆ ˆ( ) ( , ( ), ( )) ( 1) ( , ( ), ( ))dc k G W y k u k y k F W y k u k− ⎡ ⎤= + −⎣ ⎦  (4.4) 

Here, the neural controller provides a satisfactory output tracking. But since 
u(k)=0.0 is a singular point of the exact quasi-affine model of the system, the 
plant output presents a small tracking error when a near zero input is needed. 
However this simulation has also revealed that parameter convergence is not a 
necessary condition for the proposed tracking controller to be effective. 
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Fig. 5. Trajectory simulation result under the control of a globally trained affine neural net-
works  
(a). Desired trajectory (Y_d) and system output (Y) 

(b). Plot of F and F̂  (F_h). 

(c). Plot of 3 ( )u k  and ˆ ( ) ( )G k c k . 
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5   Conclusion 

In this paper a quasi-affine modelization using a special neural network training struc-
ture for generating a global affine neural tracking controller are suggested. The neural 
approximator learns with the help of parallel distal teachers to capture the mapping 
relating input and output variables of the controlled system. Since the outputs of the 
proposed neural approximator can be directly used to construct inverse tracking con-
trol laws, there is no more need to train another neural network devoted to control. 
With the new approach very good output tracking performance has been found in 
simulation studies.  
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Abstract. Sharable Content Object Reference Model (SCORM) is the most 
popular suite of technical standard among existing international standards for e-
Learning; although it has been designed to provide accessibility, adaptability, 
interoperability, and reusability, it still suffers from lack of personalization, 
which may lead to  inappropriate learning experience; In other words, learner 
may suffer from distraction or restriction, when it comes to interact with large 
or restricted amounts of information respectively, resulting in reduced learning 
efficiency and performance. However, this can be avoided by providing per-
sonalized services. In this paper, we propose a personalized SCORM learning 
experience based on Rating Scale Model (RSM), which takes into account both 
the difficulty of learning activity and the learner's ability considering responses 
from individual learner's understanding and characteristics. To obtain more ac-
curate estimation of learner's ability, polytomous Item Response Model (IRT) is 
used rather than dichotomous IRT. Experimental results show that the proposed 
system can exactly provide the closer learning resource to the learner's ability, 
resulting in increased the learning efficiency and learning performance. 

Keywords: Personalize e-learning, SCORM, Item response theory, Rating scale 
model, Polytomous information function. 

1   Introduction 

SCORM Sequencing refers to the behaviors that Learning Management System 
(LMS) follows to deliver a specific learning experience to the learners as intended by 
content developer [1]. This learning experience may be free choice, in which indicates 
that the learner is free to choose any activity in any order without restriction, or it may 
be guided by flow through the structure of the content organization. Besides these 
capabilities, it suffers from the lack of personalization. For these reasons, rather than 
redefining SCORM, this work presents an alternative way to reinforce the personal-
ized SCORM without any changes to the existing SCORM. Item Response Theory 
(IRT) [2], [3], [4] have facilitated the development of Computerized Adaptive Tests 
(CAT) to construct an optimal test for each examinee and estimate examinee’s ability 
during test administration. Items are selected to match the examinee’s estimated abil-
ity according to IRT, which is assumed to describe an examinee’s response behavior. 
In some studies, the assessment of person fit has investigated for CAT using dichoto-
mously scored items [5], [6], [7]. Other studies have appeared involving real life CAT 
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applications in attitude or personality testing using polytomous scored items [8], [9], 
[10]. This study proposes a personalized SCORM learning experience tacking into 
account learner's ability. allowing more information about ability level to be extracted 
from a fixed set of learning resources, the estimation of this ability does not depend 
only on explicit feedback response (i.e., understanding response), but also depend on 
implicit feedback responses (i.e., learning time, learning attempt, learning score), be-
cause these responses have a direct impact on the learner's ability. Furthermore, to 
obtain more accurate estimation of learner’s ability, these responses are classified into 
three polytomous response categories at each item (learning resource).  We have as-
sumed that each learner has a three understanding levels, ‘‘low understanding’’, 
‘‘moderate understanding’’ and ‘‘high understanding’’, and we have assigned them 
into 0, 1 and 2 respectively. The Rating Scale Model (RSM) [11], [12] is applied as a 
power tool to extract learner’s ability because of using polytomous response items.  
Experimental results show that the proposed system can recommend suitable learning 
experience, resulting in increased the learning efficiency and learning performance. 

2   Related Works 

In the last decade, several efforts provided personalized e-learning within SCORM 
learning environment in accordance with an individual learner’s preferences, aptitudes, 
background, and browsing behaviors. In this section, we have reviewed some of these 
attempts to emphasize the differences between them and our recent work. An adaptive 
personalized recommendation model [13] has been presented in order to help recom-
mend SCORM-compliant learning objects from repositories in the Internet. To provide 
an appropriate associated sequencing definition for different learners according to indi-
vidual learning characteristics and capability, [14] proposed an algorithm to create per-
sonalized activity tree which could be used in SCORM compliant learning environment. 
Unfortunately, previous studies neglected learner ability as an important factor in im-
plementing personalization mechanisms. Recently many studies have given consider-
able attention to personalize e-learning system. Including [15], [16] have presented a 
prototype of personalized Web-based instruction system based on dichotomous IRT to 
perform personalized curriculum sequencing through simultaneously considering 
courseware difficulty level, learner’s ability and the concept continuity of learning 
pathways during learning. [17] Extended the dichotomous IRT using fuzzy set in order 
to recommend courseware with appropriate difficult level to the learner. These later 
surveys estimated learner’s ability using only learner’s understating responses regard-
less the learner’s characteristics information. Whereas, our work can estimate learner 
ability using explicit feedback response and implicit feedback responses.  

3   System Architecture 

Fig. 1 illustrates the proposed system architecture, which provides various intelli-
gence services, such as learning interface service, SCORM course management ser-
vice, and personalized SCORM service. Learner interface service controls required 
for the presentation of a learning activity and the transition from that learning activity 
to another learning activity. SCORM course management service allows teacher to  
 



 Personalized SCORM Learning Experience Based on Rating Scale Model 691 

 
Fig. 1. The proposed system architecture 

 

access and manage courses, modules and other units of learning. Finally, Personalized 
SCORM service composes of learner's feedback mechanism and learning sequence 
recommendation mechanism, the learner's feedback mechanism intends to assemble 
both explicit feedback response and implicit feedback responses, and update learner 
ability. However, learning sequence recommendation mechanism decides on the next 
activity to be delivered to the learner. 

The system operation procedure of the proposed system architecture above is 
summarized as follow: 
Step 1-2: The structure of the SCORM course is parsed and saved into course database. 
Step 3-6: Teacher accesses to the SCORM course management service to read, update 
and delete units of learning. Moreover, teacher can assign and update learning re-
source difficulty. 
Step 7-8: Learner accesses to the learner’s interface agent then the system will get his 
or her learning profile from learner profile database. 
Step 9-10: Learner’s interface agent gets the SCORM course form course database 
and presents a list of recommended learning paths to the learner, and then learner can 
update learning resource difficulty levels.  
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Step 11-12: Learner's feedback mechanism collects explicit feedback responses from 
the learner's interface agent, and it collects implicit feedback responses from learner’s 
profile database, and re-evaluates learner’s ability according to these feedback re-
sponses by using RSM.  
Step 13-14: If learner’s ability has estimated, then Learner's feedback mechanism will 
send learner’s ability to the learning experience recommendation mechanism, and all 
learner feedback responses and his or her ability will save into learner’s profile data-
base. 
Step 15-16: Learning experience recommendation mechanism calculates information 
value for each node in the activity tree according to estimated learner’s ability and 
node difficulty parameters, and sends a list of ranking learning paths to the learner's 
interface agent. 

4   Difficulty Distribution Parameters  

In [15] a voting approach was proposed to assess difficulty levels parameters by 
learners and teachers. The course materials’ difficulty level was classified into five 
points ‘‘very hard’’, ‘‘hard’’, ‘‘moderate’’, ‘‘easy’’ and ‘‘very easy’’. Once those 
parameters are determined by learners/ teachers, there is a need to distribute and 
propagate those parameters over activity tree in order to assign difficulty parameter 
for each node in the activity tree. We propose an easy way to distribute the difficulty 
parameters, where the difficulty information of an activity in the activity tree is de-
termined by taking the average value of its children's difficulty information. Thus, the 
difficulty information about the parent activity is updated based on its children’s dif-
ficulty information.  

5   Personalized SCORM Service  

5.1   Learner's Feedback Mechanism 

Learner's feedback mechanism collects explicit feedback response from the learner's 
interface agent, whereas it collects implicit feedback responses from learner’s profile 
database. Each of these responses is explained below.  

Explicit Feedback Response: A direct learner's response (multiple choice), which con-
tains only one question associated with understanding learning recourse.  
Implicit Feedback Responses: An indirect learner's response that associated with three 
learner's characteristic responses. Below is a description for each implicit response. 

1. Learning time response: is the sum of all of the learner’s session times.  
2. Learning score response: is the learner’s score for the SCO. 
3. Learning attempt: is the number of attempts on the activity.  

During learner activity (take lesson), the learner experiences two types of learning 
recourses: Learning Material or Assessment (e.g., Pre-Test, Post Test), if learner ex-
periences Learning Material, learner will give three responses , understanding re-
sponse, learning time response and learning attempt response. If learner experiences 
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Assessment, also learner will give three responses, learning time response, learning 
score response and learning attempt response. 

The main functions of learner's feedback mechanism are explained in the following 
subsections. 

5.1.1   Implicit Feedback Parameters 
The learner's ability estimation does not depend only on understanding level, but also 
depend on implicit feedback responses, because these responses have a direct impact 
on the learner's ability. For example, if learner has completed the learning recourse at 
short time with small number of attempts and obtained high score then his or her abil-
ity will be increased or, if learner has completed the learning recourse at long time 
with high attempts and obtained low score then his or her ability will be decreased. 

However, the learning time rate (LTR), learning attempt rate (LAR), and learning 
score rate (LSR) are proposed by using the following relationships: 

learning time

maximum time allowed
LTR =  

 
 

(1) 

activity attemtpt count

maximum attempt allowed  
LAR =  

 
 

 
(2) 

learner score

maximum score allowed  
LSR =  

 
 

(3) 

5.1.2   Learner’s Ability Estimation 
Learner's ability algorithm estimates the level of a latent trait of a learner demon-
strated in an observed polytomous response pattern to a learning resource. The term 
of polytomous means that the learner can give more than two response categories in a 
specific learning resource. Therefore, polytomous IRT is appropriate for analyzing 
these responses. 

We suggest that each item (learning resource) has three polytomous responses, and 
each response has three response categories, then the total number of responses for all 
items equal to N*3, where N denote the number of items in the activity tree. Ran-
domly chosen learner responds to a set of N learning resources with array of polyto-
mous response patterns P = (I1, I2,…, In), where Ii is an item, each item contains re-
sponse categories. 

For example, assume learner has completed five learning resources (I1, I2, I3, I4 and 
I5), each learning resource has a numerical response categories labeled (0, 1, 2). Con-
sequently, learner will give an array of polytomous response patterns: P = ((2, 
2,1),(0,0,1),(2,1,2),(1,2,1),(1,1,1)). 

For the polytomously scored items, the probability of a learner reaching a specific 
score category can be described by estimating measures with RSM [12], this model 
can be described as follow: 
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Where: 
Pnij is the probability of scoring in category j for item i by learner n, M is the 

learner's ability, D is the learning resource difficulty and F is the item category 
threshold parameters. 

Because of using three responses in the each learning resource, so the total prob-
abilities for each learning resource are presented in the proposed formula (5):   

i j iTR i AR i SRP P P P= × ×  
 

(5) 

Formulas (6) and (7) are used to compute expected score and variance for M.  
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The initial estimate of learner's ability M can be any finite value, as shown in the 
formula (8). 
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(8) 

Where: M is the initial estimate of learner's ability, DMean is the average item diffi-
culty, R is the raw score, RMin is the minimum possible score and RMax is the maximum 
possible score. Dmean can be calculated by the following: 

1

1 L
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D D
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(9) 

Where, L is the calibrated polytomous items. 
Equation (10) used for estimating better of learner's ability. 

/  R Expected Score
M M

Variance

−= +  

 
 

(10) 

Once responses and difficulties have been tuned, some or all of the calibrated items 
can administer to further learners and measure them as shown in the Fig. 2. 
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Fig. 2. Estimating measures with known polytomous item difficulties 

5.2   Learning Sequence Recommendation Mechanism 

Based on polytomous IRT, Information function computation provides valuable in-
formation about the precision measurement at a specific learner's ability level for each 
node in the activity tree. This method emphasizes that each learning activity with the 
corresponding difficulty parameter shows different information to learners. Learning 
experience with higher information value is more suitable to be recommended for the 
learner. 

We suggest a further device for identifying the maximum information. The item in-
formation is the expected variance of scoring functions based on probability along the 
observation ability M, so the expected value E(M) can be expressed as: 
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Let I(M) be the information function represents the information contributed by 
specific learning activity i across the range of M and corresponds to the slope of the 
item characteristic curve, the item's model variance, as shown below: 
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Algorithm:         Learner's ability estimation  
Input:                 I, J, D, F, R, RMin, RMax 
Output:              M': Learner's ability 
Step 1: Collect responses by learner n to the desired subset of L. 
             If R = RMin, then set R = RMin + 0.3 
             If R = RMax, then set R = RMax - 0.3 
Step 2: Each item I has a calibration Di, and each step J a calibration   
              Fj, in user-scaled units. If not already in logits, convert these  

                  to logits. 
Step 3: Compute the average item difficulty Dmean. 
Step 4: Compute the initial estimate of learner's ability M. 
Step 5: Compute expected score and variance for M. 
Step 6: Obtain a better estimate M' of the measure M. 
Step 7: if |M'-M|>0.01, then do the following steps: 

1. Set M=M'. 
2. Go back to step (5). 

Step 8: Report final ability M'. 
Step 9: End. 
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6   Experimental Results and Evaluation 

In order to provide the proof of feasibility study and verify the learning performance for 
the proposed system, we used a SCORM 2004 Photoshop examples version 1.1 released 
by [18], it contains a collection of learning resources about Adobe Photoshop. In this 
system, the range of both learner’s ability and learning resource difficulty are limited 
from -3, which is very weak ability or very easy material, to 3, which is very high ability 
or very difficult material. To evaluate the performance of the proposed system, three 
experiences are performed with three sequence modes: A recommended choice mode 
means learner can click on 19 recommended learning resources. A linear choice mode, 
the learner must experience and complete the “introduction” first, then all modules and 
lessons in a linear order, directed by the proposed system. Finally a freely choice mode, 
in this mode, the learner can ‘jump’ (select) individual lessons and specific modules in 
any order regardless any system recommendation. Paired t-test was used to investigate 
the statistical difference between learning resource difficulty and the learner ability for 
three experiences at significant level (α) of 0.05. 

Table 1. Paired t-Test for recommended choice mode 

Data Mean SD2 Std.Deviation Std. Error Minimum 
Difficulty 0.74894 2.40916 1.55215 0.35608 -1.50000 

Ability 0.33839 2.11821 1.45541 0.33389 -1.73690  
t = 3.9007. 
p = 0.0010 (lower significant level) = higher correlation coefficient. 

Table 2. Paired t-Test for sequential mode 

Data Mean SD2 Std.Deviation Std. Error Minimum 
Difficulty 0.07550 2.89231 1.70068        0.39016 -2.25000    

Ability 0.38362 0.38672 0.62187 0.14267      -0.69556  
t = -0.7912. 
p = 0.43913 (lower to medium significant level) = lower to medium correlation. 

Table 3. Paired t-Test for freely choice mode 

Data Mean SD2 Std.Deviation Std. Error Minimum 
Difficulty 0.07556 2.89204   1.70000        0.39014    -2.2500     

Ability 0.15268 0.46331 0.68067 0.15616 -1.91428  
t = -0.15874. 
p = 0.87564 (higher significant level) = lower correlation coefficient. 
 
The results are shown in Tables 1 through 3. From these Tables, it can be seen that 

the P-value for experiments 1, 2 and 3 are 0.0010, 0.43913 and 0.87564, respectively. 
This indicates that a higher correlation was found with experiment 1, whereas lower 
one obtained with examples 2 and 3. The results also revealed that the standard devia-
tion between the analysis groups (i.e. difficulty & ability) in experiment 1 is much 
close. That is, the experimental results show that the proposed system can recommend 
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suitable learning experience to the learner with high correlation degree between 
learner’s ability and recommended learning recourse, resulting in increased the learn-
ing efficiency and learning performance. 

7   Conclusions  

This work proposes personalized SCORM learning experience based on RSM. First, 
the difficulty parameters of the learning resource can be correctly determined and 
distributed over activity tree by the proposed difficulties distributed process. Second, 
both non-crisp explicit feedback response and implicit feedback responses can be col-
lected by proposed learner's feedback mechanism and learner’s ability can also be 
correctly estimated by using proposed RSM. Finally, comprehensive learning experi-
ences are provided to the learners by generating list of ranking learning paths.  

Furthermore, A Paired t-test has successfully applied to investigate the statistical 
difference between leaner’s abilities curve and learning resources curve difficulty. 
Experimental results show that the proposed system can exactly provide the closer 
learning resource to the learner’s ability, resulting in increased the learning efficiency 
and learning performance.    
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Abstract. Statistical Learning Theory is commonly regarded as a sound frame-
work within which we handle a variety of learning problems in presence of 
small size data samples. However, since the theory is based on probability 
space, it hardly handles statistical learning problems on uncertainty space. In 
this paper, the Statistical Learning Theory on uncertainty space is investigated. 
The Khintchine law of large numbers on uncertainty space is proved. The defi-
nitions of empirical risk functional, expected risk functional and empirical risk 
minimization principle on uncertainty space are introduced. On the basis of 
these concepts, the key theorem of learning theory on uncertainty space is in-
troduced and proved.   

Keywords: Uncertain measure, Expected risk functional, Empirical risk func-
tional, Empirical risk minimization principle, the key theorem. 

1   Introduction 

Statistical Learning Theory (SLT) [1-4] was introduced in the late 1960’s by Vapnik 
et al. and developed maturely in mid 1990’s, concerning itself mainly with the statis-
tic principles when samples are limited. In the period between 1992 and 1995, a novel 
method of pattern recognition--Support Vector Machine (SVM) was provided based 
on SLT, showing the unique advantages of solving the small-sample, nonlinear and 
high-dimensional pattern recognition problems. Many scholars believe that SLT and 
SVM are becoming a new hot area in the field of machine learning, and will promote 
the development of machine learning theory and technology [1-10].  

The key theorem is an important part of SLT. It replaces the problem of consis-
tency with the problems of uniform convergence, and it asserts that the conditions of 
consistency of the empirical risk minimization principle (ERM) are necessarily and 
sufficiently determined by the “worst” function of the set of functions [1-3]. 

It is accepted by the academic that SLT is a good theory in dealing with the small-
sample learning theory problem, but there are still some shortcomings such as the fact 
that SLT is established on probability space. As the condition of additivity of prob-
ability is too strong, sometimes it can not be satisfied in many applications. Additivity 
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was challenged by non-additive measure. In recent years, some academicians such as 
Minhu Ha, Yan Li [5], noticed this problem and extended probability space into 
Sugeno space. This proved the key theorem of SLT and bounds on the rate of conver-
gence on Sugeno space. Minghu Ha, and Yunchao Bai [7], extended probability space 
into credibility space developing the key theorem on credibility space. In order to deal 
with general uncertainty, Liu [11] founded uncertainty theory. Uncertainty theory 
provides the commonness of probability theory, credibility theory and chance theory 

[11-13]. 
In this paper, we define empirical risk functional, expected risk functional and em-

pirical risk minimization principle and prove the key theorem of learning theory on 
uncertainty space. We expand the study of SLT to uncertainty space. 

2   Preliminaries 

In this section, we review some basic notions, which will be of interest in the ensuing 
investigation. The reader can refer to [11, 12] for further detail. 

Let Γ be a nonempty set, and let L be aσ -algebra over Γ . Each element Λ ∈ L  is 
called an event. In order to present an axiomatic definition of uncertain measure, it is 
necessary to assign to each event Λ a number M { Λ } which indicates the level 
that Λ will occur. In order to ensure that the number M { Λ }has certain mathematical 
properties, Liu [11] proposed the following four axioms. 

Axiom 1. (Normality) M { Γ } =1 . 

Axiom 2. (Monotonicity) M { 1Λ } ≤ M { 2Λ } whenever 1 2⊂Λ Λ  . 

Axiom 3. (Self-Duality) M { Λ } + M { cΛ } =1 for any event Λ  . 

Axiom 4. (Countable Subadditivity)For every countable sequence of events { iΛ }, we 
have 

( )
11

i i
ii

∞

=

∞⎧ ⎫⎪ ⎪ ≤Λ Λ⎨ ⎬
⎪ ⎪=⎩ ⎭

∑UM { M  . 

Definition 1. [11] The set function M is called an uncertain measure if it satisfies the 
normality, monotonicity, self-duality, countable subadditivity axioms. The triplet 
( , , )Γ L M  is called an uncertainty space. 

Throughout this paper, unless otherwise stated, ( , , )Γ L M is an uncertainty space. 

Definition 2. [11] An uncertain variable ξ is a measurable function from an uncer-

tainty space to the set of real number, i.e., for any Borel set B of real numbers, the set 

{ } { }( )B Bξ γ ξ γ∈ = ∈ Γ ∈  

is an event. 

Definition 3. [11] The uncertainty distribution [ ]: 0,1RΦ → of an uncertain variable 

ξ is defined by 

( ){ }( )x xγ ξ γΦ = ∈ Γ ≤M  . 
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Definition 4. [11] The uncertainty density function [ ]: 0,Rφ → +∞ of an uncertain 

variableξ is a function such that 

( ) ( )
x

x y dyφ
−∞

Φ = ∫  

( ) 1y dyφ
+∞

−∞
=∫  

where Φ is the uncertainty distribution ofξ . 

Definition 5. [11] Letξ be an uncertain variable. Then the expected value of ξ is de-

fined by 
0

0
[ ] { } { }E r dr r drξ ξ ξ

+∞

−∞
= ≥ − ≤∫ ∫M M  

provided that at least one of the two integrals is finite. 

Proposition 1. [11] Letξ be an uncertain variable with finite expected value. Then for 

any real number a and b , we have 

[ ] [ ]E a b aE bξ ξ+ = + . 

Definition 6. [11] Letξ be an uncertain variable with finite expected value e .Then the 

variance ofξ is defined by  
2

[ ] [ ]( )V E eξ ξ= − . 

Proposition 2. [11] Ifξ is an uncertain variable with finite expected value, a and b are 

real numbers, then  
2[ ] [ ]V a b Vaξ ξ+ =  . 

Definition 7. [11] The uncertain variables 1 2, , , nξ ξ ξL  are said to be independent if  

1 1

( ) [ ( )]
n n

i ii i
i i

E Ef fξ ξ
= =

⎡ ⎤ =⎢ ⎥⎣ ⎦
∑ ∑  

for any measurable functions 1 2, , , nf f fL  provided that the expected values exist and 

are finite. 

Proposition 3. [11] Ifξ andη are independent uncertain variables with finite expected 

values, then we have  

[ ] [ ] [ ]E a b aE bEξ η ξ η+ = +  

for any real numbers a and b . 

Definition 8. [11] The uncertain variables ξ andη are identically distributed if  

{ } { }B Bξ η∈ = ∈M M  

for any Borel set B of real numbers. 
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3   The Key Theorem of Learning Theory on Uncertainty Space 

In this section, we first give Khintchine Law of Large Numbers on uncertainty space. 

Theorem 1.（Khintchine Law of Large Numbers）Let 1 2, , , nξ ξ ξL be uncertain ran-

dom variables sequence with independent identically distribution, nξ ( 1, 2, )n = L  have 

the same finite expected value a and variance M . Then for any 0ε > , the following 
inequality holds true. 

Proof.  Let  

1

1 n

i
in

ξξ
=

= ∑ , [ ]iV Mξ =  . 

Then we have   

1

1 n

i
in

E E ξξ
=

= ⎡ ⎤
⎢ ⎥
⎣ ⎦
∑

1

1 n

i
in

E ξ
=

⎡
⎥= ⎤

⎢
⎣ ⎦
∑

1

1 n

i
i

E
n

ξ
=

⎡
⎥= ⎤

⎢
⎣ ⎦
∑ 1

na a
n

= =  . 

According to Chebyshev Inequality [11] and the equation above, we have  

1

1 n

i
i

a
n

ξ ε
=

⎧ ⎫
− ≥⎨ ⎬

⎩ ⎭
∑M { }Eξ ξ ε= − ≥M

2

[ ]V

ε
ξ≤ 1

2

[
1

]
n

i
in

V ξ

ε
==
∑

 

1
22

n

i
i

V

n

ξ

ε
==
∑

2
0

M

nε
= →  . 

The theorem is proved. 

Definition 9. Let (z)Φ be an uncertainty distribution on uncertainty space ( , , )Γ L M , 

1 2, , lz z zL be independent identically distributed samples. We introduce a function 

set ( ), ,Q z α α ∈ Λ , expected risk functional and empirical risk functional are defined 

as follow  

                                            ( ) ( ),U E Q zR α α= ⎡ ⎤⎣ ⎦                                             (1) 

                                             ( ) ( )
1

1
,

l

Uemp i
i

R Q z
l

α α
=

= ∑                                           (2) 

Definition 10. (Empirical Risk Minimization Principle) Let ( )0,Q z α minimize the 

expected risk, ( ), lQ z α minimize the empirical risk. We take ( ), lQ z α as an approxi-

mation of ( )0,Q z α .The principle of how to solve uncertain risk minimization prob-

lem is called Empirical Risk Minimization Principle on uncertainty space (UERM). 

Definition 11. We say that the UERM method is nontrivially consistent for the set of 

{ }( , ),Q z α α ∈ Λ if for any nonempty subset ( ),cΛ ( ),c ∈ −∞ +∞ , of this set of func-

tions is defined as  

( ) ( ) ( ){ : , , , }c E Q z c cα αΛ = ≥ ∈ −∞ +∞⎡ ⎤⎣ ⎦  

the convergence  
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( )
( )

( )
( )einf inf UU mp

c cl
R R

α α
α α

∈Λ ∈Λ→∞
→
M

 

is valid. 

Definition 13. We say that empirical risk converge uniformly one-side to expected 
risk for the set of { }( , ),Q z α α ∈ Λ and the uncertainty distribution ( )zΦ if for 

any 0ε > , 

( ) ( )( ){ }lim sup 0U Uemp
l

RR
α

α α ε
→∞ ∈Λ

− > =M  

is valid. 

Theorem 2. (The Key Theorem) Let { }( , ),Q z α α ∈ Λ be a set of functions, and 

( )zΦ be all the uncertainty distribution that satisfy the condition  

( ), ,a E Q z Aα α≤ ≤ ∈ Λ⎡ ⎤⎣ ⎦   

where the constant a and A exist. Then for the UEMR principle to be nontrivially con-
sistent, it is necessary and sufficient that the empirical risk converge uniformly one-
side to the expected risk. 
Proof. Necessary: Suppose empirical risk minimization method is nontrivially consis-
tent for the set of{ }( , ),Q z α α ∈ Λ . According to the definition of nontrivially consis-

tency, ( ),c∀ ∈ −∞ +∞ such that  

( ) ( ){ : , }c E Q z cα αΛ = ≥⎡ ⎤⎣ ⎦  

is valid, then the convergence 

( )
( )

( )
( )einf inf UU mp

c cl
R R

α α
α α

∈Λ ∈Λ→∞
→
M

 

is valid. 
0ε∀ > , we consider a finite sequence 1 2, , , na a aL such that  

1 2i ia a
ε

+ − <     1, 2, , 1i n= −L  

where 1 , na A a B= = ,let kT be the event,  

                       
( )

( )
( )

( )einf inf
2k k

UU mpR R
α α α α

εα α
∈Λ ∈Λ

< −   .                           (3) 

According to ⑶, ( ) 0k
l

T
→∞
→M  . 

Let  

1

n

k
k

T T
=

=U  

as n is finite, and for any k ,⑶ is valid, so  

( ) 0
l

T
→∞
→M  . 

We denote A by the event  

( ) ( )esup( )U U mpRR
α

α α ε
∈Λ

− >  . 
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Suppose A occurs, then there exists *α ∈ Λ , such that  

( ) ( )* *
eU U mpRR α ε α− >  . 

From *α we can find a k , such that ( )*
kα α∈ Λ and 

( )*

2
U kR

εα α− <  

holds true, by 

( )
( )inf

k
U kR

α α
α α

∈Λ
≥  

for the chosen set ( )kαΛ , the inequality 

( ) ( )
( )*R inf

2k

R
α α

εα α
∈Λ

− <  

is valid, so for the chosen set *α and ( )kαΛ , the follow inequality holds true: 

( )
( ) ( ) ( )

( )*
e einf inf

2k k
U U mp U mpR RR

α α α α

εα α α
∈Λ ∈Λ

− > ≥  

i.e. kT occurs, so T occurs, then  

( ) ( ) 0
l

A T
→∞

< →M M  

then 
( ) ( )e{sup( ) } 0U U mp

l
RR

α
α α ε

→∞∈Λ
− > →M  

the necessity is valid. 
Sufficiency: We need to prove: 

( )
( )

( )
( )elim { inf inf } 0U U mp

l
RR

α α α α
α α ε

→∞ ∈Λ ∈Λ
− > =M

 

We denote A by the event  

( )
( )

( )
( )einf infU U mpRR

α α α α
α α ε

∈Λ ∈Λ
− >  

then A is the union of two events 

1 2A A A= ∪  

where  

( )
( )

( )
( )1 e{ inf inf }U U mp

c c
A RR

α α
α ε α

∈Λ ∈Λ
= + <  

( )
( )

( )
( )2 e{ inf inf }U U mp

c c
A RR

α α
α ε α

∈Λ ∈Λ
= − >  . 

Suppose 1A occurs, we can find a function ( ) ( )* *, ,Q z cα α ∈ Λ such that 

( )
( )

( )* inf
2

U U
c

R R
α

εα α
∈Λ

< +  

then  

( )
( )

( )
( )

( ) ( )* *
e einf inf

2
U U U mp U mp

c c
R RR R

α α

εα α ε α α
∈Λ ∈Λ

+ < + < <  

that is  
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( ) ( )* *
e2

U U mpRR
εα α+ <  

is valid. 
By Theorem 1, we get  

( ) ( )* *
1 e( ) {( ) } 0

2
UU mp

l
A R R

εα α
→∞

≤ − > →M M  . 

On the another hand, if 2A occurs, there exists a function ( )**, ,Q z α ( )** cα ∈ Λ  such 

that 

( )
( )

( )
( )

( ) ( )** **
e einf inf

2
U UU mp U mp

c c
R R R R

α α

εα α ε α α
∈Λ ∈Λ

+ < + < <  

hence

( ) ( ) ( ) ( ) ( )** **
2 e e( ) sup( ) 0

2 2
U UU mp U mp

l
A R RR R

α

ε εα α α α
→∞∈Λ

⎧ ⎫ ⎧ ⎫≤ − > < − > →⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

M M M

By 

( ) ( ) ( )1 2A A A≤ +M M M  

we have  
( ) 0

l
A

→∞
→M  . 

The theorem is proved. 

4   Conclusions 

This paper introduces and proves the key theorem of SLT on uncertain space which is 
broader than probability space, credibility space and chance space. It lays the theo-
retical foundation for establishing the key theorem of SLT and SVM on uncertainty 
space. Further investigations might focus on such fundamental issues as structural risk 
minimization, VC dimension theory and application aspects such as support vector 
machines on uncertainty space. 
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Abstract. In this paper, we introduce a new instance-based approach to
the label ranking problem. This approach is based on a probability model
on rankings which is known as the Mallows model in statistics. Proba-
bilistic modeling provides the basis for a theoretically sound prediction
procedure in the form of maximum likelihood estimation. Moreover, it
allows for complementing predictions by diverse types of statistical infor-
mation, for example regarding the reliability of an estimation. Empirical
experiments show that our approach is competitive to start-of-the-art
methods for label ranking and performs quite well even in the case of
incomplete ranking information.

Keywords: Instance-based learning, Label ranking, Classification, Max-
imum likelihood estimation.

1 Introduction

The topic of learning preferences has attracted increasing attention in the recent
machine learning literature [1]. Label ranking, a particular preference learning
scenario, studies the problem of learning a mapping from instances to rankings
over a finite number of predefined labels. It can be considered as a natural
generalization of the conventional classification problem, where only a single
label is requested instead of a ranking of all labels.

Various approaches for label ranking have been proposed in recent years. Typ-
ically, these are extensions of learning algorithms used in binary classification
problems. Ranking by pairwise comparison (RPC) is a natural extension of pair-
wise classification, in which binary preference models are learned for each pair
of labels, and the predictions of these models are combined into a ranking of all
labels [1]. Two other approaches, constraint classification (CC) and log-linear
models for label ranking (LL), seek to learn linear utility functions for each
individual label instead of preference predicates for pairs of labels [2,3].

In this paper, we are interested in an alternative to model-based approaches,
namely the use of an instance-based approach. Instance-based or case-based
learning algorithms have been applied successfully in various fields, such as ma-
chine learning and pattern recognition, for a long time [4]. These algorithms
simply store the training data, or at least a selection thereof, and defer the
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c© Springer-Verlag Berlin Heidelberg 2009
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processing of this data until an estimation for a new instance is requested, a
property distinguishing them from typical model-based approaches. Instance-
based approaches therefore have a number of potential advantages, especially in
the context of the label ranking problem.

As a particular advantage of delayed processing, these learning methods may
estimate the target function locally instead of inducing a global prediction model
for the entire input domain (instance space) X. Predictions are typically obtained
using only a small, locally restricted subset of the entire training data, namely
those examples that are close to the query x ∈ X (hence X must be endowed with
a distance measure). These examples are then aggregated in a reasonable way. As
aggregating a finite set of objects from an output space Ω is often much simpler
than representing a complete X→ Ω mapping in an explicit way, instance-based
methods are especially appealing if Ω has a complex structure.

In label ranking, Ω corresponds to the set of all rankings of an underlying
label set L. To represent an Ω-valued mapping, the aforementioned model-based
approaches encode this mapping in terms of conventional binary models, either
by a large set of such models in the original label space L (RPC), or by a
single binary model in an expanded, high-dimensional space (CC, LL). Since
for instance-based methods, there is no need to represent an X → Ω mapping
explicitly, such methods can operate on the original target space Ω directly.

The paper is organized as follows: In Section 2, we introduce the problem
of label ranking in a more formal way. The core idea of our instance-based
approach to label ranking, namely maximum likelihood estimation based on a
special probability model for rankings, is discussed in Section 4. The model
itself is introduced beforehand in Section 3. Section 5 is devoted to experimental
results. The paper ends with concluding remarks in Section 6.

2 Label Ranking

Label ranking can be seen as an extension of the conventional setting of classifica-
tion. Roughly speaking, the former is obtained from the latter through replacing
single class labels by complete label rankings. So, instead of associating every
instance x from an instance space X with one among a finite set of class labels
L = {λ1 . . . λn}, we now associate x with a total order of the class labels, that
is, a complete, transitive, and asymmetric relation &x on L where λi &x λj

indicates that λi precedes λj in the ranking associated with x. It follows that a
ranking can be considered as a special type of preference relation, and therefore
we shall also say that λi &x λj indicates that λi is preferred to λj given the
instance x. To illustrate, suppose that instances are students (characterized by
attributes such as sex, age, and major subjects in secondary school) and & is a
preference relation on a fixed set of study fields such as Math, CS, Physics.

Formally, a ranking &x can be identified with a permutation πx of the set
{1 . . . n}. It is convenient to define πx such that πx(i) = πx(λi) is the position
of λi in the ranking. This permutation encodes the (ground truth) ranking:

λπ−1
x (1) &x λπ−1

x (2) &x . . . &x λπ−1
x (n) ,
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where π−1
x (j) is the index of the label at position j in the ranking. The class

of permutations of {1 . . . n} (the symmetric group of order n) is denoted by
Ω. By abuse of terminology, though justified in light of the above one-to-one
correspondence, we refer to elements π ∈ Ω as both permutations and rankings.

In analogy with the classification setting, we do not assume that there exists
a deterministic X → Ω mapping. Instead, every instance is associated with a
probability distribution over Ω. This means that, for each x ∈ X, there exists a
probability distribution Pr(· |x) such that, for every π ∈ Ω,

Pr(π |x) (1)

is the probability that πx = π.
The goal in label ranking is to learn a “label ranker” in the form of an X →

Ω mapping. As training data, a label ranker uses a set of instances xk, k =
1 . . .m, together with information about the associated rankings πxk

. Ideally,
complete rankings are given as training information. From a practical point of
view, however, it is also important to allow for incomplete information in the
form of a ranking

λπ−1
x (i1) &x λπ−1

x (i2) &x . . . &x λπ−1
x (ik) ,

where {i1, i2 . . . ik} is a subset of the index set {1 . . . n} such that 1 ≤ i1 <
i2 < . . . < ik ≤ n. For example, for an instance x, it might be known that
λ2 &x λ1 &x λ5, while no preference information is given about the labels λ3 or
λ4.

To evaluate the predictive performance of a label ranker, a suitable loss func-
tion on Ω is needed. In the statistical literature, several distance measures for
rankings have been proposed. One commonly used measure is the number of
discordant pairs,

D(π, σ) = { (i, j) | i < j, π(i) > π(j) and σ(i) < σ(j) } , (2)

which is closely related to the Kendall’s tau coefficient. In fact, the latter is a
normalization of (2) to the interval [−1, 1] that can be interpreted as a correlation
measure (it assumes the value 1 if σ = π and the value −1 if σ is the reversal of
π). Kendall’s tau is a natural, intuitive, and easily interpretable measure [5]. We
shall focus on (2) throughout the paper, even though other distance measures
could of course be used. A desirable property of any distanceD(·) is its invariance
toward a renumbering of the elements (renaming of labels). This property is
equivalent to the right invariance of D(·), namely D(σν, πν) = D(σ, π) for all
σ, π, ν ∈ Ω, where σν = σ ◦ν denotes the permutation i �→ σ(ν(i)). The distance
(2) is right-invariant, and so are most other commonly used metrics on Ω.

3 The Mallows Model

So far, we did not make any assumptions about the probability measure (1)
despite its existence. To become more concrete, we resort to a distance-based
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probability model introduced by Mallows [5]. The standard Mallows model is a
two-parameter model that belongs to the exponential family:

Pr(σ | θ, π) =
exp(θD(π, σ))
φ(θ, π)

, (3)

where the two parameters are the location parameter (modal ranking, center
ranking) π ∈ Ω and the spread parameter θ ≤ 0. For right-invariant metrics,
it can be shown that the normalization constant does not depend on π and,
therefore, can be written as a function φ(θ) of θ alone. This is due to

φ(θ, π) =
∑
σ∈Ω

exp(θD(σ, π)) =
∑
σ∈Ω

exp(θD(σπ−1, e))

=
∑

σ′∈Ω

exp(θD(σ′, e)) = φ(θ) ,

where e = (1 . . . n) is the identity ranking. More specifically, it can be shown
that the normalization constant is given by [6]

φ(θ) =
n∏

j=1

1− exp(jθ)
1− exp(θ)

, (4)

and that the expected distance from the center is

E [D(σ, π) | θ, π] =
n exp(θ)

1− exp(θ)
−

n∑
j=1

j exp(jθ)
1− exp(jθ)

. (5)

Obviously, the Mallows model assigns the maximum probability to the cen-
ter ranking π. The larger the distance D(σ, π), the smaller the probability of σ
becomes. The spread parameter θ determines how quickly the probability de-
creases, i.e., how peaked the distribution is around π. For θ = 0, the uniform
distribution is obtained, while for θ → −∞, the distribution converges to the
one-point distribution that assigns probability 1 to π and 0 to all other rankings.

4 Learning and Inference

Coming back to the label ranking problem and the idea of instance-based learn-
ing, consider a query instance x ∈ X and let x1 . . .xk denote the nearest neigh-
bors of x (according to an underlying distance measure on X) in the training set,
where k ∈ N is a fixed integer. Moreover, let σ1 . . . σk ∈ Ω denote the rankings
associated, respectively, with x1 . . .xk.

In analogy to the conventional settings of classification and regression, in
which the nearest neighbor estimation principle has been applied for a long
time, we assume that the probability distribution Pr(· |x) on Ω is (at least
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approximately) locally constant around the query x. By furthermore assuming
independence of the observations, the probability to observe σσσ = {σ1 . . . σk}
given the parameters (θ, π) becomes

Pr(σσσ | θ, π) =
k∏

i=1

Pr(σi | θ, π) =
k∏

i=1

exp (θD(σi, π))
φ(θ)

=
exp

(
θ
∑k

i=1D(σi, π)
)

(∏n
j=1

1−exp(jθ)
1−exp(θ)

)k
.

(6)

The maximum likelihood estimation (MLE) of (θ, π) is then given by those pa-
rameters that maximize this probability. It is easily verified that the MLE of π
is given by

π̂ = arg min
π

k∑
i=1

D(σi, π), (7)

i.e., by the (generalized) median of the rankings σ1 . . . σk. Moreover, the MLE of
θ is derived from the average observed distance from π̂, which is an estimation
of the expected distance E [D(σ, π)|θ, π]:

1
k

k∑
i=1

D(σi, π̂) =
n exp(θ)

1− exp(θ)
−

n∑
j=1

j exp(jθ)
1− exp(jθ)

. (8)

Since the right-hand side of (8) is monotone increasing, a standard line search
quickly converges to the MLE [6].

Now, consider the more general case of incomplete preference information,
which means that a ranking σi does not necessarily contain all labels. The prob-
ability of σi is then given by

Pr(E(σi)) =
∑

σ∈E(σi)

Pr(σ | θ, π) ,

where E(σi) denotes the set of all consistent extensions of σi: A permutation
σ ∈ Ω is a consistent extension of σ if it ranks all labels that also occur in σi in
the same order.

The probability of observing the neighbor rankings σσσ = (σ1 . . . σk) then be-
comes

Pr(σσσ | θ, π) =
k∏

i=1

Pr(E(σi) | θ, π) =
k∏

i=1

∑
σ∈E(σi)

Pr(σ | θ, π)

=

∏k
i=1

∑
σ∈E(σi)

exp (θD(σ, π))(∏n
j=1

1−exp(jθ)
1−exp(θ)

)k
.

(9)
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Computing the MLE of (θ, π) by maximizing this probability now becomes more
difficult. For label sets of small to moderate size, say up to 7, one can afford a
simple brute force approach, namely an exhaustive search over Ω to find the
center ranking π, combined with a numerical procedure to optimize the spread
θ. For larger label sets, this procedure becomes too inefficient. Here, we pro-
pose an approximation algorithm that can be seen as an instance of the EM
(Expectation-Maximization) family of algorithms.

The algorithm works as follows. Starting from an initial (complete) center
ranking π̂, each incomplete neighbor ranking σi is replaced by the most probable
consistent extension given π̂. Regardless of θ, this extension is obviously given by
a ranking in arg minσ∈E(σi)D(σ, π̂). It can be found by (minimally) re-ranking
the center π̂ so as to make it consistent with the incomplete ranking σi. Having
replaced all neighbor rankings by their most probable extensions, an MLE (θ, π)
can be derived as described for the case of complete information above. The
center ranking π̂ is then replaced by π, and the whole procedure is iterated
until the center does not change any more. In the following, we discuss two sub-
problems of the algorithm in more detail, namely the solution of the median
problem (7), which needs to be solved to find an MLE π, and the choice of an
initial center ranking.

Solving the (generalized) median problem (7) is known to be NP-complete for
Kendall’s tau, i.e., if the distance D is given by the number of rank inversions [7].
To solve this problem approximately, we make use of the fact that Kendall’s tau
is well approximated by Spearman’s rank correlation [8], and that the median
can be computed for this measure (i.e., for D given by the sum of squared rank
differences) by a procedure called Borda count [9]: Given a (complete) ranking
σi of n labels, the top-label receives n votes, the second-ranked n− 1 votes, and
so on. Given k rankings σ1 . . . σk, the sum of the k votes are computed for each
label, and the labels are then ranked according to their total votes.

The choice of the initial center ranking in the above algorithm is of course
critical. To find a good initialization, we again resort to the idea of solving the
problem (7) approximately using the Borda count principle. At the beginning,
however, the neighbor rankings σk are still incomplete. To handle this situa-
tion, we make the simplifying assumption that the completions are uniformly
distributed in E(σi). Again, this is an approximation, since we actually proceed
from the Mallows and not from the uniform model. On the basis of this assump-
tion, we can show the following result (proof omitted due to space restrictions).

Theorem 1. Let a set of incomplete rankings σ1 . . . σk be given, and suppose the
associated complete rankings S1 . . . Sk to be distributed, respectively, uniformly
in E(σ1) . . . E(σk). The expected sum of distances D(π, S1)+ . . .+D(π, Sk), with
D the sum of squared rank distances, becomes minimal for the ranking π which is
obtained by a generalized Borda count, namely a Borda count with a generalized
distribution of votes from incomplete rankings: If σi is an incomplete ranking of
m ≤ n labels, then the label on rank i ∈ {1 . . .m} receives (m−i+1)(n+1)/(m+1)
votes, while each missing label receives a vote of (n+ 1)/2.
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Table 1. Statistics for the semi-synthetic and real datasets

dataset #examples #classes #features
iris 150 3 4
wine 178 3 13
glass 214 6 9
vehicle 846 4 18
dtt 2465 4 24
cold 2465 4 24

5 Experimental Results

5.1 Methods

In this section, we compare our instance-based (nearest neighbor, NN) approach
with existing methods for label ranking, namely ranking by pairwise compari-
son (RPC), constraint classification (CC), and log-linear models for label ranking
(LL). Since space restrictions prevent from a detailed review, we refer to the orig-
inal literature and [1] for a short review of these methods. Regarding the concrete
implementation and parameterization of these methods, we also follow [1].

To fit the Mallows model, we test the two previously discussed variants,
namely the exhaustive search which guarantees an optimal solution (NNE) and
the approximation algorithm outlined in Section 4 (NNH). The parameter k
(neighborhood size) was selected through cross validation on the training set.
As a distance measure on the instance space we used the Euclidean distance
(after normalizing the attributes).

5.2 Data

We used two real-world data sets, dtt and cold, from the bioinformatics field.
These data sets contain two types of genetic data, namely phylogenetic profiles
and DNA microarray expression data for the Yeast genome.1 The genome con-
sists of 2465 genes, and each gene is represented by an associated phylogenetic
profile of length 24. Using these profiles as input features, we investigated the
task of predicting a “qualitative” representation of an expression profile; see [1]
for a detailed description and motivation of this task.

In addition to the real-world data sets, the following multiclass datasets from
the UCI repository of machine learning databases and the Statlog collection
were included in the experimental evaluation: iris, wine, glass, vehicle. For each
of these datasets, a corresponding ranking dataset was generated in the following
manner: We trained a naive Bayes classifier on the respective dataset. Then, for
each example, all the labels present in the dataset were ordered with respect
to decreasing predicted class probabilities (in the case of ties, labels with lower
index are ranked first). Thus, by substituting the single labels contained in the

1 This data is publicly available at http://www1.cs.columbia.edu/compbio/

http://www1.cs.columbia.edu/compbio/
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Table 2. Experimental results in terms of Kendall’s tau (mean and standard deviation)
for different missing label rates (parameter p)

iris 0% 10% 20% 30% 40% 50% 60% 70%
RPC .885±.068 .888±.064 .886±.060 .871±.074 .854±.082 .837±.089 .779±.110 .674±.139
CC .836±.089 .825±.095 .815±.088 .807±.099 .788±.105 .766±.115 .743±.131 .708±.105
LL .818±.088 .811±.089 .805±.087 .806±.087 .800±.091 .788±.087 .778±.096 .739±.186
NNE .960±.036 .956±.041 .941±.044 .934±.049 .915±.056 .882±.085 .859±.082 .812±.107
NNH .966±.034 .948±.036 .917±.051 .863±.072 .822±.088 .802±.084 .767±.122 .733±.104
wine
RPC .921±.053 .900±.067 .886±.073 .902±.063 .910±.065 .882±.082 .864±.097 .822±.118
CC .933±.043 .918±.057 .929±.058 .911±.059 .922±.057 .885±.074 .853±.078 .802±.123
LL .942±.043 .944±.046 .939±.051 .944±.042 .933±.062 .918±.065 .906±.072 .864±.094
NNE .952±.048 .945±.051 .943±.055 .940±.054 .941±.050 .930±.058 .910±.061 .677±.173
NNH .953±.042 .949±.041 .949±.041 .933±.048 .899±.075 .709±.186 .591±.210 .587±.180
glass
RPC .882±.042 .875±.046 .867±.044 .851±.052 .840±.053 .813±.062 .799±.054 .754±.076
CC .846±.045 .848±.053 .838±.059 .835±.054 .833±.051 .807±.066 .789±.052 .747±.061
LL .817±.060 .815±.061 .813±.063 .819±.062 .819±.060 .809±.066 .806±.065 .807±.063
NNE .875±.063 .866±.059 .840±.059 .803±.062 .750±.071 .677±.066 .598±.082 .500±.078
NNH .865±.059 .847±.062 .810±.056 .754±.069 .691±.063 .633±.061 .550±.069 .484±.079
vehicle
RPC .854±.025 .848±.025 .847±.024 .834±.026 .823±.032 .803±.033 .786±.036 .752±.041
CC .855±.022 .848±.026 .849±.026 .839±.025 .834±.026 .827±.026 .810±.026 .791±.030
LL .770±.037 .769±.035 .769±.033 .766±.040 .770±.038 .764±.031 .757±.038 .756±.036
NNE .863±.030 .859±.031 .847±.029 .834±.031 .822±.030 .795±.033 .766±.034 .723±.036
NNH .862±.025 .852±.024 .845±.030 .828±.029 .798±.031 .776±.033 .748±.032 .701±.047
dtt
RPC .174±.034 .172±.034 .168±.036 .166±.036 .164±.034 .153±.035 .144±.028 .125±.030
CC .180±.037 .178±.034 .176±.033 .172±.032 .165±.033 .158±.033 .149±.031 .136±.033
LL .167±.034 .168±.033 .168±.034 .168±.034 .167±.033 .167±.036 .162±.032 .156±.034
NNE .182±.036 .179±.036 .173±.036 .169±.036 .162±.036 .161±.037 .154±.036 .136±.035
NNH .191±.034 .183±.037 .176±.036 .168±.038 .163±.034 .146±.036 .145±.033 .128±.035
cold
RPC .221±.028 .217±.028 .213±.030 .212±.030 .208±.030 .201±.030 .188±.030 .174±.031
CC .220±.029 .219±.030 .212±.030 .212±.028 .205±.024 .197±.030 .185±.031 .162±.035
LL .209±.028 .210±.031 .206±.030 .210±.030 .203±.031 .203±.031 .202±.032 .192±.031
NNE .230±.028 .226±.029 .220±.030 .213±.031 .199±.029 .195±.033 .190±.035 .188±.035
NNH .244±.026 .237±.028 .235±.031 .226±.024 .220±.029 .214±.029 .199±.030 .192±.032

original multiclass datasets with the complete rankings, we obtain the label
ranking datasets required for our experiments. A summary of the data sets and
their properties is given in Table 1.

5.3 Experiments and Results

Results were derived in terms of the Kendall’s tau correlation coefficient from
five repetitions of a ten-fold cross-validation. To model incomplete preferences,
we modified the training data as follows: A biased coin was flipped for every
label in a ranking in order to decide whether to keep or delete that label; the
probability for a deletion is specified by a parameter p.

The results are summarized in Table 2. As can be seen, NN is quite com-
petitive to the model-based approaches and often outperforms these methods.
In any case, it is always close to the best result. It is also remarkable that NN
seems to be quite robust toward missing preferences and compares compara-
bly well in this regard. This was not necessarily expected, since NN uses only
local information, in contrast to the other approaches that induce global mod-
els. Our approximation algorithm NNH gives very good approximations of NNE
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throughout and is especially appealing for large label sets: It dramatically re-
duces the runtime (not shown due to space restrictions) without any significant
decrease of the performance.

A nice feature of our approach, not shared by the model-based methods, is
that it comes with a natural measure of the reliability of a prediction. In fact,
the smaller the parameter θ, the more peaked the distribution around the center
ranking and, therefore, the more reliable this ranking becomes as a prediction.
To test whether (the estimation of) θ is indeed a good measure of uncertainty
of a prediction, we used it to compute a kind of accuracy-rejection curve: By
averaging over five 10-fold cross validations (with NNE), we computed an ac-
curacy degree τx (the average Kendall’s tau) and a reliability degree θx for
each instance x. The instances are then sorted in decreasing order of reliabil-
ity. Our curve plots a value p against the mean τ -value of the first p percent
of the instances. Given that θ is indeed a good indicator of reliability, this
curve should be decreasing, because the higher p, the more instances with a
less strong θ-value are taken into consideration. As can be seen in Fig. 1, the
curves obtained for our data sets are indeed decreasing and thus provide evidence
for our claim that θ may serve as a reasonable indicator of the reliability of a
prediction.
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Fig. 1. Accuracy-rejection curves computed on the basis of the parameter θ
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6 Conclusions and Future Work

In this paper, we have introduced an instance-based (nearest neighbor) approach
to the label ranking problem that has recently attracted attention in the field of
machine learning. Our basic inference principle is a consistent extension of the
nearest neighbor estimation principle, as used previously for well-known learn-
ing problems such as classification and regression: Assuming that the conditional
(probability) distribution of the output given the query is locally constant, we
derive a maximum likelihood estimation based on the Mallows model, a spe-
cial type of probability model for rankings. Our first empirical results are quite
promising and suggest that this approach is fully competitive, in terms of pre-
dictive accuracy, to (model-based) state-of-the-art methods for label ranking.
Besides, it has some further advantages, as it does not only produce a single
ranking as an estimation but instead delivers a probability distribution over all
rankings. This distribution can be used, for example, to quantify the reliability
of the predicted ranking.

Currently, we are working on extensions and variants of the label ranking
problem, such as calibrated label ranking and multi-label classification [10]. In
fact, we believe that the approach proposed in this paper can be extended to a
solid framework that not only allows for solving the label ranking problem itself
but also variants thereof.
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Abstract. The generalization performance is the main purpose of ma-
chine learning theoretical research. The previous bounds describing the
generalization ability of Tikhonov regularization algorithm are almost
all based on independent and identically distributed (i.i.d.) samples. In
this paper we go far beyond this classical framework by establishing
the bound on the generalization ability of Tikhonov regularization al-
gorithm with exponentially strongly mixing observations. We then show
that Tikhonov regularization algorithm with exponentially strongly mix-
ing observations is consistent.
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1 Introduction

Recently there has been a large increase of the interest for theoretical issues in
the machine learning community. It is mainly due to the fact that statistical
learning theory has demonstrated its usefulness by providing the ground for de-
veloping successful and well-founded learning algorithms such as Support Vector
Machines (SVMs)[1]. Besides their good performance in practical applications
they also enjoy a good theoretical justification in terms of both universal consis-
tency and learning rates, if the training samples come from an i.i.d. process. This
renewed interest for theory naturally boosted the development of performance
bounds ([2]). However often this i.i.d. assumption cannot be strictly justified
in real-world problems. For example, many machine learning applications such
as market prediction, system diagnosis, biological sequence analysis, and speech
recognition are inherently temporal in nature, and consequently not i.i.d. pro-
cesses ([3]). Relaxations of the independence assumption have been considered
for quite a while in both machine learning and statistical literature. For example,
Modha and Masry [4] established the minimum complexity regression estimation
with m-dependent observations and strongly mixing observations respectively.
Vidyasagar [5] considered the notions of mixing and proved that most of the de-
sirable properties (e.g. PAC property or UCEMUP property) of i.i.d. sequence
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are preserved when the underlying sequence is mixing sequence. Steinwart, Hush
and Scovel [3] proved that the SVMs algorithm for both classification and re-
gression are consistent if the samples of processes satisfying the law of large
numbers. Zou, Li and Xu [6] established the bounds on the rate of relative uni-
form convergence of learning machines with strongly mixing observations.

To study the generalization performance of Tikhonov regularization algorithm
with strongly mixing observations, we first establish the bound on the general-
ization error of Tikhonov regularization algorithm with exponentially strongly
mixing observations, and then we prove that Tikhonov regularization algorithm
with exponentially strongly mixing observations is consistent. The rest of this pa-
per is organized as follows: In Section 2, we introduce the definitions of strongly
mixing sequence and Tikhonov regularization algorithm. In Section 3 we estab-
lish the bound on the generalization ability of Tikhonov regularization algorithm
in Section 4. We present some significance conclusions in Section 5.

2 Preliminaries

In this section we introduce the definitions and notations used in the paper.

2.1 Strongly Mixing Sequence

Let Z = {zi}∞i=−∞ be a stationary real-valued sequence on a probability space
(Ω,B, P ). For −∞ < i < ∞, let σ∞i and σi

−∞ denote the σ-algebra events
generated by the random variables zj , j ≥ i and zj , j ≤ i respectively. With
these notations, we have the definition of α-mixing in this literature [5].

Definition 1. ([5]) The sequence Z is called α-mixing, or strongly mixing, if

sup
A∈σ0

−∞,B∈σ∞
k

{|P (A ∩B)− P (A)P (B)|} = α(k)→ 0 as k →∞.

Here α(k) is called the α-mixing coefficient.

Assumption 1. ([4]) Assume that the α-mixing coefficient of sequence Z satis-
fies

α(k) ≤ α exp(−ckβ), k ≥ 1,

for α > 0, β > 0, and c > 0, the constants α, β and c are assumed to be known.

Remark 1. ([4]) Assumption 1 is satisfied by a large class of processes, for ex-
ample, certain linear processes(certain ARMA processes) satisfy the assumption
with β = 1, and certain aperiodic, Harris-recurrent Markov processes (nonlin-
ear ARX processes, and ARH processes) satisfy this assumption. As a trivial
example, i.i.d. random variables satisfy this assumption with β =∞.

Denote by S = {z1, z2, · · · , zn} the sample set of size n observations drawn from
the exponentially strongly mixing sequence Z. The goal of machine learning from
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random sampling is to find a function f that assigns values to objects such that
if new objects are given, the function f will forecast them correctly. Let

E(f) = E[�(f, z)] =
∫
�(f, z)dP

be the expected risk (or expected error) of function f , where the function �(f, z),
which is integrable for any f and depends on f and z, called loss function. Be-
cause our purpose in the present research is to discuss general learning problems,
we consider the loss function of general form �(f, z) in the following. Define

M = sup
f∈F

max
z∈Z

|�(f, z)|, L = sup
g1,g2∈F ,g1 	=g2

max
z∈Z

|�(g1, z)− �(g2, z)|
|g1 − g2| .

We assume that L and M are finite in this paper. Given a hypothesis space F ,
the learning task is to find the minimizer f̃ of the expected risk E(f) over the
hypothesis space F

f̃ = arg min
f∈F

E(f) = argmin
f∈F

∫
�(f, z)dP.

Since one knows only the set S of random samples instead of the distribu-
tion P , the minimizer of the expected risk can not be computed directly. Ac-
cording to the law of large numbers, for a fixed function, the empirical risk
(or empirical error) En(f) = 1

n

∑n
i=1 �(f, zi) converges to the expected risk in

probability as the sample size n increases. Then it is a natural idea to use f̂ ,
f̂ = argminf∈F 1

n

∑n
i=1 �(f, zi) as an approximation of the target function f̃ .

This is called the Empirical Risk Minimization Principle (ERM) (see [1]).
To study the generalization ability of Tikhonov regularization algorithm with

strongly mixing sequences, we will apply the following Bernstein’s inequality.

Lemma 1. ([4]) Let Z be a stationary α-mixing sequence with the mixing coef-
ficient satisfying Assumption 1. Let an integer n ≥ 1 be given. For each integer
i ≥ 1, let Ui = ψ(zi), where ψ is some real-valued Borel measurable function.
Assume that |Ui| ≤ d1 a.s. and that E[U1] = 0. Set n(α) = 'n({8n/c}1/(β+1))−1*.
Here n denotes the number of observations drawn from Z and 'u*((u)) denotes
the greatest (least) integer less (greater) than or equal to u. Then for all ε > 0,

P
{ 1
n

n∑
i=1

Ui ≥ ε
}
≤ (1 + 4e−2α) exp

{ −ε2n(α)

2(E|U1|2 + εd1/3)

}
.

2.2 Tikhonov Regularization Algorithm

Since the problem of solving ERM algorithm is usually ill-posed and overfitting
may happen [7]. Thus regularization techniques are introduced [8]. In this paper
we shall be interested in Tikhonov regularization algorithm.
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Let Ω : F → R+ be a penalty functional over the hypothesis space F . the
ERM with Tikhonov regularization solves the problem

fz,λ = arg min
f∈F
{En(f) + λΩ(f)} (1)

with λ > 0 a constant. The functional Ω(f) is called the regularizer and the
constant λ is called the regularization parameter, it often depend on the sample
size n: λ = λ(n).

To bound the generalization ability of Tikhonov regularization algorithm,
we should estimate the difference E(fz,λ) − E(f̃). Since there holds En(fz,λ) +
λΩ(fz,λ) ≤ En(f) + λΩ(f) for any f ∈ F . Hence we have ([7])

E(fz,λ)− E(f̃) ≤ {E(fz,λ)− En(fz,λ) + En(f)− E(f)}+
{E(f)− E(f̃) + λΩ(f)

}
.

The second term in inequality above depends on the choice of F , but is in-
dependent of sampling, we will call it the regularization error. For the sake of
simplicity, we denote the regularization error by r(λ, f) in the sequel, the first
term is called the sample error. Since the regularization error is essential and
independent of the learning samples, it should be estimated by the knowledge
from approximation theory, our aim in this paper is to estimate the sample error.

3 New Refined Concentration Inequalities

Since there is not a satisfactory inequality fitting our purpose, we need to obtain
some new refined probability inequalities and give some basic assumptions on
the hypothesis space F . We assume that the uniform covering number of the
ball BΩ(R) =

{
f ∈ F : Ω(f) ≤ Rθ

}
, R > 0, θ ≥ 1 has complexity exponent

0 < p < 2, that is there exists some cp > 0 such that

N (BΩ(R), ε) ≤ exp
{
cp

(R
ε

)p}
. (2)

By Lemma 1, we can obtain the following theorem on the difference between
the empirical risks and their expected risks for the strongly mixing sequence Z.

Theorem 1. Let Z be a stationary α-mixing sequence with the mixing coefficient
satisfying Assumption 1. Assume the variance D[�(f, z)] ≤ σ2 for all z ∈ Z and
for all f ∈ F . Then for any ε > 0,

P
{|E(f)− En(f)| > ε} ≤ 2(1 + 4e−2α) exp

{ −ε2n(α)

2(σ2 + εM/3)

}
. (3)

Proof. Let Xi = E[�(f, z1)] − �(f, zi), i = 1, 2, · · · , n. Then E(f) − En(f) =
1
n

∑n
i=1Xi. We can get easily that for all i ∈ {1, 2, · · · , n}

|Xi| = |�(f, zi)− E[�(f, z1)]| ≤M
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and E(Xi) = E{E[�(f, z1)] − �(f, zi)} = 0. Replacing d1 and E|U1|2 by M and
σ2 respectively in Lemma 1, we obtain

P
{E(f)− En(f) ≥ ε} ≤ (1 + 4e−2α) exp

{ −ε2n(α)

2(σ2 + εM/3)

}
.

By symmetry we also can get

P
{E(f)− En(f) ≤ −ε} ≤ (1 + 4e−2α) exp

{ −ε2n(α)

2(σ2 + εM/3)

}
.

Combining these two bounds leads to the desired inequality (3). Then we com-
plete the proof of Theorem 1.

From Theorem 1, we can obtain the following corollary.

Corollary 1. With all notations as in Theorem 1, for any u > 0, with probability
at least 1− e−u, the inequality

E(f)− En(f) ≤ 2BM
3n(α)

+

√
2Bσ2

n(α)

holds, where B = ln (1 + 4e−2α)+u. The same bound holds true for En(f)−E(f).
Proof. For any positive value u > 0, Let

e−u = (1 + 4e−2α) exp
{ −ε2n(α)

2(σ2 + εM/3)

}
. (4)

Solving equation (4) with respect to ε, we obtain

ε =
1

3n(α)

{
MB +

√
B[M2(t)B + 18n(α)σ2]

}
≤ 1

3n(α)

{
2MB + 3

√
2n(α)Bσ2

}
≤ 2BM

3n(α)
+

√
2Bσ2

n(α)
.

By Theorem 1, we can finish the proof of Corollary 1.

Theorem 2. With all notations as in Theorem 1, then for any ε > 0,

P
{

sup
f∈F

|E(f)− En(f)| > ε
}
≤ 2CN

(
F , ε

4L

)
exp

{ −ε2n(α)

8(σ2 + εM/6)

}
, (5)

where C = (1 + 4e−2α).

Proof. Define LS(f) = E(f) − En(f), m = N (F , ε) and let the disks Dj , j ∈
{1, 2, · · · ,m} be a cover of F with center at fj, and radius ε. For any S ∈ Zn

and all f ∈ Dj,

|Lz(f)− Lz(fk)| ≤ |Ez[�(f, z)]− Ez[�(fk, z)]|+
∣∣∣ 1
n

n∑
i=1

�(f, zi)− 1
n

n∑
i=1

�(fk, zi)
∣∣∣

≤ 2L · ‖f − fk‖∞ ≤ 2Lε.
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It follows for any S ∈ Zn and all f ∈ Dj that supf∈Dj
|LS(f)| ≥ 4Lε =⇒

|LS(fj)|≥2Lε.We conclude that for any j ∈ {1, 2, · · · ,m}, P
{

supf∈Dj
|LS(f)| ≥

4Lε
}
≤ P

{|LS(fj)| ≥ 2Lε
}
. By Theorem 1, we get

P
{

sup
f∈Dj

|E(f)− En(f)| ≥ 4Lε
}
≤ 2(1 + 4e−2α) exp

{ −(2Lε)2n(α)

2(σ2 + 2LεM/3)

}
.

By the fact that the probability of a union of events is bounded by the sum of
the probabilities of these events, we can complete the proof of Theorem 2 by
replacing ε by ε

4L .
In particular, if 0 < ε ≤ σ2, then the exponent of inequality (5) in Theorem

2 becomes
−ε2n(α)

8(σ2 + εM/6)
≤ −3n(α)ε2

4σ2(6 +M)
.

By the same argument conducted as that in [2], we have that for some cp > 0,
and 0 < p < 2, the covering number satisfies

N
(
F , ε

4L

)
≤ exp

{
cp

( ε
4L

)−p}
.

Then by Theorem 2, we have that for any ε, σ2 ≥ ε > 0,

P
{

sup
f∈F

|E(f)− En(f)| > ε
}
≤ 2(1 + 4e−2α) exp

{
cp

( ε
4L

)−p

− 3n(α)ε2

4σ2(6 +M)

}
.

The critical value of ε occurs when

cp

( ε
4L

)−p

=
3n(α)ε2

4σ2(6 +M)

i.e., for ε .= εn =
[

cp(4L)p4σ2(6+M)

3n(α)

] 1
p+2

, by the same argument conducted as that

in [9] we have that if 2εn ≤ ε ≤ σ2, there exists a constant C1 such that

P
{

sup
f∈F

|E(f)− En(f)| > ε
}
≤ 2(1 + 4e−2α)C1 exp

{ −3n(α)ε2

4σ2(6 +M)

}
, (6)

where C1 is a positive constant. If ε ≤ 2εn, the left-hand side of inequality (6)
trivially holds, and if n(α) >

4cp(2L)p(6+M)

3σ2(p+1) we have σ2 ≥ ε. Then we obtain the
following proposition.

Proposition 1. With all notations as in Theorem 1, and if for some cp > 0,
and 0 < p < 2

N
(
F , ε

4L

)
≤ exp

{
cp

( ε
4L

)−p}
, ∀ε > 0.
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Then for any u > 0, and any n(α), n(α) >
4cp(2L)p(6+M)

3σ2(p+1) , there exists a constant
c′p such that with probability at least 1− e−u for any f ∈ F ,

E(f) ≤ En(f) +

√
4σ2(6 +M)[c′p +B]

3n(α)
.

Proof. Let us rewrite inequality (6) in an equivalent form. Let

(1 + 4e−2α)C1 exp
{ −3n(α)ε2

4σ2(6 +M)

}
= e−u

which we solve with respect to ε. We obtain ε .= ε(n) =
√

4σ2(6+M)[c′p+B]

3n(α) , is
used to solve inequality supf∈F [E(f) − En(f)] ≤ ε(n), where c′p = ln(C1). As
a result we obtain that with probability at least 1 − e−u simultaneously for all

functions in the set F , the inequality E(f) ≤ En(f) +
√

4σ2(6+M)[c′p+B]

3n(α) is valid.
Then we complete the proof of Proposition 1.

4 Error Analysis

To bound the sample error of Tikhonov regularization with strongly mixing ob-
servations, our ideas are as follows: First, we estimate the quantities E(f)−En(f)
and E(fz,λ)−En(fz,λ) by Corollary 1 and Proposition 1 respectively. Second, we
need to estimate the capacity of the function set that contains fz,λ and, to get
better bounds we hope it is as small as possible. This is equivalent to find a
small R such that fz,λ ∈ BΩ(R) with high probability. In the end, we adopt the
iteration technique was used in [10] to obtain the following theorem.

Theorem 3. Let Z be a stationary α-mixing sequence with the mixing coefficient
satisfying Assumption 1, and assume the variance D[�(f, z)] ≤ σ2 for all z ∈ Z,
and for all f ∈ F . Let D : R+ → R+ be a function satisfying r(λ, f) ≤ D(λ) for
all functions in F . Then for any ε > 0, and any δ, 0 < δ < 1, there exists a
constant c′′p > 0 independent of the observations’ size n such that

E(fz,λ)− E(f̃) ≤ D(λ)
{

4B + c′′p
[M(0)
D(λ)

] 2pε
p+2

}
with probability 1− δ provided that n(α) ≥ max{n1, n2}, where

n1 = max
{ 17M

3D(λ)
,
2M2(t)
3D(λ)

}
, c′′p = c′p(A1 +A2)

2p
p+2

n2 = max
{2M(6 +M)

3D(λ)

[ (D(λ))
1
θ

Rλ
1
θ

] 2p
p+2
,
4cp(4L)p(6 +M)

3σ2(p+1)

}
,
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and A1 = (c′p)
p+2

(p+2)θ−2p , A2 =
(
(c′p)

(p+2)θ
(p+2)θ−2p + 4(p+2)θ

(p+2)θ−2p

) 1
θ

.

Proof. Take u ≥ 1, which will be determined later. We decompose our proof
into the following three steps.

Step 1. By Corollary 1, we have that there exists a subset V1 of Zn with
probability at least 1− e−u such that for any S ∈ V1,

En(f)− E(f) ≤ 2BM
3n(α)

+

√
2Bσ2

n(α)
.

Since σ2 ≤ E{[�(f, z)]2} ≤ME[�(f, z)] =ME(f), we have

En(f)− E(f) ≤ 2BM
3n(α)

+

√
2BME(f)
n(α)

≤ 5BM
3n(α)

+
1
2
E(f). (7)

Step 2. Let HR = {f : f ∈ BΩ(R)}, by assumption (2) we have

N
(
HR,

ε

4L

)
≤ N

(
BΩ(R),

ε

2L

)
≤ exp

{
cp(4RL)pε−p

}
.

We apply Proposition 1 to HR and find a subset V (R) of Zn with probability
at least 1− e−u such that for any S ∈ V (R),

E(f)− En(f) ≤
√

4σ2(6 +M)[c′p + u]
3n(α)

. (8)

For the sake of simplicity, we denote the term on the right-hand side of inequality
(8) by I. By the same argument as inequality (7), we have

I =

√
4σ2(6 +M)[c′p +B]

3n(α)
≤ 2M [c′p +B](6 +M)

3n(α)
+

1
2
E(f). (9)

Combine inequalities (8) and (9), we obtain

E(f)− En(f) ≤ 2M [c′p +B](6 +M)
3n(α)

+
1
2
E(f). (10)

Let W (R) be the subset of Zn defined by W (R) = {S ∈ V1 : fz,λ ∈ BΩ(R)}.
Let S ∈ W (R) ∩ V (R), and then inequality (10) holds for fz,λ, together with
inequality (7), we have

En(f)− E(f) + E(fz,λ)− En(fz,λ) ≤ 5BM
3n(α)

+
2M [c′p +B](6 +M)

3n(α)
+ E(f).

Then we get

∆
.= E(fz,λ)− E(f̃) + λΩ(fz,λ)

≤ 17BM
3n(α)

+
2BM2(t)

3n(α)
+

2M(6 +M)
3n(α)

c′p + 2D(λ).
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If n(α) > n1, we have 17BM
3n(α) + 2BM2(t)

3n(α) ≤ 2D(λ)B. If n(α) > n2, we also have

2M(6 +M)
3n(α)

c′p ≤ D(λ)c′p
[ Rλ

1
θ

(D(λ))
1
θ

] 2p
p+2
.

Therefore we have

∆ ≤ 2D(λ)(B + 1) +D(λ)c′p
[ Rλ

1
θ

(D(λ))
1
θ

] 2p
p+2

= D(λ)
[
4B + c′p

[ Rλ
1
θ

(D(λ))
1
θ

] 2p
p+2

]
.

For S ∈W (R) ∩ V (R), this implies fz,λ ∈ BΩ(g(R)), that is Ω(fz,λ) ≤ (g(R))θ,
where g : R+ → R+ is a function defined by

g(R) =
[D(λ)
λ

] 1
θ
{
4B + c′p

[ Rλ 1
θ

D(λ)
1
θ

] 2p
p+2

} 1
θ

.

It follows that
W (R) ∩ V (R) ⊆W (g(R)). (11)

Step 3. We find a small ball BΩ(R) that contains fz,λ by iteration. Since
En(fz,λ) + λΩ(fz,λ) ≤ En(0) + λΩ(0) ≤ M(0), we have Ω(fz,λ) ≤ M(0)

λ . Take

R0 =
(

M(0)
λ

) 1
θ

, then fz,λ ∈ BΩ(R0) and W (R0) = V1.
Denote Rj = g(Rj−1) for j ∈ N. According to (11), we have

W (R0) ∩
(
∩j−1

i=0 V (Ri)
)
⊆W (Rj).

Define rj = Rjλ
1
θ

(D(λ))
1
θ
, j ∈ {0}∪N. Then rj+1 =

(
c′p(rj)

2p
p+2 + 4B

) 1
θ

. By Lemma

5.17 in [7], we have rj ≤ A1r
( 2p
(p+2)θ )j

0 +A2, where

A1 = (c′p)
p+2

(p+2)θ−2p , A2 =
(
(c′p)

(p+2)θ
(p+2)θ−2p +

4B(p+ 2)θ
(p+ 2)θ − 2p

) 1
θ

.

This implies

Rj0 ≤
[D(λ)
λ

] 1
θ
{
A1

(M(0)
D(λ)

) 1
θ ( 2p

(p+2)θ )j

+A2

}
.

For any ε > 0, choose j0 ∈ N such that j =
⌊

ln 1
θε

ln (p+2)θ
2p

⌋
+ 1, it follows

Rj0 ≤
[D(λ)
λ

] 1
θ
{
A1

[M(0)
D(λ)

]ε

+A2

}
.

Set Rε = (A1 +A2)
[

D(λ)
λ

] 1
θ
[

M(0)
D(λ)

]ε

, then W (Rj0) ⊆W (Rε), and hence W (Rε)

has probability at least 1 − (j0 + 2)e−u. Taking u = ln j0+3
δ , the probability of

the set W (Rε) ∩ V (Rε) is at least 1− (j0 + 3)e−u = 1− δ.
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Then for each S ∈W (Rε)∩V (Rε), with probability at least 1− δ, there holds

E(fz,λ)− E(f̃) ≤ D(λ)
{

4B + c′′p
[M(0)
D(λ)

] 2pε
p+2

}
,

where c′′p = c′p(A1 +A2)
2p

p+2 . Then we complete the proof of Theorem 3.

Remark 4. In Theorem 3, we use a technical condition, that is the upper bound
D(λ) of r(λ, f). This is because it is usually hard to compute r(λ, f) explicitly,
the upper bound may be obtained by knowledge of the function f̃ , and it is natural
for D(λ)→ 0 since λ→ 0 in most situation.

Remark 5. Since λ→ 0 as n→ 0, and D(λ)→ 0 as λ→ 0, we have

E(fz,λ)− E(f̃)→ 0 as n→ 0.

This implies that Tikhonov regularization algorithm with exponentially strongly
mixing sequence is consistent. In addition, Steinwart, Hush and Scovel [3] proved
that the SVMs algorithm with α-mixing processes for both classification and re-
gression are also consistent if the samples of processes satisfying the law of large
numbers. In this paper we get the same result with [3] by making use of different
method with [3], that is we obtain firstly the bound on the generalization per-
formance of Tikhonov regularization algorithm, and then prove that Tikhonov
regularization algorithm with strongly mixing sequence is consistent.

5 Conclusions

The fundamental problems in Statistical Learning Theory (SLT) are evaluation
of generalization performance and consistency of learning algorithms. In this
paper we have studied the extension problem of SLT from the classical i.i.d. se-
quences to the exponentially strongly mixing sequences. We have extended the
classical generalization bound estimations of Tikhonov regularization algorithm
through establishing a new bound on the samples error based on exponentially
strongly mixing sequences for general loss function. From the established gener-
alization bound estimations, we can conclude that Tikhonov regularization algo-
rithm with strongly mixing samples is consistent. The obtained results perfectly
extended the well-known statistical learning theory for Tikhonov regularization
algorithm justified previously for i.i.d. observations. To our knowledge, the result
here is the first explicit bound on the learning performance on this topic.

Along the line of the present work, several open problems deserves further re-
search, e.g., how to control the generalization ability of Tikhonov regularization
algorithm with exponentially strongly mixing samples? What is the essential dif-
ference of generalization ability of Tikhonov regularization algorithm with i.i.d.
samples and dependent samples? how to develop the bounds on generalization
ability of Tikhonov regularization algorithm for other dependent samples ? All
these problems are under our current investigation.
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Efficient Learning from Few Labeled Examples 

Jiao Wang, Siwei Luo, and Jingjing Zhong 

School of Computer and Information Technology, Beijing Jiaotong University,  
Beijing 100044, China 

Abstract. Active learning and semi-supervised learning are two approaches to 
alleviate the burden of labeling large amounts of data. In active learning, user is 
asked to label the most informative examples in the domain. In semi-supervised 
learning, labeled data is used together with unlabeled data to boost the perform-
ance of learning algorithms. We focus here to combine them together. We first 
introduce a new active learning strategy, then we propose an algorithm to take 
the advantage of both active learning and semi-supervised learning. We discuss 
several advantages of our method. Experimental results show that it is efficient 
and robust to noise.  

Keywords: Active learning, Semi-supervised learning, Learning from exam-
ples, Selective sampling, Machine learning. 

1   Introduction 

Labeling the training data for a machine learning algorithm is time consuming, tedi-
ous, and sometimes expensive. Active learning and semi-supervised learning are two 
approaches to alleviate the burden of labeling large amounts of data. 

Active learning algorithms cope with this problem by detecting and asking the user 
to label the most informative examples in the domain. For examples, Muslea et al. [1] 
and Freund et al. [2] generate a committee of hypotheses, and query the unlabeled 
data on which the disagreement within the committee is the greatest. Cohn et al. [3] 
queries the unlabeled data that minimizes the error rate of the classifier. Lewis et al. 
[4] queries the unlabeled data on which this classifier makes the least confident pre-
diction. By these ways, active learning methods reduce the user’s involvement in the 
data labeling process. 

Semi-supervised learning algorithms use few labeled data together with a lot of 
unlabeled data to boost the performance of learning algorithms, thus reducing the 
need of labeled data. For examples, Blum et al. [5] generate two different hypotheses 
for co-training, and let the two hypotheses label the unlabeled data for each other. 
Nigam et al. [6] use the EM algorithm to estimate the labels of unlabeled data. Blum 
et al. [7] and Belkin et al. [8] construct a graph to encode the similarity between data, 
and use the spectral graph partition methods to get the final classification. 

A natural idea is to combine active learning and semi-supervised learning together, 
in order to get the advantages of both. That is, we could allow the learning algorithm 
to pick some unlabeled data to be labeled by a domain expert, which will then be used 
as the labeled data set for learning a better hypothesis. But few works have been done 
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except for [9-11]. Zhu et al [9] combine active learning and semi-supervised learning 
under a Gaussian random field model, they choose the samples actively by greedily 
selecting queries from the unlabeled data to minimize the estimated expected classifi-
cation error, but estimating the expected classification error is computation expensive. 
Muslea et al [10] give a multi-view algorithm which interleaves active and semi-
supervised learning, but their method can only be used when the problem has multi 
views. Wang et al [11] give a theoretical analysis on the sample complexityof com-
bining multi-view active learning an semi-supervise learning, which showing that the 
combination can reduce the error rate quickly. 

We introduce a new method, Efficient-Learning (E-Learning for short), which 
combines active learning and semi-supervised learning together. In E-Learning, a 
strategy of active learning is proposed firstly. Based on the observation that data 
near to the dividing hyperplane providing more information, the data nearest to 
the dividing hyperplane is chosen and its label is asked from user. Then E-
Learning runs a semi-supervised algorithm with all the data (including labeled 
and unlabeled data) to get a new dividing hyperplane. This process is repeated 
until the results do not change. In others words, E-Learning uses the data proxi-
mate to the dividing hyperplane to optimize the dividing hyperplane with the help 
of unlabeled data. 

Compared with previous work, E-Learning has several advantages: 

1. Existing methods are computation expensive since they either need to estimate 
the expected classification error [9], or need to construct several learners [10]. In 
contrast, E-Learning is simple to compute by defining the data nearest to the di-
viding hyperplane as the most informative data. 

2. Existing methods are typically designed to exploit a particular base learner, while 
E-Learning is a general purpose method that can be used together with any semi-
supervised learning algorithms. 

3. E-Learning is geometry intuitive, and it makes no assumption about the distribu-
tion of data. In experiment, it converges quickly to the target concept after label-
ing few data proximate to the dividing hyperplane. 

The remainder of the paper is organized as follows. First, we introduce a new strat-
egy of active learning, and then we propose the E-Learning algorithm. Finally, we 
present our empirical evaluation on some data sets. 

2   A New Strategy of Active Learning 

Consider the situation in which the learner has access to a large number of unlabeled 
data, which is often referred as selective sampling. The question is which samples, if 
labeled, would give more information. 

A natural observation is that data near to the dividing hyperplane providing more 
information, since the classifier makes less confident prediction of its class label. If 
we ask its label from user, we can get more information to optimize the hyperplane, as 
illustrated in Fig.1: 
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Fig. 1. Data near to the dividing hyperplane provide more information. (a) In two class classifi-
cation problem, “×”and “○”represent the two class, the solid lines represent current dividing 
hyperplane. (b) The red point is the one nearest to the current hyperplane. (c) When the data is 
labeled as “×”, the hyperplane is adjusted to the dotted. line. 

Let X  denote the set of all possible data, ix X∈ . Let ( )h θ denote the dividing 

hyperplane, whereθ ∈ Θ  is the parameter. Let ( , ( ))id x h θ  represent the distance of 

ix  to ( )h θ . We define a quantity ( )iI x  to represent the information contained by ix : 

2

1
( )

( , ( ))i
i

I x
d x h θ

=                                                     (1) 

which implies that the nearer a data to the hyperplane, the more informative the 
data is. 

The strategy is to find  

argmax { ( )}i ik I x=                                                 (2) 

which is equal to find 

argmin { ( , ( ))}i ik d x h θ=                                              (3) 

To get ( , ( ))id x h θ , we only need to compute the dot product of ( ))ix h θ⋅ . So this 

strategy is computationally efficient. 
Unlike previous uncertainty reduction active learning[4], which require the base 

learner to be able to estimate the confidence of its prediction, our strategy can be 
applied to any base learner. 

3   The E-Learning Algorithm 

The proposed E-Learning algorithm combines active learning and semi-supervised 
learning together. It uses the strategy introduced above to detect the most informative 
data, asks its label from user, and then it uses a semi-supervised learning method with 
current labeled and unlabeled data to adjust the dividing hyperplane. E-Learning re-
peats this process until the hyperplane does not change. This algorithm is illustrated 
below. 
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In this paper, in order to explain our algorithm in detail, we use the proposed active 
learning strategy to work with the semi-supervised learning work of Belkin [8] to 
show the entire process. We can see how this active learning strategy boosting semi-
supervised learning on manifold. We do not claim that this method can only use on 
manifold, and indeed we aim to illuminate that applying our method, to any semi-
supervised method, would always yield satisfying results. 

Given a sample set 1, , nx x X∈L , we construct its neighborhood 

graph ( , )G V E= , whose vertices are sample points 1{ , , }nV x x= L , and whose 

edge weights , 1{ }n
ij i jw =  represent appropriate pairwise similarity relationships between 

samples. For example, ijw  can be the radial basis function: 

2
2

1

1
exp( ( ) ) (4)

m

ij id jd
d

w x x
σ =

= − −∑  

whereσ  is a scale parameter, m  is the dimensionality of ix . The radial basis func-

tion of ijw  ensure that nearby points are assigned large edge weights. 

Belkin [8] chooses the labeled data manually, and in some other works the labeled 
data is chosen randomly. We exploit a more automatically and actively way. Based on 
the assumption that data near to the dividing hyperplane providing more information, 
we choose the data nearest to the dividing hyperplane as equation (3), ask its label 
from user, and add it to the labeled data set. 

Every time we get a new labeled data, we run semi-supervised learning algorithm [8] to 
adjust the dividing hyperplane. More specifically, we minimize the following cost function 

22 2

1 , 1

1
min [ ] ( ( ) ) ( ( ) ( ))

l n

i i A I i j ijKf H
i i j

H f f x y f f x f x W
l

γ γ
∈ = =

= − + + −∑ ∑       (5) 

The E-Learning Algorithm 
 

E-Learning ( L ,U , SSLearn ) 
Input: L : Original labeled data set 
  U : Unlabeled data set 
  SSLearn : semi-supervised learning algorithm 

),()( ULSSLearnh ←θ  

Repeat until )(θh do not change 

))}(,({minarg θhxdk ii=  

Ask the user for the label of kx  

},{ kk yxLL ∪←  

),()( ULSSLearnh ←θ  
  End of repeat 
Output: )(θh  
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where l  is the number of labeled samples, ,A Iγ γ  are regularization parameters, 
2

K
f  

is some form of constraint to ensure the smoothness of the learned manifold. 

4   Experimental Results 

First, we test the E-Learning algorithm using the noise case of the two moons dataset 
[12]. Figure 2 shows the process. There are six pictures in figure 2, which represent 
six iterations. In each picture, the data nearest to the dividing hyperplane is chosen, 
and it is represented in green color. Then, the label of this data is given, which is 
represented in red or blue color (for two different classes). After that, the semi-
supervised manifold learning algorithm is run with current labeled data and unlabeled 
data to get a new dividing hyperplane, which is represented in yellow curve. At the 
beginning, we randomly choose one data for each class to get an initialization. 

As we can see, the proposed active learning strategy can choose the most informa-
tive data to give labels, and it is robust to noise. The E-Learning algorithm adjusts the 
dividing hyperplane to be better and better along the iteration. After labeling six data, 
it converges to the target concept as the hyperplane does not change. 
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Fig. 2. The E-Learning process of the noise case of two moon dataset 
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Fig. 3. The E-Learning algorithm reduce the error rate quickly in the “20 Newsgroups”data set 

Then we apply the E-Learning algorithm to some real-world classification 
problem: the “20 Newsgroups”data set. In our experiments, each document was 
presented by a vector, and no pre-process was performed on the vectors. To ver-
ify the proposed algorithm, we randomly partition the data into two sets, traing-
ing set and test set with equal size. We perform ten runs to average the results. 
Each experiment began with two randomly chosen initial examples for each 
class, and successive examples were added in batches of size 2. We compare the 
results of E-Learning with randomly chosen method. As we can see, E-Learning 
decrease the error rate quickly, and after labeling 10 data, the error rate converge 
(Fig. 3). 

5   Conclusion 

In order to label less data for a machine learning task, we combine active learn-
ing and semi-supervised learning together, and propose the E-Learning  
algorithm. Based on the assumption that data near to the dividing hyperplane 
providing more information, we choose the data nearest to the dividing hyper-
plane for active learning. This strategy can apply to any semi-supervised learning 
methods, and in this paper, we combine it with manifold regularization to show 
how it works. 

Experiments results illustrate that the E-Learning algorithm converges quickly 
to target concept, and is robust to noise. It gives an indication of possible research 
direction in machine learning. 
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Abstract. Quantum evolutionary algorithm (QEA) is proposed on the basis of 
the concept and principles of quantum computing, which is a classical meta-
heuristic algorithm for the approximate solution of combinatorial optimization 
problems that has been inspired by the principles of evaluation of living organ-
isms in nature. QEA has strong robustness and easy to combine with other 
methods in optimization, but it has the shortcomings of stagnation that limits 
the wide application to the various areas. In this paper, a hybrid QEA with 2-
crossovers was proposed to overcome the above-mentioned limitations. Consid-
ering the importance of randomization, 2-crossovers were applied to improve 
the convergence quality in the basic QEA model. In this way, the new-born in-
dividual after each updating can to help the population jump out of premature 
convergence. The proposed algorithm is tested with the Benchmark optimiza-
tion problem, and the experimental results demonstrate that the proposed QEA 
is a feasible and effective in solving complex optimization problems. 

Keywords: Quantum evolutionary algorithm (QEA); Genetic algorithm (GA); 
Qubit chromosome; Crossover; premature. 

1   Introduction 

Since the concept of quantum was put forward, there was a revolution coming in the 
field of computing, and it was coming from quantum-the smallest of all places: the 
subatomic particles that form the basis of all matters. 

Quantum computing has promised prodigious powers in the past years. Its basic 
currency, the qubit, exists in an ON or OFF verge, which you will never know until 
it’s read out. Therefore, if you could operate on K qubits, a potentially vast space of 
2K values opens up for computation which means that we can solve many computing 
problems at the same time, which saves you a lot of time. The fundamental operation 
on qubits is a rotation. We have logic gates to combine the rotations. The algorithm is 
based on these logic gates. In principle, these algorithms can perform calculations far 
beyond classical computation’s conceivable reach. 

Genetic algorithm (GA) was firstly put forward by J. Holland in 1970s to study the 
self adaptation behavior of natural system [1]. It’s a classical meta-heuristic algorithm 
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for the approximate solution of combinatorial optimization problems that has been 
inspired by the principles of evaluation of living organisms in nature. The application 
of GA needs no initiating knowledge of the system, and it isn’t limited by the form 
and property of the problem. Guided by fitness function and principle of probability, 
it can search in global according to self adaptation by using selection, crossover and 
mutation. Therefore, it’s a comprehensive optimization method with extensive appli-
cation in terms of processing complex non-linear problems. 

GA has strong robustness and is easy to combine with other methods in optimiza-
tion, but it has limited population size and  the problems of premature convergence 
and stagnation that limit the wide application to the various area often exist. Qubit 
chromosomes enjoy a rapidly growing population and strong randomization. 

To overcome the above-mentioned shortcomings of GA, quantum evolutionary algo-
rithm (QEA) is proposed on the basis of the concept and principles of quantum comput-
ing. In QEA, qubit chromosomes, which can represent a linear superposition of solu-
tions, are adopted to maintain solution diversity and overcome premature convergence. 
At the same time, quantum rotation gate, which make full use of the information of the 
current best individual, is used to update individual and avoid stagnation [2]. 

The common QEA uses qubit gate rotation in mutation and whole interference in 
crossover [3]. By using rotation operation, we can make full use of the information of 
the currently best individual to perform the next searching process, and the whole inter-
ference can avoid prematurity. In this way, the global search capacity can be greatly 
improved, while the convergence speed is slowed down. In order to further improve the 
whole performance of QEA, a new hybrid strategy was proposed in this paper. 

The remainder of this paper is organized as follows. The next section introduces the 
main process of common QEA. Section 3 proposes a hybrid QEA model with 2-
crossovers. Then, in Section 4, series of comparison experiments are conducted. Our 
concluding remarks and future work are contained in the final section. 

2   Basic QEA 

2.1   Qubit Chromosome  

In QEA, a qubit chromosome as a string of n qubits can be defined as follows [4]: 

                                             1 2

1 2
q | | | m

m

α α α
β β β

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

…

…
                                    (1) 

where |αi|
2+|βi|

2=1, i=1,…, m, and m is the number of qubits and also the string length 
of the qubit individual. |αi|

2 gives the probability that the qubit will be found in the 
state of ‘0’ and |βi|

2 gives the probability that the qubit will be found in the ‘1’ state. A 
qubit chromosome is able to represent a linear superposition of all possible solutions. 
It has a better characteristic of diversity than classical chromosome[5]. The process to 
get classical chromosome is: bring a random number between 0 and 1, if it’s bigger 
than |αi|

2, this bit in classical chromosome is ‘1’, else ‘0’ is chosen. 
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2.2   Quantum Mutation 

The standard mutation operation is totally random without any directions, so the speed 
of convergence is slowed down. But in QEA, the qubit representation can be used as a 
mutation operator. Directed by the current best individual, quantum mutation is com-
pleted through the quantum rotation gate U(θ),then the [αi  βi]

T is updated as:  

                                  
' cos sin

' sin cos

i i i i

i i i i

α θ θ α
β θ θ β

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
                                               (2) 

Look up the Table 1 to find out the right θi, which is determined by both quantum 
and classical chromosome. 

Table 1. Rotation angle 

θi xi besti f(x)>f(best) 

    
0 0 False 0 0 0 0 
0 0 True 0 0 0 0 
0 1 False 0 0 0 0 
0 1 True -0.05π 0.05π ±0.05π 0 
1 0 False -0.05π 0.05π ±0.05π 0 
1 0 True 0.05π -0.05π 0 ±0.05π 
1 1 False 0.05π -0.05π 0 ±0.05π 
1 1 True 0.05π -0.05π 0 ±0.05π 

 
xi is the i-th bit of the current classical chromosome, besti is the ith bit of the cur-

rent best classical chromosome, f(x) is the adaptation function [6]. 
The Figure 1 below describes the polar plot of the rotation operation on qubit. It 

tells us the reason why the rotation gate can increase the speed of convergence obvi-
ously [7]. 

 

Fig. 1. Polar plot of the rotation gate for qubit chromosome 
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2.3   Quantum Whole Interference Crossover 

This kind of crossover operation is constructed by the interference characteristic of 
qubit. All the quantum chromosomes are involved in. For example, when the popula-
tion number is 5 and the length of chromosome is 6, the table 2 below introduces a 
kind of operation: 

Table 2. The whole interference crossover operation 

1 A(1) E(2) D(3) C(4) B(5) A(6) E(7) 
2 B(1) A(2) E(3) D(4) C(5) B(6) A(7) 
3 C(1) B(2) A(3) E(4) D(5) C(6) B(7) 
4 D(1) C(2) B(3) A(4) E(5) D(6) C(7) 
5 E(1) D(2) C(3) B(4) A(5) E(6) D(7) 

 
The whole interference crossover operation can make full use of the information in 

the chromosome, improve the unilateralism of classical crossover and avoid prema-
ture convergence and stagnation problems.  

3   The Proposed Hybrid QEA with 2-Crossovers 

The QEA provide new ideas to improve the traditional GA. Firstly, the information in 
a quantum chromosome is more than that in a classical chromosome, the number of 
population is decreased and the diversity is improved. Secondly, the mutation  
operation is no longer totally random but directed by some rules to make the next 
generation better and increase the speed of convergence. Thirdly, whole interference 
crossover operation can avoid premature convergence and stagnation problems. 

When the whole interference crossover operation try to produce new solution to 
avoid premature convergence, it’s not good for the maintaining of current good solu-
tions. Then, the convergence speed of QEA is decreased. In order to improve the 
convergence speed and avoid premature convergence, we proposed a hybrid QEA. 
The result is extraordinary both in theory and experiments. 

In our proposed hybrid QEA, we use 2-crossover operations, and some improve-
ments are also conducted in the quantum mutation. 

The first crossover operation is the classical single point crossover. Roulette selec-
tion operation is used to choose two quantum chromosomes from the parent genera-
tions, then the child generation is produced by crossover. After this process,  two 
better individuals can be chosen into the next generation by evaluating their fitness. 
This operation is mainly to improve the convergence speed and preserve the instruc-
tive information. Usually, we choose 0.6 to 0.9 as the crossover probabilities in this 
process. 

Then, we evaluate the fitness of the whole population. We choose the best one as 
the mutation director, because the evaluation is just before mutation operation, the 
director individual is considered better than anyone else. Therefore, when we use the 
rules shown in Table 1, f(x) is always smaller than f(best). Here, we only need half of 
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the information presented in Table 1. The table is simplified, thus the evolution  
process is faster and easier. We choose 0.01 to 0.2 as the mutation probabilities. Al-
though it’s not traditional mutation and the individual can also converge by this op-
eration, the mutation probability can’t be very high. Because in every generation, we 
only choose one best individual, and we use quantum chromosome, the selection is 
full of randomicity, so we’re not sure the “best solution” we choose is really the best 
result. Furthermore, too much probability isn’t good for evolution.  

Another crossover operation, the whole interference crossover operation, is adopted 
to prevent premature convergence. It can bring new individual to help the population 
jump out of premature convergence. We also choose 0.01 to 0.2 as the crossover 
probability. For it’s just used to avoid premature convergence, we also can’t use it in 
high frequency. 

The process of our proposed hybrid QEA with 2-crossovers for solving complex 
optimization problems can be described as follows: 

Step 1: Initialization of parameters: bring a random angle ω between 0 and 2*π, 
α=cos(ω),β=sin(ω), then a qubit is produced. Set other parameters: classical crossover 
probability-Pcc, mutation probability-Pm, whole interference crossover probability-
Pic, the max circulation generation-germax, the number of population-n, and the 
length of chromosome-L. 

Step 2: Produce a classical population by using this quantum chromosomes. It’s the 
original classical population. Evaluate the fitness of each chromosome. 

Step 3: Use roulette operation to select parents quantum chromosome, operate 
crossover in the classical crossover probability. Update the quantum population. Then 
produce a classical population, and find out the best solution which will be used in the 
mutation operation. 

Step 4: Operate mutation in the mutation probability and update the quantum popu-
lation. Then produce a new classical population, evaluate the fitness of each chromo-
some, compare with the old ones and update the classical population. 

Step 5: Operate the whole interference crossover in it’s probability and update the 
quantum population.  

Step 6: If the stopping criterion is satisfied, the proposed QEA algorithm stops, and 
output the best solution, else return to Step 3. 

The above-mentioned procedures of the proposed hybrid QEA process can also be 
described in the Figure 2. 

Table 3. The concised rotation angle 

θi x
i 

best
i 

f(x)>f(be
st)     

0 0 False 0 0 0 0 
0 1 False 0 0 0 0 
1 0 True 0.05π -0.05π 0 ±0.05π 
1 1 False 0.05π -0.05π 0 ±0.05π 
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N

Y

Mutate with the probability of Pm and update quantum population and classical 
population 

Whole interference crossover with the probability of Pic and update 
quantum population. 

End 

Produce classical population and evaluate the fitness

Ger=0

Ger=ger+1

Use roulette operation to select parent quantum chromosomes

Cross over with the probability of Pcc and update 
quantum population 

Produce classical population and evaluate the fitness 

Initialization 

Begin  

Ger>germax 

Y

N

 

Fig. 2. The proposed hybrid QEA with 2-crossovers 

4   Experimental Results 

In order to investigate the feasibility and effectiveness of the proposed hybrid QEA 
with 2-crossovers, a series of experiments are conducted on the Benchmark problem: 
Maxf(x)='x+10*sin(x.*5)+7*cos(x.*4)' to find the maximum value. In the three con-
ducted experiments, the differences lie in the adopted crossover operation. The first 
experiment adopts classical crossover, the second experiment uses whole interference 
crossover, while the third experiment combines both of them. 

The three QEAs have been encoded in Matlab language and implemented on PC-
compatible with 1024 Mb of RAM under the Windows XP. The parameters were set 
to the following values:  n=50, L=22, Pcc=0.9, Pic=0.2, Pm=0.2, germax is different 
in the three experiments: 200, 1000and 100.  

The original chromosomes is produced with strong randomization. Figure 3 shows 
the final position of the chromosomes in the first experiment. It’s obvious that it’s 
easy to get into premature convergence. The evolution curves presented in Figure 4 
also reflects the slow convergence speed. 
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Fig. 3. Final position of the chromosomes in experiment 1 

 
Fig. 4. evolution curve of experiment 1 

Figure 5 – Figure 8 show the results in experiment 2 and 3. 

 
Fig. 5. Final position of the chromosomes in experiment 2 
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Fig. 6. Evolution curve of experiment 2 

 

Fig. 7. Final position of the chromosomes in experiment 3 

 
Fig. 8. Evolution curve of experiment 3 
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It is obvious that our proposed QEA model can find better solutions than the 
other basic QEAs in solving continuous optimization problems, and the improved 
QEA model can avoid premature convergence which happens in the first and the 
second experiments. Our proposed improved QEA with 2-crossovers has a more 
excellent performance with strong ability to find optimal solution and quick con-
vergence speed. 

5   Conclusions and Future Work 

This paper has presented an improved QEA with 2-crossovers for solving the con-
tinuous optimization problems. The series experimental results verify that the pro-
posed hybrid QEA model is a practical and effective algorithm in solving complex 
optimization problems, and also a feasible method for other complex real-world opti-
mization problems.  

Our future work will focus on applying the newly proposed QEA approach in this 
paper to other combinatorial optimization problems. Furthermore, we are also inter-
ested in the theoretical analysis on the proposed QEA model.  
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Abstract. In this paper, a maximum power point tracking (MPPT) technique 
based on extension neural network (ENN) was proposed to make full utilization 
of photovoltaic (PV) array output power which depends on solar insolation and 
ambient temperature. The proposed ENN MPPT algorithm can automatically 
adjust the step size to track the PV array maximum power point (MPP). Com-
pared with the conventional fixed step size perturbation and observation (P&O) 
and incremental conductance (INC) methods, the presented method is able to 
effectively improve the dynamic response and steady state performance of the 
PV systems simultaneously. A theoretical analysis and the designed principle of 
the proposed method are described in detail. And some simulation results are 
made to demonstrate the effectiveness of the proposed MPPT method. 

Keywords: Maximum power point tracking (MPPT), Perturbation and observa-
tion (P&O) method, Incremental conductance (INC) method, Photovoltaic (PV) 
system, Extension neural network (ENN). 

1   Introduction 

Recently, there are many techniques have been proposed for tracking the maximum 
power point of PV arrays [1-6]. The voltage and current based photovoltaic generator 
methods [1] offer a simple and low-priced way to acquire the maximum power. Nev-
ertheless, they require periodical disconnection or short-circuit of the PV modules to 
measure the open-circuit voltage or short-circuit current for reference, resulting in 
more power loss when scanning the entire control range. The perturbation and obser-
vation (P&O) method [2] is widely applied in the MPPT controller due to its simplic-
ity and easy implementation, but its accuracy in steady-state is low because the per-
turbation process would make the operation point of the PV arrays to oscillate around 
the MPP. Therefore, the power loss may be increased. Furthermore, when the insola-
tion changes rapidly, the P&O method probably fails to track MPP. The incremental 
conductance (INC) method [3], which is based on the fact that the slope of the PV 
array power versus voltage curve is zero at the MPP, has been proposed to improve 
the tracking accuracy and dynamic performance under rapidly varying conditions. 
The steady-state oscillations would be eliminated in theory since the derivative of the 
power with respect to the voltage vanishes at MPP. However, null value of the slope 
of the PV array power versus voltage curve seldom occurs due to the resolution of 
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digital implementation. The INC MPPT algorithm usually uses a fixed iteration step 
size, which is determined by the accuracy and tracking speed requirement. Thus, the 
corresponding design should satisfactorily address the tradeoff between the dynamics 
and steady state oscillation. To solve these problems, a modified INC MPPT with 
variable step size and constant voltage tracking (CVT) at the start process [4] has 
been proposed to tune the step size automatically according to the inherent PV array 
characteristics. However, high complexity of the method requires high sampling accu-
racy and fast control speed, which might have resulted in a high cost system. And the 
system stability problem would be occurred once the control unit switches from CVT 
to INC MPPT mode or the starting point is not selected properly. The intelligent 
fuzzy, sliding mode and neural network methods [5-6] that focus on the nonlinear 
characteristics of PV array provide a good alternative for MPPT control. Since the 
output characteristics of the PV array should be well ascertained to create the MPPT 
control rules and the computation time of these algorithms are with high complexity, 
the versatility of these methods is limited. 

In considering the aforementioned shortcomings and then to fulfill the require-
ments of dynamic response and steady-state performance of a MPPT control for PV 
arrays, an intelligent control algorithm based on P&O method with extension neural 
network [7] was proposed in this paper. 

2   Extension Neural Network 

2.1   The Structure of ENN 

The schematic structure of the ENN is depicted in Fig. 1. The nodes in the input layer 
receive an input feature pattern and use a set of weighted parameters to generate an 
image of the input pattern. 

In this network, there are two connection values (weights) between input nodes 
and output nodes, one connection represents the lower bound for this classical domain 
of the features, and the other connection represents the upper bound. The connection  
 

1 k

1 j n

nc

p
i1x

11
Uww11

L

kj
Lw U

kjw

Output Layer

Input Layer

iO1 Oik cinO

p
ijx

p
inx  

Fig. 1. The structure of extension neural network 
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weights between the j-th input node and the k-th output node are 
L

kjw  and U
kjw . This 

image is further enhanced in the process characterized by the output layer. Only one 
output node in the output layer remains active to indicate a classification of the input 
pattern. The operation mode of the proposed ENN can be separated into the learning 
phase and the operation phase. The learning algorithm of the ENN will be discussed 
in the next section. 

2.2   Learning Algorithm of the ENN 

The learning of the ENN can be seen as supervised learning, and its purpose is to tune 
the weights of the ENN to achieve good clustering performance or to minimize the 
clustering error. Before the learning, several variables have to be defined. Let training 
pattern set be { }1 2, ,..., NP

X X X X≡ , where PN  is the total number of training patterns. 

The i-th pattern is { }1 2, ,...,
p p p p

i i i inX x x x≡ , where n is the total number of the feature of 

patterns, and the category of the i-th pattern is p . To evaluate the clustering perform-

ance, the total error number is set as 
mN , and the total error rate Eτ  is defined below: 

N
mE

N
p

=τ
 (1) 

The detailed supervised learning algorithm can be described as follows: 

Step 1: Set the connection weights between input nodes and output nodes. The range 
of classical domains can be either directly obtained from the previous re-
quirement, or determined from training data as follows: 

{ }min
L k

kj kji N
w x

∈
=  (2) 

{ }max
U k

kj kji N
w x

∈
=  (3) 

Step 2: Calculate the initial cluster center of every cluster. 

{ }1 2, ,...,k k k knZ z z z=  (4) 

( ) / 2 ,     f o r  1, 2 . . . ; 1, 2 , . . .L U
k j k j k j cz w w k n j n= + = =  (5) 

Step 3: Read the i-th training pattern and its cluster number p . 

{ }1 2, ,..., ,p p p p
i i i in cX x x x p n= ∈  (6) 

Step 4: Use the proposed extension distance (ED) to calculate the distance between 

the training pattern 
p

iX  and the k-th cluster as follows: 
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( )
( ) c

n

j L
kj

U
kj

L
kj

U
kjkj

p
ij

ik n   k    
ww

wwzx
ED ...,,2,11

2

2

1
=∑

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

−

−−−
=

=
，  (7) 

The proposed distance is a modification of extension distance [8], and it can be 
graphically presented as in Fig. 2. It can describe the distance between the x and a 

range ,
L U

w w . Figure 2 shows that different ranges of classical domains can arrive at 

different distances due to different sensitivities. This is a significant advantage in 
classification applications. Usually, if the feature covers a large range, the data should 
be fuzzy or less sensitive to distance. On the other hand, if the feature covers a small 
range, the data should be precise or highly sensitive to distance. 

Step 5: Find the k*, such that EDik*=min{EDik}, If k*=p then go to Step 7, otherwise 
Step 6. 

Step 6: Update the weights of the p-th and the *k -th clusters as follows: 

(a) Update the centers of the p-th and the *k -th clusters. 

( )new old p old

pj pj ij pjz z x z= + η −  (8) 

( )* * *

new old p old

ijk j k j k j
z z x z= − η −  (9) 

(b) Update the weights of the p-th and the k*-th clusters. 

( ) ( )

( ) ( )

( )

( )

L new L old p old

pj pj ij pj

U new U old p old

pj pj ij pj

w w x z

w w x z

= + η −
= + η −

⎧
⎨
⎩

 (10) 

* * *

* * *

( ) ( )

( ) ( )

( )

( )

L new L old p old

ijk j k j k j

U new U old p old

ijk j k j k j

w w x z

w w x z

= − η −

= − η −

⎧⎪
⎨
⎪⎩

 (11) 

where η  is a learning rate. The result of tuning two clusters' weights shown in Fig. 3, 

which clearly indicates the change of 
AED  and 

BED . The cluster of pattern ijx  is 

changed from cluster A to B because 
AED >

BED . From this step, we can clearly see that 

the learning process is only to adjust the weights of the p-th and the 
*k -th clusters. 

Therefore, the proposed method has a rapid speed advantage over other supervised 
learning algorithms and can quickly adapt to new and important information. 

Step 7: Repeat Step 3 to Step 6, and if all patterns have been classified then a learning 
epoch is finished. 

Step 8: Stop if the clustering process has converged or the total error rate Eτ  has 

arrived at a preset value; otherwise, return to Step 3. 
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Fig. 2. The proposed extension distance 

It should be noted that the proposed ENN can take input from human expertise before 
the learning, and it can also produce meaningful output after the learning, because the 
classified boundaries of the features are clearly determined. 
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(b)  

Fig. 3. The results of tuning cluster weights: (a) original condition; (b) after tuning 

3   The Extension Neural Network MPPT Controller 

3.1  The Proposed MPPT Scheme  

A simple MPPT PV system shown in Fig. 4 is developed to test the effectiveness of 
the proposed method. A boost converter is used as the power interface between the 
PV array and the load to achieve maximum power. The output voltage Vo of the boost 
converter can be expressed as [9] 
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Fig. 4. The proposed extension MPPT scheme 
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V PV

o −
=

1
 (12) 

where D is the duty cycle of the converter. It can be seen that the input DC voltage 
VPV can be shifted to a high level. This power converter is suitable for a lower PV 
output voltage and higher desirable DC link voltage case. 

3.2   The Extension Neural Network MPPT Method  

To let the MPPT method possess adaptive capability, it is proposed that the step size 
of P&O MPPT method of the PV arrays is adaptively tuned by the ENN error tuning 
scheme, which is driven by a slope error of the PV array power Ppv versus voltage Vpv 

and its error change which are defined as
)(

)(
0

)1()(

)1()(
)(

kdV

kdP

kVkV

kPkP
ke

pv

pv

pvpv

pvpv =−
−−
−−

=
∆

and 

)1()()( −−=
∆

kekeke& with Ppv and Vpv being the output power and voltage of the PV 
arrays at k-th sampling interval, respectively. The major purpose of this MPPT con-
troller is to let the resulted dPpv /dVpv tracking response closely follow that of refer-
ence dPpv/dVpv =0 as shown in Fig. 5. Thus the general model error trajectory can be 
predicted and plotted in Fig. 6. Based on the experience about the P-V characteristic 
curve shown in Fig. 5 and incorporating with the extension matter-element, the num-
bers of quantization levels of the input variables e(k) and )(ke& are chosen to be 12 
categories and listed in Table 1. Based on the experience about the MPP to be con-
trolled and the properties of dynamic signal analyses made in Fig. 6, the linguistic 
rules of the ENN error tuning scheme are decided and listed in the Table 1. The slope 
error e  is equal to zero at MPP of the PV array. When the operation point closes to 
MPP, the absolute value of slope error e becomes smaller; on the contrary, the value 
of e  will becomes bigger. And, the polarity of tracking direction depends on the slope 
error and slope error change as those shown in Fig. 5. According to the range of e , e&  
and tracking direction polarity, the ENN MPPT algorithm can discriminate the cate-
gory and then determined the duty cycle step size of the boost converter. 
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Fig. 5. The P-V curve slope error and error change of PV arrays 
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Fig. 6. General pvpv dVdP /  reference tracking error dynamic behavior  

Table 1. Quantized slope error, error change and decision duty cycle step size 

Category 
number 

Slope error region e Slope error change region e&  
Duty cycle 
step size 

D∆  

Tracking 
direction 
polarity  
p ( e, e& ) 

1 0.01973 ≤< e 13.0814 -30.33855 ≤< e& -0.060754 -0.01 +1 

2 13.1426 ≤< e 18.9344 -32.80175 ≤< e& -0.146825 -0.012 +1 

3 19.2897 ≤< e 48.3132 -77.2777 ≤< e& -0.59005 -0.025 +1 

4 0.02786 ≤< e 13.3896 0.0602297 ≤< e& 24.33907 -0.01 -1 

5 13.4424 ≤< e 18.9342 0.147061 ≤< e& 32.80199 -0.015 -1 

6 19.696 ≤< e 48.3195 0.551126 ≤< e& 77.2388 -0.022 -1 

7 -20.7179 ≤< e -0.34566 -140.5711 ≤< e& -0.0238124 0.01 -1 

8 -223.144 ≤< e -21.9978 -142.668 ≤< e& -0.87397 0.012 -1 

9 -390.206 ≤< e -224.154 -150.956 ≤< e& -0.959167 0.02 -1 

10 -20.7179 ≤< e -0.34566 0.0238124 ≤< e& 123.5711 0.01 +1 

11 -251.144 ≤< e -21.9978 0.87397 ≤< e& 142.668 0.025 +1 

12 -390.206 ≤< e -252.154 0.959167 ≤< e& 150.956 0.03 +1 
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According to the P-V curve statistical records of PV arrays at insolation 200 W/m2-
1000 W/m2, the lower and upper boundary of each classical region for slope error e  

and slope error change e&  are assigned as the connection weights U
kjw  and L

kjw  be-

tween input nodes and output nodes of the extension neural network. 

The actual measured 892 data of slope error e  and error change e&  at different re-
gions of P-V curve are used to train the ENN proposed in the previous section. To 
obtain higher and precise convergence rate, the learning rate η  and total error rate 

τE are set to be 0.2 and 0.1%, respectively. After the training procedure, one can find 

that the total error rate is 4.38% and only learning times 50 is needed. 
The proposed ENN method can calculate the distance with respect to each region 

category, and accordingly the region category and duty cycle step size D∆ in next 
period can be determined. The operation procedure of ENN is summarized as follows:  

Step 1: Read the weighting matrix of ENN. 

Step 2:Calculate the initial cluster centers of every cluster by using equation (4) and 
equation (5). 

Step 3: Read the test pattern. 

{ }1 2, ,...,t t t tnX x x x=
 

(13) 

Step 4: Use the proposed extension distance (ED) to calculate the distance between 
the inputted pattern and every existing cluster by equation (7). 

Step 5: Find the *k , such that }min{ ikik
DEDE * = , and set the 1=*ik

O  to indicate the 

cluster of the input pattern and recognize the category of the input slope error 
and error change information and determine the duty cycle step size ∆D of 
boost converter and the tracking direction polarity p( e, e& ). To increase the 
sensitivity and adaptive capability, the new duty cycle Dnew in next time pe-
riod is determined as follows: 

50)(
)(

)( .ee,p
EDED

ED
DDDDD

nr

r
rnoldnew ××⎥

⎦

⎤
⎢
⎣

⎡
+

×∆−∆+∆+= &  (14) 

Where oldD is the duty cycle of boost converter in the previous sample pe-

riod. The rD∆  and rDE  are the nominal duty cycle step size and extended 

distance of the judged region cluster. Whereas nD∆  and nDE  are the nomi-

nal duty cycle step size and extended distance next to the judged region clus-
ter. And ( )e ep &,  is the tracking direction polarity as shown in Table 1.  

Step 6: Input a new slope error and error change, then go back to Step 2, or else end 
the process. 

4   Simulation Results 

To verify the performance of the proposed ENN MPPT algorithm, a circuit-based 
PSIM model of a 3kW PV system with 4×10 series-parallel connection using  
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Fig. 7. Simulated dynamic response of PV array output power due to solar insolation step 
change from 1000W/m2 to 500 W/m2 and from 500W/m2 to 1000 W/m2 with (a) P&Q MPPT 
method; (b)INC MPPT method; (c)the proposed ENN MPPT method 
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SIEMENS SP75 Crystalline Silicon PV module is developed for simulation [10,11]. 
The specifications of the boost converter shown in Fig. 4 are chosen as follows: 

DC capacitance : FCi µ1000= , FC µ100= ; 

Filter inductance: L 200 H= µ ; 

Switching frequency: f 25s kHz= . 

To compare the performance of the proposed ENN MPPT algorithm which can 
automatically adjust the step size with the conventional fixed step size P&O and INC 
MPPT methods, the simulations are configured under exactly the same conditions. 
The sampling period used for P&O and INC MPPT algorithm is chosen as 0.01s. 
Therefore, the duty cycle of the boost converter is updated every 0.01s. The output 
power performance of P&O and INC MPPT methods with fixed step size 0.01 under 

insolation step change from 1000 W/m2 (at temperature T=45℃) to 500 W/m2 (at 

temperature T=35℃) at 0.3s are shown in Figs. 7(a) and 7(b), respectively. For the 
comparison, the corresponding PV output power response of the proposed ENN 
MPPT method with allowable maximum duty cycle step size ∆Dmax=0.03 is also 
shown in Fig. 7(c). It is obvious that the oscillations occurred at stead-state in P&O 
and INC MPPT are almost eliminated by the proposed ENN MPPT algorithm. More-
over, the dynamic performance of the proposed method is obviously faster than that 
of P&O and INC MPPT with fixed step duty cycle step size 0.01. 

To further verify the robustness of the proposed ENN MPPT method, the simulated 
power responses due to solar insolation step change from 500 W/m2 (at temperature 

T=35℃) to 1000 W/m2 (at temperature T=45℃) with P&O, INC and extension neural 
network MPPT methods are also shown in Figs. 7(a), 7(b), and 7(c) for comparison. 
The results indicate that the oscillations at steady-state are greatly reduced by utilizing 
the proposed ENN MPPT algorithm. Meanwhile, the dynamic response performance 
due to insolation change is improved, also. 

5   Conclusions 

An ENN MPPT method was presented in this paper. This method combined the ex-
tension theory and neural network with a boost converter to speed up responses for 
reaching the accurate MPP of PV arrays under solar insolation and ambient tempera-
ture changes. In addition, the proposed ENN MPPT method can also improve the 
steady-state performance and energy conversion efficiency. Both fixed step size 
MPPT methods (P&O and INC) and the proposed variable step size ENN MPPT 
methods are established with PSIM circuit-based model for simulation. The simula-
tion results demonstrate the effectiveness and robustness of the proposed method. 
Furthermore, the proposed ENN MPPT algorithm needs less constructed data and 
simple learning procedure such that it can be easily implemented using microcontrol-
ler in the future. 
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A Versatile Hyper-Ellipsoidal Basis Function for
Function Approximation in High Dimensional

Space

Saichon Jaiyen, Chidchanok Lursinsap, and Suphakant Phimoltares

Advance Virtual and Intelligent Computing (AVIC) Center, Department of
Mathematics, Chulalongkorn University, Bangkok 10330, Thailand

Abstract. This paper presents a versatile hyper-ellipsoidal basis func-
tion for function approximation in a given high dimensional space. This
hyper-ellipsoidal basis function can be translated and rotated to cover
the data based upon the distribution of data in a given high dimensional
space. Based on this function, we propose a one-pass hyper-ellipsoidal
learning algorithm for which any new incoming data can be fed for learn-
ing without involving the previously learned one. This learning algorithm
is used to adjust the parameters of the versatile hyper-ellipsoidal basis
function. In addition, we propose the hyper-ellipsoidal basis function
(HEBF) neural network that uses the one-pass hyper-ellipsoidal neural
learning algorithm. The structure of this neural network is similar to
the radial basis function (RBF) neural networks. The hidden neurons in
the HEBF neural network can be increased or decreased during learning
process. The number of the hidden neurons in the network can be grown
based on geometric growth criterion and can be reduced by merging the
two hidden neurons into a new hidden neuron based on merging criterion
during learning process. The merging process can be done independently
without considering the learned data set.

1 Introduction

Radial basis function (RBF) neural network is extremely popular and widely
used in function approximation problems [6], [7] because of their ability to ap-
proximate complex nonlinear mappings directly from the input-output data with
a simple neural network structure. The disanvantage of RBF neural networks is
that the structure of the RBF neural network is fixed before training process and
the number of hidden neurons cannot be known in advance. To overcome this
problem, Platt [1] proposed the sequential learning algorithm for RBF neural
network in which hidden neurons are added sequentially based on the novelty of
the new data. This neural network is called resource allocation network (RAN).
Kadirkamanathan and Niranjan [2] enhance RAN using an extended Kalman
filter (EKF) for updating the network parameters instead of least-mean square
(LMS) algorithm, known as a RAN extended Kalman filter (RANEKF). The
drawback of RAN and RANEKF is that the hidden neurons can grow up but
the hidden neuron is never removed. Yingwei [3] proposed the improvement of

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 756–765, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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RANEKF by introducing a pruning strategy called minimal resource allocating
network (MRAN). Li Yan [5] proposed an improved version of the MRAN al-
gorithm called Extended-MRAN (EMRAN) algorithm in which the parameters
that are related to the selected winner neurons are updated by the EKF algo-
rithm. The disanvantage of these proposed neural networks is that there are a
lot of parameters choosen by trial and error.

The performance of these RBF neural networks depend on the selection of the
RBF centers [8], the shape of radial basis function and their weights. Although,
new RBF neural networks are proposed consecutively, the learning algorithm
is still based on Gaussian function with diagonal covariance matrix as a basis
function. The shape related to Gaussian function in high dimensional input space
is either an hyper-spherical shape when the values in diagonal are the same or
an unrotated hyper-ellipsoidal shape when the values in diagonal are different.
Nevertheless, the shape related to Gaussian function in a high dimensional input
space is able to rotate the hyper-ellipsoidal shape if the Gaussian function is used
with full covariance matrix, the parameters of this function such as mean vector
and covariance matrix are difficult to compute and require a lot of epochs to
estimate these parameters because of the optimization technique [9]. In this
paper, we propose the new basis function for function approximation problem in
high dimensional space called a versatile hyper-ellipsoidal basis function based
on hyper-ellipsoidal function that can be translated and rotated to cover the data
in the high dimensional space. In addition, the new proposed neural network is
based on the versatile hyper-ellipsoidal basis function called a versatile hyper-
ellipsoidal basis function (HEBF) neural network that uses only one-pass hyper-
ellipsoidal neural learning algorithm to adjust the parameters of the versatile
hyper-ellipsoidal basis function.

2 HEBF Neural Network

The versatile hyper-ellipsoidal basis function (HEBF) neural network consists of
three layers, an input layer, a hidden layer, and an output layer. Given n neurons
in the input layer, K neurons in the hidden layer, and one neuron in the output
layer. For a given input vector, x = [x1, x2, ..., xn]T , in �n, the network output,
f(x), is defined by

f(x) =
K∑

k=1

αk |ψk(x)| (1)

where αk is the weight connecting the kth hidden neuron to the output neuron,
ψk(x) is the response of kth hidden neuron for an input vector x, and | · | denotes
the absolute value. In this paper, we define the new basis function, namely,
Versatile Hyper-Ellipsoidal Basis Function (HEBF) as shown in the equation
below. The versatile hyper-ellipsoidal basis function, ψk(x), at the kth neuron
in hidden layer is defined as follows.
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ψk(x) =
n∑

i=1

((x− ck)Tui)2

a2i
− 1 (2)

where the vector ck = [c1, c2, ..., cn]T is the center of the versatile hyper-
ellipsoidal basis function of kth hidden neuron, ai is the width of the ith axis
of the versatile hyper-ellipsoidal basis function of kth hidden neuron, and ui =
[u1, u2, ..., un]T is the unit basis vector along the ith axis of the versatile hyper-
ellipsoidal basis function of kth hidden neuron as explained in the next section.

3 Incremental Mean Vector and Incremental Covariance
Matrix Computation

Since the traditional mean vector requires all data vectors to compute their mean
vector, it is not suitable for one-pass incremental learning since all training data
are ignored after being learned. In order to compute the present value of mean
vector, the value of mean vector must be rewritten in the form of a recurrence
relation between the previous value of mean vector and the present value of mean
vector. The following Theorem states the recurrence relation.

Theorem 1. Let X = {x1,x2, ...,xN} be a set of N data vectors in �n and µold

be the mean vector of the data set X. If xN+1 ∈ �n is the new data vector added
into the data set X then

µnew = αµold + β, (3)

where µnew is the new mean vector, α = N
N+1 and β = xN+1

N+1 .

Like the mean vector, the present covariance matrix must be rewritten in the
form of recurrence relation similar to the mean vector. The theorem below states
this recurrence relation.

Theorem 2. Let X = {x1,x2, ...,xN} be a set of N data vectors in �n, µold

the mean vector of the data set X, and Sold the covariance matrix of the data
set X. If a new data vector xN+1 ∈ �n is added into the data set X then

Snew = αSold + κ (4)

where α = N
N+1 , κ = κ1 + κ2, κ1 = xN+1xT

N+1
N+1 − µnewµ

T
new + µoldµ

T
old, κ2 =

−µoldµT
old

N+1 , µnew is the new mean and Snew is the new covariance matrix.

4 The Proposed Learning Algorithm

In this paper, we denote Ω = {Ωk|1 ≤ k ≤ K} be a set of K hidden neurons.
Each hidden neural Ωk is demonstrated as a 4-tuple,

(
a(k), c(k), S(k), Nk

)
, where
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a(k) = [a(k)
1 , a

(k)
2 , ..., a

(k)
n ]T is the width vector of kth hidden neuron, c(k) =

[c1, c2, ..., cn]T is the center of kth hidden neuron, S(k) is the covariance matrix
of kth hidden neuron, and Nk is the total number of data covered by kth hidden
neuron. The element, a(k)

j , of the width vector is the width parameter which is
the width of the jth axis of the versatile hyper-ellipsoidal basis function of kth

hidden neuron. Let a(0)j be an initial width of jth axis chosen appropriately. Let
N0 be the constant chosen appropriately for making a decision to adjust the
width parameter a(k)

j . Let X = {(xi, yi)|1 ≤ i ≤ N} be a finite set of N training
data, where xi ∈ �n is an input vector and yi ∈ � is a desired output.

4.1 Geometrical Growth Criterion

Initially, there is no hidden neuron in the HEBF neural networks. A new hidden
neuron can be added into the network. When an input-output vector (xi, yi)
is presented into the network, the hidden neuron that is closest to the input
vector xi is assigned. If there exists the closest hidden neuron in the network,
this data vector is temporarily considered to be an element of the closest hidden
neuron. The new temporary parameters of the closest hidden neuron including
the center c(cs)

new, the covariance matrix S(cs)
new, and the number of elements Ncs of

the closest hidden neuron are computed but the width of axes of the versatile
hyper-ellipsoidal basis function have not been computed. Then, the output of the
closest hidden neuron is computed using the new temporary parameters along
with equation (2) as follows.

ψcs(xi) =
n∑

i=1

((xi − c(cs)
new)T ui)2

(a(cs)
i )2

− 1,

where the index cs represents the index of the closest hidden neuron. If the
geometrical growth criterion ψcs(xi) > 0, then a new hidden neuron is allocated
and added into the network.

4.2 Merging Strategy

Given Ωx =
(
a(x), c(x), S(x), Nx

)
and Ωy =

(
a(y), c(y), S(y), Ny

)
be any two hid-

den neurons in HEBF neural network. If these two hidden neurons are merged
into a new hidden neuron Ωnew =

(
a(new), c(new), S(new), Nnew

)
, the new pa-

rameters of a new hidden neuron can be computed as follows.

a
(new)
j =

√
2π|λj |+ δ, j = 1, ..., n. (5)

c(new) =
1

Nx +Ny

(
Nxc(x) +Nyc(y)

)
(6)

S(new) =
Nx

Nx +Ny
S(x) +

Ny

Nx +Ny
S(y)

+
NxNy

(Nx +Ny)2
(c(x) − c(y))(c(x) − c(y))T (7)

Nnew = Nx +Ny (8)
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4.3 One-Pass Hyper-Ellipsoidal Neural Learning Algorithm

In this section, one-pass means that each input data vector is learned only one
time. Let K be the number of hidden neurons in HEBF neural network and ε be
a threshold for merging the hidden neurons in the network. If there is no hidden
neuron in the network, we set K = 0. The learning algorithm for HEBF neural
network can be summarized as follows:

Algorithm

1. Present a training data (xi, yi) to the HEBF neural network.

2. If K �= 0 then find a hidden neuron Ωk ∈ Ω where

k = arg max
j

(||xi − c(j)||), j = 1, ..., K.

(a) Compute c
(k)
old = c(k) and S

(k)
old = S(k).

(b) Compute the new center c
(k)
new based on Theorem 1.

c(k)
new = αc

(k)
old + β

(c) Compute the new covariance matrix based on Theorem 2.

S(k)
new = αS

(k)
old + κ

else set K = K + 1 and create a new hidden neuron ΩK .
(a) Set the center c(K) = xi.
(b) Set the covariance matrix S(K) = 0 (zero matrix).
(c) Set the parameter NK = 1.
(d) Set the width parameter a

(K)
j = a

(0)
j , j = 1, ..., n.

(e) Set Ω = Ω ∪ ΩK and remove (xi, yi) from the training set X.
(f) Go to step 7.
end

3. Compute the orthonormal basis for Ωk.
(a) Compute the eigenvalues of covariance matrix S

(k)
new :

λ1 > λ2 > ... > λn.

(b) Compute the eigenvectors of the covariance matrix S
(k)
new:

u1,u2, ..., un,

where uj is the eigenvector corresponding to λj .
(c) Assign {u1, u2, ..., un} be the orthonormal basis for Ωk.

4. Compute ψk(xi) =
n∑

i=1

((xi − c
(k)
new)T ui)2

(a(k)
i )2

− 1

5. If ψk(xi) ≤ 0 then update the parameters of Ωk using these steps:
(a) Update the center of Ωk, c(k) = c

(k)
new.

(b) Update the covariance matrix of Ωk, S(k) = S
(k)
new .
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(c) Update the parameter Nk = Nk + 1.
(d) If Nk ≥ N0 then update the width parameter of Ωk by setting

a
(k)
j =

√
2π|λj | + δ, j = 1, ..., n,

where δ is a small value.
end

else set K = K + 1 and create a new hidden neuron ΩK .
(a) Set the center c(K) = xi.
(b) Set the covariance matrix S(K) = 0 (zero matrix).
(c) Set the parameter NK = 1.
(d) Set the width parameter a

(K)
j = a

(0)
j , j = 1, ..., n.

(e) Set Ω = Ω ∪ ΩK and remove (xi, yi) from the training set X.
end

6. Find the hidden neuron Ωnr ∈ Ω such that

nr = arg min
j �=cr

||c(cr) − c(j)||, j = 1, ..., K,

where cr is the index of current updated neuron or the new added neuron and nr
is the index of the nearest neuron.

If ||c(cr) − c(nr)|| < ε then do the following steps:

(a) Merge the hidden neuron Ωnr and Ωcr into a new hidden neuron and compute
its parameters by equation (5), (6), (7), and (8).

(b) Add the new hidden neuron into the network and then remove Ωnr and Ωcr

from the network.
(c) Set K = K − 1.

end

7. If the training set X is not empty then go to step 1.
else, stop training.

Let w = [w1, w2, ..., wK ]T be a weight vector of HEBF neural network where
wi, i = 1, ...,K, is the weight between ith hidden neuron in the hidden layer
and the output neuron in the output layer. After training, the weights between
hidden layer and output layer are computed by the following equation.

w = G+y

where G+ is the pseudo inverse of matrix G and y = [y1, y2, ..., yN ]T is the
desired output vector. The matrix G is defined by

G =

⎡⎢⎢⎢⎣
|ψ1(x1)| |ψ1(x2)| · · · |ψ1(xN )|
|ψ2(x1)| |ψ2(x2)| · · · |ψ2(xN )|

...
...

...
|ψK(x1)| |ψK(x2)| · · · |ψK(xN )|

⎤⎥⎥⎥⎦
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5 Experimental Results

In this paper, the performance of HEBF neural network is evaluated and com-
pared to the radial basis function (RBF) neural network, the minimal resource
allocating network (MRAN), and the Extended-MRAN (EMRAN). The bench-
mark problems are the real world problems in the area of the function approxima-
tion and regression collected from UCI Repository of machine learning database
[10]. In the experiments, the input attributes and the output of the data set are
normalized within the range [0, 1]. The 5-fold cross-validation is used for training
and testing all models mention above. In the 5-fold cross-validation, each data
set is divided into five disjoint subsets. Then four subsets are used as a training
set and the rest is used as a testing set. After training, we test all models by the
training set and testing set. Then, the errors from these models are computed
by using the mean absolute error (MAE) and the mean square error (MSE).
This process is repeated five times, each of which one subset is used exactly
once as the testing set. Eventually, the results from each training and testing
set are averaged. The proposed (HEBF) neural network as well as the MRAN
and EMRAN are trained only one epoch. Suppose that X = {x1,x2, ...,xN},
where xi ∈ �n, is the training set and µ is the mean of this data set. The initial
width of HEBF neural network and RBF neural network are computed from the
following equation.

a0 = ρ ·max
i
‖xi − µ‖ , i = 1, ..., N (9)

where ρ is the threshold. For the MRAN and EMRAN algorithms, the values
of κ = 0.1, γ = 0.99, Q0 = 0.00001, and P0 = 1.0 are fixed for all experiments.
Next, the results for each benchmark problem are presented.

5.1 Boston Housing Data Set

Boston housing data set [10] consists of 13 input attributes and one continuous
output (median value of owner-occupied homes). There are 506 instances in this
data set. For the MRAN and EMRAN algorithms, the model parameters are
chosen as follows: emin = 0.001, e′min = 0.002, εmin = 0.2, εmax = 1.15, and a
size of sliding window, M , for growing and pruning is chosen at M = 80. For
the RBF algorithm, the initial width of Gaussian basis function is computed
from equation (9) with ρ = 0.25. For our algorithm, the model parameters are
initialized as follows: N0 = 15, ε = 0.39, δ = 0.01, and the initial axes are
computed as ak

i = a0, where a0 is computed from equation (9) with ρ = 0.25
as same as RBF. The average results of the mean absolute error and the mean
square error from the 5-fold cross-validation method together with both training
and testing set are illustrated in Table 1. It can be obviously noticed that the
average accuracy of the training set of the proposed algorithm is higher than
the average accuracy of the training set of MRAN and EMRAN algorithm but
slightly less than that of RBF. Furthermore, the average accuracy of testing
of the proposed algorithm is higher than those of the others. In addition, the
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Table 1. The comparison results trained by Boston Housing Data Set

Algorithms Training Error Testing Error No. of No. of

MAE MSE MAE MSE Neurons epochs

HEBF 0.0653 0.0077 0.0910 0.0144 42.6 1

RBF 0.0475 0.0043 0.0910 0.0164 43 43

MRAN 0.1299 0.0340 0.1319 0.0358 43 1

EMRAN 0.1397 0.0392 0.1461 0.0429 43.6 1

Table 2. The comparison results trained by Concrete Compressive Strength Data Set

Algorithms Training Error Testing Error No. of No. of

MAE MSE MAE MSE Neurons epochs

HEBF 0.0637 0.0069 0.0852 0.0120 80 1

RBF 0.0675 0.0072 0.1035 0.0184 80 80

MRAN 0.1395 0.0327 0.1523 0.0359 81.8 1

EMRAN 0.1480 0.0366 0.1752 0.0471 84.6 1

average number of the hidden neurons of the proposed algorithm is slightly less
than those of the others.

5.2 Concrete Compressive Strength Data Set

Concrete compressive strength data Set [10] consists of 8 input attributes and one
continuous output (Concrete compressive strength). There are 1030 instances
in this data set. For the RBF algorithm, the initial width of Gaussian basis
function is computed from equation (9) with ρ = 0.2. For our algorithm, the
model parameters are initialized as follows: N0 = 15, ε = 0.285, δ = 0.01, and
the initial axes are computed as ak

i = a0, where a0 is computed from equation
(9) with ρ = 0.2. For the MRAN and EMRAN algorithms, the model parameters
are chosen as follows: emin = 0.001, e′min = 0.002, εmin = 0.1, εmax = 1.15, and
the size of sliding window for growing and pruning is chosen as M = 80. The
average results of the mean absolute error and the mean square error from the
5-fold cross-validation method are shown in Table 2. It shows that our algorithm
performs better than the others in terms of training and testing errors and the
number of neurons in the network.

5.3 Computer Hardware Data Set

Computer hardware data set [10] consists of 6 predictive attributes, 2 non-
predictive attributes, 1 goal field, and the linear regression’s guess. There are
209 instances in this data set. In this data set, the 6 predictive attributes are
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Table 3. The comparison results trained by Computer Hardware Data Set

Algorithms Training Error Testing Error No. of No. of

MAE MSE MAE MSE Neurons epochs

HEBF 0.0246 0.0013 0.0629 0.0122 13.2 1

RBF 0.0166 0.0006 0.0862 0.0436 14 14

MRAN 0.0754 0.0180 0.0949 0.0448 14 1

EMRAN 0.0795 0.0187 0.0938 0.0433 13.8 1

used as the input attributes and the goal field attribute (published relative per-
formance) is used as the output. For the MRAN and EMRAN algorithms, the
model parameters are chosen as follows: emin = 0.002, e′min = 0.001, εmin = 0.04,
εmax = 1.15, and a size of sliding window for growing and pruning is presented
at 80. For the RBF algorithm, the initial width of Gaussian basis function is
computed from equation 9 with ρ = 0.2. For our algorithm, the model parame-
ters are initialized as follows: N0 = 15, ε = 0.31, δ = 0.01, and the initial axes
are computed as ak

i = a0, where a0 is computed from equation (9) with ρ = 0.2.
The average results of the mean absolute error and the mean square error from
the 5-fold cross-validation method are shown in Table 3. According to Table 3,
the average accuracy of the training of the proposed algorithm is higher than the
average accuracy of the training of MRAN and EMRAN algorithm but slightly
less than that of RBF. Furthermore, the average accuracy of the testing of the
proposed algorithm is higher than those of the others and, also, the average
number of hidden neurons is less than those of the others. Here, we define one
epoch as a period of unit time measured during the consecutive training from
the first input pattern to the last input pattern. From all simulation results, the
number of epochs of the proposed algorithm is equal to the number of epochs of
MRAN and EMRAN but less than that of RBF.

6 Conclusion

In this paper, a versatile hyper-ellipsoidal basis function (HEBF) for function
approximation in high dimensional space is proposed. The basis function can be
translated and rotated to cover the input data in high dimensional space de-
pend upon the distribution of the data set in the high dimensional data space. A
one-pass hyper-ellipsoidal learning algorithm for adjusting the parameters of a
versatile hyper-ellipsoidal basis function is mainly proposed. This algorithm can
adjust the parameters of the versatile hyper-ellipsoidal basis function only one
epoch for one incoming data. This algorithm includes the geometrical growth
criterion to handle the new hidden neurons and merging strategy to merge the
two hidden neurons into a new hidden neuron. This merging strategy does not re-
quire any previous trained data. Consequently, the number of hidden neurons can
be reduced. Furthermore, the versatile hyper-ellipsoidal basis function (HEBF)
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neural network is presented for approximating the function in high dimensional
space based on the versatile hyper-ellipsoidal basis function. The performance
of proposed learning algorithm has been compared with other sequential well
known learning algorithms such as RBF, MRAN, and EMRAN on three real
world problems in the function approximation area. The results indicate that
the average accuracy of the testing set of the proposed model is better than the
other models.
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Abstract. Although many approaches to collaborative filtering have been pro-
posed, few have considered the data quality of the recommender systems. 
Measurement is imprecise and the rating data given by users is true preference 
distorted. This paper describes how item response theory, specifically the rating 
scale model, may be applied to correct the ratings. The theoretically true prefer-
ences were then used to substitute for the actual ratings to produce recommen-
dation. This approach was applied to the Jester dataset and traditional k-Nearest 
Neighbors (k-NN) collaborative filtering algorithm. Experiments demonstrated 
that rating scale model can enhance the recommendation quality of k-NN algo-
rithm. Analysis also showed that our approach can predict true preferences 
which k-NN cannot do. The  results  have important implications for improv-
ing the recommendation quality of other collaborative filtering algorithms by 
finding out the true user preference first. 

Keywords: Collaborative filtering, Rating quality, Rating scale model, Item re-
sponse theory, k-NN algorithm. 

1   Introduction 

Collaborative filtering (CF) is a popular technique used in recommender systems [1, 
2, 3]. It works by collecting user ratings for items in a given domain. Although many 
CF approaches have been proposed [4, 5, 6], few have explored the effect of the rat-
ing error on the recommendation quality. From psychology point of view, when an 
item is presented to a user, preference for it must be first estimated and then a rating is 
typed according to the user’s understanding of the rating scale. Each step of the proc-
ess can influence the rating, so error comes about. What if it were possible to correct a 
user’s rating to eliminate the error? Would the resulting rating improve the recom-
mendation quality? This paper first analyses the actual ratings from Item Response 
Theory (IRT) point of view and then uses the rating scale model in IRT to correct the 
ratings. The theoretically true preferences are at last processed by k-NN algorithm [7] 
to produce recommendation. 

The remainder of the paper is organized as follows. Section 2 introduces IRT, Rat-
ing Scale Model (RSM) and rating correcting; Section 3 provides the experiments 
investigating whether the theoretically true preference is a better representation of 



 Application of Item Response Theory to Collaborative Filtering 767 

user preference and can improve recommendation quality; Section 4 provides analy-
ses from our preliminary experiments; Section 5 summarizes our conclusions and 
presents future works. 

2   Item Response Theory 

IRT, which sees increasing applications in the fields of attitudes and interests meas-
urement [8, 9, 10], is first developed in psychometrics as a complement of Classical 
Test Theory (CTT). It is about the application of mathematical models to data from 
questionnaires or tests for measuring latent traits, such as attitudes, interests, and etc. 
It is based on the idea that the probability of getting a test item correct is a function of 
person ability and item difficulty. As the rating data in recommend systems are atti-
tude data for measuring interests, for ease of understanding, we use the terms pro-
vided in [8] with some modifications in this paper and explain the basic idea  again, 
that is, the likelihood of a like response to an item is a function of user interest and 
item agreeability. 

In the next section, we analyze the rating data with responses classified as like 
(value 1) or dislike (value 0), derive rating distribution function and explains the ra-
tionale of IRT simultaneously. More elaborate explanation can be found in [11]. 

2.1   Why Apply IRT? 

Most of IRT models assume that person’s responses to items attribute to only one 
latent trait θ (the unidimensionality hypothesis), that is, all items in a questionnaire or 
test are used to measure the same variable, whether it is interest or attitude or ability. 
They also assume that latent traitθ , theoretically can be any value in ( , )−∞ +∞ , is a 

determinate value for a specific person. When showing a user j an item i, his latent 

response iγ  is an indirect measurement of his interest jθ  because measurement in-

cludes error. We formulate this as (1),  

i i j iγ ρ θ ε= +   . (1) 

where iρ  is the linear correlation coefficient between iγ and jθ , iε  the user’s ran-

dom error for item i. IRT hypothesizes that the user’s response to item i is independ-
ent of his responses to other items (the local independence hypothesis), so whether the 

user will show a like response rests with if his response iγ is bigger than a threshold 

iγ ∗ pertaining to item i’s agreeability, namely, the probability of a like response is 

( )
i ip γ γ ∗> . IRT assumes that

i
ε  has a normal distribution with mean 0 and vari-

ance 21 iρ− , so iγ  also obeys normal distribution with mean i iµ ρ θ=  and standard 

deviation 21i iσ ρ−= . We then have the formulation (2), where ,j ir  is user j’s 

rating for item i.  
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( )
,

2 2/21
( 1| )

2 i
i

j i j

i

i i ip r de γγ

γ µ σθ
σ π∗

+∞ − −= = ∫ . (2) 

IRT defines item agreeability ib  and item discrimination ia  as shown in formula (3) 

and (4). Discrimination ia represents the degree to which item i discriminates between 

users in different regions on the latent interest continuum. More explanation about 

ia and ib  which is often called item difficulty can be found in [12]. 

/i i ib γ ρ∗=  . (3) 

2/ 1i i ia ρ ρ−=  . (4) 

We substitute (3) and (4) into (2) and then (2) is transformed to formulation (5).  
2

( )
2

,

1
( 1| )

2

i j i
t

a b

j i j tp r e d
θ

θ
π

− −

−∞
= = ∫  . (5) 

While further hypothesizing that all items have same discrimination a (the equal dis-

crimination hypothesis) and set '

j jaθ θ= , '

i ib ab= , the two parameter normal ogive 

model [13] (5) is changed to one parameter normal ogive model (6). 
2 2

'

'
2 2

' '

,
1 1

( 1 | )
2 2

j j

i i

t t
b b

t t

j i j i

b bj i jp r e d e d
θ θθ θ

θ
π π

− −− −

−∞ −∞

=

=
= = ←⎯⎯→∫ ∫  . (6) 

Through assuming that the error arising from item response process obeys normal 
distribution, we obtain user’s rating distribution function (6); theoretically true prefer-
ence can then be computed. That’s why we consider using IRT model to correct ratings.  

2.2   Rasch Model 

IRT was first developed using normal ogive models, such as (5) and (6) in section 2.1, 
however, the complex integral computation had limited its practicality at the time. 
Researchers then found that logistic model with simpler calculation can be good ap-
proximation to normal ogive model [14], so logistic model has gradually substituted 
the latter. Corresponding logistic model has been proposed for each normal ogive 
model. The one parameter logistic model [15], also named Rasch model, approximat-
ing one parameter normal ogive model has the formulation (7), where the parameters 
have the same meaning as they are in formula (6).  

,
1

( 1| )
j i

j ij

b

j i b

e

e
p r

θ

θθ
−

−
+

= =  . (7) 

Intuitively, when user interest jθ is equal to item agreeability ib  , user j has a prob-

ability of 0.5 to give a like response. The more jθ is larger than ib , the more probable 

j will give a like response. 
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2.3   Rating Scale Model 

Rasch model used for dichotomous response categories is extended to rating scale 
model (RSM) dealing with polychotomous ordered response categories [16]. A simple 
summary of the derivation can be found in [17]. RSM used in this paper is formula (8), 

( )

, ( )

1

( | , , , )
1

x j i

j ik

x b

j i j i m k b

k

e
p r x b m

e

κ θ

κ θθ κ
+ −

+ −
=

= =
+∑

 . (8) 

where ,j ir , jθ and ib have the same meaning as they are in formula (7), x a user rating 

taking from successive rating categories set {0,1,2,…,m}, and 

0 0κ = ,
1

x

x kk
κ τ

=
= −∑ , x =1,2,..,m-1, 0mκ = the category coefficients expressed in 

terms of the ordered thresholds 1 2,...,, mτ τ τ which assumed by RSM to separate succes-

sive categories. RSM also assumes that the discriminations at the thresholds are all 
equal [17]. 

2.4   Rating Correcting Using RSM 

After having the rating distribution function (8), the theoretically true preference can 
be further computed as (9). 

, ,( ) * ( | , , , )j i j i j iE r x p r x b mθ κ= =  . (9) 

We use '

,j ir  to stand for the actual rating given by user j for item i, we then define 

residual as (10) to represent the effect of the errors arising from the rating process.     

'

, , ,( )j i j i j iresidual r E r= −  . (10) 

3   Experiments 

In this section we first describe the dataset and the experiments exploring the effect of 
rating correcting on the recommendation quality and then provide the experimental 
results. 

3.1   Experimental Datasets 

We use the user-joke continuous ratings (-10.00 to +10.00) from the Jester dataset 
[18]. The subset we random chose has ratings of 100 users for 100 jokes with some 
ratings missing. Since RSM can only deal with discrete ordered rating categories, the 
ratings was first rounded. We then added 10 to the ratings to obtain the ordered rating 
categories set {0, 1,…, 20}. Although when using IRT models, violation of the hy-
potheses mentioned in section 2.1 will not cause big problem[11, 19] recommends 
deleting the items having loading less than 0.3 on the first factor after factorial  
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analysis. We at last obtained 6280 ratings of 100 users for 88 items. 80% of the rat-
ings are random selected into a training set and the remaining ratings into a test set.  

3.2   Methods 

We first analyzed the training set using Facets 3.22 [20], which estimates the parame-
ters in RSM while giving the theoretically true preferences for the analyzed ratings. 
The true preferences were then used as the training ratings. The result was compared 
with the recommendation quality obtained using the actual ratings as the training 
ratings. The whole process is repeated 6 times with different training set. For simplic-
ity, we used k-NN recommendation algorithm [7]. Average experiments results are 
given in the next section. 

3.3   Results 

With the two kinds of training ratings mentioned in section 3.2, we report the Mean 
Absolute Error (MAE) [21] in Fig.1. MAE corresponds to the average absolute devia-
tion of predictions to the actual ratings in the test set. A smaller MAE value indicates 
a better performance. In Fig.1, RSMk-NN stands for the recommendation method 
using the theoretically true preferences as the training ratings and k is the number of 
neighbors. The maximum of k is set to be 30 because of the suggestion in [7]. 
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Fig. 1. Recommendation quality MAEs obtained using RSMk-NN and k-NN 

From Figure 1, we see that RSM-kNN outperforms k-NN in all the experimental 
settings except k=30. We attribute the better performance of k-NN at k=30 to the 
effect of neighbors’ number, as we can see clearly form Fig,1 that k influences k-NN 
more than RSMk-NN. 

4   Discussion 

In this section, we first discuss why RSMk-NN can outperform k-NN and then ana-
lyze the relationships between the two method’s performance and user rating residual. 



 Application of Item Response Theory to Collaborative Filtering 771 

4.1   Why Can RSMk-NN Have Better Performance? 

To explain the better performance of the RSMk-NN, we assume that the neighbors 
found out by RSMk-NN are better. We define the user-neighbors Distance as shown in 
formula (11) for evaluating neighbors’ quality. 

1 1
tan

| |
t

u k

j jj t
Dis ce

uk

θ θ
= =

−
=
∑ ∑

 . (11) 

In formula (11), u is the number of users in the test set, k the number of neighbors, 

j
θ user j’s interest and 

k
j

θ user j’s t-nearest neighbor’s interest.  

Upon the better neighbors assumption, we could infer that the Distance obtained 
using RSMk-NN will be smaller in all the experimental settings except k=30, that is, 
the neighbors found by RSMk-NN will be closer to the user on the latent interest 
continuum. The results are given in Fig.2, which confirm our inference. 
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Fig. 2. User-neighbors Distances obtained using RSMk-NN and k-NN 

4.2   RSMk-NN and k-NN’s Performance and Rating Residual 

From psychology point of view, the ratings in the test set are also true user prefer-
ences with errors. Although we can get better prediction quality which we ascribe to 
better neighbors, we consider that RSM-kNN should have even better performance for 
the actual ratings with less residual (ref. formula (10)). 

We then used the parameters given by Facets 3.22 [19] to compute the theoretically 
true preference and residual (ref. formula (9) and (10)) for each rating in the test set. 
MAEs obtained using RSMk-NN and k-NN for test ratings with |residual|< a (a was set 
to be 0.2, 0.4,…, 0.8, 2, 4,…, 10 respectively) are given in Fig.3. To eliminate the influ-
ence of different neighbors’ number, k is set to be 30. The results show that RSMk-NN 
indeed has even better performance for the actual ratings with less residual.  

RSMk-NN gets a very good performance with MAE equal to 0.214 when predict-
ing test ratings with |residual|<0.2. From this point of view, we conclude that RSMk-
NN can predict true preferences, which k-NN can not do due to lack of consideration 
of rating error. 
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Fig. 3. MAEs obtained by RSMk-NN and k-NN using test ratings with |residual|<a 

5   Conclusion and Future Work 

Users’ true preferences eliminated the effect of errors arising from the rating process 
can better predict their preferences in the future. In this paper, we proposed a recom-
mendation method named RSMk-NN which used the rating scale model to obtain 
system users’ theoretically true preferences. Experiments show that our RSMk-NN 
can outperform k-NN collaborative filtering algorithm. Experiments also demonstrate 
that RSMk-NN obtains better performance by finding out better neighbors. Further 
analysis indicates that RSMk-NN can predict true preferences. Our method has im-
portant implications for other collaborative filtering algorithms by considering the 
ratings quality first before giving recommendations. 

In this paper, items were assumed with equal discrimination and unidimensional 
after deleting some of them. In future work, we would like to take different discrimi-
nation and multidimensionality into consideration, expecting that even better recom-
mendation quality can be achieved. 
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Abstract. Game theory is an interdisciplinary approach to the study of human 
behavior. Games describe a widely accepted framework for representing  
interactive decision-making. Artificial Neural Networks (ANNs) are universal 
approximators and have the ability of learning. Combining ANNs with game 
representation, we introduced a new architecture by which the learning abilities 
of ANNs are utilized to predict game behavior. Based on previous work, we in-
vestigated further the potential value of neural networks for modeling and pre-
dicting human interactive learning in repeated games. We conducted simulation 
studies based on the new model using experiments data which are provided by 
authors other than this paper. Through computer simulations and comparing 
with other models, we demonstrated that our model is superior in many respects 
to other models on ten experiments. 

Keywords: Neural networks, Learning, Game, Prediction. 

1   Introduction 

Artificial Neural Networks (ANNs) contain a large number of simple processing units 
(artificial neurons) which are interconnecting widely to generate a self-learning, adap-
tive and self-organization of dynamic distributed parallel processor. Also the neural 
Network is a pattern of classified information processing system from which features 
can be extracted automatically. Due to high level of intelligence, high speed to iden-
tify, high rate of correct identification, ANNs have raised lots of concerns.  

Hu X. and Wang J. presented a recurrent neural-network model for solving a spe-
cial class of general variational inequalities (GVIs), which includes classical VIs as 
special cases [1]. It was proved that the proposed neural network for solving this class 
of GVIs could be globally convergent, globally asymptotically stable, and globally 
exponentially stable under different conditions. In 2008, a one-layer recurrent neural 
network with a discontinuous hard-limiting activation function was proposed for 
quadratic programming [2]. These contributions demonstrate that ANNs can be 
widely used in many fields.  

Since the 1970s, economics has experienced a revolution of game theory. Game 
theory provides a valuable tool for many problems, but a variety of methods has limi-
tations. In the 1970s and 1980s, researchers in economic psychology, such as Herbert 
Simon, challenged the strong assumption made by economic theorists that individual 
decision-making is purely rational. Economists responded with vigorous new lines of 
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work that addressed many of these concerns. Since then, experimental and behavioral 
economics have flourished and have been honored with the Nobel Prizes awarded to 
Vernon Simith and Daniel Kahneman [3]. 

Recently, researchers used several modeling strategies to fit and predict how hu-
mans learn in repeated games in a laboratory setting, and great achievements were 
made. One modeling strategy extends a classical paradigm of learning theory (i.e., 
reinforcement learning) [4, 5] to games. The second strategy builds hybrid models 
that blend reinforcement learning with modeling the evolution of a player's beliefs 
about other players' moves: the relative weight of both learning processes depends on 
parameters that can be tuned, in turn, by experience [6, 7]. More recently, a model 
which emphasizes post-decision regret as the driver of learning has also been pro-
posed [8]. As interest in neuroeconomics rising, a different modeling strategy adopt-
ing neural networks as models of human interactive behavior might be conceived. 
Recent advances in psychology are raising new challenges to economic assumptions. 
Marchiori and Warglien open a fresh avenue by which we can use models of neural 
networks to understand how humans learn as they make economic decisions [9]. 

Following the work made by Marchiori and Warglien [9], we establish a new struc-
ture of combining an artificial neural network with game behavior diagram. A con-
ceived concept of ‘regret’ is used to establish learning strategies for neural networks. 
The payment function of the games is utilized to establish a ‘regret’ neural network 
model. We conducted simulation studies using Matlab on PC, and the classical ex-
perimental data are used for the simulation. We also investigate the human interactive 
learning behavior represented by mixed strategy of repeated games. The simulation 
results are analyzed and compared with that got by other methods. The results show 
that neural network technology can be used for simulation of game behavior.  

This paper is organized as follows. The second part presents our learning model struc-
ture. The third part introduces the criteria we considered. The fourth part describes other 
established models for prediction in repeated games. The fifth part shows our computer 
simulation results and analysis. The sixth part concludes this paper. 

2   The Learning Model 

Modeling human interactive decision-making using neural networks is a new research 
direction. To explore the possibility of human interactive learning behavior, we con-
ceived the network architecture and selected input information to the network that had 
to be both economically and neurophysiologically motivated. 

The work presented here treats interactive learning which differs from individual 
learning in that, given n agents, each agent adapts to behaviors that are modified by 
the concurrent learning of the other n--1 agents. Interactive learning is our model’s 
significant characteristic. Experimental game theory has provided a large set of labo-
ratory data on human interactive learning in repeated games [10], often contradicting 
the predictions of standard game theory. The need for models of interactive learning 
in games arises from the difficulties of ordinary game-solution concepts to explain 
both the trajectories and the long-run stationary state of experimentally observed 
human behavior in repeated games. Because Nash equilibrium [11] not only fails to  
 

 



776 Q. Sun, G. Ren, and X. Qi 

wij

action 1 action 2 

action 1 

action 2 

player B 

action 1 

action 2 
player A 

 

Fig. 1. The new architecture of regret model 

approximate behavior in early rounds but also is often a poor predictor of the stable 
behavior emerging in the long run. In this paper, we focus on games with unique 
equilibria in mixed strategies.  

We’d like to formulate a concise model using one of the most elementary learning 
neural network architectures: the simple (one-layered) analog perceptron [12, 13]. 
Our model maps the structure of a strategic game onto a neural network in a direct 
way. The model has an input node xj corresponding to each payoff in the game utility 
matrix and the opponent's payoffs. The output node yi presents for each action avail-
able to a player k. The learning model structure is plotted in Fig.1. The feedback 
process is modified according to some essential economic considerations (in accor-
dance with both theoretical insights and empirical evidence). All of our research is 
based on a premise that learning is driven by a sort of ‘ex-post’ rationalizing process 
[14]: once individuals know what the other individual's move was, they modify their 
behavior by looking backward to what might have been their best move. They make 
adjustment in the direction of such an ex-post best response. 

Recent neuroscience research on individual decision-making shows that regret af-
fects learning and that both neurophysiological and behavioral responses to the ex-
perience of regret are correlated to its amplitude [15, 16].Thence we assume that the 
intensity of the adjustment is proportional to a measure of regret: how much they have 
missed by not playing such move. The input information is coded taking the value of 
the corresponding payoff in the current game’s utility matrix; the output node activa-
tion is computed by summing up inputs to each output node weighted by the value of 
the incoming connections wij and transforming the summation via the hyperbolic log-
sig activation function  

 

log ij j
j

y sig w x
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∑

 
(1) 
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The activate function values of the output nodes can be viewed as propensities of 
actions. And after normalization, they are transformed into actual probabilities of 
play. Thus far, the learning model is a very conventional, simple analog perceptron, 
where learning is modeled, as usual, as adaptive updating of the connections’ weights.      

Connection weight adjustment we adopted is driven by a series of factors that can 
be summarized as adjustment is equal to the product of learning rate, distance from 
ex-post best response, regret and input saliency. As compared with Hopfield’s percep-
tron rule, the main difference of this variant is that the error feedback is multiplied by 
the regret size. The update rule [12, 13] is shown below: 

 
1t t

ij ij ijw w w−= + ∆
 (2) 

given the action m chosen by player k, k
ma   

 ( ) ( ),k k k k
ij i i m jw t a y R a a xλ − −⎡ ⎤∆ = × − × ×⎣ ⎦  (3) 

where λ  is the learning rate; ( )k
it a−  is the ex-post best response of player k to the 

other players actions ka− ; iy  is its propensity to play action i; ( )kR �  is the regret 

given the action k
ma  and other players’ actions ka−  ; and jx  is presented by payoff 

saliency. Regret is computed as the difference between the actual payoff received by a 
player k and the maximum payoff obtainable, given other players' actions.  

3   Criteria Consideration 

In order to better compare the performances of different models with different degrees 
of complexity, we considered four measures: the Mean Square Deviation (MSD), 
Sum of Squared Residuals (SSR), the Akaike Information Criterion (AIC) and Bayes-
ian Information Criterion (BIC).The last two criteria take into account the number of 
free parameters which suggests that a measure of model error is penalized proportion-
ally to the number of free parameters in the model [17]. 

MSD is one of the most accepted ways to measure the distance between the esti-
mated and the observed vectors of subjects’ choice frequencies [18]. Labeling with y 
the vector of the observed choice frequencies and with y' the vector of the estimated 
ones, MSD is defined as follows:  

 
( )2'

N

i i
i

y y
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N
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=
∑

 
(4) 

As a series of empirically observed average frequencies of play, and estimated av-
erage frequencies of play are concerned, then we define: 

 ( )
2

1

ˆ
n

i i
i

SSR y y
=

= −∑  (5) 
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as the Sum of Squared Residuals. In the case in which the residuals can be assumed 
normally distributed with a constant variance, then AIC and BIC can be computed as:  

 log 2
SSR

AIC n k
n

⎛ ⎞= ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (6) 

and  

 ( )log log
SSR

BIC n k n
n

⎛ ⎞= ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (7) 

where k is the number of free parameters in the model.  
For our analysis we use AIC and BIC defined above, since it is reasonable to as-

sume that residuals are normally distributed. Indeed, residuals are defined as the dif-
ferences between observed and estimated average frequencies of play, which are 
asymptotically normally distributed (Central Limit Theorem). 

4   Competing Models  

Established learning models in economics have two main interactional component 
processes: behavior is generated by some stochastic choice rule that takes as input raw 
‘propensities’ to play actions, which can be transformed into probabilities to play the 
action; learning use feedback from the outcomes to modify propensities, which in turn 
affect subsequent choice.  

In a typical economic learning model, choice is only a function of propensities. But 
here it is a combining function of propensities and the payoffs in the game utility 
matrix. We compared our model with several established ones, such as Basic Rein-
forcement Learning (BRL) Model(Erev et al.1998)[5], the one-layer analog percep-
tron model using ordinary error feedback measure(NNET), Erev and Roth’s Rein-
forcement Learning (REL) Model (Erev et al. 2002)[19], Self Tuning Experience 
Weighted Attraction (stEWA) Model (Camerer, Ho and Chong, 2007) [8], Normal-
ized Fictitious Play (NFP) Model (Ert and Erev 2007, Erev et al. 2007) [6, 9].Because 
we focus on the first two models, in the following, we just take(BR).and NNET for 
example. 

In BRL Model, the reinforcement deriving from receiving payoff x is given by   

 ( ) minRF x x x= −  (8) 

where xminis the minimum payoff.  
Given that in period t the i-th agent has played her k-th pure strategy receiving a 

payoff x:  

if  ( ) ( ) ( ) j=k      1ij ija t a t RF x+ = +  (9) 

otherwise ( ) ( )   1ij ija t a t+ =  (10) 
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The probability ( )ikp t  for player i to play her k-th pure strategy at time t, is de-

fined as:   

 ( ) ( )
( )

ik
ik

ij

a t
p t

a t
=
∑

 (11) 

In the first period, agent i’s initial attractions for her j-th and k-th pure strategies 
satisfy the condition: ( ) ( )1 1ik ija a= , for all the possible combinations of k-th and j-th 

pure strategies.  
Denoted with Xi the average absolute payoff for player i, the initial strength pa-

rameter is defined as follows:  

 ( ) ( )1
1 ij

i
i

a
s

X
= ∑  (12) 

This parameter is assumed to be equal for all players. Hence, player i’s initial pro-
pensities (attractions) are defined as:  

 ( ) ( ) ( )1 1 1ij ij ia p s X= ⋅ ⋅  (13) 

where ( )1ijp , the initial probability of choice, is given by ( )1 1/ij ip M= , with iM the 

number of all pure strategies of player i. 
The model NNET consists in a traditional one-layer analog perceptron, where out-

put units are fed back as usually by an error (target-output) measure:   

( )k
ij i i jw t a y xλ β −⎡ ⎤∆ = ⋅ ⋅ − ⋅⎣ ⎦  

(14) 

It is a two-parameter model with independent β  and λ .  

5   Result Analysis 

To test the descriptive and predictive accuracy of our model, we made the program on 
Matlab running on computer and conducted simulation studies over previous data. We 
considered experiments on 10 different games with unique equilibria in mixed strate-
gies [6, 20-22]. The games have at least two actions available to each player. For each 
one of the experimental conditions, the remaining 9 conditions have been used to 
estimate the free parameters values that minimize a Mean Square Deviation measure 
over such 9 conditions. The ensuing parameter estimates have subsequently been used 
to generate predictions over the left-out condition [5]. 

We discuss a class of games which have unique equilibria. Game theory lends 
a unique prediction of agents’ behavior, providing a nonequivocal benchmark.  
Besides this, all the ten games that we discuss have nondegenerate solutions: In  
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Fig. 2. S&A3k Game, payoff matrix(a) and prediction SSR Scores(b) 

       

Fig. 3. Experimental and estimated frequencies of S&A3k Game 

equilibrium, subjects have to randomize their behavior. Due to space constraints, 
we choose one out of the 10 games to present in this paper: Suppes and Atkison 
(1960) [6]. 

Experimental settings: this game was played by 20 pairs of subjects for 210 
times.The payoff matrix was known to the subjects. The authors presented the data 
they gathered in 7 blocks of 30 repetitions of the stage game.  

Payoff matrix of S&A3k Game and our model prediction SSR results are plotted in 
fig.2. Experimentally observed and estimated frequencies of choices are presented in 
fig.3. 

We compared our model with different breeds of models: in particular, we took the 
Basic Reinforcement Learning (BRL) model [5] as competitors. To single out the 
value added by introducing a regret term in the perceptron feedback, we further com-
pared our model with the corresponding one-layer analog perceptron (NNET) that 
uses the ordinary error feedback measure and has independent λ  and β  free parame-
ters. The results are shown below: 
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Fig. 4. MSD scores of regret-model (a) and AIC scores of regret-model (b) 

 

Fig. 5. BIC scores of regret model 

Fig. 4 and fig.5 show prediction results of our model. To differentiate among all 
the models, we present our outcome in the following tables.  

Table 1. MSD Scores for Predictions 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Avg
MSD

BRL 0.420 0.131 0.490 0.342 0.240 0.188 0.500 0.415 0.405 0.288 0.3419

NNET 0.123 0.107 0.162 0.139 0.171 0.179 0.074 0.126 0.202 0.105 0.1388

Regret
model

0.027 0.006 0.009 0.012 0.006 0.018 0.009 0.003 0.022 0.007 0.0118

 

Table 2. AIC Scores for Predictions 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Avg
AIC

BRL -5.803 -16.28 -4.422 -8.435 -10.85 -13.06 -4.238 -5.908 -6.135 -9.206 -8.434

NNET -16.84 -18.10 -14.36 -16.17 -13.90 -13.50 -21.37 -16.67 -12.39 -18.29 -16.161

Regret
model

-30.44 -44.19 -40.1 -40.01 -44.66 -34.15 -40.49 -50.58 -32.27 -43.19 -40.011
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Table 3. BIC Scores for Predictions 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Avg-
BIC

BRL -5.606 -16.08 -4.225 -8.237 -10.65 -12.87 -4.041 -5.712 -5.938 -9.009 -8.237

NNET -16.64 -17.90 -14.16 -15.96 -13.70 -13.30 -21.17 -16.47 -12.19 -18.09 -15.96

Regret
model

-30.24 -43.99 -39.90 -39.81 -44.46 -33.96 -40.29 -50.39 -32.07 -42.99 -39.81
 

We number the 10 games as E1-E10. From table 1 to 3, the simulation results show 
that our model has the best MSD scores on the prediction tasks, and has better scores 
in most predicting tasks than that other two models have. Once the number of free 
parameters is taken into account, however, our model has the lowest AIC and BIC 
scores and is more favorable to other models in most of the games. Thus, no matter 
which measure performance is taken into account, our model is superior to the BRL 
model and NNET model.  

Obviously, our model outperformed the traditional NNET analog perceptron. And 
this demonstrates the definitive role played by introducing regret as a source of feed-
back for learning. In other words, introducing regret in the feedback dramatically 
improved the performance of the neural network.  

6   Conclusion 

In this paper, we first formulated a framework of combining artificial neural network 
with game paradigm. We utilized the conceived concept of ‘regret’ to establish learn-
ing strategies for neural networks. The payment function of the games was used to 
establish a ‘regret’ neural network model. Using Matlab we made the program run-
ning on PC and conducted simulation studies according to the classical experimental 
data. Next, we investigated the human interactive learning behavior through the repre-
sentation of mixed strategy of repeated games. Then, the results are analyzed and 
compared with that got by other methods. The experimental results show that neural 
network technology can be used for simulation of game behavior. Our method may 
provide a new avenue to both the artificial neural network application and the human 
interactive learning behavior research via game theory.  
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Abstract. We present a cost-sensitive learning framework for pedes-
trian detection in still images based on the novel Joint Local Orientation
Histograms (JLOH) features and the Asymmetric Gentle AdaBoost. The
JLOH features capture the co-occurrence of local histograms and make
it possible to classify the difficult examples. The proposed Asymmetric
Gentle AdaBoost takes account of the situation that the rare positive
targets have to be distinguished from enormous negative patterns in
practical applications. The quantitative evaluation on the well-defined
INRIA data set demonstrates the effectiveness of our methods.

Keywords: Joint local orientation histograms, Cost-sensitive learning,
Pedestrian detection.

1 Introduction

Detecting pedestrians in still images or videos has received significant attention
due to its crucial value in visual applications including surveillance, robotics, in-
telligent transportation, and human-computer interaction. However, large
within-class variations caused by the wide range of human poses, different cloth-
ing and variable appearance, as well as varying backgrounds and imaging con-
ditions, make this problem particularly challenging.

Generally, the computational approaches to object detection tasks can be
divided into two components: feature extraction and learning. In feature extrac-
tion, good features which are informative, invariant to noise or some transforma-
tions will be extracted from the training samples. In learning process, effective
classifiers or models are constructed from the samples. Thus, the pedestrian de-
tection algorithm with high performance depends on both the discriminative
features and the efficient learning algorithm.

In this paper, we present a cost-sensitive learning framework for pedestrian
detection based on the novel feature called Joint Local Orientation Histograms
(JLOH) and AdaBoost. The new feature takes advantage of the co-occurrence
of the extended Histograms of Oriented Gradients(HOG) [1] features and cap-
tures more information than a single histogram, which makes it possible to
construct an effective classifier. We also propose a Look-Up-Table(LUT)-type
weak learner based on Weighted Fisher Linear Discriminant (WFLD) to adapt
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the boosting framework to vector-valued features. Moreover, the Asymmetric
Gentle AdaBoost algorithm which takes account of the situation that the rare
positive targets have to be distinguished from enormous negative patterns in
most practical applications is applied to learn the cascaded pedestrian detector.

The rest of the paper is organized as follows: After reviewing the related
work in Section 2, we introduce the JLOH features and cost-sensitive learning
algorithm in Section 3 and 4. The results of the experimental study on INRIA
database are presented in Section 5 and we conclude in Section 6.

2 Related Work

Many pedestrian detection approaches with different features and learning meth-
ods have been proposed in the literature. These features including edges, filter
responses, wavelet coefficients, Haar-like features, edge orientation histograms,
region covariance, edgelet, shapelet and affine invariant features can be distin-
guished into global features, local features, and key-points depending on how the
features are measured.

Gavrila [2] proposes a hierarchy of global pedestrian silhouettes using Chamfer
matching and the distance transform to compare the silhouettes with the image
content. Zhao and Thorpe[3] apply a fully connected feed-forward neural network
to high-pass filtered images for detecting pedestrians.

Regarding the local interest points and regions, Seemann et al. [4] present
a detailed evaluation about the performance of various interest point detectors
and different shape descriptors for pedestrian detection. Leibe et al. [5] start
with a local feature detection to generate a set of pedestrian hypothesis. The
detection results come from a top-down verification step using the segmentation
masks and Chamfer matching. The improved version is presented in [6].

Local features based approaches become more popular after Viola and Jones
[7] proposed their successful detection framework for face detection using Ad-
aBoost and Haar-like features. However, the Haar-like features only using inten-
sity information encounter difficulties in detecting people in cluttered scene.

Recently, features based on edge orientations have been shown effective for
pedestrian detection. Dalal and Triggs [1] design a descriptor using a dense grid
of normalized HOG features computed over blocks of predefined size and obtain
promising performance with the help of SVM. Zhu et al. [8] further speed up this
approach by integrating a boosted cascade with the HOG features of variable-
size blocks, while maintaining a similar accuracy level. Similar framework is
proposed by Ivan Laptev [9] with more patterns of subregions and a different
weak learner, which achieves better performance on PASCAL VOC 2005 data
set. Another local feature named shapelet [10] adopts multi-layer AdaBoost to
explore the distinctive features from local gradients. And region covariance [11]
which combines pixel coordinates, intensity, higher order derivatives and orien-
tation etc. into a covariance matrix can be used in detection, tracking, matching
and texture classification tasks. The experimental evaluation of several local
features can be found in [12].
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Besides selecting more distinctive features, an alternative improvement can be
done on the learning methods, especially the efficient boosting algorithm. There
are Real AdaBoost [13], KLBoost [14], FloatBoost [15] and Vector Boosting
[16] for object detection. Moreover, many cost-sensitive extensions of discrete
AdaBoost [17,18] have been proposed to deal with the asymmetric problem in
detection task that needs to distinguish the rare positive objects from a large
number of negative patterns.

3 Joint Local Orientation Histograms

Feature co-occurrence, which captures the characteristics of objects, makes it
possible to construct a more powerful classifier [16,19]. In this section, we fo-
cus our work on the feature level to learn discriminative features based on the
combinations of the basic local orientation histograms (LOH).

3.1 LOH Features

We define the LOH feature F as an ensemble of subregion based statistics about
gradient magnitude in several orientations like HOG, but with more patterns of
local regions, which are called templates.

F (xt, yt, wt, ht, K, Ti(n, R+, R−)) = (f1
1 , . . . , fk

1 , . . . , f1
2 , . . . , fK

n )T . (1)

where (xt, yt, wt, ht) denotes the template position, K is the orientation bin
number. Ti(n, R+, R−) represents the i-th template with n histograms and R+

indicates the white region with positive magnitude, R− indicates the gray region
with minus magnitude.

fk
j =

∑
ψk(x, y), (x, y) ∈ Rj . (2)

where Rj is the labeled region in the template for calculating the j-th histogram.

ψk(x, y) =

⎧⎨⎩
g(x, y) if θ(x, y) ∈ bink and (x, y) ∈ R+

−g(x, y) if θ(x, y) ∈ bink and (x, y) ∈ R−
0 otherwise

(3)

where g(x, y) and θ(x, y) are the strength and orientation of the gradient at the
point (x, y).

There are eleven different templates presented in Figure 1, which contain the
HOG features proposed by [8] and [9]. Moreover, the ratio between wt and ht is
not limited. In our implementation, wt = 12, 14, . . . , 32, ht = 12, 16, 20, . . . , 84,
and the size of the reference detection window is 32 × 84. Thus, if the scan-
ning steps are 2 pixels in width and 4 pixels in height, the whole basic fea-
ture pool contains 137940 local histograms, which are over-completed for the
2688-dimensional space. This redundant basic feature set allows us to build up
compact and powerful JLOH.



Asymmetric Learning for Pedestrian Detection Based on JLOH 787

Fig. 1. The 11 templates for extracting local orientation histograms. The number in-
dicate the region Rj . The white region denotes R+, and the gray region refers to R−.

3.2 The Metrics for Feature Selection

Having defined the feature set for further combination, the second work is to
select proper distinctive features from the pool, because the conventional brute-
force method that searches all possible combinations exhaustively can not be
accomplished in limited training time.

Regarding the feature selection methods [20], we can utilize the class separa-
bility of weighted Fisher discriminant analysis (WFLD) and the Kullback-Leibler
(KL) divergence to measure the discrimination of features. The class separability
of WFLD is defined as follows [9]:

WFLD(w) =
(wtm+ − wtm−)2

wt(S+ + S−)w
, with w = (S+ + S−)−1(m+ − m−) . (4)

where m+,m− are the weighted class means and S+, S− are the weighted class
covariance matrices. The KL divergence is based on the projected distribution of
the positive and negative samples. Here, we use w from WFLD and histograms
to compute the symmetric KL divergence as in [14]:

KL(w) =
∫

[h+
k (wT x) − h−

k (wT x)] log
h+

k (wT x)
h−

k (wT x)
dwT x . (5)

Considering the training process of AdaBoost, the normalization factor of
sample weights Zt = 2

√
εt(1 − εt) is a natural measure of the informativeness of

a single feature. So, we can defined the third criterion based on Zt and w during
the AdaBoost learning process with a single feature.

B(w) = 1 − Zt . (6)

Finally, we select a subset containing 100 best local histograms to lean the
JLOH features. And the performance of the above three criterions will be com-
pared in the experiments.
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Fig. 2. The mtehod to combine the two local orientation histograms

3.3 The Combination of Local Features

After selecting a subset of the basic feature pool, the final step for building up
JLOH is to combine the single local orientation histograms into more discrim-
inative features. For the sake of computational efficiency in feature extraction,
we only take account of the combination of TWO different histograms.

The way to form the JLOH features that capture the co-occurrence of spatially
separated histograms is shown in Figure 2, which directly concatenates the two
histograms as the new feature vector.

However, measuring how informative a combined JLOH feature is not as
straightforward, we adopt brute-force search mehtod for selecting the best JLOH
features by minimizing the weighted error in each round of the boosting process.
Moreover,the normalization of JLOH is retained to improve its robustness.

4 Cost-Sensitive Learning

The cost-sensitive learning has attracted more and more attention in recent
years because the asymmetric probability for observing objects and non-objects
is common in many practical application [17,18]. In this section, we will derive
the Asymmetric Gentle AdaBoost algorithm from minimizing the expectation of
cost-sensitive exponential loss function [21] and construct the cascaded pedes-
trian detector following the way described in [22] .

4.1 Asymmetric Gentle AdaBoost

From a statistical perspective, AdaBoost acts as a method for fitting an additive
model F (x) =

∑
j fj(x) in a forward stage-wise manner. Both discrete and real-

valued AdaBoost can be derived in the form of additive logistic regression by
minimizing the expectation of exponential loss of training samples (7), which is
proved to be an upper bound on misclassification error and equal to the product
of every normalization factor Zt [23].

R(F (x)) = E
[
e−yF (x)

]
=

n∑
i=1

w0
i exp(−yiF (xi)) ≥ 1

n

n∑
i=1

�yi �= H(xi)� . (7)
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where H(x) = sign(FT (x)) = sign
(∑T

j=1 fj(x)
)

is the final strong classifier,

and
∑n

i=1 w0
i exp(−yiF (xi)) =

∏T
t=1 Zt.

Consequently, different loss functions lead to different boosting algorithms.
In order to obtain the cost-sensitive extension of Gentle AdaBoost, we consider
an asymmetric loss,with a cost of C1 for false rejected samples and C2 for false
accepted samples.

Lossasym(xi, yi) =

⎧⎨⎩
C1 if yi = 1 and H(xi) = −1
C2 if yi = −1 and H(xi) = 1
0 otherwise

. (8)

Obviously, the upper bound of the above asymmetric loss is held by the ex-
ponential loss defined in (9), where C1, C2 ∈ [0 1].

ALoss(F (x)) =
{

e−C1yiF (xi) if yi = 1
e−C2yiF (xi) if yi = −1

. (9)

Therefore, the Asymmetric Gentle AdaBoost can be derived from minimizing
the cost function in (10).

Rasym(F (x)) = E
[
I(y = 1)e−yC1F (x) + I(y = −1)e−yC2F (x)

]
. (10)

where I(·) is the indicator function.
Suppose a current hypothesis F ((x)) has been obtained in the additive model,

the next step is to learn an optimal weak classifier f(x) to add in. Thus, the
overall training risk turns into

Rasym(F (x) + f(x))=E
[
I(y = 1)w(x, y)e−C1f(x) + I(y=−1)w(x, y)eC2f(x)

]
= Ew

[
I(y = 1)e−C1f(x) + I(y = −1)eC2f(x)

]
= Pw(y = 1|x)e−C1f(x) + Pw(y = −1|x)eC2f(x)

(11)
where w = w(x, y) = e−yCF (x), C = C1 if y = 1, C = C2 if y = −1. Ew[·] is the
weighted expectation defined by

Ew [g(x, y)] =
E [w(x, y)g(x, y)]

E [w(x, y)]
(12)

By minimizing (11), the optimal weal hypothesis of Asymmetric Gentle Ad-
aBoost can be obtained using Newton steps as is done by Gentle AdaBoost and
described as follows:

f(x) =
C1Pw(y = 1|x) − C2Pw(y = −1|x)
C2

1Pw(y = 1|x) + C2
2Pw(y = −1|x)

(13)

And the algorithm use w
(t+1)
i = w

(t)
i e−Cyf(x) for updating weights.
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4.2 Domain-Partition-Based Weak Learner

The piece-wise function [13,16] is a straightforward realization of the domain par-
tition based weak classifiers that are required for Asymmetric Gentle AdaBoost
learning, which can be implemented by look up table (LUT) easily.

As the JLOH features are not one-dimensional, the WFLD described in Sec-
tion 3.2 is used for dimension reduction. Therefore, the weak hypothesis in (13)
can be realized as follows.

f(x) =
n∑

k=1

C1W
k

+1 − C2W
k

−1

C2
1W

k

+1 + C2
2W

k

−1

Ik
n(wtx) . (14)

where w is the direction for WFLD, W
k

+1 and W
k

−1 are the estimated likelihood
in bink. bink = [(k −1)/n, k/n), k = 1, . . . , n. Dt(i) is the weight of each sample.

W
k

l = P (wtx ∈ bink, y = l) =
∑

i:wtxi∈bink

∧
yi=l

Dt(i), l = ±1 . (15)

Ik
n(u) is a indicator function. And in our experiments, the LUT size n = 32.

5 Experimental Results

We evaluate the proposed algorithms on the well-defined INRIA data set [1], in
which, the training set consists of 2416 cropped pedestrian images (with left-right
reflections), 1237 labeled pedestrians and 1218 person-free images. Meanwhile,
there are 288 images containing 589 labeled pedestrians (566×2 = 1132 cropped
images) and 453 images without pedestrians in the testing set.

5.1 Evaluation Criteria

The Receiver-Operator-Characteristic (ROC) curve is a common way to measure
the discriminability of a given classifier, however, it requires a set of well-cropped
or resized object images. So does the Detection Error Tradeoff (DET) curve pro-
posed by [1]. This requirement prevents them from evaluating the detector’s lo-
calization ability. Therefore, we use Recall-Precision (RP) curve to quantifies the
different detectors’s performance and adopt the evaluation criteria and software
realized in PASCAL VOC challenge Development Kit. A detection is consid-
ered correct, if the area of overlap between the predicted bounding box Bp and
ground truth bounding box Bgt exceeds 50% by the formula area(Bp∩Bgt)

area(Bp∪Bgt)
> 0.5.

We use the same post-processing method as [9] and the VOC development kit
to generate the RP curves in the following experiments.

5.2 Evaluation and Comparison

For convenience, we randomly select 1000 cropped positive samples and 1000
person-free images from the labeled training set of INRIA data set as the smaller
set for learning the proposed algorithms with different parameters.
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Fig. 3. The type distribution of the selected 100 local orientation features and the cor-
responding performance. The features from template(f) are excluded, and only features
from template(a)(b)and(c) are selected on the first round.
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HOG+SVM, AP = 0.523
Boosted Histograms, AP=0.619
AsymGA + JLOH,
WFLD(w), C2=0.25, AP=0.770
Shapelet, AP=0.169

Fig. 4. The performance of Asymmetric Gentle AdaBoost. (a)Trained on the small set.
(b)Performance comparison with the results from [1], [9] and [10].

The distribution of the 100 best local orientation histograms’ types, which
are selected by three different rules on the first round learning, are shown in
Figure 3(a). The local features from template(f) are excluded in the test because
they are more informative than others. The type distribution of the same features
selected by two or three rules simultaneously is presented in Figure 3(b). It shows
that the features selected by (4) and (5) are very different. Features selected by
(6) share most with others. The performance of the detectors trained on the three
different subsets is given in Figure 3(c), where the AP means average precision.
The worst result comes from the subset selected by (5).

In order to evaluate the performance of the Asymmetric Gentle AdaBoost, we
set the parameters C1 = 1, C2 = 0.5, 0.25, 0.16, and train the different detectors
on the JLOH features selected by (4) from the smaller training set. The results
in Figure 4(a) confirm that the proposed cost-sensitive algorithm can improve
the performance, reaching higher recall rate, and the best parameters are C1 =
1, C2 = 0.25. All these detectors and above ones consist of 14 stages, trained
with the same parameters for cascade, but contain different number of weak
learners.
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For comparing our detectors with others, like HOG+SVM [1],Shapelet [10]
and Boosted Histograms [9] detectors, we train our detectors with different pa-
rameters on the whole training set of INRIA database. And the results of other
detectors are obtained by their provided binaries or source code. In addition, we
adjust the output of HOG+SVM and Shapelet detectors to make them achieve
the best statistical results. The results of our best detector based on JLOH, and
others are shown in Figure 4(b). The proposed algorithm greatly outperforms the
state-of-the-art methods. And the poor performance of shapelet may be caused
by the serious error in its implementation [24].

6 Conclusion

We present a cost-sensitive learning framework for pedestrian detection that
combines Asymmetric Gentle AdaBoost and JLOH features to improve the gen-
eralization performance. The Asymmetric Gentle AdaBoost algorithm takes ac-
count of the asymmetric situation that the rare positive targets have to be distin-
guished from enormous negative patterns in practical applications. The JLOH
features take advantage of the co-occurrence of the extended HOG features,
and make it possible to classify the difficult examples that are misclassified by
weak classifiers using a single feature. We also propose a LUT-type weak learner
based on Weighted Fisher Linear Discriminant to adapt the boosting framework
to vector-valued features. The experimental results evaluated on the INRIA data
set demonstrate that the proposed approaches have superior performance com-
pared to the state-of-the-art methods on the pedestrian detection task.
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Abstract. Hierarchical reinforcement learning (HRL) has had a vast
range of applications in recent years. Preparing mechanisms for au-
tonomous acquisition of skills has been a main topic of research in this
area. While different methods have been proposed to achieve this goal,
few methods have been shown to be successful both in performance and
also efficiency in terms of time complexity of the algorithm. In this pa-
per, a linear time algorithm is proposed to find subgoal states of the
environment in early episodes of learning. Having subgoals available in
early phases of a learning task, results in building skills that dramatically
increase the convergence rate of the learning process.

Keywords: skill acquisition, hierarchical reinforcement learning,
strongly connected components.

1 Introduction

During the last decade, Hierarchical Reinforcement Learning (HRL) has shown
quite successful in solving a wide range of problems in machine learning and
beyond. This variety incorporates applications such as robotics, spoken dia-
logue management, decision making and control engineering. There are three
fundamental frameworks to this area: Parr’s HAM method [9], Sutton’s Options
formalism [14], and Dietterich’s MAXQ framework [4].

Although different in formulation, all the hierarchical frameworks have two
major contributions in common. Firstly, they reduce the curse of dimensionality
in problems. As an example [15] has used options to solve a mission planning task
including a state-action space of nearly 25 billion elements. By injecting domain-
specific knowledge through the use of temporal abstraction, they reduced the flat
RL problem to a hierarchical one with less than a million elements. As described
in [4] state abstraction -or the abstraction resulted by ignoring some aspects
of the state of the environment- can also greatly ease problem resolution. The
second affecting involvement of hierarchical methods is that they significantly
increase the agent’s efficiency in solving problems. For an illustration consider
the four-room gridworld problem described in [15] where the agent achieves its
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goals much faster when he knows how to get to the doorway. Room to room
navigation is made easy with the aid of hand-made options.

A temporally-extended action, or a skill, is a closed-loop policy over one-step
actions [11]. The primary question that rises is how an agent can find useful
skills autonomously. In other words, how can an agent use HRL without being
supported with predefined macro-actions? The skills formed from the agent’s
current experience in an environment can be applied to domains with familiar
characteristics even with different rewarding functions. Moreover, they allow
more efficient exploration of the state space by providing more direct access to
those regions that the agent does not tend to go to easily [10].

In recent years a number of methods have been proposed to find proper skills
for an RL agent. Most of these methods have focused on the idea of finding
subgoals. Arriving at goal incorporates going through some milestones. A skill
in this regard is a hierarchical structure that leads the agent to a useful subgoal.
Thus, to acquire skills one should discover subgoals of interest. McGovern in
[7] characterizes subgoals as states frequently visited in successful trajectories
but never visited in unsuccessful ones (for a proper definition of success). Some
other methods look for subgoals by discussing the frequency of visitations of
each state [12,2]. Asadi in [1] uses Monte Carlo sampling to analyze a learned
policy to discover subgoals for similar tasks. Others search for states that are
situated between densely-connected areas of the state space. [10] represents the
problem of finding subgoals as a pattern classification issue. A state in this
respect is a target (subgoal) or otherwise a non-target object. Furthermore, there
are methods that use the observations to form a graphical view of the discovered
environment. Most of such approaches use graph partitioning techniques and
select the connecting states as subgoals [11,6,8].

Graph-based approaches, although successful in finding useful subgoals,
mostly suffer from the intrinsic NP-hardness of the partitioning problem. This
has imposed the use of approximation techniques which result in either loosing
precision of the initially suggested concept or incurring a computational cost to
the online acting agent.

In this paper, we present a new subgoal-based method for discovering skills
in RL. Similar to [8,6,10], our subgoals of achievement are states that con-
nect densely-connected regions of the observed state space. A directed graph
is called strongly connected if there is a path from each vertex to every other
one. The strongly connected components (SCCs) of a directed graph are its max-
imal strongly connected subgraphs.We search for SCCs in the local transition
graphs collected during the previous episodes to find the cutting edges of re-
gions. However, our subgoals are encountered with an exact linear algorithm.
The subgoals are then used to form skills which are used by the agent to attain
the goal. Meanwhile, our algorithm needs fewer episodes than many others to
find the subgoals. Additionally, since our algorithm is defined independently of
the reward function, it does well in solving many other tasks defined in the same
environment. In the discussion section we present a comparative study of these
subgoal-based algorithms.
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The paper begins (in section 2) with an introduction to options framework
as the used hierarchical formalism. Section 3 then introduces the strongly con-
nected components concept and describes our algorithm in detail. In section 4 we
review the empirical results and finally conclude with a comparison of different
algorithms and future directions.

2 The Options Framework

We used the options framework to represent our skills. According to [14] a
(Markov) option O is a triplet 〈I, π, β〉 in which I ⊆ S is a subset of states
in which an option can start. The second component π : S × A �→ [0, 1] is the
policy that constructs the behavior of the agent. This function which is defined
over the states in which the option can execute, identifies the action to be cho-
sen in each state in case of running the option. As the finishing condition on an
option, a function β : S �→ [0, 1] is used to characterize the probability of the op-
tion termination in each state. Traditionally, this function is defined to be 1 for
states in which the macro-action should finish and 0 in other regions of the state
space. The options framework provides methods for learning and planning using
options as temporally extended actions in the standard reinforcement learning
framework [13].

A policy µ over options selects option o in state s with probability µ(s, o).
The option-value function for µ is defined as follows:

Qµ(s, o) def=
{

rt+1 + γrt+2 + · · ·
∣∣∣ E(oµ, s, t)

}
,

In the above formula E(oµ, s, t) is the event that option o is initiated at time
t in state s and terminates stochastically τ time steps later. The policy then
continues according to µ.

By the aid of dynamic programming and RL algorithms, the options frame-
work results in an SMDP Q-learning equation much like the conventional Q-
learning update:

Q(s, o) ← Q(s, o) + α
[
ro
s + γk max

o′∈Os′
Q(s′, o′) − Q(s, o)

]
.

This relation is applied when o finishes in s′ after running for k time steps.
In the above equation ro

s is the accumulated reward during o’s execution. Under
conditions similar to those for Q-learning, Q(s, o) converges to the optimal value
function over options.

3 Description of the Algorithm

In this section, we introduce an algorithm for finding skills. Algorithm 1 shows
the proposed method in four steps.

Primarily, the agent utilizes Q-learning (or any other flat RL method) in early
episodes of learning. Then a graph is made by collecting trajectories in previous
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Algorithm 1 SCC-based Skill Acquisition.
1: Run Q-learning for k episodes
2: Construct the transition graph from trajectories
3: Find strongly connected components of the graph by calling SCC-Inspector(G)
4: Generate Skills using subgoals identified in step 3.

episodes. In the third step the environment is partitioned into some regions
based on the constructed graph. Finally skills are extracted from movements of
the agent from large regions to others. Autonomously gained skills are then used
as heuristics to search the environment for goal states. In fact skills guide the
agent for a goal oriented exploration and thus accelerate the learning process.

In this section, steps 2 to 4 of the algorithm are described separately.

3.1 Constructing the Transition Graph

In order to construct a skill we need to have a proper description of a subgoal. Our
explanation of subgoal states is a mixture of two previous definitions presented
in [8,6,10] and [11]. According to the first view, subgoals are states that lie
between densely-connected regions of the state space. In the early phases of
a learning task or an exploration process, the agent acts much like a random
walk. It hangs around moving in one region for a long time until it finds a way
through a neighboring region accidentally. Considering the trajectories of an
agent in primary consecutive episodes, we can intuitively understand that there
should be a path from each state sG1 of a region G1 to the other state (say s′G1

)
of the same region and vice versa. On the other hand, since the probability of
transition from region G1 to the other one (say G2) is low, it is unlikely that the
agent has experienced a significant number of paths to and from the two outer
states of sG1 and s′G2

.
Bearing in mind the above explanation, we construct the transition graph G =

(V, E) in the early episodes. In this graph V corresponds to the set of observed
states in the first k trajectories and each directed weighted edge (u, v) ∈ E
corresponds to a transition from state u to state v. Weights show the number
of times the transition has taken place. This transition graph is the union of k
local transition graphs collected in elementary episodes of the learning task.

In order to take into account the low probability of transition between outer
states of two regions we used a threshold tt as a minimum number of transi-
tions between two states needed to stand for an edge in graph G. For detecting
dense regions we used the strongly connected components concept, which will
be described in the next part.

3.2 Finding Strongly Connected Components

A strongly connected component (SCC) of a directed graph G = (V, E) is a
maximal set of vertices C ⊆ V such that for every pair of vertices u and v in C,
we have a path from node u to node v and vice versa; that is, vertices u and v
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Fig. 1. a graph with three SCCs

are reachable from each other [3]. Figure 1 illustrates the SCCs of a DG with
eight vertices.

In what follows, we describe an algorithm for finding SCCs of a directed graph
(DG). The method, as shown in algorithm 2, is based on depth first search (DFS)
and consists of four steps.

First in step 1 the graph is traversed using DFS. This traversal method also
assigns two timestamps to every vertex v. The first timestamp, d(v), records
when v is first discovered and the second timestamp, f(v), records when the
search finishes examining the adjacent nodes of v. In step 2 the transpose graph,
GT , is constructed, which has the same nodes as G and the direction of all edges
are reversed. After that in step 3 the transpose graph is searched with DFS
starting from an unmarked node which has the largest finishing time. This is
repeated until all nodes have been marked. Finally in step 4 the vertices of
each tree in the depth first forest generated in step 3 are output as a separate
strongly connected component. See [3] for a detailed proof on correctness of the
algorithm.

Algorithm 2 SCC-Inspector(G)

1: Call DFS(G) to compute finishing times f(u) for each vertex u
2: Compute GT

3: Call DFS(GT ), but in the main loop of DFS, consider the vertices in order of
decreasing f(u) (as computed in line 1)

4: Output the vertices of each tree in the depth-first forest formed in line 3 as a
separate strongly connected component

Using the adjacency list representation, the DFS algorithm creates the depth
first forest of a DG in a running time of Θ(V + E) and creation of GT takes
O(V + E) time. As a result SCC-Inspector(G) is a linear-time algorithm.

Unlike the adjacency matrix which incurs a cost of θ(V 2), in an adjacency list
representation, for each vertex we only keep those vertices to which it has an
edge. Using such a data structure is quite fitting to our requirements. Almost all
the domains of interest in HRL field are those with large state spaces and only
a few admissible actions are available in each decision point. Thus, the resulting
transition graph would be a sparse one. This is exactly the dominance point
of adjacency list representation to the matrix one. This is because it does not
stand for an edge that does not exist in the graph which results in an order of
magnitude efficiency in taking space and processing time in sparse matrices.
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In our SCC-based subgoal discovery method, the agent constructs the tran-
sition graph in early episodes of learning. After that, edges with low weight are
filtered. The resulting graph is passed to the SCC inspector algorithm to obtain
the components which form the state space. The states that connect two SCCs
are subgoal states. Subgoals of interest are those that are the windows of larger
components to the environment. As a heuristic for selecting such components,
we took into consideration the fact that in a Gaussian distribution with µ as the
mean number of states among all components and σ as the standard deviation,
P (X < µ + 2σ) = 0.97. So to find useful subgoals, one way is to choose states
that are the edge points of components with more than µ + 2σ states.

3.3 Generating Skills

After constructing the SCCs of the graph and finding subgoals, skills will be
generated using the options framework. In order to generate skills, the algorithm
finds a local policy π using experience replay and a pseudo-reward function [5,4].
After that, β is set to be 1 for the noticed states and states not included in the
initiation set. The probability of option termination is set to 0 for states in
the initiation set. We included all nodes of the strongly connected component
in the initiation set. This selection seems to be of help in the learning phase
since the primary goal of an option is to lead the agent to the outer states of a
(large) component, where it can easily transit to other components for further
exploration. As a result, instead of using hand-craft options made available by
the system designer, the agent is capable of building its own skills. Evidently,
this results in acceleration of learning process and also great ease in knowledge
transfer among agents.

4 Experimental Results

In this section we present some experiments to empirically assess our SCC-
based skill acquisition algorithm. Similar to [7,8,10,11,2] we use the two-room
gridworld as the test bench. A domain we understand well and can locate its
subgoals intuitively. As shown in figure 2, this domain contains two rooms that
are connected through a hallway. The agent starts randomly from a square in
the left room and tries to get to the bottom right corner of the right room.
There are four primitive actions available to the agent in all states: up, right,
down, left. If the direction of movement is blocked, the agent remains in the
same location. Getting in the goal square results in a reward value of 1 and a
small punishment of 10−6 is received for all other states. To take into account
the stochastic nature of the environment, by choosing an action, the agent moves
in the intended direction with probability 0.9 and in a uniform random direction
with probability 0.1.

In our simulations the agent used Q-learning with ε-greedy exploration with
ε = 0.1. All through the experiment the learning rate α was kept unchanged at
0.05 and the Q-values were set to 0 in the beginning. We collected the trajectories



800 S.J. Kazemitabar and H. Beigy

Fig. 2. Two-room gridworld with a subgoal in hallway

(a) Hallway position (b) Identified subgoals

Fig. 3. Two-room gridworld with one hallway

(a) Hallway positions (b) Identified subgoals

Fig. 4. Two-room gridworld with two hallways

in the k = 10 first episodes of learning and included edges with a weight equal
to or bigger than tt = 14 in the SCC-Inspector algorithm.

Figure 3 shows a gridworld with only one hallway. We ran the algorithm for
50 times. In 37 runs, the hallway was the outer state of an SCC containing all
the states in the left room. In 7 other runs the right square neighboring the
hallway was identified as subgoal. Figure 3b shows the obtained results. In %96
of the runs (=48 runs) either the hallway or one of its three neighboring states
were identified as subgoal (as bleached in figure 3b).

Figure 4a depicts another gridworld with two hallways as subgoal. The ob-
tained results after 50 executions are shown in 4b . For both subgoals, in %94 of
times the subgoal state was the hallway or one of its three neighboring squares.
we used k = 10 and tt = 12 to obtain these results. According to the results, the
identified subgoals are quite satisfactory. Meanwhile, the heuristic from Gaus-
sian distribution suits this domain well. In all experiments only one component
(containing the squares in the left room) was distinguished to be large.

Other values for k and tt are also applicable. As an example, for the gridworld
in figure 3 the parameters k = 6 and tt = 10 are quite suitable. Having found
useful subgoals, the agent builds options and employs them in the learning task.
Figure 5 compares the average number of steps to goal in a two-room gridworld
with one hallway when learning using primitive actions and the case of learning
skills using SCC-based subgoal discovery method. The figure also contains the



Using SCCs as a Basis for Autonomous Skill Acquisition in RL 801

Fig. 5. Average steps to goal with and without skills in a two-room gridworld

learning curve for different values of k. It can be observed that making use of
skills can considerably speed up the learning task.

5 Discussion

It can be seen that the suggested SCC-based algorithm works fine in gridworld
environment. These results are quite satisfactory, but evaluating the performance
of the algorithm in other domains is in progress.

Comparing our method with the one proposed in [7] we understand that al-
though both methods find the subgoals properly, ours has an advantage in terms
of utilizing the identified subgoals. SCC-based method finds subgoals after ten
episodes. These subgoals are then used to build options that form suitable skills.
The latter achieves this goal in twenty episodes. The sooner we make options, the
more we stop the Q-learning agent from wandering in early episodes. Approved
by our simulations and in agreement with diagrams in [7], Q-learning spends
thousands of steps in this ten episode interval. All this is in the condition that in
the examined two-room gridworld the maximum distance of the initial state to
the goal is no more than thirty squares. This dominance is more vivid comparing
some frequency based methods like [2] where subgoals in the same environment
are recognized in 500th episode. Such a method may be more applicable to other
following learning tasks and not the current learning problem.

Unlike our method that has a threshold on the number of episodes for selecting
subgoals, there are a number of methods that use other limits. For example in
her LCut method, Şimşek dictates thresholds on the number of times a square
has been identified as subgoal (or as access state in her terminology) [11] . Only
squares that have been recognized as hit more than the threshold value are
named subgoals. To be accepted as subgoal, the state should also be observed
more than to times. She has also set such limits in her RN method. The core



802 S.J. Kazemitabar and H. Beigy

concept of this algorithm is that states that have more novelty relative to the
previously observed states are more probable to lead the agent to new regions in
the environment and thus can be identified as subgoals. With the aid of bayesian
decision theory she classifies the states. Coincidentally, in %96 of the time RN
resulted in subgoals which were within two steps of the doorway [10]. Subgoals
are discovered in each episode and there’s no limit on the number of subgoals.
A good point about RN is that deciding whether a state is a subgoal or not,
only takes O(1) time which is unique among all methods. But this immediate
decision making is the outcome of some estimations and off-line learning done
before the main learning task. Other than making the agents behavior domain
specific, these approximations blur the rich theoretical basis of the algorithm.

Approximating a value or solution to a problem has been the case of some
other methods. The graph partitioning problem has been the bottleneck of
some prominent methods. According to [8] Menache’s Q-Cut algorithm uses
min-cut/max flow to partition the transition graphs. An algorithm which takes
O(N3) time where N is the number of states in environment. In [11] Şimşek
used an approximation of NCut metric plus a clustering method that works on
an undirected version of the local transition graph. Considering the MDP nature
of RL, using an algorithm for directed graphs seems more suitable.

SCC-based subgoal discovery on the other hand is a good mixture of theory,
exactness and low computational complexity. Using the SCC concept, no ap-
proximation algorithm is needed to be applied on transition graphs. It also has
a linear complexity in terms of the number of states. It is important to note
that LCut is more efficient in one respect: Its complexity is O(h3) where h is
the number of states in the most recent part of the transition history [11]. A
weakness of the algorithm shared by most other methods is the heuristic setting
of its parameters (tt, k). An important direction for future research is to set up
a mechanism for setting suitable parameters. This parameter setting is more
important when building hierarchical collections of skills automatically.

References

1. Asadi, M., Huber, M.: Accelerating action dependent hierarchical reinforcement
learning through autonomous subgoal discovery. In: Proceedings of the ICML 2005
Workshop on Rich Representations for Reinforcement Learning (2005)

2. Chen, F., Gao, Y., Chen, S., Ma, Z.: Connect-based subgoal discovery for options in
hierarchical reinforcement learning. In: International Conference on Natural Com-
putation, vol. 3 (2007)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

4. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)

5. Lin, L.-J.: Self-improving reactive agents based on reinforcement learning, planning
and teaching. Mach. Learn. 8(3-4), 293–321 (1992)

6. Mannor, S., Menache, I., Hoze, A., Klein, U.: Dynamic abstraction in reinforce-
ment learning via clustering. In: Proceedings of the Twenty-First International
Conference on Machine Learning, pp. 560–567. ACM Press, New York (2004)



Using SCCs as a Basis for Autonomous Skill Acquisition in RL 803

7. McGovern, A., Barto, A.G.: Automatic discovery of subgoals in reinforcement
learning using diverse density. In: International Conf. on Machine Learning, vol. 18,
pp. 361–368. Morgan Kaufmann, San Francisco (2001)

8. Menache, I., Mannor, S., Shimkin, N.: Q-cut - dynamic discovery of sub-goals in
reinforcement learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML
2002. LNCS, vol. 2430, pp. 295–306. Springer, Heidelberg (2002)

9. Parr, R., Russell, S.: Reinforcement learning with hierarchies of machines. In: Jor-
dan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 10, pp. 167–173. MIT Press, Cambridge (1997)
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Abstract. The integrated technology of the artificial neural network
is a research focus of the neural computing technology, which possesses
ripe applications in a lot of fields. The neural network ensemble stud-
ies the same question with limited neural networks. The output of the
ensemble under some input example is determined by all the output of
the neural network forming the ensemble under the same input example.
The negative correlation learning, which encourages different individual
network to study and train different parts of the ensemble in order to
make the whole ensemble study the whole training data better, is a train-
ing method for the neural network ensemble in this paper. Using a BP
algorithm with impulse in the error function is an improvement of the
method of negative correlation learning in the paper. The method is an
algorithm in batches with more powerful generalization ability and study-
ing of speed, because it combines primitive correlation learning with BP
algorithm of impulse.

Keywords: Artificial neural networks, Neural Network Ensemble, Neg-
ative Correlation Learning.

1 Introduction

In recent years, the neural network Ensemble (NNE) has already become a focus
of the field of neural network. Lacking of the instruction of tightly theoretical sys-
tem, so the result of application of the nerve calculation totally depends on user’s
experience. Although some people like Hornik[1] have demonstrated that only
one single latent feedforward network of layer can approach arbitrary function
of any complexity, it is not confirmable that how to find the suitable network
configuration. In 1990, a initiative method of Hansen and Salamon[2], named
the neural network ensemble, offered a simple and easy and feasible scheme
for settlement of the problem described above. In this method, the generaliza-
tion performance of the learning system can be improved prominently by briefly
training a lot of neural networks and formatting its result. Thanks to its easily
using and obvious results, an ordinary engineering technician without the ex-
perience of nerve to calculating could benefit from it. Consequently the study
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on the neural network ensemble will not only promote neural calculation and
even theoretical research of all statistics learning methods, but also promote the
process of the neural calculation into engineering application greatly.

Some commonly used neural network models are easy to fall into partial min-
ima in the course of studying, which are usually considered to be one of the main
shortcomings of the neural network. However, some believe this characteristic
has played important role of the improvement of the integrated generalization
ability of the neural network. The reason is that the neural network will possi-
bly fall into different partial minima if each neural network is independent when
they study, thus the variance of the neural network ensemble can be great, and
generalization error can be reduced. In other words, the negative correlation
of every partial minima cancels out one another. In this respect, the learning
method of negative correlation provided by Liu and Yao in 1990 is a very po-
tential method. In this paper, the author will make some improvement based on
the primitive learning method of negative correlation and provide corresponding
algorithm and procedure.

2 Artificial Neural Networks

Artificial neural network (ANN) research is enlightened by biology to a certain
extent, because the learning system of organism is made from an extremely
complicated network of mutual joint neuron. And the artificial neural network
is similar on the whole with it. It is formed by the intensively joint of a series
of simple units. Every unit has certain amounts of real number values input. (It
may be an output of other units), and produce single real number values output.
(The output can become input of a lot of other units). At the beginning of the
eighties, Scholars such as Rumelhart and Lecun[3] proposed the backpropagation
algorithm of the multi-layer perceiving devices, which makes the research of the
neural network become the focus of the study. From then on, the development
of the neural network research is speedy.

2.1 Perceptron

By the end of the 50s, the esthesia device that Rosenblatt had put forward is
one of the main units forming the neural network. Esthesia device regards a real
number value vector quantity as input, calculates the linear association of the
input, then if the result is greater than a certain threshold value, export 1, oth-
erwise export−1. More precisely, if the input is x1 to xn, the output calculating
of the esthesia device is:

o(x1, x2, · · · , xn) =
{

1, if w0 + w1x1 + · · · + wnxn > 0
−1, otherwise

(1)

Every wi is a real constant, or known as weight, which decides the contribution
rate of output of every xi.Among them, −w0 is a threshold value, which is to
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make a sensor output, input and w1x1 + w2x2 + · · · + wnxn must be weighted
more than the threshold value.

To simplify the procedures, attached to a constant input x0 = 1, the formula
above can be written in the style:

o(−→x ) = sgn(−→w, −→x ) (2)

Among it:

sgn(y) =
{

1, if y > 0
−1, otherwise

(3)

Studying an esthesia device, which means selecting the value of the weigh. So
what the esthesia device should consider is that the supposed candidate space is
equal to the weigh vectorial gathering of all possible real number value. Formula
(2)is called this unit to activate the function. In fact, it also can be the linear
function, sigmoid function and so on, to activate the function.

2.2 Feed-Forward Neural Network

The neural network of feedforward is formed by several joint unit. A neuron of
the feed-forward neural network accepts the input from the front, and outputs to
the behind, without feedback. It can be described by a direction figure without
cycling.The nodes are divided into two groups in the picture, which are input
nodes and calculation units. The input of every calculation unit is unconditional,
but the output is only one. And the output can couple the inputs of other un-
conditional nodes. There are usually different layers in the feedforward network.
The input of layer i is associative with i − 1 only, considering the input node is
the first layer. The nodes of input and output are called seen-layers for they can
be linked up to the external world and influenced by the environment directly,
and the other intermediate layers are called latent layers, as shown in Fig. 1.

Kolmogorov proves that any continuous shining-upon function from input
to output can be realized by a latent network of 3 layers when the activating
function of a neuron is micro. The premise is that enough latent units, proper

   

Hidden 

Input 
nodes 

Output

Computing unit

Fig. 1. Feed-forward neural network diagram
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activating functions of nonlinearity and weighs values. Normally function to acti-

vate the neurons chooses Sigmoid function f(x) =
1

1 + e−x
, because the sigmoid

function is non-linear, monotone, an unlimited number of micro, approximately
regarding as threshold function with great weigh and close to an linear function
with small weigh.

The common neuron activation functions are also including hyperbolic func-
tion f(x) = tanh(x), and so on.

3 Negative Correlation Learning

1996, Solich and Krogh [4] provided the definition for the neural network en-
semble, which was the neural network ensemble studied a same question with
limited neural networks, The output of the ensemble under some input exam-
ple is determined by all the output of the neural network forming the ensemble
under the same input example.

In the respect of the individual network of producing ensemble, the process
of two stage designing is adopted by most methods, that is, firstly the mission
is to train individual networks independently and in turn, then make them form
neural network ensemble. In this way, it not only loses the interaction between the
individual networks, but also is without feedbacked between the stages of training
and forming. So it could lead some individual networks having no contribution to
the whole ensemble. In addition, the document points out, when the individual
networks are different greatly in the neural network ensemble, the effect of the
ensemble is better. However, it’s still a focus of research that how to get the
individual networks with great difference and how to appraise difference degree
between several networks at present. In this respect, the learning method of
negative correlation provided by Liu and Yao in 1990 is a very potential method.

3.1 The Basic Concepts of Negative Correlation Learning

The order of the negative correlation learning is to encourage differently individ-
ual networks of the different individual networks ensemble study learn to train
different parts in the data, in order to study the whole training gathering better
for the neural network ensemble. The difference between the negative correlation
learning and the other methods of neural network ensemble is that, the way to
train individual networks in other method is an independent or in- order way;
while the way in the negative correlation learning is to induce a relevant pun-
ishment item for training these individual network simultaneously through the
error function of the individual network of the neural network ensemble. That is
to say, the purpose of every individual network’s training is to make the result
of the whole neural network ensemble best.

Supposing the gathering of training is D = {(−→x 1, d(1)), · · · , (−→x n, d(N))}
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Among it:
N stands for the sample size, −→x i ∈ Rp with generalization yet, d(i) stands for

the output amount of the goal;simply regarding the average value of the output
sum of all the individual networks in the neural network ensemble as the output
of the ensemble.

F (n) =
1
M

M∑
i=1

Fi(n) (4)

M stands for the number of the individual networks in the ensemble. Fi(n)
stands for the output of individual network j from training sample n. F (n)
stands for the output of the ensemble from training sample n.

In the method of negative correlation learning, the error function of every
individual network induces a relevant punishment item, and makes all the in-
dividual networks trained in the same ensemble at the same time. The error
function of individual network i can be defined as:

Ei =
1
N

N∑
n=1

Ei(n) =
1
N

N∑
n=1

1
2
(Fi(n) − d(n))2 +

1
N

N∑
n=1

pi(n) (5)

Ei(n) is the value of the error function of individual networks i in sample
n. In the right of the formula, the first item is the experience error function
for individual networks i. The second is the item of relevance punishment. pi

stands for the function of the relevance punishment item of individual networks
i. By minimizing pi, every individual network Error is negative correlated with
all the rest of the networks of individual errors, adjusting the punishment power
through the reference 0 ≤ λ ≤ 1. The form of the punishment function of pi(n)
on the sample n is:

pi(n) = (Fi(n) − F (n))
∑
j �=i

(Fj(n) − F (n)) (6)

∂Ei(n)
∂Fi(n)

= Fi(n) − d(n) + λ
∂pi(n)
∂Fi(n)

= Fi(n) − d(n) + λ
∑
j �=i

(Fj(n) − F (n))

= Fi(n) − d(n) − λ(Fi(n) − F (n))
= (1 − λ)(Fi(n) − d(n)) + λ(F (n) − d(n)) (7)

Observing formula (4), (5), (6), and (7), we can get:
(1)While using the method of negative correlation learning, all the individual

networks interact by the relevant punishment items of the error function in the
neural network ensemble. The output of Fi of every individual network have to
minimize not only the difference of Fi(n) and d(n), but also the difference of
F (n) and d(n). That is to say, it should be considered the error of other trained
sub networks before train a certain sub network in the neural network ensemble.
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(2)The independent and in-order training is a special form of the negative
correlation learning.

(3)When λ = 1:
∂Ei(n)
∂Fi(n)

= Fi(n) − d(n) (8)

The error function of the neural network ensemble on sample n can be defined
as

Enes(n) =
1
2
(

1
M

M∑
i=1

Fi(n) − d(n))2 (9)

∂Enes(n)
∂Fi(n)

=
1
M

(
1
M

M∑
i=1

Fi(n) − d(n)) =
1
M

(F (n) − d(n)) (10)

From (8) and (10), we can get:

∂Ei(n)
∂Fi(n)

∝ ∂Enes(n)
∂Fi(n)

(11)

In (11), it is obvious that we can minimize the error function of the whole neu-
ral network ensemble by minimizing the error function of individual networks.
Therefore, a new way offered by the negative correlation learning is that the
whole neural network ensemble learning can be disintegrated into different sub-
missions of individual networks.

3.2 Deviation-Variance-a Compromise between the Covariance

Mean-Squared Error (is abbreviated as MSE) can be used for weighing the gen-
eralization performance of neural network and neural network ensemble.

The mean-squared error formula of the neural network that is widely known
to all:

Emse = ED[(ED[d | x] − F (x, D))2]

= (ED[F (x, D] − ED[d | x])2 + (ED[F (x, D] − ED[F (x, D])2 (12)

The formula (12) indicates, the mean-square error can be shown as the sum of
deviation item and the variance item. The best way to obtain smaller deviation
and smaller variance is to try hard to understand the priori information of the
goal equation. The observation of deviation and variance is useful to explain the
following practices: go to look for the accurate priori knowledge of the form of
solution; make use of training samples as much as possible; it is essential to study
the match situation of algorithms and designated question. The mean-squared
error formula of neural network ensemble is similar to the mean-squared error
formula of the neural network:
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Emse = ED[(ED[d | x] − F (x, D))2]

= (ED[F (x, D] − ED[d | x])2 + ED[
1

M2

M∑
i=1

(Fi(x, D) − ED[Fi(x, D)])2]

+ ED[
1

M2

M∑
i=1

∑
i�=j

(Fi(x, D) − ED[Fi(x, D)]) × (Fj(x, D) − ED[Fj(x, D)])]

(13)

In the right of (13), the first item is reflected the deviation of the neural
network ensemble, the second is reflected the variance, and the third is re-
flected the covariance of the neural network ensemble. The negative correlation
learning can make the generalization performance of the neural network en-
semble better through adjusting to keep the balance of deviation, variance and
covariance.

3.3 Improved Negative Correlation Learning

In the primitive negative correlation learning, the training algorithm of every
individual network in the neural network ensemble is the standard BP algorithm.
Because of the inherent characteristic of standard BP algorithm, the shortcoming
is slow restraint for individual networks. The algorithm with impulse BP makes
the renewing weigh in No.n time partly depend on the renewing weigh in No.n-1
time in order to search for the result with long step and accelerate the restraint.
In this paper, combining the algorithm with impulse BP, the author provides
an improved negative correlation learning for the study in batches of the neural
network ensemble.

Step 1. Begin.
Step 2. Create neural networks of number M a single-unit output of BP as

individual networks in neural network ensemble of number M, BPNi stands for
individual network j;

Step 3. Initialize the weigh value of all individual networks into small value
at random;

Step 4. Before meeting the condition of stopping:
(I) D-training for every training sample (−→x , t), do:
(i) For every individual Network BPNi do:

Enter BPNi into samples −→x and calculate the output Ou of every unit in
BPNi;

(ii) Calculate Ototal = 1
M

M∑
k=1

Ok stands for the BPNi output of individual

network of No. k;
(iii) For every BPNi of individual networks, do:
a. For the output of every unit k in BPNi, calculate the error item δk ←−

(1−λ)fk(dk −Ok)+λ(dk −Ototal), fk stands for the derivation of the activation
function of unit k, λ stands for the punishment factor;
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b. For every hidden unit h in BPNi, calculate the error item

δh ←− fh

∑
j∈Downstream(h)

δjWjh.

Downstream (h) stands for the output units gathering containing unit h in the
direct input. wjh is the weigh value associated with the input of No.h in unit j.

(iv) About every individual network BPNi, calculate the renewed value
∆Wmn(i) of every hidden- layer node and output node according the current
sample. For example, the current training sample is the first sample in this turn,
so ∆Wmn(i) = ηδmxmn, otherwise, ∆Wmn(i) = ηδmxmn + ∆Wmn(i). In the for-
mula, ∆Wmn(i) stands for the renewed part of weigh value between node n to m
in the training turn of No.i, xmn stands for the input from node n to unit m, η
is the study rate;

(II) Renew every weigh value of the network wmn = wmn + ∆Wmn(i) +
α∆Wmn(i − 1),in the formula, α is the impulse factor, Goto 4;

Step 5 End.

4 Conclusion

In this paper, the author introduces the basic conception of the negative correla-
tion learning of the neural network ensemble, and analyzes deviation, variance,
a compromise between the covariance. Besides, the author provides an improved
negative correlation learning, combined by the negative correlation learning and
the study algorithms with impulse. Although there are some improvement in the
study of the negative correlation learning of the neural network ensemble in the
paper, much work are still waiting for complete in the study. For example, when
selecting the proper punishment factor, the neural network ensemble can obtain
very good generalization performance. But the selection of punishment factor
often depends on experience parameters. It is the coming mission that how to
select the proper punishment factor quickly.
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Abstract. Neural networks ensemble (NNE) has recently attracted great inter-
ests because of their advantages over single neural networks (SNN) as the abil-
ity of universal approximate and generalization. However, the design of neural 
network ensembles is a complex task. In this paper, we propose a general 
framework for designing neural network ensembles by means of cooperative 
co-evolution. The proposed model has two main objectives: first, the improve-
ment of the combination of the trained individual networks; second, the  
cooperative evolution of such networks, encouraging collaboration among 
them, instead of a separate training of each network. In order to favor the coop-
eration of the networks, each network is evaluated throughout the evolutionary 
process using a PSO algorithm based on bootstrap technology (BPSO). A simu-
lation example of the 3-D Mexican Hat is given to validate the method. The re-
sult proved its effectiveness. 

1   Introduction 

Neural network ensembles [1] are receiving increasing attention in recent NN re-
search, due to their interesting features. Neural networks ensemble is a set of neural 
networks whose decisions are combined to improve the performance of the overall 
system [2]. It originates from Hansen and Salamon’s work [3], which shows that the 
generalized ability can be significantly improved through training many neural net-
works and then combining their predictions. Each network within the ensemble has a 
potentially different weight in the output of the ensemble. Several works have shown 
[4,5] that the network ensemble has a generalization error generally smaller than that 
obtained with a single network and also that the variance of the ensemble is lesser 
than the variance of a single network. The output y of a typical ensemble [6] with k 
constituent networks when an input pattern x is presented is 

1

( ) ( )
k

i i
i

y x w y x
=

=∑  (1) 

where yi is the output of network i and wi is the weight associated to that network. If 
the networks have more than one output, a different weight is usually assigned to each 
output. The ensembles of neural networks have some of the advantages of large net-
works without their problems of long training time and risk of overfitting. For more 
detailed descriptions of ensembles the reader is referred to [3,7]. 



814 H. Qian and Y. Fan 

The rest of the paper is organized as follows. Section 2 describes the proposed 
model of cooperative ensembles, Cooperative Ensemble of Neural Networks and Ro-
bust Learning Algorithm of Neural Networks Ensemble. Section 3 describes Simula-
tions and Experimental Results. Finally, Section 4 states the conclusions of our work 
and the most important lines for future research. 

2   Neural Network Ensembles and Robust Learning  

A. Architecture of RNNE  
Our basic network is a generalized multilayer perceptron (GMLP), as defined in [8]. It 
consists of an input layer, an output layer, and a number of hidden nodes intercon-
nected among them. 

Given a GMLP with m inputs, N hidden nodes, and n outputs, and X and Y being 
the input and output vectors, respectively, it is defined by the equations [8] 

1

1

, 1

,

( ),

, 1

i i

i

i ij j
j

j j

i i m N

x X i m

h w x m i m N n

x f h m j m N n

Y x j n

−

=

+ +

= ≤ ≤

= < ≤ + +

= < ≤ + +

= ≤ ≤

∑  
(2) 

where wij is the weight of the connection from node j to node i .The representation of 
a GMLP can be seen in [8]. We see that the i-th node, provided it is not an input node, 
has connections from every j-th node j < i. 

The main advantage of using a GMLP is the parsimony of the evolved networks. 
Its structure allows the definition of very complex surfaces with fewer nodes than in a 
standard multilayer perceptron with one or two hidden layers. 

The architecture of a specific Robust Learning of Neural Networks Ensemble 
(RNNE) is defined as follows: RNNE = <X, SN, IU, Y>. 

Where, nx R∈  is the input vector; SN represents a set of subnets; IU represents 

the integrating unit which performs selective ensemble of modules; nY R∈ , is the 
output vector.  

B. Cooperative Ensemble of Neural Networks 
Particle Swarm Optimization (PSO) algorithm is an evolution computation technol-
ogy based on swarm intelligent methodology. PSO is initialized as a swarm of arbi-
trary particles (arbitrary solution), and then the optimal solution is discovered by 
iteration. But in course of iterative process for basic PSO methodology, pre-
convergence problem always appears with the decreasing of particles’ diversity, 
which un-benefits for acquiring suitable combination weights. So modification is 
needed. 

BPSO algorithm is a PSO algorithm based on bootstrap technology [9]. Bootstrap 
technology is to arbitrarily select data set from original data set D to form new data 
set with N sampling points. This technology can produce different data set so as to get 
different target function, and evolve multi-particle seed swarm with certain differentia 
degree. After limiting optimal particle searching range and synthesizing optimal  
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particle searching result in every seed swarm, corresponding combination weights can 
be adjusted flexibly in a certain range and over-imitation degree of the noise in the 
original training data caused by integration can be reduced, which will strengthen the 

extensive ability for nerve net integration. If M well-trained nerve net 1 2, , , Mf f fL  is 

given, BPSO algorithm optimal combination weight 1 2( , , , )Ma a a a
r

L  is as follows: 

① Input data ( , ( ))j jD x f x , 1,2, ,j N= L  used for optimization. 

② While t T≤  (initial t = 1, T is the most sampling time). 
i) Data D is repeatedly sampled for the time of t, Number t-group of 

data ( , ( ))t t
t j jD x f x , 1,2, ,j N= L can be acquired. 

ii) The most iterative time L for optimal particle searching is given, PSO algo-

rithm is transferred to correspond number t particle seed swarm of tD , where there 

are q particles and every particle is coded as 1 M×  vector 
1 2( , , , )T t t t

Ma a a a
r

L ; Tar-

get function for optimal combination weight is  

21

1 1

( ( ) ( ))
N M

t t t t
i i j jN

j I

MSE a f x f x PE
= =

= − +∑ ∑  (3) 

Supposing n = 40, 2

1

( 1)
M

t
i

i

PE N a
=

= −∑  is penalizing function, which can restrain 

weight sum to be 1.  Adapting function is 1
t

t
M S EF =  

Grain the particles depend on as follows formula to adjust an own speed: 
[ ] [ ] 1 ( ) ( [ ] [ ] )

2 () ( [ ] [ ] )

v w v c ra n d p B e s t p re se n t

c ra n d g B e s t p re n t

= ∗ + ∗ ∗ −
+ ∗ ∗ −

 (4) 

in which ( 2 1) ( 1)/( 1) 1w w w iw J w= − ∗ − − + , 1 0.9w = , 2 0.2w = , 100J = . iw 

is iterative times for particles. 

The most value for velocity v is 0.05mv = ; optimal particle searching range 

is [ ,1]am− , 0.05am r= , r is arbitrary data adapting function between (0 1). The 

formulas (4) and [ ] [ ] [ ]present present v= + are used to adjust velocity and 

position of particles. Until iterating to L, the optimal particle Pt is acquired corre-

sponding optimal combination weight t
ba
r

. 

iii) 1t t= + . 
③ Then acquire T optimal particles PT and its corresponding combination weight 

value t
ba
r

( 1,2, , )t T= L ; The final weight value 1

1

T
t
bT

t

a a
=

= ∑r r  is gained by averag-

ing T combination weight value, and corresponding nerve net integration output is 

1

( ) ( )
M

i i
i

f x a f x
=

= ∑ . 
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C. Robust Learning Algorithm of Neural Networks Ensemble 
Least squares method (LSE) is a kind of popular and important methods in many 
fields including ANN’s learning. But some deficiencies lie in this method. One of 
these deficiencies is it strengthens the destructive impacts of outliers for the square 
error function [10]. In other words, it has poor robustness. Generally, an algorithm is 
more robust if the outliers have less impacts on it [10]. 

Least absolute distance (LAD) method presented by R.J. Boscovitch (1755) is such 
a more robust method [10]. In 1964 and 1975, P. J. Huber generalized the above idea 
and he practiced it into linear statistic model [10,11,12]. In statistics, this method is 
named as M-estimation.  

In this paper, synthesis cost function [13,14] is adopted as the target of component 
neural networks: 

1

cosh
( ) ( )

x
x Inφ β

β
=  (5) 

2
2

1
( )

2
x xφ =  (6) 

0 0

2 , 1 ,
1 1 1 1

( ) ( ) (1 ) ( ), 0 1
n nm m

i k i k
k i k i

G e eλ λ φ λ φ λ
= = = =

= + − ≤ ≤∑∑ ∑∑  (7) 

Here 2( )xφ represent the square of error. And 1( )xφ  is an adjustable criterion, it 

trends to absolute value criterion when β augmenting, otherwise it trends to square 

criterion. ( )G λ is the cost function, λ adjust the weight of 1( )xφ and 2( )xφ . 

The reason we adopt the above method is that robustness is in contradiction with 
efficiency. General speaking, the more robust an algorithm is, the less efficiency it 
has. The robust learning algorithm composed of (5)-(7) is just a reasonable compro-
mise for the mentioned contradiction. This method consists of two steps:   

Step1. train component neural networks (networki) with the cost function ( )G λ . 

Step2. combine the component predictions as (1). 

3   Simulations and Experimental Results 

The aforementioned method is applied in various modeling problems, and the results 
are satisfactory. Limited by the length of this paper, only the prediction for 3-D Mexi-
can Hat is reported. 

3-D Mexican Hat is defined as follows: 
2 2
1 2

2 2
1 2

sin , ~ [ 4 ,4 ]x x
ix x

y x U π π+

+
= −  (8) 

The data set comprise 2000 instances with the ix randomly generated in terms of 

uniform distribution over the interval [ 4 ,4 ]π π− , which are equally divided into two 

sets: one is the training set; the other is the test set. The train set includes 1000 pat-
terns, and 10% of the patterns are randomly corrupted by impulsive noise .The train 
set is illustrated in Fig.1, the “∗ ”represent the train set.  
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Fig. 1. 3-D Mexican Hat model and train set 

Table 1. MSE OF TEST SET 

 Experiment 
1 

Experiment 
2 

Experiment 
3 

Experiment 
4 

Experiment 
5 

Mean 

NNE 1.18 
e-2 

9.06 
e-3 

1.12 
e-2 

1.33 
e-2 

1.64 
e-2 

1.235 
e-2 

RSNN 9.05 
e-3 

1.12 
e-2 

8.50 
e-3 

1.30 
e-2 

8.26 
e-3 

9.988 
e-3 

RNNE 6.70 
e-3 

5.62 
e-3 

4.97 
e-3 

5.81 
e-2 

4.25 
e-3 

5.474 
e-4 

 
In order to reduce the incidental factors, we perform five runs for the same experi-

ment. To validate the precision and generalization of RNNE, this paper adopt the 
mean square error (MSE) of test set as the criterion and use the NNE and robust sin-
gle neural networks (RSNN) paradigm of reference. The simulation result shows in 
TABLE II, and the criterion use the mean square error (MSE) as above. 

4   Conclusion 

The results in Table 2 show that: learning under the contaminated data, RNNE gets 
the best performance, single neural networks (SNN) with robust algorithm get a toler-
able result, while NNE is deteriorated by the outliers. And the result of this test shows 
that the RNNE fits quite well. During the empirical study, we discover that the more 
complex the real-world model is the greater difference between the RNNE and RSNN 
perform. RNNE is equal to those complex system contaminated by unknown distribu-
tion noise. 
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Abstract. A universal model-learning-competing one is established for solving 
task assignment problem in National Economy Mobilization(NEM), in which 
local search was focused in learning model and global search in competing. 
Thereafter the strong points of the two models were amalgamated in the algo-
rithm. A team of parameters was used to coordinating the correlation of the two 
models. Applying learning-competing model to an actual case, using greed al-
gorithm in learning model, genetic algorithm in competing model, the results 
obtained were in coincidence with the analysis. 

Keywords: Heuristic algorithm, Combinatorial optimization, Learning-
competing mode, Task assignment. 

1   Introduction 

Since a long time ago, an effective algorithm in polynomial time to solve combinato-
rial optimization problem, such as task assignment problem[1], is difficult to seek. 
Pertinent literature[2] shows, in case of P≠NP(nondeterministic polynomial), there is 
not an algorithm that ensure to gained optimal solution in polynomial time. In this 
background, a kind of heuristic algorithm based on biology, physics and artificial 
intelligence; with global optimize capability, strong robust, high universality and 
suitability for parallel processing has introduced to solve such complex combinatorial 
optimization problem.[3,4] Because of its strongpoint such as effect optimize capability 
and needless of special information about problem,  the algorithm is rapidly applied in 
computer science, optimal scheduling, traffic problem, engineering optimization et al. 
Now such heuristic algorithm is including genetic algorithm(GA), A* algorithm, ant 
colony algorithm(ACA), simulated annealing algorithm (SA), evolutionary algorithm 
(EA), tabu search (TS) and artificial neural networks(ANN). But because of their 
different research mechanisms and emphases, the research works are quite  
fragmented.  

For the sake of effectual unification for those works, we attempt a new universal 
model, learning-competing one[5], to solve such complex problem. Applying the 
model to task assignment problem in National Economy Mobilization(NEM), we get 
a good application. Task assignment problem in NEM, as a complex combinatorial 
optimization problem, mainly means that concentrating lots of resources to a certain 
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place in a short period of time for the needs of emergency or war. Because the emer-
gencies happen in a short time, have a destructive power, and change rapidly; many 
requests must be met, such as time, cost, product quality, the reliability of the task, the 
effect on economic system and so on. For such reasons, the heuristic algorithms, such 
as genetic algorithm(GA)[3] and A* algorithm[6], are widely used in solving the prob-
lem. Based on previous scholars’ works, we advanced the research by learning-
competing model. 

2   The Basic Idea 

Learning-competing model simulates in real world people must learn in school for 
well education, in order to enter the competition in social to realize their value. The 
model divides algorithm into two phases-learning model and competing model. In 
learning model, multi individuals search different local optimal solution, and then 
those individuals are amalgamated to global more-optimal solution though competing 
in competing model. Overlapping the method, until the global optimal solution or 
satisfactory solution can be gained. The model centralizes strongpoint from kinds of 
algorithms, so it fits for the large-scale practice problem, such as task assignment 
problem. 

2.1   Learning Model Phase 

The task for learning model is to seek good individuals for competing model. The 
graduate qualification is designed for measuring whether those individuals are eligi-
bility. The graduate qualification is formed by three evaluations: 
1. Viability target 

For combinatorial optimization problem, viability target is a pass line that the indi-
viduals’ objective function value must achieve. Avoiding weak individuals enter into 
competing model and seize resources; individuals must get enough viability by lean-
ing in learning model phase. 
2. Individuation target 

Individuation target is used to measure the individuals’ merits in different regions. 
High individuation means that individual is very good in some respects. For combinato-
rial optimization problem, high individuation means each individual is different local 
optimal solution. The greater the difference among the individuals, the better the overall 
operation effect in competing model. It is just a case in point to illustrate the heterosis in 
biology. Therefore ensuring individuals’ individuation can embody the advantage of 
learning-competing model. Specially, some individuals that have high individuation 
evaluation must be precedence reserved. 
3. Learning time 

Learning time is arithmetic complexity for engendering an individual. In order to 
ensure the overall optimal effectiveness, learning model can’t be designed too com-
plicated. Grouping can control learning time. 

The purpose of setting the three indicators is to harmony the relationship of learn-
ing model and competing model. The stricter graduate qualifications demanded, the 
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more task that learning model shares. If the problem has not any assist info, we can 
adopt two disposal methods: 

1. Record best individual we have, and recording the individual’s evaluations, viabil-

ity target is mmaxw, individuation target is wmax. Enact relevant constant m and w. 

The graduate qualification is set to: viability target is larger than mmax-m, indi-

viduation target is larger than wmax-w. 
2. Recording best individual we have, and recording the individual’s evaluations, 

viability target is mmaxw, individuation target is wmax. Enact relevant constant nm 

and nw. The graduate qualification is set to: viability target is larger than 

mmax*nm%, individuation target is larger than wmax*nw%. 

Aim to the three evaluations that learning model wants to achieve, we can use the 
algorithm that it well solves the small-scale problem and has faster convergence to 
realize. In this paper, we choose greed algorithm to realize learning model. 

2.2   Competing Model Phase 

The aim for competing model is to amalgamate individuals’ choiceness information 
from learning model. Therefore competing model must be realized by global optimi-
zation algorithm. In this paper, we choose genetic algorithm to realize learning model. 

Genetic algorithm (GA)[7] is first advanced by USA scholar, Holland in 1975. The 
algorithm is a calculate model simulating Darwin's biological theory of evolution. Its 
basic idea is: the solution to the problem is expressed as a chromosome in GA, and 
the chromosome is a binary-system code or ten-system code. Besides, a group of 
chromosomes, the hypothetical solutions, is given before executing GA. Then put the 
hypothetical solutions into the question’s environment, choose more adaptable chro-
mosomes by the rule of survival of the fittest, copy them, afterward produce a new 
generation of chromosomes that more adapt the environment by chiasma, aberrance. 
In this way, after generations of evolution, the chromosome that is best adapting the 
environment will be convergences finally. 

It is obvious that, "Survival of the fittest" in genetic algorithm and “competition” in 
competing model are anastomosed. 

2.3   The Whole Computing Process 

The whole computing process includes those steps next: 
Step1: confirm coding scheme and randomly generated individuals. 
Step2: grouping and then set the graduate qualification. 
A success grouping can make individuals both get better individuation target in 

learning model and faster constringency in competing model. It is just corresponding 
that a good training scheme can make pupils both get more grades in school and ex-
press more compete ability in society in real world. But actually prefect grouping 
schemes are always too complication and hard to operating. 

Step3: the implementation computing in the learning model. 
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Step4: judging individuals that satisfy the graduate qualification whether enough or 
not? If yes, turn to step5; no, means grouping inappropriate or the graduate qualifica-
tion unreasonable, turn to step2. 

Step5: the implementation computing in the competing model. 
Step6 judging the best individual whether satisfies the terminating qualification or 

not? Yes, turn to step7; no, turn to step3. 
Step7 output the option solution. 

3   Applying to Task Assignment Problem 

Task assignment problem in NEM[6] is: concentrating a certain amount Q of a product 
to place A in T day. Through surveying the potential data, the enterprises that can 
participate the task assignment is get; then get the candidate enterprises that can as-
sume the task by FAHP (the fuzzy analytic hierarchy process). In order to facilitate 
the task assignment model, this paper set the following variables: the number of the 
candidate enterprises related to task assignment is n (n is a natural number that bigger 
than one; if n=1, the task assignment meaningless). Assuming the number of task 

assigned to enterprise i is (0 )i ix x Q≤ ≤ , then 1 2 ... nQ x x x= + + + . If 0ix = , 

means no task for the enterprise. Assuming ai is enterprise i’s production capacity, ci 
is enterprise i’s cost. 

Because the task is shared by all enterprises, and various enterprises are parallel 
producing; the task completion time is the longest task time among all enterprises, 
that is 1 1 2 2max( ( ), ( ), ..., ( ))n nt x t x t x , and ( )i it x  is enterprise i’s task completion 

time. Then assuming enterprise i’s original production task is producing qi produc-
tion; set the impact factor of mobilization task µ ( 0 1µ≤ ≤ ) , means the influence that 

the mobilization task to the enterprise’s operation. If 1µ = , means no affect on the 

enterprise’s operation, that is, using idle production capacity to carry out the mobili-
zation task, applicable to the case of non-emergency situation. If 0µ = , means not to 

consider the enterprise’s original production, that is, all production capacity will be 
used to complete the mobilization task; it is applicable to the case of emergency situa-
tion, but it is the most effect on the normal economic order. 

According to the above analysis, the mathematical expression of task assignment 
model as follows: 

1
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This is a multi-objective decision-making problem. Through the introduction of the 
time-cost[6], time will be converted into quantifiable monetary cost by parameter λ. 
Then a simplified task assignment model as follows: 

( )

1 1

.  min( ( * ( )* (1 ) ))
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. .
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0, 1, 2, ...,

i it xn
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In which ( )iP t  is the number that No.i enterprise products in No.t day, 
( )

1

( )
i it x

i i
t

x P t
=

= ∑ . 

3.1   Realization of Learning Model 

We adopt heuristic greed algorithm to realize learning model. The basic idea is: the 
task to the enterprise that has lower cost ci is as far as possible. 

By way of predigesting algorithm, we adopt such coding scheme: firstly, assuming 
l is the greatest common denominator among Q,a1,,……., an ,then the task is average 
divided into J=Q/l sub-task, and each sub-task products l products. Sub-task will be 
allocated to each candidate enterprise one by one. Secondly, the candidate enterprises 
are arranged in non-descending order by the cost ci, that is, the smaller the enter-
prise’s cost is, the smaller the number that stands for the enterprise is. Thirdly, the 

solution to the question is expressed by a string x[j],j=1,2,…,n.x[j]=l means No.j sub-
task is allocated to No.l enterprise. The viable solution that randomly generated is 
implementing computing in the learning model as follows: 

Step1. set k=0，y=1. 

Step2. get the number z that is counting if x[j] = y. Determine whether aj *T is 
greater than z*l or not? If yes, turn to Step4; no, turn to Step 3. 

Step3. y++, turn to Step 2. 
Step4. Determine whether x[k] is greater than y or not? If yes, turn to Step 6; no, 

turn to Step 5. 
Step5. k++, turn to Step 4. 
Step6. x[k]-1. Then determine x [j], j = 1,2, ..., whether or not to meet the con-

straints? If yes, turn to Step 5; no, x[k]+1, then turn to Step 7. 
Step7. Determine whether x[k] is satisfied the graduate qualification or not? If sat-

isfied, then the individuals can enter the next model. 
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3.2   Realization of Competing Model 

We adopt genetic algorithm to realize the competing model. Above all, convert 

x[j],j=1,2,…,n，to ( )jP t . And its adapting function is constructed as follows: 

( )

1 1

( '( )) ( * '( )*(1 ) )
i it xn

t
i i i i

i t

f P t c P t λ
= =

= +∑ ∑  

hereinto '( )jP t  is a correct to ( )jP t . 

Adopting correct algorithm as next: if No.j enterprise can’t finish its task, then the 
extra tasks are priority allocated to the enterprise that has greater parame-

ter *' i
i i

q
a a

T
µ= − . So the incapable solution will become capable solution. Then, 

considering the replacement rate that the corrected chromosomes displace the former 

chromosomes. The replacement rate can change from 0% to 100%. We accept 5%.[8] 
In this way, after appointed generations, we can determine whether the solutions 

are satisfied or not. If we don’t satisfactory the solutions, put the individuals imple-
menting computing in the learning model again, until the satisfactory solution is get. 

3.3   Analyses 

It is worth noting that: if the graduate qualification is mmax and wmax, the algorithm 
will become the greed algorithm; if we don’t set the graduate qualification, the algo-
rithm will become the hybrid genetic algorithm. In practice, we often have the follow-
ing experience: when the global is too concerned, the local will be not clear; but when 
the local is too concerned, the global will be not clear. With a view to better results, 
the algorithm is coordinating the correlation of global and local by the graduate quali-
fication. At the same time, the computing process is become an open process. When 
switch from the learning model to the competing model, we can control the algorithm 
complexity by mediating the graduate qualification. The practical significance is: we 
can solve the tasks that have different degree of emergency with the same set of  
algorithms. 
1. Compared with the greedy algorithm: in fact, the greedy algorithm can only get the 

second-best solution under normal circumstances. But in this algorithm, it can out 
of local optimal solution by the competing model. 

2. Compared with the genetic algorithm: the GA’s main flaw is precocious problem 
and the slow convergence’s problem. 
The cause of precocious problem is: the individuals that maybe the optimal solu-

tions are eliminated early, because of their bad early adaptability. But in this algo-
rithm, those individuals can get high early adaptability by “studying” in the learning 
model. 

Furthermore, the slow convergence’s problem is settled by putting the individuals 
from the competing model into the learning model again. Sometimes, the optimal 
solution appears very small probability. For the strong randomness of GA, the optimal 
solution is difficult to search out in the whole GA running. In this algorithm, the  
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possibility that optimal solution appears is greatly enhanced by repeated local search 
in the learning model; and once the optimal solution appears, it will be reserved for its 
high viability. 

4   Result 

To consider the production task: product 2500 tents in 10 days. Assuming there are 6 
candidate enterprises, their parameters shown in the table below. 

Table 1. Enterprises’ parameter table 

 cost production capacity ë 
Enterprise A 8 200 0.07 
Enterprise B 6 120 0.06 
Enterprise C 10 160 0.08 
Enterprise D 9 220 0.06 
Enterprise E 8 210 0.06 
Enterprise F 7.5 130 0.06 

 
In our experiment, flock size is 100, chiasma probability is 0.65, and aberrance 

probability is 0.05. General descendible generation is 60. Recording best individual 
we have, and recording the individual’s evaluations: viability evaluation is mmaxw, and 
individuation evaluation is wmax. The graduate qualification is set to: viability target is 
larger than mmax*0.75%, individuation target is larger than wmax*0.75%. The results 
will be as follows. 

Table 2. Algorithms’ result 

 learning-
competing model 

greed  
algorithm 

standard  
genetic algorithm 

Total cost 18284.26 18310.22 18303.39 
TIME/s 24 1 24 

 
By the table above, we can find the algorithm is obviously better than both stan-

dard genetic algorithm and greed algorithm. The algorithm is not slower than the two 
others, while its total cost is less than the two others’. 
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Abstract. Effective and reliable electricity price forecast is essential for market 
participants in setting up appropriate risk management plans in an electricity 
market. In this paper, we investigate two state-of-the-art statistical learning 
based machine learning techniques for electricity regional reference price fore-
casting, namely support vector machine (SVM) and relevance vector machine 
(RVM). The study results achieved show that, the RVM outperforms the SVM 
in both forecasting accuracy and computational cost. 

Keywords: Electricity reference price forecasting, Support vector machine, 
Relevance vector machine. 

1   Introduction   

With the deregulation of power industry, price forecasting has been increasingly 
important for market participants, especially generators and the system operator. 
Price forecasting provides key input toward proper risk management plans and 
helps determine the optimal bidding strategy into the market. In addition to the 
economic price modeling methods such as mean reversion and jump diffusion, re-
cent advances in price forecasting uses regression models [1], neural networks 
[2,3], and data mining [4,5] based techniques. Statistic time series models including 
ARIMA [6] and GARCH models [7] have been proven to be effective with satisfac-
tory prediction performance. According to the study in [8], the machine learning 
based methods outperform the time series approaches. In this paper, we investigate 
two state-of-the-art statistical learning based machine learning techniques for elec-
tricity regional reference price forecasting. The two approaches we consider here 
are both kernel-based, namely support vector machine (SVM) [9] and relevance 
vector machine (RVM) [10]. 
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The paper is organized as follows, after the introduction section; the machine learn-
ing methods used in the study, SVM and RVM, are reviewed for completeness, fol-
lowed by benchmark dataset test. Then an evaluation study of the machine learning 
methods is carried out with electricity reference price from the Australian National 
Electricity Market (NEM). Conclusions are drawn in the last section. 

2   Overview of Machine Learning Methods 

This section provides a brief introduction to the two kernel-based machine learning 

methods that are considered in this paper. To begin, sample dataset is given { } 1
,

l

i i i
t

=
x , 

d
i R∈x  is input vector, and it R∈  is the associated desired output value. 

2.1   Support Vector Machine (SVM) 

SVM, proposed in the middle of 1990s, is considered as an innovation of machine 
learning method, which is based on the statistical learning theory. It approximates the 
relation curve by using only a small amount of training data, which are known as the 
support vectors (SVs). Furthermore, SVM can effectively avoid the over-fitting prob-
lem by reaching a proper trade-off between empirical accuracy and model complexity 
[9]. Therefore, SVM usually show better performance than many traditional methods. 
Here we describe the regression function of SVM for time series forecasting. 

For given sample dataset, the SVM model used for function approximation is: 

( ) ( )i i i i it y bω= = Φ +x x , (1) 

where, ib  is output bias; iω  is model weights; Φ is nonlinear mapping from input 

space to high dimensional feature space. 
The iω  and ib  can be determined by given training samples. This is accomplished 

through optimization of the following structural risk function, where C  is a pre-
specified value: 

Minimize   ( )2

1

1

2

l

i i
i

E C t y
ε

ω
=

= −∑ x＋ . (2) 

In the function, we adopted the Vapnik’s linear loss function with ε -intensive 
zone as a measure for empirical error: 

( ) ( )
( )

0,

,

i i

i i

i i

if t y
t y

t y otherwiseε

ε
ε

⎧ − <⎪− = ⎨
− −⎪⎩

x
x

x
. (3) 

After introducing two positive slack variables iµ  and *
iµ , the structural risk func-

tion can be converted to: 
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Minimize   ( )2
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Introducing Lagrange multipliers, the decision function can be expressed as: 

( ) ( ) ( )* *

1

, , ,
l

i i i i i
i

y x K bα α α α
=

= − +∑ x x , (6) 

where iα , *
iα  are the Lagrange multipliers. 

Using Mercer’s theorem, the regression is obtained by solving a finite dimensional 
QP problem in the dual space avoiding explicit knowledge of the high dimensional 
mapping and using only the related kernel function [9]. In this paper, we select RBF 
kernel for all approaches, and the Lagrange multiplier can be obtained by maximizing 
the following form: 

Maximize 
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Through adjusting the parameters C and ε , the generalized performance can be 
controlled in high-dimension space. 

2.2   Relevance Vector Machine (RVM) 

RVM, a new statistical learning technique based on Bayesian estimation theory, is 
developed for regression and classification problems. The key feature is that it can 
yield a solution function that depends on only a very small number of training sam-
ples; relevance vectors (RVs) [10]. It shows better performance than many other 
methods with higher accuracy and faster speed. 

For given dataset, the output can be expressed as: 

( ) ( )

( )
0
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, ,

,

l

i i
i

i i i

y K

t y

ω ω

ε
=

⎧ = +⎪
⎨
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∑x ω x x

x ω
, (9) 

where ( )K ⋅  is kernel function; iω  is model weights; and iε  is output noise. 
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Assume ( )|p t x  is Gaussian ( )( )2| ,N t y σx . The likelihood function of the data-

set can then be written as: 

( ) ( )
2

/22 2
2

| , 2 exp
2

l
p σ πσ

σ
− ⎧ ⎫−⎪ ⎪−⎨ ⎬

⎪ ⎪⎩ ⎭

t Φω
t ω ＝ , (10) 

where ( )1, , ;lt t=t L ( )0 , , ;lω ω=ω L ( ) ( ) ( )11 , , ;ll l× + = ⎡ ⎤⎣ ⎦Φ φ x φ xL ( )i i= =φ x φ

( ) ( )11, , , , ,i i lK K⎡ ⎤⎣ ⎦x x x xL . 

From the structural risk minimization theory of statistics learning, maximum-
likelihood estimation of value ω  and 2σ  without constraints will generally lead to 
severe over-fitting. In order to improve model generalization ability, RVM defines 
Gaussian prior probability distribution over the weights [11], which is the key feature 
of RVM and is ultimately responsible for its sparsity properties [10]. 

( ) ( )1

0

| | 0,
l

i i
i

p N ω α −

=

= ∏ω α , (11) 

where α  are vector of hyperparameters. 
For the given prior probability distribution and likelihood distribution, posterior 

probability distribution for calculating the weights by Bayesian inference can be ex-
pressed as: 
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where 2 ;Tσ −=µ ΣΦ t ( ) 12 ;Tσ
−−= +Σ Φ Φ A ( )0 1, , , ,ldiag α α α=A L ,iα → ∞ 0.iµ =  

The weights estimation can be achieved by the mean value of posterior probability 
distribution µ , and uncertainty of best weights values Σ  can be used to represent the 

uncertainty of model prediction. In order to estimate the model weights, we need to 
estimate the best values of hyperparameters whose likelihood distribution can be 
calculated according to Bayesian framework which is the marginal likelihood [12]: 

( ) ( ) ( ) ( )2 2| , | , | 0,p p p d Nσ σ= =∫t α t ω ω α ω C , (13) 

where 2 1 .Tσ −= +C I ΦA Φ  

We can find the best possible hyperparameters 2,MP MPσα  by the type II maximum 

hyperparameters likelihood method [12]. Here we adopt an iterative re-estimation 
approach, using the direct differentiation and rearranging: 
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2
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i

i

γα
µ

= , (14) 

where 1 Σi i iiγ α= − . 

For the noise variance, the re-estimate can be calculated by: 

( )2 new

i
i

l
σ

γ
−

=
−∑
t Φµ

, (15) 

In practice, many of the iα approach infinity and according to (11), ( )2| , ,p σω t α  

becomes in finitely peaked at zero. The iω  corresponding to these values can be re-

garded equal to 0. And the dataset corresponding to the non-zero iω  are the RVs, like 

the SVs in SVM. 
If the above hyperparameters estimation converges, we can predict the new dataset 

*x  according to weights posterior and best hyperparameters 2,MP MPσα . The prediction 

distribution can be calculated by: 

( ) ( ) ( )2 2 2, , , , ,MP MP MP MP MPp t p t p dσ σ σ= ∫* *| t α |ω ω | t α ω . (16) 

Because the two integral parts are all Gauss distribution, so 

( ) ( )2 2
* *, , ,MP MPp t Nσ µ σ=* | t α , (17) 

where ( )* *
Tµ = µ φ x , ( ) ( )2 2

* * *

T

MPσ σ= +φ x Σφ x . The prediction values are ( )*;y x µ . 

In the following sections, the proposed method will be tested with chaos time se-
ries generated by mathematic function before being applied to analyze some realistic 
highly volatile electricity price date series to show its effectiveness under different 
conditions. 

3   Benchmark Dataset 

In order to mathematically compare the performance of these two techniques, a 
benchmark function is used here. 

( ) ( ) [ ]sin
sinc , 10,10

x
x x

x
= ∈ − . (18) 

Total 100 data samples are collected including random noise with 0.1 deviations. 
For comparison purpose, the RBF kernel is selected and associated width is chosen as 
3. Here a common criterion is used to evaluate the accuracy of price forecasting: Root 
Mean Square Error (RMSE). 
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( )2

1

1 l

i i
i

RMSE t t
l =

= −∑ . (19) 

Note that both of them are associated with a few parameters that need to be fine-
tuned for best fitting performance. Furthermore, the RVM outperforms the SVM in 
fitting accuracy, and it needs less number of RVs than that of SVs for SVM. 

 

Fig. 1. Sinc Function (with noise) Fitting with SVM 

 

Fig. 2. Sinc Function (with noise) Fitting with RVM 
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Table 1. Comparisons of Sinc Function (with noise) Fitting with SVM and RVM 

Methods RMSE 
Support Vectors / 
Relevance Vectors 

SVM 0.04791 36 
RVM 0.03818 6 

4   Electricity Market Price Forecasting Case Study 

In this section, the two machine-learning methods are tested with the Queensland 
(QLD) electricity regional reference price. The QLD market is part of the Austra-
lian National Electricity Market (NEM) which is composed of the states of New 
South Wales, Victoria, South Australia, Queensland, and Tasmania. The market 
data are taken from National Electricity Market Management Company Limited 
(NEMMCO) website (http:\\www.nemmco.com.au\.). It is widely accepted that 
electricity price is highly volatile and difficult to predict. Here two methods will 
be used on such dataset to compare the capability in handling electricity price 
data series. 

4.1   Data Description and Pre-processing 

The simulation experiment is performed based on history data of the Australian 
NEM. The NEM is a day-ahead energy-only market. Trading in the NEM is based 
on a 30 minute trading interval. In NEM, generators submit offers every five min-
utes every day. A dispatch price is determined every 5 minutes: 288 prices in a 
day, and six dispatch prices are averaged every half-hour to determine the spot 
price for each of the regional reference price (RRP). NEMMCO uses the spot 
price as the basis for the settlement of financial transaction for all energy traded 
in the NEM. In this case, 48 market prices should be predicted in day-ahead price 
forecasting. 

The collected data cover three months in 2007, namely the August, September, and 
October. For the 4,416 collected price data, the pre-processing is carried out in order 
to reduce the influence of spike prices. The price data are normalized after being 
transferred to the logarithm scale. Here we take the four input values as arguments 
and return one output value. The four inputs are the one-day-ahead, two-days-ahead, 
three-days-ahead, and one-week-ahead electricity price at same time as the predicted 
value every day. Finally, 96 data points (two days) are predicted for each model from 
0:00 to 24:00 next day and totally 96 electricity price forecast models are generated 
for each method. 

( ) ( ) ( ) ( ) ( )1 , 2 , 3 , 7p x y p x p x p x p x= − − − −⎡ ⎤⎣ ⎦ . (20) 
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4.2  Simulation Results 
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Fig. 3. QLD Electricity Reference Price Forecast with SVM 
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Fig. 4. QLD Electricity Reference Price Forecast with RVM 

Table 2.  Comparisons of Electricity Price Forecast with SVM and RVM 

Methods RMSE Time (s) 
Support Vectors / 
Relevance Vectors 

SVM 0.10391 75.2268 55 
RVM 0.07634 3.7724 8 
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5  Conclusion 

As clearly shown in Table 2, it can be concluded that, the RVM outperforms the SVM 
in both forecast accuracy and computational cost. And the RVM need far fewer RVs 
than the SVs for SVM. The promising prediction performance on the price data illus-
trated the efficiency of the two methods. However, note that each approach is typi-
cally associated with a few model parameters that need to be fine-tuned. 
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Abstract. In this paper, a modeling method based on the orthogonal function 
neural network is proposed. Legendre orthogonal polynomials are selected as 
the basic functions of the neural network. Kalman filtering algorithm with sin-
gular value decomposition is used to confirm the parameters of orthogonal 
function neural network in order to avoid error delivery and error accumulation. 
To demonstrate the performance of this modeling method, the simulation on 
Mackey-Glass chaotic time series is performed. The results show that this 
method provides effective and accurate prediction. 

Keywords: Neural network, Legendre orthogonal polynomials, Kalman filter-
ing, Singular value decomposition, Chaotic time series. 

1   Introduction 

The prediction methods of time series have been widely applied to many fields. The 
examples can be found in weather forecast, speech coding and noise cancellation, etc. 
When a time series is chaotic, it implies that the laws underlying the time series can 
be expressed as a deterministic dynamical system. However, these deterministic equa-
tions are not usually given explicitly. Predictions rely on the empirical regularities 
derived from the experimental observations of the real system. 

Different methods have been used in the prediction of chaotic time series, such as 
radical basis function neural network[1], recurrent neural network[2] and wavelet 
neural network[3-5], which possess the abilities to approximate nonlinear systems. 
However, the specified solution based on the training of these networks is satisfactory 
to the given signal but unsatisfactory to the new input signal. These networks can only 
approximate the given trajectory based on the training of the sampling points. In re-
cent years, the chaotic nonlinear systems have been discussed in many ways. Genetic 
programming modeling algorithm[6]was proposed to forecast chaotic time series by 
optimizing the model structure and the parameters of the prediction model. A new 
technique based on the least squares support vector machines (LS-SVM)[7]  was pro-
posed to make one-step or multi-step prediction of chaotic time series. In addition, 
different filtering methods have been employed in the prediction of chaotic time se-
ries such as neural Volterra filter[8] and Kalman filter [9]. In this research area, there 
have been also many attempts to create prediction models of chaotic time series based 
on statistical methods [10,11].In the prediction of chaotic time series, there are two 
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factors to achieve a certain performance goal, including satisfactory prediction preci-
sion and better robustness. 

In the paper, Legendre orthogonal polynomial functions are selected as the basic 
functions of the orthogonal function neural network. The parameters of the orthogonal 
function neural network are confirmed by using Kalman filtering algorithm with sin-
gular value decomposition, which is used to avoid the error delivery and the error 
accumulation. To demonstrate the performance of the forecasting method, the simula-
tion on Mackey-Glass chaotic time series is performed. The results show that this 
method provides effective and accurate prediction. The remainder of this paper is 
organized as follows. In section 2, the structure of the orthogonal function neural 
network is introduced. The parameter estimation of neural network is presented in 
Section 3. To demonstrate the performance, the prediction simulation on Mackey-
Glass chaotic time series is performed in Section 4. Some concluding remarks are 
made in Section 5. 

2   The Description of the Orthogonal Neural Network 

The orthogonal function neural network can approximate to any nonlinear function on 
the tight set, which has simple structure, fast convergence with the comparison of the 
common BP neural network. The structure of the orthogonal function neural network 
is shown as Figure 1. In the paper, Legendre  orthogonal polynomials are selected as 
the basic functions of the orthogonal function neural network. 
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Fig. 1. The structure diagram of the orthogonal function neural network 

The Legendre polynomials are defined as the following form. 

( )
0

2

( ) 1

1
( ) 1

2 !

i
i

i i i

P x

d
P x x

i dx

=⎧
⎪
⎨ ⎡ ⎤= −⎪ ⎢ ⎥⎣ ⎦⎩

  1, 2,....i c= , [ 1,1]x ∈ −                   (1) 

For the Legendred polynomial, its recursive property is 
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1 1 1 2( ) ( ) ( )i i i i iP x a xP x b P x− − − −= − , 2i ≥                                 (2) 

where 0 (1) 1,P =  2 (1) ,P x= 1
2ia

i
= − , and 

1
1ib

i
= − . 

Equation (2) is arranged as the following form. 

[ ]1 2( ) (2 1) ( ) ( 1) ( ) /i i iP x i xP x i P x i− −= − − −                              (3) 

According to the definition of ONN, the global output of the orthogonal function 
neural network is defined as Equation (4). 

1

( )
c

T
i i

i

y W x
=

= Φ∑                                                        (4) 

where 1 1 2 2
1

( ) ( ) ( ) ( ) ( )
n

i i i ni n ji j
j

x P x P x P x P x
=

Φ = × ×⋅⋅⋅× = ∏ , ( )ji jP x  is Legendre polynomial, 

1( ) 1j jP x = , 2( )j j jP x x= , 2
3( ) (3 1)/2= −j j jP x x , ( 1) ( 1)( ) [(2 1) ( ) ( 1) ( )] /j i j j ji j j i jP x i x P x i P x i+ −= − − −  

1, 2,...,i c= , 1, 2,...,j n= . 

The global output of the neural network is also written as the following form. 
θ⋅= Ay                                                               (5) 

where A  is the input matrix, satisfying

1 2

1 2

1 2

(1) (1) (1)

(2) (2) (2)

( ) ( ) ( )

c

c

c

A

N N N

Φ Φ Φ⎡ ⎤
⎢ ⎥Φ Φ Φ⎢ ⎥=
⎢ ⎥
⎢ ⎥Φ Φ Φ⎣ ⎦

L

L

M M L M

L

; θ  is the 

parameter vector, ( )TcWWW ,,, 21 L=θ ; N is the number of the sampling data. 

3   The Recursive Estimation of Parameters of Orthogonal 
Function Neural Network 

The parameters of neural network model are determined on basis of the minimum of 
mean squared error between the output of the system and the output of neural net-
work. The parameter vector θ  is estimated by the static Kalman filtering algorithm.  

])()[1( 11 −− −−+= k
T

kkk kAykK θθθ                           (6) 

)1()()()()1()1()( 1 −−−−= − kPkAkSkAkPkPkP T
                     (7) 

1)()1()()( +−= kAkPkAkS T                                 (8) 

)()()1( kAkPkK =−   nk ,...,2,1=                                (9) 

where θ  is the parameter vector, ( )TcWWW ,,, 21 L=θ ; ky  is the real output of the kth 

sampling point; P  is the covariance matrix, ccRP ×∈ ; IP α=)0(  (I is an identity 

matrix and α  is a large positive number); T
c

T kkkkA )](,),(),([)( 21 ΦΦΦ= L . 
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The key problem of the Kalman filtering algorithm is how to calculate the  
covariance matrix )(kP . Equation (7) includes two positive definite and symmetrical 

matrixes, namely )(kP and )1( −kP . Because of the limit of character length of the 

computer, and the delivery and the accumulation of cut-off errors, )(kP  may lose 

positive definite capability, and then the stability of the Kalman filtering algorithm 
will be unsatisfactory. In order to avoid error delivery and error accumulation, the 
covariance matrix )(kP  is calculated to improve the quality of the Kalman filtering 

algorithm by means of singular value decomposition.  
Singular value decomposition has been widely applied to many calculation fields 

such as linear least square algorithm, ill-condition equations and so on. The basic 
concepts and properties are shown as follows. 

If A  is a real matrix, MNRA ×∈ ( MN ≤ ), then A  is decomposed into the fol-
lowing form. 

TVUA Λ= ,  ⎥
⎦

⎤
⎢
⎣

⎡
=Λ

00

0S
                                       (10) 

where U  and V  are the column orthogonal matrixes, NN
N RuuuU ×∈= ],..,,[ 21 , 

MM
M RvvvV ×∈= ],...,,[ 21 , satisfying IUU T = , IVV T = ; S  is the diagonal 

matrix, ),...,,( 21 NdiagS δδδ= , where ),...,2,1( Nii =δ  is the singular value 

of matrix A , satisfying Nδδδ ≥≥≥ ...21 . 

The column vectors of matrix U  and matrix V  are defined as left singular vectors 
and right singular vectors, respectively. If A  is a positive definite and symmetrical 
matrix, then A  can be decomposed into the following equation. 

TT UUDUUA 2=Λ=                                             (11) 
where the left singular vectors are equivalent to the right singular vectors. 

Applying singular value decomposition to )(kP  in (7), it yields the following 

equation. 

)()()()( kUkDkUkP T=                                         (12) 

where )(kU  is an orthogonal matrix, cc
c RUUUkU ×∈= ],,,[)( 21 L , satisfying 

IUUUU TT == . The matrix D  is a diagonal matrix, ),,,( 22
2

2
1 cdiagD σσσ L= , 

in which ),...,2,1(2 cii =σ  are singular values of )(kP , satisfying 

022
2

2
1 ≥≥≥≥ cσσσ L . 

Equation (12) is written as the following form 

( 1) ( ) ( ) ( 1)
( ) ( ) ( ) ( 1) ( 1) ( 1)

( )

( ) ( )
( 1)[ ( 1) ] ( 1)

( )

T T
T T

T
T

U k g k g k U k
U k D k U k U k D k U k

S k

g k g k
U k D k U k

S k

− −= − − − −

= − − − −

    (13) 
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where )(kg and )(kf  satisfy 

⎪
⎩

⎪
⎨

⎧

−==
−−−−−−=

−==
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2
2

2
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1
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kAkUkfkfkfkf
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c

T
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T
c

L

L

L

σσσ      (14) 

The right part of (13) can be rewritten as the following equation by using singular 
value decomposition. 

)()()(
)(

)()(
)1( kUkDkU

kS

kgkg
kD T

T

=−−            (15) 

where )(kU  is an orthogonal matrix, cc
c RUUUkU ×∈= ],,,[)( 21 L , satisfying 

IUUUU TT == . The matrix D  is a diagonal matrix, ),,,( 22
2

2
1 cdiagD σσσ L= , 

where ),...,2,1(2 cii =σ  are singular values, satisfying 022
2

2
1 ≥≥≥≥ cσσσ L . 

Equation (13) is transformed into the following equation. 

)1()()()()1()()()( −−= kUkUkDkUkUkUkDkU TTT                  (16) 

             
⎩
⎨
⎧

−=
=

)()1()(

)()(

kUkUkU

kDkD
                                      (17) 

The matrix )(kK  is calculated as the following equation. 

)()()()()( kXkUkDkUkK T=                                  (18) 

4   Simulation 

Mackey-Glass time series which are derived from the differential equation are shown 
as the following equation. 

)(
)(1

)(
tx

tx

tx
x β

τ
τα

γ −
−+

−=&                                (20) 

The problem is how to use the past values of x to forecast the future value of x . 
The same example has been compared with the published results in the paper [13]. To 
obtain the time series value at each integer point, the fourth Runge-Kutta method is 
applied to get the numerical solution of Equation (16). The initial values of the system 
(20) are 2.1)0( =x , 2.0=α , 1.0=β , 10=γ . τ  is the time-delay parameter. If 

17≥τ , Equation (16) shows the chaotic phenomenon. 

Four variables )(),6(),12(),18( txtxtxtx −−− are selected as the input vari-

ables of the orthogonal neural network, and the variable )6( +tx  as the output vari-

able of the orthogonal neural network. We use 1000 simulation data points to build 
the orthogonal neural network of Mackey-Glass time series. 
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Fig. 2. The output of the fuzzy model and the 
training points 

Fig. 3. The error diagram 
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Fig. 4. The prediction output of the fuzzy 
model and the testing points 

Fig. 5. The error diagram 

 
In the 1000 simulation data points, the former 500 points are selected as the train-

ing data points to build the orthogonal neural network, and the rest 500 points as the 
testing data to test the validity of the orthogonal neural network. There are 12 neurons 
to describe the orthogonal neural network. After the orthogonal neural network model 
having been constructed on the basis of the training data, the following point will be 
forecasted by the orthogonal neural network, and the estimated value will be used to 
adjust the orthogonal neural network. The prediction model of Mackey-Glass time 
series is built via the above-mentioned process. The simulation results are given from 
Figure 2 to Figure 5.  

Figure 2 is the comparison between the output of the orthogonal neural network 
and the training points. The real line represents the training points and the dot line 
represents the output of the orthogonal neural network in Figure 2. Figure 3 is the 
error diagram between the output of the orthogonal neural network and the training 
points. Figure 4 is the comparison between the prediction output of the orthogonal 
neural network and the testing points. The real line represents the testing points and 
the dot line represents the prediction output of the orthogonal neural network in Fig-
ure 4. Figure 5 is the error diagram between the output of the orthogonal neural net-
work and the testing points.  
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In table 1, we compare our prediction method with other prediction methods from 
same data. It can be seen that the performance of our method is superior to that of 
other prediction methods, expect the proposed method in the paper [14]. Though our 
method cannot outperform ANFIS [14] in the prediction of Mackey-Glass time series, 
it still has three superiorities:1) The proposed method has stronger vitality than 
ANFIS when there are many uncertainties in the complex system; 2) The proposed 
method can obtain a simpler model structure (12 neurons) than that of ANFIS (16 
rules), which will contribute to satisfying the high efficiency requirement for the on-
line prediction; 3) The proposed method is more efficient than ANFIS. In the predic-
tion of the time series, the modeling time of our method was only about 6 minutes on 
PC (Pentium), while the ANFIS simulation took about 1.1 hours on PC (Pentium). 

Table 1. Generalization Result Comparisons 

Methods Training Cases Mean Square Errors 
ANFIS [13] 500 0.007 

Cascade-Correlation [12] 500 0.06 

Back-Prop NN [12] 500 0.02 
6th –Order Polynomial [12] 500 0.04 

Our method 500 0.016 

5   Conclusion 

This paper presents an orthogonal function neural network to the prediction of com-
plex systems. The recursive Kalman filtering algorithm based on SVD method is used 
to confirm the parameters of the orthogonal function neural network in order to avoid 
error delivery and error accumulation. The simulation results have shown that 
Mackey-Glass time series can be accurately predicted. In a word, the proposed 
method has shown the advantages of simplicity, flexibility and high accuracy. 
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Abstract. An approach for estimating the leakage power and the speed
of the dual threshold domino OR gates based on Wavelet Neural Net-
works (WNN) in 45 nm technology is proposed. The estimating system
has fast convergence and high precision. By studying the impact of the
dual threshold voltage technique (DTV) on leakage reduction and delay
increase, it successfully estimates the nonlinear changing of the leakage
power and delay of the different inputs domino OR gates. At last, the
reason for the estimating error and the trend of the estimating curve are
explained, respectively.

Keywords: Wavelet Neural Networks, Dual threshold domino OR,
Speed, Leakage power.

1 Introduction

Wide domino OR gates or like structures are commonly employed in register
and cache array bit line design [1]. As technology scales down, the threshold
voltage (Vt) and gate oxide thickness (tox) of the transistors must be reduced
to accompany the supply voltage scaling to meet the performance requirements.
However, the leakage power increase exponentially with the scaling of Vt and tox
[2][3]. The 2005 International Technology Roadmap for Semiconductors (ITRS)
[4] predicted that by the sub-65nm generation, leakage may constitute as much
as 50 percent of the total power consumption.

Therefore, there exists the need to find a solution that can suppress leakage
power. The dual threshold voltage technique (DTV) [5] is one of the most popu-
lar techniques to achieve this goal. But, because of the low speed characteristics
of high threshold transistors, the dual threshold voltage technique increases the
delay of the domino gates. Hence, before applying DTV, the leakage power re-
duction and delay increase should be forecasted and then traded off, which can
help judge if the application of DTV in domino gates meets the design constrains

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 844–851, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of the power and the delay. Especially in EDA design flow, this estimation will
save designers a huge amount of time and reduce iteration.

Leakage power and delay estimating for domino gates is challenging because
of nonlinear effects. Neural networks have emerged to provide a very appeal-
ing approach to estimate nonlinear changing of leakage power and delay. An
important advantage of neural networks based estimation is no explicit models
are required [6]. Due to the quick convergence, effective classification and highly
accuracy, the wavelet neural networks (WNN) has been widely known and suc-
cessfully used in most control systems and information processing systems [7][8].
In this paper, a novel approach for estimating leakage power and delay of the
dual threshold domino OR gate based on WNN in 45 nm technology is proposed.
And its accuracy is validated with simulation test.

2 Estimating System Based on Wavelet Neural Networks

Vdd

Gnd

Vdd

Vdd

Vdd

Gnd

Vdd

Vdd

Fig. 1. Domino OR gates (a) Low Vt domino OR gate (b) High Vt domino OR gate

2.1 Dual Threshold Domino OR Gate

High leakage power consumption has become an important issue affecting domino
OR gates performance in 45nm technology. The dual Vt technique is proposed to
efficiently lower the leakage power [9][10]. As can be seen from Fig.1 (b), the criti-
cal signal transitions determining the domino circuit delay occur along the evalu-
ation path. In a dual Vt domino circuit, therefore, all of the transistors, activated
during the evaluation phase (Nclk, N1...Nn, Pr), have a low Vt. Alternatively, the
precharge/predischarge phase transitions (P1, P2, Nr) are not critical for the per-
formance of a domino circuit and they all have a high Vt [11]. The leakage current
decreases with the increasing of Vt and it can be expressed as followed [12]

Isub =
Weff

Leff
u

√
qεsiNch

2Φs
V 2

T exp(
Vgs − Vt

nVT
)(1 − exp(−Vds

VT
)), (1)

where Isub, Leff and Weff are the sub-threshold leakage current, the effective
channel length and width respectively, and other parameters have their usual
meanings. However, high Vt transistors in circuits will degrade the speed of the
domino gates. It can be expressed as followed [12]
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v ∝ V 0.3
dd (1 − Vt

Vdd
)1.3

t0.5
ox

, (2)

where v is the speed of the transistor, and other parameters have their usual
meanings. Thus, in a dual threshold domino OR Gate, the number of the tran-
sistors in the pull-down, that is, the number of the inputs, has a crucial impact
on its leakage power and speed characteristics. On the one hand, most of its
leakage current is produced by the transistors in the pull-down network and the
number of these transistors greatly influences the DTV effect on lowering leakage
power. On the other hand, with the increasing of fan-in, the more transistors
in the pull-down network, the more current path are constructed from dynamic
node to ground. These increased current paths also decrease the delay of the
evaluation stage and compensate the speed loss that DTV induces.

Therefore, constructing a precise estimating system that details the relation
between the number of the inputs and the leakage reduction and delay increase
can help determine whether to apply DTV in domino gates or not. In the next
section, we present a model based on Wavelet Neural Networks.

2.2 Implement Wavelet Neural Networks

WNN is constructed based on wavelet analysis, which has similar structure of
feed-forward neural networks. Three-layer WNN is embedded with wavelet func-
tions as hidden layer neurons, which take wavelet space as feature space of pat-
tern recognition. This is a multi-layer feedback architecture with wavelet, allow-
ing the minimum time to converge to its global maximum. The WNN employs a
wavelet base rather than a sigmoid function, which discriminates it from general
back propagation neural networks.

The function of mapping can be expressed as:

f(x) =
h∑

o=1

m∑
j=1

ωo
1√|ao|

ψjo(
∑n

i=1 xij − bo

ao
), (3)

where 0 (0=1, 2..., h) and j0 are output of hidden layer neurons and the wavelet
bases, respectively. Networks have three parameters to be trained: output weight
translation factors a and dilation factors b.

In this paper, a set of training samples with labels D= {(yi, xi), i=1,2...,N}.
And morlet wavelet is used as stimulation function of hidden layer

ψ(x) = cos(1.75x)e
−x2

2 . (4)

The error performance function is given by:

J =
1
N

N∑
i=1

m∑
j=1

(yd
j,i − yj,i)2, (5)

where N is the total number of training patterns, yd
j,i and yj,i are the desired

and real outputs, respectively.
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The training process of WNN is performed as following:
1. Create the initial population of individuals according to the initiation

strategy–output weight, translation factors a and dilation factors b are in (0,1).
2. Calculate the fitness function by (5).
3. To minimize the fitness function in (5), the weights and coefficients a and

b can be updated using the following formulas:

ωj(k) = ωj(k − 1) + η(yd(k) − y(k))hj + α(ωj(k − 1) − ωj(k − 2)), (6)

∆aj = aj(yd(k) − y(k))ωjhj
(
∑n

i=1 xij − bj)2

a3
j

, (7)

aj(k) = aj(k − 1) + η∆aj + α(aj(k − 1) − aj(k − 2)), (8)

∆bj(k) = (yd(k) − y(k))ωj

∑n
i=1 xij − bj

a2
j

, (9)

bj(k) = bj(k − 1) + η∆bj + α(bj(k − 1) − bj(k − 2)), (10)

hj =
1√|aj |

ψj(
∑n

i=1 xij − bj

aj
)(j = 1, 2..., m), (11)

where η=0.01, α=0.05. j is the number of hidden layer neurons.
4. Repeat step 2) to step 3) until some constraint condition is satisfied, then

stop and the desired individuals are obtained.

3 Simulation Result and Analysis

As described in section 2.1, the input of the WNN is the number of inputs of
dual threshold domino OR gates and the outputs are leakage reduction percent-
age and delay increase percentage as compared to the low threshold domino OR
gates. The training data and testing data are collected from the simulation results
with HSPICE tools based on 45nm BSIM4 model, as can be seen in Table1, 2, 3.
When simulating the leakage power, all of the domino OR gates are set in CHIH
(clock=1, IN1=IN2=...INn=1) state, which can ensure every gates in the lowest

Table 1. Parameter of devices

45nm
Technology Node 

Low Vt High Vt

NMOS Threshold Voltage 0.22V 0.35V 
PMOS Threshold Voltage -0.22V -0.35V 

Supply  Voltage 0.8V 0.8V 
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Table 2. Training Data

In 1 3 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
LR/% 82.9 75.6 69.6 56.2 49.0 43.3 41.8 38.1 35.0 34.9 32.6 30.6 28.9 27.3 25.9 24.7 
DI/% 21.8 27.1 27.5 32.4 33.2 34.3 23.9 22.6 24.6 18.4 20.1 20.2 21.5 22.2 20.6 21.8 

In 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 
LR/% 23.6 22.5 21.6 20.8 20.0 19.2 18.6 18.0 17.4 16.9 16.4 16.0 15.5 15.1 14.7 14.3 
DI/% 24.2 23.9 24.5 25.6 21.3 21.5 24.3 24.6 21.9 20.4 20.1 23.0 22.9 22.8 22.6 19.2 

In: the number of the transistors in the pull-down network. LR: the percentage of the leakage 
reduction. DI: the percentage of the delay increase.

Table 3. Testing Data

In 2 4 8 16 32 48 64 96 128
LR/% 79.0 72.5 62.2 47.7 36.8 31.4 26.2 19.9 16.1
DI/% 21.9 28.3 28.4 33.8 23.6 20.2 20.7 21.3 23.0

In: the number of the transistors in the pull-down network. LR: the percentage of the leakage 
reduction. DI: the percentage of the delay increase. 

Table 4. Testing Error

In 2 4 8 16 32 48 64 96 128 
LR error/% +3.80 +1.99 -1.26 -2.11 -1.77 -2.81 -2.96 -1.87 -1.81 

DI error/% +0.01 -1.51 +2.30 +0.28 -3.92 +1.39 +2.96 +2.46 -3.77 
In: the number of the transistors in the pull-down network. LR: the percentage of the leakage 
reduction. DI: the percentage of the delay increase.  

leakage state [13]. In order to test the availability of the estimating model, the test-
ing data are selected from 2, 4, 8, 16, 32, 48, 64, 96, 128 inputs domino OR gates,
because these typical gates are usually utilized in practice. Based on the previous
discussion, the architecture was used for the wavelet network is 1-1-1 (one input
layer, one hidden units and one output unit). The network was trained with 2500
learning iterations. The largest error E or given precision is 0.00001. The Matlab
languages make up the software programs including the leakage power and delay
sampling procedure, leakage power and delay analysis, WNN training and so on.
The WNN training is ended when the value of objective function is less or equal
to 0.00001 and it converge very fast, as can be seen from fig.2.

The testing errors are shown in table 4. And all of the errors are less 5%
including leakage power reduction errors and delay increase errors. Obviously,
the estimating system possesses the high estimation accuracy. Therefore this
estimating system based on wavelet neural network has strong stability, and it
can be embedded in EDA tools as power and delay estimation programming.

Fig.3 is the estimating curve based on the wavelet neural networks and testing
curve. As can be seen from it, when the number of the inputs is less than eight,
the testing leakage curve is over the estimating curve. Alternatively, the testing
curve from the domino OR gates with eight or more inputs positions under the
estimating curve.
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Fig. 3. The estimating curve and testing curve based on the wavelet neural networks

This can be explained as follows. In the nanometer CMOS technologies, the
leakage power consists of the sub-threshold leakage power and the gate leakage
power (produced by the gate leakage current: Igate) [14]. With the scaling of the
oxide thickness (tox), Igate increases exponentially and is becoming a significant
contributor to the total leakage current as CMOS process advances to sub-65nm
regime, according to ITRS2005 [4][15]. What’s more, in a dual threshold domino
OR Gate, Igate increases greatly with the increasing of the fan-in because the
transistors in the pull-down leads to the greatest forward Igate [16]. However, the
DTV aims at suppressing the sub-threshold leakage power, and has little impact
on the gate leakage power. Therefore, when the number of the inputs is less than
eight, the gate leakage power is much smaller than the sub-threshold leakage
power and then it can be ignored and the effect of DTV achieves maximum.
However, with the increasing of the number of the inputs, the gate leakage
power rises and comes up with the sub-threshold leakage power and thus the
effect of DVT decreases. So as compared to the testing data, the training data
values in the training curve are bigger and, therefore, the testing curve is under
the estimating curve, as can be seen in fig.3.

As described in section 2.1, the number of inputs has significant influence
on the delay of the domino OR gates. The delay is determined by the rela-
tive contribution of the capacitance of P1+P2 (in fig.1) and the capacitance in
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pull-down network. When the number of the inputs is approximate sixteen, these
two capacitances match well with each other, and then the gate delay is small-
est. DVT application makes these two capacitances mismatch, which induces the
most amount of delay increase as compared to other inputs domino OR gates,
as can be seen in fig.3.

4 Conclusion

Based on WNN, a system for estimating the leakage power and the delay of
the dual threshold domino OR gates in 45 nm technology is proposed. The
estimating system has fast convergence and high precision. By studying the
impact of the dual threshold voltage technique (DTV) on leakage reduction and
delay increase, it successfully forecasts the nonlinear changing of the leakage
power and delay of the different inputs domino OR gates. The simulation results
for verification shows that the accuracy ratio of estimating system is more than
95%. Therefore, it can be well applied in VLSI design flow. At last, the reason for
the estimating error and trend of the estimating curve are explained, respectively.
The leakage power estimating error is produced because of ignoring gate leakage
power which is becoming an important contributor with the increasing number
of the transistors in pull-down network. And the delay penalty of sixteen inputs
domino OR gate achieves maximum. In addition, through the extension of this
estimating system, we can construct other estimating system to estimate the
impact of different optimization techniques on different logical gates, which can
significantly reduce the design period.
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Abstract. In this investigation, a vector controlled induction motor drive is 
simulated and the feedback signals of this vector controlled drive are estimated 
using neural networks. The neural networks receive the machine terminal sig-
nals as inputs and estimate the rotor flux and unit vectors ecosθ and esinθ as 
outputs. These outputs are used in the vector controlled drive system. The cal-
culated feedback signals by the neural networks are not sensitive to the motor 
parameter variations. In this paper, three types of neural networks (i.e. multi-
layer perceptron (MLP), radial basis function (RBF) and wavenet) are used and 
the obtained results are compared. Finally, on the basis of the advantages of 
wavenets, the results prove the accuracy and effectiveness of the wavenet 
based estimator. 

Keywords: Neural Networks, wavenet, vector control of induction motors, 
feedback signals. 

1   Introduction 

Among various types of electric motors, induction motors and in particular squirrel 
cage rotor type motors have a very wide spread applications due to their several ad-
vantages such as: low maintenance, high reliability, low weight and inertia, low cost 
and high efficiency. Despite these advantages, until a few years ago induction motors 
were only used in fixed speed applications. But with the development in power elec-
tronics and using modern control techniques like vector control and also using the 
methods based on artificial intelligence, suitable control for induction motors have 
been suggested and allowed the use of these motors for variable speed applications. 

The control methods for induction motors are divided in two distinct categories: 
scalar control and vector control. In the scalar control method, voltage and frequency 
are the main control variables for induction motors. On the other hand, torque and 
flux are the functions of both voltage and frequency. Such a coupling causes a low 
response speed in induction motors. This limitation can be removed by employing a 
vector control approach. In vector control techniques, an ac motor can be controlled 
like a separated excited dc motor [1]. 
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In the last two decades, neural networks have been used in many applications. For 
instance, a stator-flux-oriented vector-controlled induction motor drive has been de-
scribed where the space-vector pulsewidth modulation (SVM) and stator-flux-vector 
estimation are implemented by artificial neural networks [2]. A neural-network-based 
implementation of space-vector modulation (SVM) of a three-level voltage-fed in-
verter has been proposed in [3]. Karanayil et al. [4] have presented a new observer for 
the rotor resistance of an indirect vector controlled induction motor drive using artifi-
cial neural networks supplemented by a fuzzy logic based stator resistance observer. 
The estimation of the feedback signals of an induction motor using an MLP neural 
network can be found in [5]. Identification and adaptive control of induction motors 
have been suggested in [6]. Robustifying a vector controlled induction motor using 
feedback and feedforward control simultaneously can be found in [7].  

Despite the potential of neural networks, several problems remain to be solved be-
fore their more wide spread applications become possible. For instance, most often no 
physical interpretation can easily be attributed to a model generated by a trained net-
work. Some of the activation functions being used are global functions which do not 
allow local training. The set of processing functions, which also determines the struc-
ture of the network, may need to be determined empirically by trial and error. The 
convergence of training algorithms is not normally guaranteed. Attempts have been 
made to solve these and other problems by considering rigorous mathematical frame-
works for neural networks. The recently developed and fast growing theory of wave-
lets and multiresolution analysis (MRA) may provide a powerful mathematical 
framework for wavelet networks. Wavelet based neural networks with a multiresolu-
tion learning, called wavenets, have overcome some of the weaknesses of the conven-
tional neural networks. Wavenets have been used for modeling and optimization of 
distillation column [8]. More detailed descriptions about the so-called multiresolution 
analysis can be found in [9]. 

In this paper, three types of neural networks, i.e. multilayer perceptron (MLP) net-
works, radial basis function (RBF) networks and wavenet, have been used. The ad-
vantages of the wavenet are presented via a comparative study. 

2   Feedback Signals 

In the vector control method, three phase stator currents are converted to the direct 
and quadrature currents ( ,  )ds qsi i  where the flux and torque can be independently con-

trolled using these two currents respectively. In the vector controlled induction mo-
tors, the feedback signals (i.e. rotor flux and unit vectors) are very sensitive to the 
motor parameter variations that is clear from the following equations. These feedback 
signals can be calculated from the d-axis stator current ( )s

dsi , the q-axis stator cur-

rent ( )s
dsi , the q-axis stator flux ( )s

qsψ , the d-axis stator flux ( )s
qsψ  and motor pa-

rameters.  
In a vector control drive system, the feedback signals are calculated from the cur-

rent and voltage terminal of the machine using the following equations: 
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( )s s s
qs qs s qsv R i dtψ = −∫  (1) 

( )s s s
ds ds s dsv R i dtψ = −∫  (2) 

s s s
qm qs ls qsL iψ ψ= −  (3) 
s s s
dm ds ls dsL iψ ψ= −  (4) 

s s sr
qr qm lr qs

m

L
L i

L
ψ ψ= −  (5) 

s s sr
dr dm lr ds

m

L
L i

L
ψ ψ= −  (6) 

2 2( ) ( )s s
r qr drψ ψ ψ= +  (7) 

cos
s
dr

e
r

ψθ
ψ

=  (8) 

sin
s
qr

e
r

ψ
θ

ψ
=  (9) 

where, 

sR   Stator resistance 

lsL   Stator leakage inductance 

lrL   Rotor leakage inductance 

mL   Magnetizing inductance 

rL   Rotor inductance 
P   Number of poles 

( ) s s
ds qsv v  d-axis (q-axis) stator voltage  

( ) s s
ds qsi i  d-axis (q-axis) stator current  

( )s s
ds qsψ ψ  d-axis (q-axis) stator flux linkage  

( )s s
dm qmψ ψ  d-axis (q-axis) air-gap flux linkage  

( )s s
dr qrψ ψ  d-axis (q-axis) rotor flux linkage. 

3   Neural Networks and Estimation 

In this study, the d-axis stator current ( )s
dsi , the q-axis stator current ( )s

dsi , the q-axis 

stator flux ( )s
qsψ and the d-axis stator flux ( )s

qsψ , that all are in the stationary refer-

ence frame, are the inputs of the neural network and the rotor flux ( )rψ , and the unit 

vectors ( ecosθ and esinθ ) are considered to be the outputs of the neural network, 

where eθ is the rotor flux angle. The block diagram of a vector controlled induction 

motor drive with a neural network based feedback signals estimator is illustrated in 
Fig. 1. 
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Fig. 1. Block diagram of a vector controlled induction motor drive with a neural network based 
feedback signals estimator 

The estimation of the rotor flux and unit vectors using three classes of neural net-
works have been performed, and then applied in a vector controlled induction motor 
drive in a simulation environment. A comparative study of the results is also presented. 

3.1   Multilayer Perceptron (MLP) Network 

This network consists of three layers: input, hidden and output layers. The activation 
functions that can be used for this network are generally global (for instance tanh). 
The input signals are normalized using a set of normalizing factors and after computa-
tion, the output signals are converted to the actual value using their corresponding 
denormalizing factors. The most suitable learning algorithm that used for this network 
is found to be the Levenberg Marquardt due to the fact that the number of parameters 
(weights and biases) is not too high. Initial weights and biases are usually chosen 
randomly. The learning of an MLP network is very slow and time consuming and also 
the use of global functions is one of the other disadvantages of these networks. For 
more information about MLP networks see [10]. 

3.2   Radial Basis Function (RBF) Network 

Fig. 2 illustrates a radial basis function network. In this network, the input signals 
directly enter the hidden layer and the basis functions are normally local. In order to 
train this network, in addition to weights adjustment, finding the centers of the basis 
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Fig. 2. A radial basis function network construction 
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functions is also necessary. The least mean squared error is selected for the training 
purpose. The number of neurons of the hidden layer is chosen by a trial and error 
process in the case of both RBF and MLP networks. 

3.3   Wavenet 

Fig. 3 illustrates a wavenet construction with p inputs and a single output. This con-

struction is very similar to the radial basis function network. The wavenet construc-
tion includes two functions: scaling functions and wavelets. Wavelets are a new  
family of localized basis functions and they are functions with a combination of pow-
erful features, such as orthonormality, locality in the time and frequency domains, 
different degrees of smoothness, fast implementations, and in some cases compact 
support. Some typical scaling functions and their wavelets are shown in Fig. 4. 
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Fig. 3. A wavenet construction with p inputs and a single output 

 

Fig. 4. Some typical scaling functions and their wavelets 

Wavelets are usually introduced in a multiresolution framework developed by Mal-
lat [9]. The function φ is called a scaling function of the multiresolution analysis, and 

a family of scaling functions of the MRA can be expressed as, 
/2

, ( ) 2 (2 )m m
m k x x kϕ ϕ− −= −  (10) 
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where 2 m−  and k correspond, respectively, to the dilation and translation factors of the 
scaling functions, while / 22 m− is an energy normalization factor. The orthonormal 
basis functions corresponding to detailed spaces of multiresolution analysis are named 
wavelets and denoted by , 'm ky s. These can easily be obtained from , 'm kφ s. A family 

of wavelets may be represented as, 
/2

, ( ) 2 (2 )m m
m k x x kψ ψ− −= −      ,m k z∈ . (11) 

In general any physically measureable function can be expressed as  
0

0 , ,( ) ( ) ( )m k m k
m k

f x f x d xψ
∞

=−∞ =−∞

= + ∑ ∑  (12) 

where 

0 0, 0,( ) ( )k k
k

f x a xϕ=∑ . (13) 

To construct a feedforward neural network, one needs to describe the location of 
the nodes, the type of basis functions employed in the nodes and the learning algo-
rithm. The basis functions in a wavenet are wavelets (and scaling functions). There-
fore, it only remains to define the locations of these basis functions and a learning 
algorithm for the network. The locations of the basis functions for different resolu-
tions are shown in Fig. 5.  

Equation (12) describes the basic framework of a wavenet, in that it explains how 
each wavelet cooperates in the whole approximation scheme. It also shows that the 
scaling functions are only used at the earliest stage of the approximation to produce 

0f , after which the approximation scheme uses only wavelets. Once the first  

approximation to a function f is obtained, that is 0f , one can get a better approxima-

tion, namely 1f− , by including wavelets of the same dilation factor as the scaling func-

tion, here m = 0. Adding wavelets of the next highest resolution, here 1m = − , leads 
to a finer approximation 2f− , than the previous one 1f− . This process is continued until 

the original function is reconstructed, or an arbitrary degree of accuracy for the ap-
proximation is obtained.  Three learning algorithms for wavenets (i.e. finding the 
network coefficients ,m ka and ,m kd ) have been presented in [8]. Since some of these 

learning methods are not iterative, they are very fast methods for learning. 
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Fig. 5. The locations of basis functions for different resolutions 
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4   Results 

As mentioned before, in this paper three types of neural network-based estimators 
have been developed and the results have been presented. The estimation problem can 
be expressed as below to find g: 

[cos sin ] ( , , , )s s s s
e e r ds qs ds qsg i iθ θ ψ ψ ψ= . (14) 

In the case of the MLP network, the input/output patterns for training include a set 
of 2000 data points and the network has 4 inputs, 4 neurons at the first hidden layer, 
10 neurons at the second hidden layer and 3 neurons at the output layer that have been 
chosen via trial and error. The activation functions for all three layers are tanh. The 
learning algorithm used for this network is the Levenberg Marquardt. 

After the MLP based estimator, the RBF based estimator has been constructed. The 
number of neurons at the hidden layer has been selected by trial and error and is set to 
be 40 neurons and the input/output data for training is the same as MLP. The basis 
functions used are Gaussian functions. 

Finally, the wavenet based estimator has been developed with 15 wavelets and 1 
scaling function in the hidden layer for each of the outputs and the basis functions are 
selected to be the Meyer type. At the first level of the resolution in the training stage, 
the coefficient of the scaling function, 0,0a , is found and at the next resolution, the 

coefficients of the wavelets, 0,0d to 0,14d ,are obtained. 

The main advantages of the wavenet are the multiresolution construction and also 
guaranteed convergence. The number of nodes in the hidden layer can be obtained 
using | |(2 )n m where n and m  are the number of inputs of the network and the resolu-

tion respectively. On the other hand, the number of cells in each node can be calcu-
lated using 2n-1. For instance, for a four-input network at the first resolution, m=0, 
there are only one scaling function and 15 wavelets. At the next resolution, m=-1, 
there are 240 wavelets. 

Table 1 shows a comparison of the results of these three neural network-based es-
timators. The neural networks have the same number of inputs (four inputs). The three 
types of neural networks for signal estimation have shown reasonable performance; 
however, the wavenet based estimator outperforms its rivals in terms of sum squared 
error. Furthermore, the training time for this network is better. Therefore because of 
these advantages and also for the sake of brevity, only the results related to the vector 
controlled drive with the wavenet based estimator have been presented. However, the 
training and test results of all these three neural networks have been presented. 

All of the neural networks have been trained with the same set of data, called train-
ing data, and then tested with another set of data, called test data, that has not been 
used in the training stage. Figs. 6(a) to 6(c) are the rotor flux and unit vectors ( ecosθ  

and esinθ ) estimated by the MLP network respectively. Figs. 7(a) to 7(c) show the 

same outputs related to the RBF based estimator. The outputs of the wavenet based 
estimator are shown in Figs. 8(a) to 8(c). The left hand sides of all these figures are 
related to the training stage and the right hand sides represent the test results.  
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Table 1. A comparative study of the results of the three classes of neural network based  
estimators 

 MLP RBF Wavenet 

Sum squared error 8.71 2.83 0.92 
Network construction 4×4×10×3 4×40×3 4×48×3 
Training time 9t 1.8t t 
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Fig. 6. The outputs of the MLP based estimator 
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Fig. 7. The outputs of the RBF based estimator 
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Fig. 8. The outputs of the wavenet based estimator 

 

0 1 2 3 4 5
-500

0

500
speed

ti ( )

Rotor speed 

Time (sec) 

ω
rm

 (
ra

d/
se

c)
 

 
Fig. 9. The reference and actual rotor speeds 
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Fig. 10. The first phase of the stator current 

Finally, these three neural network models have been used as the feedback signal 
estimators. Fig. 9 shows that the actual rotor speed closely follows the reference tra-
jectory. Figs. 10 to 12 show the first phase of the stator current, d-axis and q-axis 
stator currents respectively. All of these figures are related to the vector controlled 
induction motor with the wavenet based estimator. 
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Fig. 11. The d-axis stator current  
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Fig. 12. The q-axis stator current 

5   Conclusion 

In this paper, the estimation of feedback signals for a vector controlled induction 
motor drive using three types of neural networks (i.e. MLP, RBF and wavenet) has 
been investigated and a comparative study has been presented. The neural networks 
receive the machine terminal signals as inputs and estimate the rotor flux and unit 
vectors ecosθ and esinθ as outputs. These outputs have been used in the vector con-

trolled drive system. The calculated feedback signals by the proposed neural networks 
are not sensitive to the motor parameter variations. Based on the simulation results, 
the wavenet based estimator is found to be the most suitable estimator due to its sim-
ple structure, less error, fast training, guaranteed convergence and the multiresolution 
learning. It can be seen from the simulation results that the actual rotor speed exactly 
tracks the reference speed and the wavenet based estimator estimates the feedback 
signals accurately. 
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Abstract. Dissolved Gas-in-oil Analysis (DGA) plays an important role in fault 
diagnosis of power transformers. BP (Back Propagation) algorithm is used to 
diagnosis for dissolves gases in the oil of transformer in this paper. But typical 
BP algorithm has some defects, such as converging slowly, searching space 
possessing local minima and oscillation. The algorithm using additional mo-
mentum method and L-M (Lerenberg-Marquardt) to train BP Neural Network 
has been proved to have good performance in avoiding the local trap and con-
verging slowly. So this paper adopts BP artificial neural network with algorithm 
of additional momentum method and L-M in diagnosis of dissolves gases in the 
oil. A mass of gases samples are analyzed in the algorithm and the results are 
compared with the swatches forecasted. The comparison result indicates that the 
improved algorithm has better classify capability for single-gases swatch as 
well as high diagnosis precision. 

Keywords: Gas sensor array, Cross sensitivity, Artificial neural network, Gases 
identification. 

1   Introductions 

The large-scale power transformer is an important device in the power system, 
whether it works in a fit state concerns the safety and stabilization of the power sys-
tem. Therefore, it is very valuable to examine transformer’s early latent fault. There is 
a new settle approach had been offered to diagnose early fault when artificial neural 
network appears. [1-4] Construct smart sensor array system according components 
and contents differ of dissolves gases in the oil when transformer happen fault, neural 
network are trained with enough known samples through BP network’s improved 
algorithm, and mapping relation from sensor array signal to gas concentration is saved 
on the linking weight of network. It can obtain satisfying ratio of diagnoses and can 
effectively conquer disadvantage of BP artificial neural network when use this tech-
nique to diagnosed dissolves gases in the oil. 

2   Principle of Smart Sensor Array System 

When semiconductor gas sensor (mostly the metal oxide) touches the surface of the 
gases, its physical characters changes, for example, the conductance .As a result, the 



864 X. Chen et al. 

sensor can be used to monitor gases. It's rapid and many different gases can be moni-
tored, but has mistake selectivity for gas. The non-single selectively is decided by its 
sensitive mechanism. Although its selectivity can be improved by some methods such 
as adding an amount of precious metal Pt or Pd. it still has certain sensitivity to other 
gases. This is gas sensors “cross sensitivity” [5].  

Identifies and tests gases by the array which is made of different selective gas sen-
sor had been put forward by American Zaromb and Stetter. The theory of this method 
constitutes an array with different selective gas sensor and then building up the corre-
sponding connections between the gas and the responses of the array. When the re-
sponses are gained, the gases can be identified and tested by inverse solution [6]. 

The principle of gas’s identification and measurement by gas sensor array is shown 
in figure 1. Gas sensor array is used to detect mixed gas and form a high dimensional 
response model corresponding to measured media. Suppose that there are n  compo-
nents in the mixed gases and their concentration are 1 2 nc c , ,  c…， etc. , gas sensor 
array’s dimension is m, and then its response model is shown as follows: 

),,,(

),,,(

2122

2111

m

m

cccgs

cccgs

L

L

=
=

.

.

.

),,,( 21 mnn cccgs L=

                                                (1) 

Formula 1 can be simplified as ( )S G c＝ . In the simplified formula, input vector 

is
1 2 nC c c c )…＝( ， ，， , output vector  is 1 2 mS [s s s ]…＝ ， ， ， , where si is the ith sensor’s output. 

In addition, mapping relationship 1 2 mG( ) [g g g ( )]⋅ ⋅ ⋅ … ⋅＝ ( )， ( )，， reflect the com-

plex cross-sensitivity of the gas sensor array [7-8] 
The formation of mapping relationship H depends on the learning of network itself. 

When neural network are trained with enough known samples and network’s output 
error approaches zero, mapping relation from sensor array signal to gas concentration 
is saved on the linking weight of network which is approximate to sensors inverse 
mapping and can be used to unknown pattern’s identification of sensor array. 

 

Fig. 1. Principle of gas’s identification and measurement by gas sensor array 
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3   Feedforward Neural Network and Its Error Back Propagation 
Algorithm (BP Algorithm) 

Artificial neural network (ANN) pattern identification method has several advantages. 
Firstly, it has simulated neural signal’s transmission and integration mechanism which 
make it most close to olfactory system. Secondly, it has good fault-tolerance and 
strong adaptability. Moreover, it has strong self-learning ability and fast operation 
performance after network trained. Therefore, ANN has good application prospect in 
smart sensor technology research.  

3.1   BP Neural Network and Its Algorithm 

BP neural network’s structure is shown in figure 2. It is made up of one input layer, 
one output layer, and several hidden layers. Each layer has several neurons. BP algo-
rithm’s learning process is made up of forward propagation and backward propaga-
tion [6-7]. 

 

Fig. 2. BP network structure 

Forward propagation is that input signals transmit from input layer to hidden layers 
and then to output layer. It is described as formula 2 and formula 3. 

∑=
i

iihh xwfy )(1
                                                       (2) 

∑ ∑=
h i

iihhjf xwfwfy ))(( 12
                                       (3) 

Here xi is input signal, yh is output of hidden layer and f1 is its transfer function, yf 
is output of output layer and f2 is its transfer function, wih is linking weight from input 
layer to hidden layer, whj is linking weight from hidden layer to output layer. 

If target value of output layer cannot be obtained, let difference between target 
value and output value transmit backward, modify linking weight of each neuron 
layer by layer which make output error reduce to allowable range. The process is 
called backward propagation. Its weight value is modified as follows: 

hjhjhj ynwnw ηδ+=+ )()1(                                       (4) 
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where          ∑ −∗=
h

jjhhjj yTynwf )()))((('
2δ  

ihihih xnwnw ηδ+=+ )()1(                                                     (5) 

where          ∑ ∑∗=
i j

jhjiihh nwxnwf ))(()))((('1 δδ  

In formula 4 and formula 5, ( 1)hjw n + and ( 1)ihw n + are the nth weight coefficients, jt is 

the jth node target value, η is the training speed coefficient which is between 0 and 1. 

3.2   BP Network’s Improved Algorithm 

Above traditional BP network is easy to converge to local minimum point [9]. More-
over its convergent speed is slow. To avoid this defect, additional momentum method 
was put forward to modify weight value. When modifying weight value, not only 
error’s effect on grads but also error’s trends on curved surface would be considered, 
a value directly proportional to previous weight variable value would be added to 
each variable weight in forward propagation. Moreover a new variable weight would 
be obtained according to backward propagation. This is so called “additional momen-
tum method”. Its regulating formula is:  

( 1) ( ) (1 ) [ ]( ( ) ( 1))ij ij j i ij ijw n w n mc y mc w n w nηδ+ = + − + − −                 (6) 

where [mc] is momentum factor which is close to 0.95(0.9 in this paper), ijw is linking 

weight from the ith layer to jth layer. 
Additional momentum’s essence is to transmit the last weight value’s influence 

through a momentum factor [ ] mc . When [ ] 0mc = , it is traditional BP algorithm. 

When [ ] 1mc = , new weight increment is set to be the last weight increment. After in-

creasing momentum, weight is urged to change to the average way of error curved 
surface’s bottom. When network weight entering the flat region of curved surface’s 
bottom, iδ would be very small and ( ) ( )1ij ijw n w n∆ + ≈ ∆ . It is helpful for the weight 

to get away from the minimum value of the error curved surface. According to addi-
tional momentum theory, if modifying lead to error larger growth, modifying should 
be cancelled that make momentum influence stop and network not to enter larger 
error curved surface. When new error exceeds a fixed maximal error change rate, new 
weight would be cancelled. Practice shows that additional momentum method can 
effectively avoid the network to fall into local minimum point and its operation speed 
can be improved greatly. 

Another effective method is L-M (Lerenberg-Marquardt) algorithm to speed up 
feedforward network’s training speed. L-M algorithm is a training algorithm which 
based on an optimization method. Traditional BP algorithm usually need longer time 
for training. However, L-M algorithm is much faster than BP algorithm but need more 
memory. Generally speaking, Lerenberg-Marquardt algorithm need memory which is 
traditional BP algorithm’s S*Q times. Where S is the number of output neurons and Q 
is input-output vector number of training network. L-M algorithm’s rule for updating 
parameters is shown as follows: 
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eJIJJ TT •+=∆ −1)( µω                                          (7) 

where J is Jacobian matrix of differentiation  for error to weight, e is error vector; µ is 
a scalar which is adjusted adaptively in the method.  

Variable µ determine whether network’s learning algorithm according to Newton 
algorithm or gradient algorithm. With the increasing of µ , the item TJ J can be ignored 
in L-M rule which make formula 7 close to gradient algorithm. When variable µ is 
very small, formula 7 changed to be Guass-Newton method. So learning process de-
scends mainly according to gradient method especially item 1 TJ eµ − . If error increase in 
iterative process, µ would increase accordingly until error stop increasing. But if µ is 
too large, learning would stop. Because if item 1 TJ eµ − is very close to 0 and minimum 
error is found, this case would happened which make leaning stop when µ  reach the 
maximal value.  

4   Test Result Analysis 

Six semiconductor gas sensors constitute an array in experiment. Each of the six sen-
sors is sensitive with four different gases, but the degree is different .Deploy sensors 
in this way can form muti-dimensional response pattern for the mixed gases generally. 
At the same time, this method can give prominence to the information of one gas in 
one or more dimensions. 

4.1   Sample Preprocessing  

When neural network learning, there are abnormal samples in input training sam-
ples or data sample which added to input end is too large. As a result, neuron nodes 
arrives saturation state rapidly which lead to network’s paralysis phenomenon. 
Moreover, logsig functions are mostly used in neural network. Its output range is 
between 0 and 1 but cannot reach 0 or 1. In this paper, formula 8 and formula 9 are 
adopted in data’s normalization processing. After transformation, the value of input 
sample is between 0 and 1, and the value of output sample is between 0.05 and 
0.95. Input data is between 0 and 1 sometimes, but its value is close to high 
precision that learning is difficult to reach. After normalization processing, data 
difference would get larger. 
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Here 
ix  is input data and 

iy  is output data after normalization processing, ix and 

iy are original data, , , ,  max min max minx x y y are maximum and minimum value of input and 

output respectively. 



868 X. Chen et al. 

Table 1. Neural network output result 

Gas’s Calibration Value
10-6

Identification Result of Neural 
Network 10-6Sample 

C2H6 C2H2 C2H4 CO C2H6 C2H4 C2H2 CO
1 40 0 0 0 40.6765 0.7978 2.4444 0.6986 
2 30 0 0 0 29.5880 0.4107 2.3616 2.1790 
3 0 0 40 0 1.9578 0.1342 41.9649 1.8562 
4 0 0 30 0 1.8239 0.2202 34.5201 1.6776 
5 0 0 0 40 5.5188 0.0265 1.9064 37.6513 
6 0 0 0 30 4.0514 0.0412 1.9593 29.3990 
7 0 8 0 0 1.4485 7.4232 2.0728 2.0267 
8 0 6 0 0 1.5349 5.7999 2.3844 2.1042  

    

(a) Additional momentum algorithm 

 

(b)  L-M algorithm 

Fig. 3. Error curves of Additional momentum algorithm and L-M algorithm 
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4.2   Test Result Analysis  

In order to train and validate the Neural-Network designed, we can collect the 
swatches of C2H6,C2H4,C2H2 and CO. Thirty-two of the forty swatches in all are used 
to train the Neural-Network; the others are used to test. 

Additional momentum Method and L-M Method are given in this report. They can 
be used to train network to the same error level respectively. Different methods use 
different training steps. The curves of the two methods are shown at Chart 3. After 
several iterative trainings, the error level can converge to 10-2. And then fix up the 
weight value and threshold; validate it with the swatches forecasted. The results are as 
List1.It can be seen from the list that the results of the swatches forecasted by the 
network tally with the physical truth.  

5   Conclusion 

The sensor array system concerned in this test makes gas sensor array technology and 
BP man-made N-N band together. Moreover, it gives a method to analyzed one gas 
with the density in certain extend by experiment. The experiment results demonstrate 
that the intelligent sensor system can be used to analyses four characteristic gases in 
fault include C2H2 at 1×10-6~10×10-6 grade and CO, C2H4, C2H6 at 10×10-6~50×10-6 
grade . There are such advantages as rapid learning speed and high disposal precision. 

Smart sensor system which based on gas sensor array and ANN can complete sin-
gle gas’s qualitative identification and quantitative analysis. Research of this domain 
would be strengthened for its potential application value. 
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Abstract. In this paper, a new scheme based on chaotic neural network for 
stock index prediction is proposed. The data from a Chinese stock market, 
Shenzhen stock market, are applied as a case study. The chaotic neural network 
is used to learn the non-linear stochastic and chaotic patterns in the stock sys-
tem and forecast a new index with former indexes. The validity of the scheme is 
analyzed theoretically, and the simulation results show that it has a good per-
formance.  
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1   Introduction 

People tend to invest in stock because it has a high returns over time. Stock markets 
are affected by economic, social, political and even psychological factors, and these 
factors interact with each other in a very complicated manner. Therefore, it is very 
difficult to forecast stock index in general ways. 

Recent studies have introduced neural network to analysis stock market systems 
[1-5]. Yao et al. [1] proposed a profit based adjusted weight factor for back propaga-
tion in which factors containing the profit, direction, and time information were added 
to the error function. In [2], the authors used both feed forward neural network and 
simple recurrent neural network, trained by time and profit based back propagation 
algorithm with early stopping to make the prediction. The network inputs, architec-
ture, training strategies were decided based on experimental results. [3] introduces 
how the idea of Kalman prediction can be used to the study of the prediction of neural 
networks. Flexible neural trees are also introduced in [4]. However, some data coming 
from stock markets could be irregular and random. None of these schemes give due 
attention to reducing the influence of irregular and random data to the prediction. 

In this paper, a new scheme of stock index forecast is proposed. Unlike schemes in 
[2] and [3], we bring chaotic neural network in to make the forecasting. Because of its 
complex dynamics, chaotic neural network has more memory capacity and error tol-
erance than other neural networks [7]. With this advantage, chaotic neural network 

                                                           
∗ Corresponding author. 
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can be used in detecting and data processing [9]. Therefore, we use chaotic neural 
network to reduce the influence of irregular and random data to the prediction. In the 
proposed scheme, the chaotic neural network is trained with historical data and then 
forecast new stock indexes with former ones. The results of simulation show that the 
proposed scheme has a good performance. 

This paper is organized as follows: In Section 2, the detail design of the chaotic 
neural network is theoretically analyzed. Section 3 describes the system structure. 
Results of simulation are given in Section 4. Section 5 shows some concluding re-
marks. 

2   Theory Analysis 

The system structure is set based on Takens embedding theorem. According to the 
theorem, the geometrical structure of d-dimension dynamics system could be ob-
served from the D-dimension vector 

( ) [ ( ), ( ), , ( ( 1) )]T
RX n x n x n x n D= − τ − − τ… , (1) 

where τ is an integer denoting the embedded delay. If D≥2d+1, reconstruction could 

be achieved from ( )RX n . 

In the proposed scheme, the Aihara chaotic neuron is used as the basic element of 
the chaotic neural network module. The chaotic neuron model is expressed as follows 
[8]: 

0

( 1) [ ( ) { ( )} ]
t

d

d

x t f A t k g x t d
=

+ = − α − − Θ∑ , (2) 

where x(t+1)is the output of the chaotic neural network, t is the discrete time steps, 
t=0,1,2,…n…, A(t) is the external stimulation at the time t, f is the output function, g 
is the refractory function, α , k and Θ are the refractory scaling parameter, the refrac-
tory decay parameter and the threshold, respectively. 

Based on experimental results, we set f, g and Θ as follows: f adopts the func-

tion ( ( )) tanh( ( ))j j jx n a bx nϕ = , (a, b)>0; g(y) = y; Θ=a. Because of the charac-

teristic of the function y = tanh (x), ( )jbx n  should be among -1.0 and 1.0 to be in the 

linear area. The dynamics of the ith chaotic neuron is simplified as follows: 

1 0 1 0 0

( 1) [ ( ) ( ) { ( )} ]
M t N t t

i ij e j ij f j r j
j d j d d

x t f k A t k x t k g x t a
= = = = =

+ = ε + ω − α −∑ ∑ ∑ ∑ ∑ , (3) 

where ek , fk  and rk  are the parameters for the external inputs, the feedback inputs, 

and the refractoriness, respectively, ijε  and ijω  are synaptic weights to the ith neuron 

from the jth external input and from the jth neuron respectively. A chaotic neural of 
the model is illustrated in Figure 1. 
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Fig. 1. A chaotic neural of the model 

In the proposed scheme, the value of the weights is learning based on LMS algo-
rithm. The learning processing is as follows: 

E( ) E( )
=- ( ) ( ) ( )ij j j j j j

ij j

n n
n e n v n x n x n

n v n
′∂ ∂∆ε ( ) η = η ( ) ⋅ϕ ( ) ⋅ = η

∂ε ( ) ∂ ( )
, (4) 

E( ) E( )
=- ( ) ( ) ( )ij j j j j j

ij j

n n
n e n v n x n x n

n v n
′∂ ∂∆ω ( ) η = η ( ) ⋅ϕ ( ) ⋅ = η

∂ω ( ) ∂ ( )
, (5) 

where is ( )jx n  the output of the jth neuron, jv is the inner state variable. 

3   System Structure 

The new scheme of stock index processing is illustrated in Figure 2. Its data process-
ing flow is as follows: 

 

Fig. 2. The block diagram of stock index processing 
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Before forecasting, the stock index processing scheme is working in the “training 
period”. During the training period, the stock indexes pass through normalize layer. 
The normalized data is among -1.0 and 1.0 to make the function f in (2) work in linear 
area. Then the data is input to the chaotic neural network. The chaotic neural network 
is trained to learn the non-linear stochastic and chaotic patterns in the stock system. 
The number of training and the number of chaotic neural of every layer is adjusted 
based on experimental results. 

The 
E( )

j

n

v n

∂
∂ ( )

 in expression (4) and (5) is different in output layer and hidden layer. 

For output layer, 

E( )
( ) [ ( ) ( )][ ( )][ ( )]j j j

j

n b
e n v n d n o n a o n a o n

v n a
′∂ = η ( ) ⋅ϕ ( ) = − − +

∂ ( )
, (6) 

where o(n) is the predictive stock index, d(n) is the real stock index, value, a and b are 

the parameters of the output function ( ( )) tanh( ( ))j j jx n a bx nϕ = , (a, b)>0. For 

hidden layer, 

E( ) E( ) E( )
( ) [ ( )][ ( )]j j kj j j kj

k kj k k

n n b n
v n a x n a x n

v n v n a v n
′∂ ∂ ∂= ϕ ( ) ⋅ ⋅ω = − + ⋅ω

∂ ( ) ∂ ( ) ∂ ( )∑ ∑ . (7) 

After the system has been trained successfully, the system begins to work in the 
“forecasting period”. The stock indexes pass through every layer without changing 
the weights. The output of the chaotic neural network becomes the forecasted stock 
index by being anti-normalized. 

4   Simulations 

The stock indexes used for training and forecasting come from Shenzhen stock 
market. We use more than 33000 stock indexes to train the chaotic neural network. 
Then we inspect the performance. Our target is to develop efficient forecast models 
that could predict the index value of the following trade day based on former in-
dexes. The simulation result is illustrated in Fig.3, Fig.4 and Fig.5. The real line 
corresponds to the real indexes, and the dashed corresponds to the predictive in-
dexes. 

For (a) and (b) in Fig.3, the chaotic neural network is working in the training pe-
riod. With the number of training increasing, the predictive error goes down. This 
implies that the chaotic neural network is trained successfully. 

For Fig.4, the chaotic neural network is working in the forecasting period. It can be 
seen that despite some predictive errors are high, most of the errors are below 100. 
This implies that in most situations the chaotic neural network has a good perform-
ance in forecasting. 

 
 



874 B. Ning et al. 

In Fig.5, the relative errors of forecasted indexes are shown. In order to illus-
trate the advantage of the proposed scheme, we use back propagation neural 
network of similar complexity as a comparison. The same input data is used to 
train both networks. The number of training is also the same. (a) and (b) show 
the performance of chaotic neural network and back propagation neural net-
work, respectively. It can be seen that the relative errors of chaotic neural net-
work is smaller in general. The average errors of chaotic neural network and 
back propagation neural network are 0.77% and 1.07%, respectively. This im-
plies that chaotic neural network has a better performance than back propaga-
tion neural network. 

 

Fig. 3. The training of the chaotic neural network 

 

Fig. 4. Forecasting with the chaotic neural network 
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Fig. 5. The relative errors of forecasted indexes 

5   Conclusion 

In this paper we proposed a new scheme of stock index forecasting. The chaotic 
neural network is designed to approach the inherent function hid in the stock 
indexes and to learn the non-linear stochastic and chaotic patterns in the stock 
system. Because of its complex dynamics, chaotic neural network has more 
memory capacity and error tolerance than other neural networks. Therefore, we 
use chaotic neural network to reduce the influence of irregular and random data 
to the prediction. The validity of the scheme is analyzed theoretically. The simu-
lation results show that it has good performance in forecasting new stock in-
dexes, and has a better performance than back propagation neural network of 
similar complexity. 
 
Acknowledgments. The letter is supported by NSF China, Grand No. 60704040. 
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Abstract. This paper proposed a fast algorithm for 2-D ARMA pa-
rameter estimation under noise environments. The proposed algorithm
is based on a kind of inverse filter technique for the approximation of
random excitation. The proposed algorithm only solves a low order 2-D
AR system for the 2-D ARMA parameter. In contrast with Zhang and
Cheng ’s and Kizilkaya and Kayran’s algorithms for 2-D ARMA param-
eter estimation, the proposed algorithm considers the noisy observation
and is more suitable for practical applications. Moreover, the proposed
algorithm has a fast speed due to a low computational cost. Simulation
results show that the proposed algorithm can obtain more accurate es-
timates with a faster speed than the two algorithms.

Keywords: ARMA, Algorithm.

1 Introduction

The parameter estimation of 2-D autoregressive moving average(ARMA) process
has found many applications in blind image restoration [1-3], texture analysis
[4], image encoding [5-7], system identification and spectral estimation [8,9]. The
key of modeling 2-D random field by 2-D ARMA process is to estimate the 2-D
ARMA model parameters since it directly affects applications of the 2-D ARMA
model. There are a lot of methods developed for 1-D autoregressive(AR) and
ARMA parameter estimation, such as [10,11,12]. However, these methods for
1-D cases can’t be easily extended and effectively applied to 2-D cases due to
2-D dimensional complexity.

There are several conventional algorithms for 2-D ARMA parameter estima-
tion. Tekalp et al developed a maximum-Likelihood algorithm, which has a com-
plexity problem for implementation [2,3]. Zhang and Cheng proposed a two-step
algorithm [9,13]. In their algorithms, a form of 2-D MYW equation is intro-
duced. AR parameters are obtained by solving this new form of 2-D modified
Yule-Walker(MYW) equations in the first step. Relationship between MA spec-
trum coefficients and MA parameters are used in MA parameters estimation. MA
parameters are then obtained by solving this set of nonlinear equations. Because
of computational complexity and convergence problems, this algorithm could not
got better estimate accuracy. Recently, Kizilkaya and Kayran proposed a more

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 877–886, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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efficient algorithm [14]. In their algorithm, a 2-D EAR model parameters are
first estimated by 2-D MYW equations. Unlike Zhang and Cheng’s algorithm,
Kizilkaya and Kayran’s algorithm can get a better estimate accuracy due to no
convergence problem. On the other hand, the accuracy of the estimated param-
eters are highly dependent of the accuracy of EAR parameters. Also, Kizilkaya
and Kayran’s algorithm need constructing many matrices with high dimension
to obtain MA parameters and AR parameters. Thus there is a problem of com-
putational cost. Moreover, both Zhang and Cheng’s algorithm and Kizilkaya and
Kayran’s algorithm have no consideration on noisy cases.

In this paper, we proposed a fast algorithm for 2-D ARMA parameters es-
timation under noise environments. This algorithm is mainly based on the the
relationship between ARMA parameters and covariance. Because the knowledge
of random excitation is unknown, the inverse filter technique is first used to
predict the random excitation from observation data. We then transform a 2-D
ARMA(p1, p2, q1, q2) model into an approximate AR(p1 + q1 + 1, p2 + q2 + 1)
model. As a result, the proposed algorithm is simple and needs less computa-
tional cost. Compared with conventional algorithms [9,13] and [14], the proposed
algorithm can reduce computational complexity and is more suitable for appli-
cations in noisy observation cases. Simulation results show that the proposed
algorithm can obtain more accurate estimates with a fast speed than two stand-
ing algorithms.

2 2-D ARMA Model and Algorithms

2.1 Model and Assumption

Considering following quarter plane causal 2-D ARMA model of order
(p1,p2,q1,q2)

p1∑
i=0

p2∑
j=0

ai,jx(n1 − i, n2 − j) =
q1∑

m=0

q2∑
n=0

dm,nw(n1 − m, n2 − n) (1)

where x(n1, n2) is a stability random field, random excitation w(n1, n2) is white
with zero mean and variance σ2

w. In practice, measurements of the random field
is noisy:

y(n1, n2) = x(n1, n2) + u(n1, n2)

for 1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2, where u(n1, n2) is observation noise of zero
mean. It is assumed that a0,0 = 1 and d0,0 = 1. So our object is to estimate the
AR parameters di,j(0 ≤ i ≤ p1, 0 ≤ j ≤ p2, (i, j) �= (0, 0)) and MA parameters
am,n(0 ≤ m ≤ q1, 0 ≤ n ≤ q2, (i, j) �= (0, 0)).

2.2 Zhang and Cheng’s Algorithm

Zhang and Cheng (1991) presented a three-step algorithm [9][13]. First, the
following 2-D modified Yule-Walker(MYW) equation is solved for AR parameters
{ai,j}:
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p1∑
i=0

p2∑
j=0

ai,jrxx(q1 + l − i, q2 + m − j) = d0,0dq1,q2σ2
wδ(l, m) (2)

where δ(l, m) is Kronecker delta function with δ(l, m) = 1 for (l, m) = (0, 0),
otherwise δ(l, m) = 0. d0,0 and dp1,p2 are MA parameters, d0,0dq1,q2σ

2
w in (2)

can be can be computed by the assumption that a0,0 = 1. r(k1, k2) denotes the
covariance of the random field which is given by

rxx(k1, k2) =
1

(N1 − k1)(N2 − k2)

N1−k1∑
n1=1

n2−k2∑
n2=1

x(n1, n2) · x(n1 + k1, n2 + k2)

= rxx(−k1,−k2) for( k1 ≥ 0, k2 ≥ 0)

rxx(k1,−k2) =
1

(N1 − k1)(N2 − k2)

N1−k1∑
n1=1

n2−k2∑
n2=1

x(n1 + k1, n2) · x(n1, n2 + k2)

= rxx(−k1, k2) for( k1 ≥ 1, k2 ≥ 1)

(3)

Next, MA spectrum parameters ck,m and fk,m are computed. Finally, MA pa-
rameters di,j are obtained by solving the following nonlinear equations:

σ2
w

q1∑
i=0

q2∑
j=0

d2
i,j = 2c0,0 (4)

σ2
w

q1−k∑
i=0

q2−m∑
j=0

di,jdi+k,j+m = ck,m (5)

k = 0, · · · , q1, m = 0, · · · , q2, but(k, m) �= q(0, 0)

σ2
w

q1−k∑
i=0

q2∑
j=m

di,jdi+k,j−m = fk,m (6)

k = 0, · · · , q1, m = 0, · · · , q2

2.3 Kizilkaya and Kayran’s Algorithm

Kizilkaya and Kayran developed an equivalent AR algorithm for ARMA pa-
rameters estimation [14]. Unlike Zhang and Cheng’s algorithm, equivalent AR
parameters bi,j are first solved by following 2-D MYW equation

L1∑
s=0

L2∑
t=0

bs,trxx(l − s, m − t) = σ2
wδ(l, m) (7)

where rxx(i, j) and δ(l, m) are defined in (2). Then AR parameters are obtained
by minimizing

Φ = (
q1∑

k=0

q2∑
j=1

Bk,jak,j +
q1∑

h=1

Bh,0ah,0 + B0,0 − D)2 (8)
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where D and Bk,j are matrixes having dimension (L1 + 1) × (L2 + 1), defined
as follows

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0,0 · · · d0,p2 0 · · · 0
... . . .

...
... . . .

...
dp1,0 · · · dp1,p2 0 · · · 0

0 · · · 0 0 · · · 0
... . . .

...
... . . .

...
0 · · · 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bk,j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0 · · · 0
... . . .

...
...

... . . .
...

0 · · · 0 0 0 · · · 0
0 · · · 0 b0,0 b0,1 · · · b0,L2−j

0 · · · 0 b1,0 b1,1 · · · b1,L2−j

... . . .
...

...
... . . .

...
0 · · · 0 bL1−k,0 bL1−k,1 · · · bL1−k,L2−j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The MA parameters are finally computed by

dm,n = bm,n +
q1∑

k=0

q2∑
j=1

Bk,j(m,n)ak,j +
q1∑

h=1

Bh,0(m,n)ah,0 (9)

Because Kizilkaya and Kayran’s algorithm doesn’t need solving nonlinear
equations, they can obtain better estimate accuracy than Zhang and Cheng
’s algorithm.

3 Our Algorithm for Parameter Estimation of 2-D
ARMA Model

3.1 Our Estimation Method

Our estimation method is based on the obtained EAR parameters {bs,t} such
that

w(n1, n2) ≈
L1∑
s=0

L2∑
t=0

bs,tx(n1 − s, n2 − t) (10)

Substituting (10) into (1) we have

x(n1, n2) = −
p1∑

i=0

p2∑
j=0

(i,j) �=(0,0)

ai,jx(n1 − i, n2 − j)

+
q1∑

m=0

q2∑
n=0

L1∑
s=0

L2∑
t=0

dm,nbs,tx(n1 − m − s, n2 − n − t) (11)
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Using y(n1, n2) = x(n1, n2) + u(n1, n2) we have

y(n1, n2) = −
p1∑

i=0

p2∑
j=0

(i,j) �=(0,0)

ai,jy(n1 − i, n2 − j)

+
q1∑

m=0

q2∑
n=0

L1∑
s=0

L2∑
t=0

dm,nbs,ty(n1 − m − s, n2 − n − t) + n(n1, n2) (12)

where n(n1, n2) is colored noise. Multiple both sides of (12) by y(n1 − k, n2 − l)
and taking expectation yields

ryy(k,l) = −
p1∑

i=0

p2∑
j=0

(i,j) �=(0,0)

ai,jryy(k − i, l − j)

+
q1∑

m=0

q2∑
n=0

L1∑
s=0

L2∑
t=0

dm,nbs,tryy(k − m − s, l − n − t) (13)

where ryy(k, l) is the covariance of observation data, which is similar to (3).

Let r′(k, l) =
L1∑
s=0

L2∑
t=0

bs,tryy(k − s, l − t), (13) can be rewrite as

ryy(n1, n2) = −
p1∑

i=0

p2∑
j=0

(i,j) �=(0,0)

ai,jryy(n1 − i, n2 − j) +
q1∑

m=0

q2∑
n=0

dm,nr′(n1 − m, n2 − n);

(14)

Note that the system is assumed to be causal, w(n1, n2) is independent of
x(n1 − k, n2 − l) when (k < 0, l < 0). Then

E[w(n1, n2)x(n1 − k, n2 − l)]

= E[w(n1, n2)] · E[x(n1 − k, n2 − l)] = 0 for (k < 0, l < 0) (15)

It follows that

r′(k, l) =
L1∑
s=0

L2∑
t=0

bs,tryy(k − s, k − t)

=
L1∑
s=0

L2∑
t=0

bs,tE[y(n1 − k, n2 − l)y(n1 − s, n2 − t)]

=
L1∑
s=0

L2∑
t=0

bs,tE[x(n1 − k, n2 − l)x(n1 − s, n2 − t)]

−
L1∑
s=0

L2∑
t=0

bs,tE[n(n1 − k, n2 − l)n(n1 − s, n2 − t)]

=
L1∑
s=0

L2∑
t=0

bs,tE[x(n1 − k, n2 − l)x(n1 − s, n2 − t)] (16)
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Using (10) we can obtain

r′(k, l) =
L1∑
s=0

L2∑
t=0

bs,tE[x(n1 − k, n2 − l)x(n1 − s, n2 − t)]

= E[
L1∑

s=0

L2∑
t=0

bs,tx(n1 − k, n2 − l)x(n1 − s, n2 − t)]

≈ E[w(n1, n2)x(n1 − k, n2 − l)] = 0. (17)

So we only need computing r′(k, l) for (k ≥ 0, l ≥ 0).
Let values of k rang from 0 to p1 + q1 and l rang from 0 to p2 + q2 to (14). We

denote column vector c which consists of both AR and MA parameters given by

c = [a(0, 1), · · · , a(0, p2), a(1, 0), · · · , a(1, p2), · · · , a(p1, 0), · · · , a(p1, p2),

d(0, 0), · · · , d(0, q2), d(1, 0), · · · , d(1, q2), · · · , d(q1, 0), · · · , d(q1, q2)]T (18)

Then (15) can be written as a system of (p1 + q1 + 1) × (p2 + q2 + 1) linear
equations with respect to the unknown AR and MA parameters:

Rc = g (19)

where

g = [ryy(0, 0), · · · , ryy(0, p2 + q2), ryy(1, 0), · · · , ryy(0, p2 + q2),

· · · , ryy(p1 + q2, 0), · · · , ryy(p1 + q1, p2 + q2)]T (20)

R = [r0,0, · · · , r0,(p2+q2), r1,0, · · · , r1,(p2+q2)

, · · · , r(p1+q1),0, · · · , r(p1+q1),(p2+q1)]
T (21)

ri,j in (21) is a vector with (p1 + 1)(p2 + 1) + (q1 + 1)(q2 + 1) − 1 elements

ri,j = [ryy(i, j − 1), · · · , ryy(i, j − p2), ryy(i − 1, j), · · · , ryy(i − 1, j − p2), · · · ,

ryy(i − p1, j), · · · , ryy(i − p1, j − p2), r′(i, j), · · · , r′(i, j − p2),

r′(i − 1, j), · · · , r′(i − 1, j − p2), · · · , r′(i − p1, j), · · · , r′(i − p1, j − p2)]

ARMA parameters are finally estimated by computing the solution of (19), that
is c = (RT R)−1RT g.

3.2 Algorithm Comparison

First, Zhang and Cheng ’s algorithm needs solving nonlinear equations. Some
numerical methods, such as Newton-Raphson method, may be used to solve this
nonlinear equations, but the convergence conditions for their solutions could not
be satisfied. Thus, Zhang and Cheng ’s algorithm has a problem of computa-
tion implementation. In Kizilkaya and Kayran’s algorithm, q2

1 + q1 + 2 matrices
with (L1 + 1) × (L2 + 1) dimension are constructed and operated to obtain MA
parameters from (8) and AR parameters from (9). In contrast, our proposed
algorithm is required to solve a system of (p1 + q1 + 1) × (p2 + q2 + 1) linear
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equations. So, the proposed algorithm has a low computational cost and thus
a faster speed. Next, unlike Zhang and Cheng ’s and Kizilkaya and Kayran’s
algorithms, our proposed algorithm considers the noisy observation and is more
suitable for practical applications.

4 Simulation

In this section, we give an example to demonstrate the effective performance of
the proposed algorithm by comparing with two standing algorithms :Zhang and
Cheng’s algorithm [9][13] and Kizilkaya and Kayaran’s algorithm[14]. The simu-
lation is conducted in MATLAB. The samples’ size are chosen to be (N1, N2) =
(60, 60) and (N1, N2) = (128, 128). The random excitation w(n1, n2) is taken as
a Gaussian process with zero mean noise and variance σ2 = 1. The observation
data was corrupted with additive Gaussian noise at SNR of 10 dB.

Similar to [14], we define the Frobenius(F)-norm error between estimated and
original ARMA parameters as the measurement. In addition, spectral density of
the 2-D ARMA(p1, p2, q1, q2) process, is computed by

P(ejw1 , ejw1) = σ2
w|A(ejw1 , ejw1 )

D(ejw1 , ejw1 )
|2 = σ2

w|
∑q1

h=0

∑q2
i=0 ah,ie

−j(w1h+w2i)

1 +
∑p1

m=0

∑p2
n=0

(m,n) �=(0,0)

dm,ne−j(w1m+w2n)
|2 (22)

Table 1. Computed results of estimated parameters

True Proposed Algorithm Algorithm Proposed Algorithm Algorithm
value algorith [9][13] [14] algorith [9][13] [14]

(N1, N2) = (60, 60) (N1, N2) = (128, 128)
a0,1 0.2000 0.1649 0.1593 0.2411 0.1945 0.1944 0.2906
a0,2 0.2300 0.2260 0.1906 0.2047 0.2254 0.1944 0.2286
a1,0 0.1500 0.1386 0.1421 0.1434 0.1485 0.1455 0.2393
a1,1 0.1800 0.1386 0.1421 0.1610 0.1385 0.1640 0.1923
a1,2 0.1600 0.1491 0.1383 0.1288 0.1500 0.1444 0.1541
a2,0 0.1700 0.1513 0.1505 0.1945 0.1607 0.1471 0.2154
a2,1 0.2400 0.2202 0.2067 0.1933 0.2265 0.2154 0.2072
a2,2 0.2100 0.1805 0.1750 0.1245 0.1976 0.1918 0.1557
F -norm error 0.0698 0.0804 0.1871 0.0483 0.0488 0.0588
d0,1 0.1500 0.1179 0.1120 0.2868 0.1468 0.1460 0.1723
d0,2 0.0900 0.1039 0.0705 0.1315 0.0995 0.0856 0.1057
d1,0 0.1000 0.0922 0.1427 0.1775 0.0989 0.1612 0.1219
d1,1 -0.1000 -0.1132 -0.0729 -0.1535 -0.1159 -0.0905 -0.1252
d1,2 0.0500 0.0650 0.0516 0.0037 0.0504 0.0389 0.0526
d2,0 -0.0500 -0.0426 -0.0540 -0.0638 -0.0381 -0.0546 -0.377
d2,1 0.1300 0.1324 0.1072 0.1156 0.1308 0.1051 0.1188
d2,2 0.0750 0.0648 0.0580 0.1312 0.0777 0.0695 0.0888
F -norm error 0.0430 0.0722 0.1152 0.0225 0.0683 0.1498
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(a) (b)

(c) (d)

Fig. 1. Magnitude power spectrums with sample size (N1, N2) = (128, 128) ;(a).original
power spectrum;(b).estimated power spectrum by algorithm[9,13]; (c).estimated power
spectrum by algorithm[14]; (d).estimated power spectrum by proposed algorithm

in order to obtain the power spectrums. In our simulation, we take w1 and w2

for [−π, π] and draw the power spectrum figure.
Consider the parameter estimation of mixed-type 2-D ARMA model [14].

This ARMA model consists of wide-band and narrow-band ARMA process. 2-D
ARMA(2,2,2,2) model of this kind having the transfer function:

H(z1, z2) =

[ 1 z−1
1 z−2

1 ]

⎡⎣ 1 0.2 0.23
0.15 0.18 0.16
0.17 0.24 0.21

⎤⎦ ⎡⎣ 1
z−1

1

z−2
1

⎤⎦
[ 1 z−1

2 z−2
2 ]

⎡⎣ 1 0.15 0.09
0.1 −0.1 0.05

−0.05 0.13 0.075

⎤⎦ ⎡⎣ 1
z−1

2

z−2
2

⎤⎦ (23)

In this example, we take L1 = 7, L2 = 6 for (N1, N2) = (60, 60), and L1 =
8, L2 = 9 for (N1, N2) = (128, 128). These two kinds of selection has the op-
timal estimation for algorithm [14]. We perform three algorithms mentioned
above, where in Zhang and Cheng’s algorithm, we use the well-known Newton-
Raphson method where the algorithm will stop after performs 500 iterations.
Computed results is listed in Table 1 where the computed results were obtained
by averaging 100 independent Monte Carlo simulations for different sample size
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Fig. 2. Comparing of consume time

and the Frobenius-norm error represents difference between estimated param-
eters and original parameters. From Table 1 we can see that proposed algo-
rithm obtains a good estimation result with a smaller F-norm error than other
two algorithms in AR and MA parameters. Moreover, Figure 1 show that the
proposed algorithm also estimates better power spectrum. Furthermore, Fig-
ure 2 shows that proposed algorithm takes less time than other two algorithms
[13][14].

From the simulation above, we can see that proposed algorithm is better in
accuracy than other two algorithms. Moreover, the proposed algorithm takes less
time than the other two algorithms as the ARMA size increase.

5 Conclusion

In this paper, we proposed a fast algorithm for 2-D ARMA parameter estima-
tion. We transform the 2-D ARMA system into a equivalent 2-D AR system
by using a expression of the random excitation. A system of linear equations
with a low order is obtained for ARMA parameter estimation. Unlike Zhang
and Cheng ’s and Kizilkaya and Kayran’s algorithms for 2-D ARMA parame-
ters estimation, the proposed algorithm considers noisy observation in practical
applications. Moreover, the proposed algorithm has a low computational cost
and thus has a faster speed. Simulation result shows that proposed algorithm
can obtain more accurate estimates than other two estimation algorithms with
a fast speed.
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Abstract. The trend toward multi-/many- core processors will result in 
sophisticated large-scale architecture substrates that exhibit increasingly 
complex and heterogeneous behavior. Existing methods lack the ability to 
accurately and informatively forecast the complex behavior of large and 
distributed architecture substrates across the design space. Grey neural network 
is an innovative intelligent computing approach that combines grey system 
model and neural network. Grey neural network makes full use of the 
similarities and complementarity between grey system model and neural 
network to overcome the disadvantage of individual method. In this paper, we 
propose to use grey neural network to predict 2D space parameters produced by 
wavelet analysis,which can efficiently reason the characteristics of large and 
sophisticated multi-core oriented architectures during the design space 
exploration stage with less samples rather than using detailed cycle-level 
simulations. Experimental results show that the models achieve high accuracy 
while maintaining low complexity and computation overhead. 

1   Introduction 

Early design space exploration is an essential ingredient in modern processor develop-
ment. It significantly reduces the time to market and post-silicon surprises [1]. The trend 
toward multi-/many-core processors will result in sophisticated large-scale architecture 
substrates with self-contained hardware components proximate to the individual cores 
but globally distributed across all cores. As the number of cores on a processor in-
creases, these large and sophisticated multi-core-oriented architectures exhibit increas-
ingly complex and heterogeneous characteristics. Processors with two, four and eight 
cores have already entered the market. Processors with tens or possibly hundreds of 
cores may be a reality within the next few years. In the upcoming multi-/many- core era, 
the design, evaluation and optimization of architectures will demand analysis methods 
that are very different from those targeting traditional, centralized and monolithic hard-
ware structures. To enable global and cooperative management of hardware resources 
and efficiency at large scales, it is imperative to analyze and exploit architecture charac-
teristics beyond the scope of individual cores and hardware components. Recently, vari-
ous predictive models have been proposed to cost-effectively reason processor perform-
ance and power characteristics at the design exploration stage. A common weakness of 
existing analytical models is that they assume centralized and monolithic hardware 
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structures and therefore lack the ability to forecast the complex and heterogeneous be-
havior of large and distributed architecture substrates across the design space. This limi-
tation will only be exacerbated with the rapidly increasing integration scale. Therefore, 
there is a pressing need for novel and cost-effective approaches to achieve accurate and 
informative design trade-off analysis for large and sophisticated architectures in the 
upcoming multi-/many core eras.  

This paper applies grey neural network predictive models and 2D wavelet trans-
form techniques which can efficiently reason the characteristics of large and sophisti-
cated multi-core oriented architectures during the design space exploration stage 
without using detailed cycle-level simulations. Grey neural network is mainly em-
ployed to predict 2D space parameters produced by wavelet decomposition [1,2] for 
achieving better prediction accuracy with less samples. 

2   Combining Wavelets and Grey Neural Network for 
Architecture 2D Spatial Characteristics Prediction [1,2]  

The 2D spatial characteristics yielded on large and distributed architecture substrates 
can be modeled as a nonlinear function of architecture design parameters. Instead of 
inferring the spatial behavior via exhaustively obtaining architecture characteristics on 
each individual node/component, we employ wavelet analysis to approximate it and 
then use a neural network to forecast the approximated behavior across a large archi-
tecture design space. Previous work shows that neural networks can accurately predict 
the aggregated workload behavior across varied architecture configurations. Neverthe-
less, monolithic global neural network models lack the ability to informatively reveal 
complex workload/architecture interactions at a large scale and training of neural net-
work needs a lot of samples. To overcome this disadvantage, we propose grey neural 
networks to predict 2D wavelet coefficients that incorporate multi-resolution analysis 
into a set of grey neural networks for spatial characteristics prediction of multi-core 
oriented architecture substrates. The 2D wavelet transform is a very powerful tool for 
characterizing spatial behavior since it captures both global trend and local variation 
of large data sets using a small set of wavelet coefficients. The local characteristics 
are decomposed into lower scales of wavelet coefficients (high frequencies) which are 
utilized for detailed analysis and prediction of individual or subsets of 
cores/components, while the global trend is decomposed into higher scales of wavelet 
coefficients (low frequencies) that are used for the analysis and prediction of slow 
trends across many cores or distributed hardware components. Collectively, these 
wavelet coefficients provide an accurate interpretation of the spatial trend and details 
of complex workload behavior at a large scale. Our methods use a separate GRBF 
neural network to predict individual wavelet coefficients. The separate predictions of 
wavelet coefficients proceed independently. Predicting each wavelet coefficient by a 
separate GRBF simplifies the training task of each sub-network. The prediction results 
for the wavelet coefficients can be combined directly by the inverse wavelet trans-
forms to synthesize the spatial patterns on large-scale architecture substrates. 

Our proposed techniques consist of the following steps: 
Step 1. Architecture 2D characteristics are decomposed into a series of wavelet co-

efficients using 2D discrete wavelet transform; 
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                Step 1                                 Step 2                                      Step 3 

Fig. 1.  Using wavelet transform and GRBF for forecasting architecture 2D characteristics 

Step 2. Each wavelet coefficient is predicted by a separate GRBF; 
Step 3. Architecture 2D characteristics are reconstructed by an inverse 2D wavelet 

transform on predicted wavelet coefficients. 
Figure 1 shows our scheme for architecture 2D spatial characteristics prediction 

with GRBF neural network and 2D wavelet analysis. Given the observed spatial be-
havior on training data, our aim is to predict the 2D behavior of large-scale architec-
ture under different design configurations. The hybrid scheme basically involves three 
stages. In the first stage, the observed spatial behavior is decomposed by wavelet 
multi-resolution analysis. In the second stage, each wavelet coefficient is predicted by 
a separate GRBF. In the third stage, the approximated 2D characteristics are recov-
ered from the predicted wavelet coefficients. Each GRBF neural network receives the 
entire architecture design space vector and predicts a wavelet coefficient. The training 
of a GRBF network involves determining the center point and a radius for each 
GRBF, and the weights of each GRBF that determine the wavelet coefficients. 

3   Grey Neural Network Predictive Model 

Grey network model and neural network both have their own limitations. On one 
hand, some grey neural networks such as GM (0, N) can only deal with linear model. 
When the relationship between dependent and independent variables is nonlinear or 
uncertain, its accuracy of prediction falls unacceptably. On the other hand, neural 
networks have very strong ability in approaching nonlinear functions and are not easy 
to fall into local minimum when solving problems. However it also has an evident 
shortage with its precision and stability of results strongly depend on the number of 
samples [4]. The combination of these two methods, the Grey RBF (GRBF) Prediction 
Model[3], takes the advantages from both of them and can be used to efficiently solve 
the problem of predicting on small volume of sample data. The GRBF-based predic-
tive models, which combine GM(0,N) and RBF, are applied to predict 2D space 
parameters produced by wavelet analysis. 

The three steps used to predict 2D wavelet coefficients are described as follows: 
Step 1: The Modification of Original Sample Data 
In the tripolar coordinate system from samples, the coordinate values have both 

positive and negative signs. Thus, they could not be applied to GM (0, N) Model, 
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which requires nonnegative-ascending samples as its input. Therefore, the original 
data need to be modified to meet the requirement. To modify the original data, one 
can first add the absolute value of the minimum item in the sequence to all items in 
that sequence, i.e., 

{ }(0)min ( , )b x i j=     ｉ=1,2,…,N;  j=1,2,…,n           

         (0) (0)( , ) ( , )y i j x i j b= +                                           
 

After the above process, all data are nonnegative, but not necessarily ascending. 
Consequently, 1-AGO (once Accumulated Generating Operation) operation should be 
performed to the new nonnegative sequences, producing the final nonnegative-
ascending data sequence. Moreover, when the original prediction values are needed, 
the Inverse Accumulated Generating Operation (IAGO) and reverse translation on 
coordinates should be operated to acquire them. 

Step 2: The Training of RBF Neural Networks 
The RBF takes 1-AGO sequence of correlative factors and featured data as input 

and output respectively and is trained by ROLS algorithm. Furthermore, on consider-
ing the quantitative differences of samples, data normalization should be performed to 
help the training of network. 

Step 3: Data Prediction 
When predicting, one could use 1-AGO sequence of featured data of desired data 

as input to the trained RBF, then 2-IAGO is needed to obtain the final predicted val-
ues.  

To build a representative design space, one needs to ensure that the sample data 
sets disperse points throughout the design space but keep the space small enough to 
keep the cost of building the model low. To achieve this goal, we use a variant of 
Latin Hypercube Sampling (LHS) [4] as our sampling strategy since it provides better 
coverage compared to a naive random sampling scheme. Table 1 lists the prediction 
results, residual values and relative errors of 10 sets of testing data to show predictive 
results using our GRBF. Table 2 shows predictive results using RBF and GM indi-
vidually. 

Table 1. Prediction results with GRBF 
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Table 2. Prediction results with RBF and GM(0,N) 

 
 

The GRBF prediction model combined with 2D wavelet analysis has been applied 
in the 2D space parameters prediction for multi-core architecture successfully and 
proved to be an easy, convenient and accurate method. Figure 2 shows the perform-
ance of GRBF. As can be seen, the predicted values from RBF have the largest rela-
tive error since it requires large volume of samples. The predicted values from GM (0, 
N) are fairly close to the actual values, with average relative error of 7.67%. The  
predicted values from GRBF have the highest accuracy, with some points almost 
overlapped the actual values and the average relative error is 3.45%. Therefore, we 
conclude that the new GRBF-based predictive model works effectively and has the 
highest prediction accuracy of 96.55%. 

 

 

Fig. 2. Prediction performances among GRBF, GM(0, N), RBF  
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5   Conclusion 

Grey neural computation model is a kind of computation model based on integrating 
grey system and neural network. It makes full use of the existing similarity of these 
two technologies on information processing and the existing complementarity on 
model characteristics, and it can make up the disadvantage of only using grey model 
or neural network to solve problems. Our proposed techniques employ 2D wavelet 
multiresolution analysis and grey neural network regression modeling. Experimental 
results show that the models achieve high accuracy while maintaining low complexity 
and computation overhead. 
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Abstract. It is quite strict with the degree of installation precision of 
photo-electricity device (PED) carried by unmanned aerial vehicle (UAV) when 
conducting bearing-only target motion analyses (BTMA), because of the exis-
tence of the installation error of PED, the precision of target location is bound to 
be affected. In order to solve this problem mentioned above, a neural network 
algorithm for installation error identification based on BTMA is put forward in 
this paper, consulting the target surveillance technology of PED to identify the 
installation error thought neural network algorithm, which is worthy to be put 
into practical applications.  

Keywords: Unmanned aerial vehicle, Photo-electricity device, Neural network; 
Installation error identification. 

1   Introduction 

With the development of modern weapon technology, the range of fire has been con-
siderably extended. However, the detection range of existing radar is confined within 
sight distance so the requirement for practical military operations cannot be satisfied. In 
this circumstance, various kinds of aerial platforms are invented to meet the demand. 
Aerial platform carries optical devices or video cameras to conduct precise remote 
reconnaissance at long time, providing real-time change of battlefield for the com-
mander, supporting over-the-horizon attack for the weapon system. 

Unmanned aerial vehicle (UAV) is familiar among aerial platform as shown in [1]. 
At present, there are about 48,000 UAVs on a globe scale. Being under the control of 
electronic devices, UAV needs no pilot to complete automatic aerial navigation. In the 
UAV, the space can be fully utilized for the installation of important equipments 
without concerning about the pilot. Additionally, the problem about injuries and deaths 
of the pilots can be ignored. 

When UAV carries photo-electricity device (PED) to conduct bearing-only target 
motion analyses (BTMA), it is strict with the degree of installation precision of PED: 
The base of PED must run parallel with the horizontal surface of UAV; the line from 
beginning to the end of PED must run parallel with the head-to-tail line of UAV. But in 
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practical installation, the precision cannot be ensured and the target location is bound to 
be affected. 

In order to eliminate the negative effect of installation error and raise the degree 
of location precision, this paper designs experimentation, establishes optimal 
model based on BTMA of aerial platform, wields neural network to identify the 
installation error, make sure that the difference between real error and result is 
acceptable. The neural network algorithm for installation error identification based 
on bearing-only target motion analyses as shown in [2] that put forward from this 
paper is fast converging and fault tolerant to a certain degree judged from final 
simulation result. 

2   Basic Theory of Neural Network Algorithm for Installation 
Error Identification 

The error of installation characterizes itself mainly in two aspects: The base of PED 
is not parallel to the horizontal surface of UAV and the error can be resolved into 
horizontal installation error (HIE) r∆ and vertical installation error (VIE) θ∆ ; the 
angle between the line from beginning to the end of PED and head-to-tail line of 
UAV can be denoted as rolling error η∆  (RE). Granted that the azimuth angle to 

the target is bjF  and the pitching angle to the target is bjε ,which are measured by 

PED; the horizontal rolling angle is jr ,vertical rolling angle is jθ  and the navi-

gating course is jc  which come from the inertia navigation device of UAV. 

The essence concept of this algorithm is: 

⑴ Take a vehicle installed with GPS receiver as a target vehicle to be placed under 
surveillance by UAV installed with GPS receiver as well; 

⑵ Integrate the data including longitude, latitude and altitude measured by these 
two GPS receivers and convert the data into azimuth angle and pitching angle based on 

geography coordinate system of UAV； 

⑶ The data measured by inertial navigation device and PED also have to be con-
verted into azimuth angle and pitching angle based on geography coordinate system of 

UAV; 

⑷ By comparing these two data groups of azimuth angle and pitching angle, es-
tablish optimal model of neural network to figure out installation error. 

The procedure of this algorithm refers to figure 1: 
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Fig. 1. The procedure of the algorithm。 

Firstly, the azimuth angle bjF  and the pitching angle bjε  based on unstable coor-

dinate system of UAV should be converted into wjF  and wjε  based on stable coor-

dinate system of UAV. The conversion formula: 
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Moreover, wjF  and wjε  are converted into azimuth angle jβ  and pitching angle 

jε  based on geography coordinate system of UAV. 
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Actually, the obtained azimuth angle jβ   and the pitching angle jε contains the 

affection of installation error, so they are ( , , )j rβ θ η∆ ∆ ∆  and ( , , )j rε θ η∆ ∆ ∆ . 

The data of longitude, latitude and altitude which measured by these two GPS re-
ceivers need to be converted into specific point coordinates based on geocentric coor-
dinate system: 
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, ,L B H  is separately longitude, latitude and altitude, e represents the compres-

sion of the earth, 
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N represents the curvature of The Prime Vertical Circle,
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−
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Additionally, according to the horizontal rolling angle, vertical rolling angle and the 
navigating course come from inertial navigation device of UAV, it is possible to work out 

azimuth angle jβ and pitching angle jε  based on geography coordinate system of UAV. 

Artificial neural network as shown in [3] is artificial intelligence technology 
simulating the biology process of human brain that has been developing from many 
years ago. It is turned to be a complex nonlinear system by comprehensively con-
nections of large quantity of simply process units (nerve cell). It has strong nonlinear 
mapping ability and needs no prior knowledge to conclude inherence logic from  
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f

f

y
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Fig. 2. The structure of the three-layer FNN。 
 



 Neural Network Algorithm for Installation Error Identification Based on BTMA 897 

existing data. Academic investigations show that: Three-layer feed-forward neural 
network (FNN) as shown in [4] with one single hidden layer has the ability of map-
ping arbitrary functions including nonlinear functions. Based on practical applications, 
this paper establishes three-layer FNN as figure 2:  

This FNN is composed of input layer, hidden layer and output layer. There is no 
connection between the nerve cells at the same layer; but for different layers, nerve 
cells are completely connected, existing weight w at every connected route. The input 

of the input layer is 4n  dimensions vector, it contains  ' ', , , , 1, 2..j j j j j nβ ε β ε = , the 

output layer has three output nerve cells, they represent HIV r∆  VIE θ∆  and 
RE η∆ . 

3   Realization and Simulation of Identification Algorithm 

After the structure is confirmed, the FNN needs to be trained via input and output 
samples. Adjust the threshold quantity and weight to make the network to possess the 
ability of mapping for given input and output data.  

The process of adjustment has two phases: 

⑴ Input known samples, calculate every nerve cell’s output from the first to last 
layer of the network by using the threshold quantity and weight which were set by 
previous iteration; 

⑵ Adjust threshold quantity and weight according to the degree of influence cal-
culated from the last to the first layer of the network to the overall error. 

Repeat these two processes above until calculation converge. Based on the principle 
of steepest descent back-propagations (SDBP) set k to be the time of iteration, modify 
threshold quantity and weight according to the formula as below: 

( 1) ( ) ( )x k x k g kα+ = −  (3) 

( )E k  is an overall error of the thk  iteration, in the MATLAB tool box of neural 
network, its default value as shown in [5] is mean square error (MSE). 

( )x k represents threshold quantity or weight of the thk  iteration. 

( )
( )

( )

E k
g k

x k

∂=
∂

 represents the grads vector of the overall error of neural network to 

threshold quantity or weight of the thk  iteration. The minus sign expresses the direc-
tion opposite to the grads, the steepest descent direction. 

α is rate of adjustment, usually constant 0.01 in the MATLAB tool box of neural 
network. 

SDBP modifies weight along the most precipitous direction, it quickly minimizes 
the overall error, but it is not always the first to converge. This paper deals the problem 
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referred above with a dual-phase method. At earlier stage of adjustment, SDBP is  
adopted to make overall error quickly descend into a given range, and then at later stage 
conjugate gradient back-propagation (CGBP) FR algorithm is used to make the preci-
sion to fit the demand. 

FR algorithm is put forward by R.Fletcher and C.M.Reeves. The searching direction 
of first iteration of this algorithm is the steepest descent direction:  

(0) (0)p g= −  (4) 

Then, the optimal searching direction is decided by following formula:  

( 1) ( ) ( )

( ) ( ) ( ) ( 1)

( ) ( )
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T
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x k x k p k

p k g k k p k

g k g k
k

g k g k
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β

β

⎧
⎪ + = +⎪⎪ = − + −⎨
⎪
⎪ =

− −⎪⎩

 (5) 

( )p k is the searching direction of the 1k + th iteration. 

Concluded from academic and practical experiments, the result figured out from 
BTMA algorithm is acceptable when installation error is less than 0.0333 degree. The 

input of the FNN is 4n dimensions vector, it contains ' ', , , , 1, 2..j j j j j nβ ε β ε = , the 

output vector has three components, they are HIV r∆  VIE θ∆  and RE η∆ . The 
simulation made in this paper firstly sets precision degree to be 0.1 and utilizes SDBP 
to adjust threshold quantity and weight of FNN, when the result figured out from FNN 
reaches into the given range, modifies the precision degree to be 0.01 and utilizes 
CGBP strategy to adjust, finally complete the generation of FNN though the two phases 
of adjustment. 

 

Fig. 3. The situation of UAV and target vehicle 
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According to experimental data, the initial position including longitude, latitude and 
altitude of UAV is set to be [121.9111, 29.7546, 3000], speed is 20m/s, navigating 
course is 330 degrees and 240 degrees after 3 minutes flying. The initial position of 
target vehicle is [121.7947, 29.7650, 0], speed is 10m/s, navigating course is 60 de-
grees. The sampling interval is 1 second, simulation lasts 6 minutes. Their situation is 
illustrated as figure 3.  

Before every simulation, the installation error is already set for the generation of the 
4n dimension vector for the input layer of the FNN to figure out the identification value. 

Add no noise to the azimuth angle bjF  and the pitching angle bjε that measured by 

UAV, the result is showed as Table 1. Then add white Gauss noise to bjF  and bjε , the 

result is showed as following tables.  
From the simulation result above, the algorithm can identify the error at relatively 

high level of precision with no noise added in, the maximum discrepancy between real 
value and identification value is 0.001 degree, minimum is 0 degree; when added white  
 

Table 1. Simulation result: Adding no noise to bjF  and bjε
 

Real Value Identification Value
HIE VIE RE HIE VIE RE
-1 -1 1 -1.0001 -1.0000 1.0000 
5 3 1 4.9999 3.0005 0.9996 

15 15 15 15.0002 14.9998 15.0006
-5 -10 15 -4.9990 -10.0004 15.0002

 

Table 2. Simulation result: Adding MSE 0.1。  white Gauss noise to bjF  and bjε
 

Real Value Identification Value
HIE VIE RE HIE VIE RE
-1 -1 1 -0.9749 -1.0055 0.9833 
5 3 1 5.0052 2.9980 0.9955 

15 15 15 15.0113 15.0076 14.9981
-5 -10 15 -4.9987 -10.0199 14.9947

 

Table 3. Simulation result: Adding MSE 0.2。  white Gauss noise to bjF  and bjε
 

Real Value Identification Value
HIE VIE RE HIE VIE RE
-1 -1 1 -0.9762 -0.9870 1.0036 
5 3 1 5.0022 3.0304 1.0138 

15 15 15 14.9971 15.0112 15.0298
-5 -10 15 -4.9759 -9.9947 14.9809
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Gauss noise of which MSE is 0.1 degree, maximum is 0.0251 degree and minimum is 
0.0013 degree; when added white Gauss noise of which MSE is 0.2 degree, maximum is 
0.0304 degree and minimum is 0.0022 degree.  

4   Conclusion 

The neural network algorithm for installation error identification based on bearing-only 
target motion analyses that put forward from this paper, consulting the target surveil-
lance technology of PED to identify the installation error thought neural network. It 
satisfies the strict demand for PED installation and can be easily carried out, providing 
precision support for passively tracing and measuring system. Neural network algorithm 
is suit for high extent of precision and fast calculation as for this problem and fault 
tolerant to a certain degree judged from final simulation result. 
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Abstract. This paper describes a numerical algorithm for short-term
prediction of nonlinear time series by using time-delay embedding and
radial basis function (RBF) neural networks. Unlike the existing RBF
algorithms with centers preselected during training process and fixed
during prediction process, the proposed method utilizes a simple selec-
tion algorithm to dynamically change the center positions, resulting in a
local RBF model with time varying parameters. Analysis and methodol-
ogy are detailed in the context of the Leuven competition. Results show
that the proposed local dynamical RBF network performed remarkably
well.

Keywords: Time series predication, RBF, Time-delay embedding.

1 Introduction

The desire to understand the past and predict the future is throughout scientific
research. The prediction of a nonlinear time series is a challenging problem.
Although the local instability of nonlinear dynamical systems prohibits accurate
long-term predictions, short-term predictions can be made due to the inherent
determinism.

There exist successful methods of linear time series prediction, such as ARMA
models. These conventional methods are generally ineffective for the prediction
of nonlinear time series. Over recent years, several nonlinear time series models
[1], [2], [3], [4], [5] have been proposed, where two techniques are utilized widely.
One is the time-delay coordinates embedding [6],[7], which can be used to re-
construct the state space of a dynamical system. The other one is the machine
learning, typified by artificial neural networks (ANNs), which can adaptively
explore a large space of potential models. Previous studies based on these two
developments have shown promising results. In general, the existing methods
consist of two steps: (1) resolves all the model parameters from a training data
set; (2) with model parameters fixed, predict the next state from a given state.

If multi-step predictions are needed, then the outputs on the previous step
is fed back to the model, in which the model acts as an autonomous system,
emulating the dynamic behavior of the system that generated the nonlinear time
series. According to the complexity of the underlying system, many ANN models

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 901–908, 2009.
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Fig. 1. The Leuven competition data set. The first 2000 points were given, 2001-2200
points were to be predicted.

can be selected, such as feed forward multilayer perceptrons (MLPs), recurrent
neural networks (RNNs), radial basis function (RBF) neural networks, and their
variations. No matter what structure is selected, one difficulty of applying ANN
is to train the network. Since ANN can explore a large space of potential models
and there exists abundant local minima in the cost function of optimization
criterion due to the nonlinearity of the underlying system, it is possible for
the training process to end at a suboptimal solution. In this situation, some
randomness must be added to the training process by using, e.g., simulated
annealing, genetic algorithm, or simply different initial conditions of ANNs at
least. Unlike the back propagation-type algorithms in MLPs and RNNs, if the
centers of RBFs are predetermined, the training of a RBF network has a closed-
form optimal solution. So when the size of the training data set is relatively
small, the RBF network can be easily constructed by using each point in the
training data set as an RBF center. However, if the data size is not small, this
simply method will lead to an impractically large network. Thus, the selection
algorithms of RBF centers have attracted much attention in the literature [8],
e.g. k-means clustering algorithm, the stochastic gradient approach, orthogonal
least squares, genetic algorithm, etc.. Again, due to the nonlinearity, a global
optimal solution can not be always guaranteed.

This paper proposes a prediction method based on time delay embedding and
RBF networks with dynamically selected centers. The method first reconstruct
the time series in a space large enough to unfold the dynamical attractor by
using time-delay coordinate embedding. Then, within this space, a local RBF
network model is built for one-step prediction. A small set of the training data
points near the input state are selected as RBF centers. For the prediction of
the next step, a new local RBF network is to be built with new centers near the
new input state or the output of the RBF network of the previous step. Because
the size of the center set in each step can be very small, the construction of the
RBF network is very fast. The proposed method is especially efficient for cases
when the training data set is small or the underlying system is time varying,
in which only recent data samples are important. Analysis and methodology of
the method are detailed in the context of the K.U. Leuven competition. The
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competition data set consisted of 2000 points generated by a chaotic system.
The task is to predict the next 200 points. The data set is shown in Fig. 1.

2 The Time-delay Embedding

When we observe an unknown dynamical system, if we can measure all the state
variables of the system, then prediction can be made directly from previous
measurements by using any interpolation model, as shown in Fig. 2.a. In practice,
however, usually we can measure only a few of the state variables of the system.
As shown in Fig. 2.b, the trajectory will intersect with itself, as a result, accurate
prediction can’t be made directly with interpolation methods. In the most limited
case, we might be in the position of having available only the measurement of a
single state variable as a function of time y(t). Since the measurement depends
only on the system state, we can represent such a situation by y(t) = f(x(t)),
where f is the single measurement function, evaluated when the system is in state
x(t). The technique of time-delay embedding is used to reproduce the compact
finite-dimensional set of dynamical states of the system using vectors derived
from f(t). Let A denote this set. We assign to x(t) the delay coordinate vector

b(t) = F(x(t)) = [y(t − τ), ..., y(t − mτ)] (1)

Takens [6] and Sauer et al [1] have shown that F is invertible, or has a one-
to-one property, if the embedding dimension m is greater than twice the box-
counting dimension of A, and the delay time τ is chosen properly.

The one-to-one correspondence is useful because the state of a deterministic
dynamical system, and thus its future evolution, is completely specified by the
corresponding time-delay vector. Thus, we can treat the time-delay space as
the true state space of the system and make prediction by using interpolation
methods directly.

Time delay embeddings are widely used as the input vector to dynamic mod-
els, both linear and nonlinear. The theorem provides a sound theoretical basis

Fig. 2. (a) Trajectory in the full-dimensional state space, (b) Trajectory projected in
a lower-dimensional space
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Fig. 3. Time-delay embedding. M is the box-counting dimension of the attractor A,
m is the embedding dimension.

for this approach and has been applied successfully in many applications. The
selection of m and τ may critically affect how accurately the embedding recon-
structs the state of the system. Many researchers have proposed methods to find
m and τ [9], [10]. There are free software’s available now. For the date set of the
competition, m ≥ 9 and τ ≈ 2 are found.

3 RBF Network Models

As mentioned in the last section, in order to make a good prediction from
the state space reconstruction, interpolation in this multidimensional time-delay
space is needed. Radial-basis function (RBF) network is a good model for the
multivariate interpolation problem. A RBF network can be expressed as simple
as followings:

F(xj) = w0 +
k∑

i=1

wiϕ(||xj − bi||) (2)

where w are the weights, ϕ is the basis function, typically bell-shaped with width
d, b is the centers of RBFs, and || · || represents the distance function, typically
Euclidean distance or any other meaningful function. For strict interpolation,
given b and ϕ with d, then w = Φ−1x, where Φ = {ϕji|(j, i) = 1, 2, ..., N}, N
is the number of input points X. When input points are noisy, some suitable
regularization techniques are necessary to ensure good generalization [8].

In general, we can use RBF network as a predictor in a global form or a local
form.

3.1 Global RBF Network Modeling

The idea of global modeling is straightforward: first choose b and ϕ with d,
and solve w, then we model the true function of the whole attractor (the set of
states). When input data set is not huge, like the competition data set, we can
simply choose all the delay vectors as the centers of RBFs. When input data
set is huge, we have to invert a huge matrix Φ when solving w and compute a
huge network when making every prediction, which is impractical. Then we need
choose a small number of centers carefully. For d, usually we use cross-validation
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to select one value for all centers. During training, the 2000-points data set is
divided into 1800-points training set and 200-points validation set, which are
used to select an optimal value for the width of centers. And then construct the
RBF network using the whole 2000 points to make one step of prediction. Use
the predicted vector as input to make next step prediction, and so on.

Fig. 4 shows the result using regression RBF network in MATLAB Neural
Network Toolbox with the method mentioned above. As shown in Fig. 4, the
prediction can follow the true orbit roughly for the first 100 points. The possible
cause of the large error after 100 points may be due to the fact that the competi-
tion date set is really small. Especially, there are not enough transitional points.
In Fig. 1, we can find there are approximate three scrolls in the time series,
around -0.25, 0 and 0.25 respectively. There is only one transition from -0.25
to 0.25 scroll in the training set. Unfortunately, from about the 80th point in
prediction region, there is a transition from -0.25 to 0.25 scroll. So the densities
around the centers (time-delay vectors formed from time series) are highly differ-
ent in the state space. If we use the same width for all the centers, the big error
must occur. There are two methods to solve this problem, one is to carefully
select the locations of the centers and make them with the same density. Due to
the small size of the date set, doing this will lose important details of input data,
which is not good for prediction. Another method is to use different width for
different center. A supervised learning algorithm in MATLAB is used to learn
the widths, however, no obvious improvement can be observed in the simulation
(not shown in this paper). In fact there is a straightforward way to determine
the width. We can assign width proportional to the density around every center.
When widths are chosen properly, for any input, only several centers close to it
may be ”fired”. That is indeed a local model, but in a global form! And as we
will discuss in the next section, using an explicit local form can give us more
flexibility and accuracy.

Fig. 4. The prediction produced by global RBF network model. A regression RBF net-
work in MATLAB Neural Toolbox is used. The parameters are (m, τ, d) = (9, 2, 0.03),
MSE = 0.0683.
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3.2 Local RBF Network Modeling

Local models make predictions by finding local neighbors that are close to the end
point of the time series in state space. The prediction is an estimate of the average
change that occurred immediately after these neighbors. Like any numerical
simulation, in which the smaller the step size is, the more accurate result can be
achieved, local model can make better prediction using time series with a higher
sampling rate. Although up-sampling the time series (or interpolating the time
series) can’t create new information, it does help to improve performance. For
a global model, this method is impractical because of the significantly increased
computational cost. Generally, the effective sampling rate is 5-10 times faster
than the Nyquest rate [3].

The proposed prediction method using local RBF network model is as follows:

1. Up-sampling the time series.
2. Construct time-delay vectors from the time series with embedding dimension

m and delay time τ .
3. Find the k-nearest neighbors of the last time-delay vector x using any ef-

ficient neighbor-searching algorithm. Use the minimum distance between x
and neighbors as the width of the centers.

4. Construct a regression RBF network using these k-nearest neighbors as cen-
ters and input, and their corresponding immediate time-delay vectors as
output.

5. Make a prediction using x as input.
6. Use the previous prediction as the input for next step, and go back to 3.

To use local models for time series prediction, there are several decisions that
one must make, such as how many neighbors should be found, how the width of
every center should be calculated. Often a coarse optimization is performed by
measuring the model accuracy for several values of the model parameters. The
selection of the extent of this optimization is limited by designers’ experience and
computational resources and, as a result, model accuracy is sacrificed. Using a
RBF network as a local model, unlike the models used before, i.e. local averaging
model [3], the accuracy of the model is much less sensitive to these parameters.
This property is gained by virtue of the generalization capacity of RBF network
using regularization technique. The network can generate prediction with similar
accuracy over a large range of model parameters.

As Fig. 5 shows, the local model can make more accurate prediction than
the global model, but still makes big error after 90 points. The possible cause
of the large error may be still due to the fact that the competition date set is
really small. Especially, there are not enough transitional points in the training
data set. As we mentioned in previous section, from about the 80th point in
prediction region, there is a transition from -0.25 to 0.25 scroll. Because of the
lack of close neighbors, in this region accurate prediction is really hard to achieve.
If there were more sampling points in the data set, this model should give better
prediction.
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Fig. 5. The prediction produced by local RBF network. A regression RBF network in
MATLAB Neural Toolbox is used. The parameters are (m, τ, k) = (9, 2, 8), MSE =
0.0166.

4 Conclusions

This paper introduced a new method for nonlinear time series prediction based
on time-delay embedding and RBF network. Global and local regression RBF
network models are presented. Results based on Leuven competition data set
show that local RBF model with dynamically changed centers outperform tra-
ditional global models and at the same time, is more efficient to include any
new observations. This property is very useful in situations where available data
samples are limited. For example, during the construction and the use of un-
derground tunnel, it is desired to predict the tunnel deformation using daily
observed deformation data. It is well known that earth mass is a highly com-
plex nonlinear dynamical system which is affected by many factors, such as rock
property, underground water, earthquake and even human behaviors. Thus it is
difficult to build a theoretical model in advance to predict deformation accu-
rately. Especially, during the beginning period of the life time of a tunnel, its
deformation data are limited and any new data have to be taken into account
immediately. The proposed method is well suitable for this type of situations.
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Abstract. This paper mainly investigates traveling wave solutions in a one di-
mension theta-neuron model. We derive an analytical lower bound of synaptic
coupling strength for traveling waves to exist. Using the numerical simulation
methods, we verify some related results on the existence of traveling waves and
its dependence on parameters, and give the solutions of traveling waves numer-
ically. Furthermore, the change of the solutions curve of traveling wave is in-
vestigated corresponding to the variance of each parameter. Finally, there is an
interesting phenomenon that the curve of the solution jumps with the increase of
each parameter.

Keywords: Traveling waves, Theta-neuron, Synaptic coupling, One-dimension.

1 Introduction

Recently, there has been a great deal of interests in the propagation of waves in neural
networks [1-7]. A variety of models have been developed to describe neuronal dynam-
ics in detail. These models range from continuum firing rate models [12] to simplified
spiking models [5, 7, 8, 9, 10, 11]. Some models which are derived from biophysi-
cal principles provide the most complete and accurate description of neuronal behav-
ior. However, their complexity may preclude mathematical analysis. The theta model,
which is more mathematically tractable, arises in certain limits from a class of biophys-
ically based neural models for cells near an activity threshold [5, 6, 9].

R.Osan et al. [9] use continuous dependence of solutions of differential equation on
the parameter for a one-dimensional network of theta neurons, and discuss the exis-
tence of traveling waves theoretically, but they only obtains the multiple-spike traveling
waves, that is, the cell will continue to fire spikes after firing the first spike and gener-
ating a traveling wave. R.Osan et al. also mention the possibility of single-spike travel-
ing waves, but it needs to modify the interactional mechanism among cells reasonably.
Based on the above-mentioned results, Wu [5] gives an appropriate actional mechanism
which improves the model for the one-dimensional network of theta neurons, and ob-
tains the existence condition of single-spike traveling waves theoretically. However, it’s
a pity that he didn’t give the lower bound of synaptic coupling strength. In this paper, on
the basis of the work of reference[5] and considering with the characteristic of the theta
neurons network model, an analytical lower bound of synaptic coupling strength for
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existence of traveling waves is derived. Besides, some related results on the existence
of traveling waves and its dependence on parameters are verified using the numerical
simulation methods, and the solution of traveling waves is presented numerically. Fur-
thermore, the change of the solution curve of traveling wave is investigated with respect
to the variance of each parameter. Finally, there is an interesting phenomenon that the
curve of the solution jumps with the increase of each parameter.

The structure of this paper is organized as follows: in section 2, we describe the
theta model in more detail and introduce additional simplifications. In sections 3 and
4, we present some important results on the existence of solution of single spike trav-
eling waves and parameter-dependence of solutions on the velocity for fixed synaptic
coupling strength. In section 5, we mainly derive a lower bound of the synaptic cou-
pling strength for traveling waves to exist. In section 6, some results of simulations are
presented. The paper ends with concluding remarks in section 7.

2 Theta Model

For a single cell, the theta model takes the form [5, 6, 9]:

dθ

dt
= 1 − cos θ + (1 + cos θ)(β + I(t)), (1)

where θ is a phase variable, β ∈ (−1, 0) is a bias parameter which controls the ex-
citability of the cell, and I(t) denotes the time-dependent inputs to the neuron. When θ
increases to achieve the value (2l + 1)π, l ∈ Z , it is said that the theta neuron fires a
spike.

As the input I(t) is fixed, if β +I < 0, there are two critical points of the system (1),
given by θrest = − cos−1((1 + β)/(1 − β)) and θT = cos−1((1 + β)/(1 − β)). The
former is stable, and the latter is unstable. If β+I = 0, these coalesces in a saddle-node
bifurcation on a limit cycle. If β + I > 0, the neuron fires spike with period π/

√
β + I

[5, 6, 9]. The phase circle for this neuron is shown in Fig. 1.

Fig. 1. The phase circle for the theta model (1)
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In this paper, we consider a network of synaptically coupling neurons on a con-
tinuous special domain Ω, i.e. the time-dependent inputs I(t) takes the form I(t) =
gsyn

∫
Ω J(x − y)s(y, t)dy, where gsyn denotes the maximal synaptic coupling strength

or a parameter measuring the overall coupling strength. Here, gsyn > 0 means that the
connections among neurons are excitatory, while gsyn < 0 means that the connections
are inhibitory. We mainly consider the situation gsyn > 0. J(x − y) > 0 describes
the relative synaptic coupling strength from the neuron at y to the neuron at x. s(y, t)
measures the synaptic transmission from the neuron located at y and it satisfies an ordi-
nary differential equation depending on time. Then a model of synaptically connected
neurons on a continuous spacial domain Ω takes the form:

∂θ(x,t)
∂t = 1 − cos θ(x, t) + (1 + cos θ(x, t))(β

+ gsyn

∫
Ω J(x − y)s(y, t)dy).

(2)

Employing the same traveling wave formulation used in [5, 9], we want to find traveling
wave solutions of the above equation, that is θ(x, t) = θ(ct − x). Denoting ct − x ≡ ξ,
then θ(x, t) = θ(ξ) and s(x, t) = s(ξ). In [5,9] s (ξ) is simply taken as a function

α
(
t − x/c

)
= α

(
ξ/c
)

. Assume that each cell fires spike at ξ = 0, the corresponding

traveling waves equation takes the form

cdθ
dξ = (1 − cos θ) + (1 + cos θ) [β

+ gsyn

∫∞
0

J (ξ′ − ξ)α
(
ξ′/C

)
dξ′, ξ ∈ (−∞, ∞)],

(3)

then the ordinary differential equation on the phase θ is achieved.
According to the characteristics of single spike traveling waves, they should satisfy

the following boundary conditions [5]:

(i) θ → θrest, if ξ → −∞,
(ii) θ (0) = π,
(iii) θ → θrest + 2π, if ξ → ∞.

Also, Ref.[5] proposed two assumptions for the fire spiking mechanism of the neural
cell:

1. The effect among cells is single direction in one-dimensional network of theta
neurons.

2. The effect among cells only exist in finite time.
Furthermore, assume J (x) and α (t) have the following form respectively:

J(x) =
{

e−x, x ≥ 0
0, x < 0 , α(t) =

{
1, 0 ≤ t ≤ τ
0, t < 0 or t > τ

,

where τ > 0 is constant.
Let f (θ) = (1 − cos θ) + (1 + cos θ)β, g (θ) = 1 + cos θ. Substituting the above

formulations into equation (3), obtain a new form of the model of synaptic coupling
neural network

c
dθ

dξ
=

⎧⎨⎩
f(θ) + gsyng(θ) (1 − e−cτ) eξ, ξ ∈ (−∞, 0],
f(θ) + gsyng(θ)

(
1 − eξ−cτ

)
, ξ ∈ [0, cτ ],

f(θ), ξ ∈ [cτ, +∞).
(4)
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3 Existence of Single Spike Traveling Wave Solutions

In order to study the existence of single spike traveling wave solutions which satisfy
the boundary conditions (i), (ii), and (iii) on interval (−∞, +∞), we make a study of
equation (4) on intervals (−∞, 0], [0, cτ ], [cτ, +∞), respectively.

First, in order to guarantee the existence of traveling waves which satisfy the bound-
ary condition (i), (ii) on interval (−∞, 0], the synaptic coupling strength and the wave
velocity must vary in certain domain respectively.

Thus, for an arbitrarily fixed value of τ , we consider system (4) on the interval
(−∞, 0], i.e., the following ordinary differential equation:

c
dθ

dξ
= f(θ) + gsyng(θ)

(
1 − e−cτ

)
eξ. (5)

To simplify the equation, we compactify from the infinite domain −∞ < ξ < 0
to the compact one 0 ≤ η ≤ 1 using the transformation η = eξ, the above equation
becomes {

cdθ
dξ = f(θ) + gsyng(θ) (1 − e−cτ ) η

dη
dξ = η

, (6)

it is equivalent to the following equation

c
dθ

dη
=

1
η
f(θ) + gsyng(θ)

(
1 − e−cτ

)
. (7)

In the following, there are some important results on the existence of traveling waves:

Theorem 1.[5] The system (1) exists two traveling wave solutions with different veloc-
ity for sufficiently large gsyn, if

J(x) =
{

e−x, x ≥ 0
0, x < 0 , α(t) =

{
1, 0 ≤ t ≤ τ
0, t < 0 or t > τ

,

where τ > 0 is constant.
Further, we request the existed traveling waves are single spike waves on interval

[0, cτ ]. Based on the feature of system (4), we control the net current input of the cell
by limit its interactional time τ , to guarantee that it will not fire spikes again within the
time limitation.

Theorem 2.[5] If the interactional time τ among cells satisfies:

0 < τ <
π + θrest

2 (1 + g0)
,

where θrest = − cos−1 1+β
1−β , β ∈ (−1, 0) , β is constant. then, system (1) exists two

single spike waves on the interval (−∞, 0], a fast wave and a slow wave.
Finally, we can kown that cells are no longer affected by coupling interaction on

interval [cτ, +∞) via system (4). Under this condition, cells will naturally degenerate
and finally stop at the rest state θrest + 2π after a longer time.

Therefore, we obtain the single spike waves which satisfy the boundary conditions.
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4 Parameter-Dependence of Solutions on the Velocity c for Fixed
gsyn

Consider equation (7) of θ ∈ [0, 2π). For all ξ ∈ (−∞, 0] we have η = eξ ∈ [0, 1].
Here we call the solution of dθ

dη = 0 θ-nullcline and denote its knee-point by (0, ηa (c)),
so we have

c
dθ

dη
=

1
η
f(θ) + gsyng(θ)

(
1 − e−cτ

)
= 0, (8)

and further

ηa =
−β

gsyn(1 − e−cτ )
. (9)

Under the flow of (6), we follow the branch of the unstable manifold of (θ, η) =
(θrest, 0) that points into {(θ, η) : θ ≥ θrest, η > 0}. We call this branch
(θu(ξ), ηu(ξ)). When (θu(ξ), ηu(ξ)) passes through (π, 1), we say (θu, ηu) is a travel-
ing wave.

The unstable manifold (θu, ηu) is bounded to the left-up side of the θ-nullcline ,
with θu < 0, in (θ, η)-plane until η > ηa (c). Thus, a traveling wave can exist only
for c satisfying ηa (c) < 1. For every such c value, define θa(c as the θ-value such that
θu = θa(c) , when ηu = ηa (c). In what follows, we use (θa (c) , ηa (c)) as a reference
point and consider how the evolution of phase θ depends on velocity c from that point
onwards. The following results state that, for larger c, solutions are farther from the
firing phase θ = π when they reach (θa (c) , ηa (c)).

Theorem 3. [5] θa (c) is a monotone decreasing function of c > 0.

Theorem 4. [5] The time uses for the θ-coordinate of the unstable manifold (θu, ηu)
varies from θa (c) to π, denoted by ξθa→π (c), is a monotone increasing function of c.

Theorem 5. [5] The time that η uses when it increases from ηa to 1, ξηa→1, is a mono-
tone increasing function of parameter c.

5 Lower Bounds on the Synaptic Coupling Strength Required for
Traveling Waves to Exist

As the above mentioned, we observe an interesting feature of system (1) that if the
coupling strength gsyn is small, the traveling wave solutions will not exist. Therefore,
only if the coupling strength gsyn is sufficiently large, there will exist two traveling
wave solutions with different velocities, one is fast and the other is slow. Furthermore,
there exists a critical value gcrit, the infimum of gsyn. Based on the model, we can
get the infimum of gsyn which satisfies the existence of traveling wave theoretically.
However, we just obtain a lower analytical form bound for the coupling strength not its
infimum.

Let θf be the value of the θ-coordinate of the unstable manifold (θu, ηu) when η =
1, set r = −β. Since the infimum cannot be achieved, we derive a lower bound of
gsyn approximatively by increasing θf . If the value of gsyn is too small such that the
increased θf is less than π for all c, then no waves exist.
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We split the tracking of (θu, ηu) into subintervals. The first interval to consider is
η ∈ [0, ηa], where ηa was defined in (9). We know that the unstable manifold is confined
to the left of the θ-nullcline in (θ, η)-space. As a consequence, θa = θ(ηa) < 0. We
thus make the approximation θ(ηa) = 0, which will increase θf .

Starting at θ(ηa) = 0, we next integrate (7) over [ηa, ηT ], such that θ(ηT ) = θT .
Since f

′
(θ) > 0, f(0) = 2β, and f(θT ) = 0 on interval [0, θT ], we have f(θ) < 0.

Consequently we can increases θf while neglecting the term f(θ). Thus from (7), we
obtain

dθ

(1 + cos θ)
= gsyn

(1 − e−cτ )
c

dη. (10)

Further, by separation and integration from 0 to θT in θ and from ηa to ηT in η, it is
easy to obtain: ∫ θT

0

dθ

(1 + cos θ)
=
∫ ηT

ηa

gsyn
(1 − e−cτ )

c
dη,

ηT = ηa +
c
√

r

gsyn(1 − e−cτ )
. (11)

Note: if ηT = 1, then θf = θT < π, Substituting ηT = 1 into (11)we obtain :

gsyn =
r + c

√
r

(1 − e−cτ )
. (12)

Substituting Taylor expansion of e−cτ : e−cτ = 1 − cτ + 1
2 (cτ)2 + O((cτ)3) into (12),

we have
1
2
(cτ)2 − cτ +

c
√

r

gsyn
+

r

gsyn
= 0, (13)

c1,2 =
(gsynτ − √

r) ±√
(gsynτ − √

r)2 − 2gsynτ2r

τ2gsyn
, (14)

i.e. we get two velocity c1, c2 for at ηT = 1. The existence of traveling waves requires
θf > θT , i.e. ηT < 1, and that is

1
2
(cτ)2 − cτ +

c
√

r

gsyn
+

r

gsyn
< 0,

so c ∈ (c1, c2).
If c1 = c2, we can get a lower bound on the strength gsyn required for traveling

waves to exist,satisfying

(gsynτ − √
r)2 − 2gsynτ2r = 0,

gsyn =
(τ

√
r + τ2r) ±

√
(τ

√
r + τ2r)2 − τ2r

τ2
.

So, we take the larger as the lower bounded of the synaptic strength gsyn:

gsyn =
(
√

r + τr) +
√

(
√

r + τr)2 − r

τ
. (15)
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6 Numerical Experiments

In this section, we verify the existence of solutions of the traveling wave, its depen-
dence on the parameter c and the dependence on the parameter c, gsyn, τ on θ of while
guaranteeing the existence of traveling waves numerically.

6.1 Existence of Traveling Wave Solution

In order to find traveling waves, let τ = 0.1, gsyn = 100, β = −0.1. Fig. 2 shows how
θ changes with c. In Fig. 2, θ can achieve π when c varies from 4.51 to 4.517, therefore
traveling wave with large velocity can be found.

Fig. 2. The curve of θ when c varies from
4.51 to 4.517

Fig. 3. The curve of θ when c varies from
0.0131 to 0.0132

From Theorem 1, we know that traveling wave with small velocity exists, therefore
we can calculate it further. In Fig. 3, θ can achieve π when c varies varies from 0.0131
to 0.0132, therefore traveling wave with small velocity is found.

6.2 Dependence of Traveling Waves on the Velocity

Fig. 4 shows the variation of the θ-nullcline with c. We see that the knee-point of the
θ-nullcline decreases while c increases. Further, the smaller value of c, the greater range
of the curve.

Fig. 4. θ-nullcline of c
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Figs. 5 and 6 show the curves of θa (c), ηa (c) for c > 0, the left hand is θa (c)
and the right hand is ηa (c). The values of the parameters in both figures are τ = 0.1,
gsyn = 100, β = −0.1, θrest= −0.6126. The difference between the two figures is
that the c varies from 0.01 to 1 in Fig. 5 and from 1 to 10 in Fig. 6. It can be seen that
both θa (c), ηa (c) decrease with c increases. Further, the smaller value of c, the greater
range of θa (c), ηa (c).

Fig. 5. The curves of θa (c),ηa (c) when c
varies from 0.01 to 1

Fig. 6. The curves θa (c), ηa (c) when c
varies from 1 to 10

6.3 Parameter-Dependence of Traveling Wave Solutions on the Condition of
Guaranteeing the Existence of Traveling Waves

Fig. 7 shows the variation of the traveling wave solution with respect to the wave speed
c, when gsyn, τ is fixed. Fig. 8 shows the variation of the traveling wave solution with
respect to the synaptic coupling strength gsyn, when c, τ is fixed. Fig. 9 shows the
variation of the traveling wave solution with with respect to the interactional time τ
among cells, when c, gsyn, is fixed.

It can be seen from Figs. 7, 8 and 9 that there is an interesting phenomenon that when
c, gsyn, τ increase to some value respectively, the curve will jump accordingly. Further,
when c, gsyn, τ continue increasing to some large value respectively, the curve will
jump too, and θ will decrease by 2π each time when the curve jumps. This phenomenon

Fig. 7. The dependence of travelling waves on c
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Fig. 8. The dependence of traveling waves on gsyn

Fig. 9. The dependence of travelling waves on τ

just shows the dependence of generation of n-spiking travelling waves on the values of
c, gsyn, τ which needs further research.

7 Conclusions

In this paper, we derive an analytical lower bound of synaptic coupling strength gsyn

for traveling waves to exist. Using the numerical simulation methods, we verify some
related results on the existence of traveling waves and the dependence of existence of
traveling waves on parameters, and give the solution of traveling waves numerically.
Furthermore, we investigate the change of the traveling waves solution curve while the
parameters c, gsyn, τ change respectively. Finally, there is a phenomenon that the curve
of θ jumps with the increase of parameters, and this needs further research.

As further extensions of this study, there exist a number of topics for future work.
In this paper, we mainly study the single firing spike traveling waves. The situation
on n-spiking traveling waves needs to be further studied. The system is assumed to be
noiseless in this paper. In real world, however, the scheme clearly has to be implemented
to be robust to noise. Furthermore, since the system is naturally delayed, the study of
the system with delay needs more attention too.
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Abstract. In this paper, a multi-branch back propagation neural network 
(BPNN) is adopted to predict the nonlinear seismic responses of an eccentric 
three-story reinforced concrete building. First of all, the network is trained in 
batch by the vibration table test data of the structure with the maximum accel-
eration of ground motion in 0.4g. Then, the trained network is used for struc-
tural responses prediction. The nonlinear structural acceleration responses of 
the each story are evaluated by the trained network for the maximum accelera-
tion of ground motion in different amplitudes. Compared with the experimental 
results, it turns out that the trained network can accurately predict structural fu-
ture dynamic responses.  

Keywords: Structural dynamic system, Artificial neural network, System iden-
tification, Seismic responses.  

1   Introduction 

Building structures are subjected to various kinds of dynamic loadings, such as earth-
quakes and wind. The dynamic responses can result in uncomfortable, and even seri-
ously dangerous circumstances for buildings. The inclusion of vibration absorbers in 
tall buildings can be a successful method for mitigating the effects of these dynamic 
responses. A structural control system is commonly classified by its device type, 
which results in three general types: passive, active and semi-active. Active control 
systems have the ability to adapt to different loading conditions and to control vibra-
tion modes of the structure. However, Classic control theory and modern control 
theory are both based on accurate mathematical model. And the validity, robustness 
and stability of control system directly depend on the precision of the model. Building 
structure, in which there are both structural and non-structural members, is a compli-
cated nonlinear system whose energy dissipation mechanism has not been totally 
uncovered. And nonstructural members are usually ignored when structures are de-
signed. It has been proved that, it may result in great control deviation, deteriorate 
control performance even destabilize the controlled structure if designed control sys-
tem based on simplified mathematic model is applied to real structure. System model-
ing, which plays a very important role in automatic control, directly determines  



920 L. Huo, H. Li, and B. Li 

control quality. It has been turned from modeling by mechanism to modeling by sta-
tistics and system identification. System identification is an important branch of the 
study on control theory. It is the basis for designing control system [1].  

Artificial neural networks (ANN) have attracted considerable attention and shown 
great potential for modeling complex non-linear relationships in recent years [2–6]. 
ANNs are derived through a modeling of the human brain and are composed of a 
number of interconnected artificial neurons that are similar to the biology neural net-
works. The function of single cell is simple and limited, but the networks composed 
by numerous neural cells can complete complicated tasks. A significant benefit of 
using an ANN is its ability to learn relationships between variables with repeated 
exposure to those variables. Therefore, instead of deriving an analytical relationship 
from mechanical principles to model a system, the ANN learns the relationship 
through an adaptive training process. One can construct a non-linear mapping func-
tion from multiple input data to multiple output data within the network in a distrib-
uted manner through a training process. The trained network has a feature of the so-
called ‘generalization’, i.e. a kind of interpolation, such that the well-trained network 
estimates appropriate output data even for untrained patterns. Parallel data processing 
is also one of the main features of ANNs. In the system identification based on 
ANNs , a set of samples, usually structural response or seismic input data, are used to 
train the network to continuously adjust the link weights between neurons [7-8]. As a 
result, the relationship between the samples is approximated by updating system 
model or structural dynamic characteristics. ANNs provide an efficient approach for 
system identification and have been applied to structural control [9-14]. 

A dynamic structural system is inherently a multi-input multi-output system, and 
structure state variables and seismic inputs have different influences on its dynamic 
responses [16]. To construct an identified model that can precisely reflect structural 
dynamic characteristics is the key factor to realize a valid vibration control with high 
quality. A kind of multi-branch error back propagation neural network (BPNN) iden-
tification model has been proposed [1]. In a BPNN model, to enhance training effi-
ciency and prediction precision, structural state vector and earthquake inputs, that 
affect structural dynamic responses, are treated as separate branches of the network 
and are input into the model. In this paper, the nonlinear seismic responses of an ec-
centric building are predicted using the multi-branch BPNN. The network is trained 
using the collected experimental data from the shaking table test with the maximum 
earthquake input in 0.4g. Then, the trained network is used to predict the nonlinear 
responses of the structure subjected to the earthquake with the amplitude of 0.5g, 
0.6g, 0.7g, 0.8g and 1.0g. 

2   Multi-branch BPNN System Identification Model 

The objective of system identification is to establish an equivalent mathematical 
model for a system to be identified based on the observations of the inputs and out-
puts of the system. There are three key factors in system identification including input 
and output data, class of model and equivalent criteria. The task of system identifica-
tion is to extract a model (M) of system (S) from the inputs and outputs, while satisfy-
ing the following requirements: 
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( ) ( )y t M x S x ε− = − ≤ , (1) 

where y is the system response corresponding to input x, and t is model response cor-
responding to input x; ε is the preset precision for identification. 

Set e=y-t, then equivalent criteria leads to  

min min
f f

e y t= − . (2) 

The multi-branch BPNN system identification model has been proposed as shown 
in Fig. 1 [1]. In the model, structural state variables and earthquake inputs, that affect 
structural dynamic responses, are treated as separate branches and are input into the 
model.  

The input of the model are  

1 1
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 (4) 

The outputs of the model are  

1 2 3Output ( 1) [ ( 1), ( 1), ( 1)]T
sY k y k y k y k= + = + + +L . (5) 

In Fig. 1, there are one q-dimensional input sub-branch of seismic wave in x direction, 
one q-dimensional input sub-branch of seismic wave in y direction, n r-dimensional input 
sub-branches of floor velocity response in x direction, n r-dimensional input sub-branches 
of floor velocity response in y direction, n r-dimensional input sub-branches of floor ve-
locity response in θ direction, n r-dimensional input sub-branches of floor displacement 
response in x direction, n r-dimensional input sub-branches of floor displacement response 
in y direction, and n r-dimensional input sub-branches of floor displacement in θ direction. 
There are totally 2+6n input sub-branches and the dimension of inputs is l=2q+ 6nr (n is 
the number of layers). However, in actual applications, sensors could not be deployed at 
all degrees of freedom to measure the responses of a structure. Because, a trained ANN 
has the ability of generalization, it is not necessary to use all the structural state data to 
train the networks, thus the number of inputs in Fig. 1 will be reduced considerably and 
the training efficiency is improved. 



922 L. Huo, H. Li, and B. Li 

 

Fig. 1. The multi-branch BPNN identification model 

Assume that a structural dynamic system takes the following form: 

( 1) [ ( ), , ( 1), ( ), ( 1)]T
g gX k f X k X k r U k U k q+ = − + − +&& &&L , (6) 

where X(k+1) represents the state vector of the structure at time k+1, that is deter-
mined by former r state vectors and q seismic inputs in two directions. ( )gU k&&  repre-

sents the seismic inputs at time k. Since the multi-branch BPNN model is used in the 
identification of a dynamic structure, the inputs and outputs of the multi-branch 
BPNN model can be chosen to take the form similar in Eq. (6). The form of such a 
multi-branch BPNN model is 

ˆ( 1) [ ( ), , ( 1), ( ), ( 1)]T
g gY k f X k X k r U k U k q+ = − + − +&& &&L , (7) 

where Y(k+1) represents the output vector of a multi-branch BPNN model at time 

k+1, i.e. the state vector of the identified model at time k+1. f̂  that is an ap-

proximation of f, represents the mapping of the inputs onto the outputs. The 
multi-branch BPNN model is essentially a static model, but the introduction of 
tapped delay line (TDL) provides it with some dynamic features, which allows for 
a more accurate approximation of the relationship between inputs and outputs. 
The principle of system identification based on multi-branch BPNN model is self-
explained in Fig. 2. 

The purpose of utilizing the system identification based on a multi-branch BPNN 
model is to predict the dynamic behavior of a structure after the model has been suffi-
ciently trained. After an identification model is established, it will be trained by seis-
mic sample data and corresponding responses to learn the law of structural vibration, 
and then store the trained link weights between the neurons in the network. The proc-
ess of identification is to minimize the error between actual outputs and the expected 
ones of the network through adjusting the link weights. 
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Fig. 2. Principle of system identification based on multi-branch BPNN model 

3   Experimental Setup and Procedure 

The experiment was carried out with the earthquake simulator facility of the State 
Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technol-
ogy in China. The facility includes a 4m×3m steel platform, driven by servo-hydraulic 
actuators and a MTS analogue electronic control system, which makes fine feedback 
over accelerations, velocities and displacements. With a maximum horizontal and 
vertical displacement of ±75mm and 50mm respectively, the shaking table has about 
10-ton of payload capacity and a frequency range from 0.1Hz to 50Hz. 

An experimental model is designed and constructed for this study, i.e. a three-story 
reinforced concrete frame-shear wall structure with an asymmetric shear wall distri-
bution (see Fig. 3). The height of the structural model is 3.1m, and the total mass of 
the model is nearly 30kN. The cross-section area of the column and beam is 0.08m × 
0.08m and 0.06m × 0.1m, respectively. The thickness of the shear wall is 0.03m. The 
data were acquired simultaneously at the rate of 500Hz in 16 channels. Accelerome-
ters and load cells were used to measure the acceleration at each story, and shear 
forces on the columns of the first story. Fig. 4 shows the accelerometer placements on 
each floor of the building model. The base excitations were the 1940 El Centro earth-
quake NS acceleration time series and were scaled with the increasing Peak Ground 
Acceleration (PGA) to be 0.4g, 0.5g, 0.6g, 0.7g, 0.8g and 1.0g. The tested structure 
was excited by six consecutive horizontal acceleration processes with increasing in-
tensities on the shaking table and without repairing or strengthening among processes. 

No cracks were observed in the structure with PGA to be 0.4g and 0.5g, which 
means that the structure is still in elastic state. Obvious cracks can be found in the 
columns of the first floor when the structure subjected to the ground motion with 
PGA 0.6g and the structural responses became nonlinear. The cracks developed much 
when the PGA increased to be 0.7g and 0.8g. The width of cracks became larger and 
the “plastic hinges” were formed in the columns and beams when the structure sub-
jected the ground motion with PGA 1.0g. The structure was a strong nonlinear dy-
namic system at this time.  
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Fig. 3. Experimental setup for shaking table tests 
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Fig. 4. Experimental setup for shaking table tests 

4   Prediction of the Nonlinear Seismic Responses 

In this paper, the accelerations of the three-story building is predicted using the pro-
posed multi-branch BPNN. The multi-branch BPNN is essentially a static model, 
delay is added in the inputs to accurately describe the dynamic behavior of the struc-
ture. The inputs of BPNN include the ground motion data at the current time and 
previous two steps, the acceleration response of the three floors at the current time 
and previous three steps. The outputs are the accelerations of the building model at 
each story. In summary, there are totally 15 inputs and 3 outputs for the BPNN. To 
facilitate the training, the sample data are transformed into values between -1 and 1 to 
shorten the learning time of the network as follows: 
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* *min

max min

2 1, [ 1,1]
X X

X X
X X

−= − ∈ −
−

, (8) 

where X is the sample data, Xmin and Xmax are the maximum and minimum of the sam-
ple data, respectively, and X* is the transformed value.  

The chance of “over-fitting” is rather little once the number of training sample data 
is far more than that of the neurons of hidden layers. Therefore, 1000 observations are 
chosen as the training data ensemble for structural responses with ground motion 
PGA 0.4g. To improve the convergence speed, training efficiency and algorithm sta-
bility, an acceleration factor and an adaptive learning algorithm are adopted to train 
the model and the maximum training step is set as 500. Then, a numerical optimiza-
tion algorithm called Levenberg–Marquardt is adopted to train the model and the 
maximum training step is set as 200. The training function was the generally used 
mean square error as in Eq. (9), and this function is modified by regularization to 
improve its ability of generalization. As a result, Eq. (10) is used as the performance 
training function. 

2

1

1
( )

N

i i
i

mse t y
N =

= −∑  (9) 

(1 )msereg mse mswγ γ= ⋅ + − , (10) 

where γ is a scalar ratio, msw is the average of all the squared weights, i.e. 

2

1

1 N

j
j

msw w
N =

= ∑  (11) 

It should be noted that, after a large amount of training, that the ability of training ef-
ficiency and generalization is best when the nodes of two hidden layers is 10 and 15, 
respectively. The trained network is used to predict the nonlinear responses of the struc-
ture subjected to the earthquake with different amplitudes of PGA. The mean of squared 
errors for the prediction are listed in Table 1. Due to the paper limitation, only the pre-
dicted time histories of the third floor acceleration with PGA 0.6g, 0.8g and 1.0g are 
given here to show the training results, as shown in Fig. 5, Fig. 6 and Fig. 7. 

It could be seen, from the training results and prediction ability, that the overall 
performance of the proposed model is satisfied.  

Table 1.  The mean of squared errors for predicted accelerations of the structure 

PGA First Floor Second Floor Third Floor 
0.4g 1.3669e-5 2.7144e-6 7.2738e-5 
0.5g 9.5711e-4 7.2963e-6 1.0413e-4 
0.6g 4.8775e-5 3.4402e-6 1.1140e-4 
0.7g 1.5076e-4 1.8667e-5 8.3947e-4 
0.8g 7.1419e-4 3.1866e-5 8.6780e-4 
1.0g 0.0016 7.0186e-5 9.2791e-4 
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Fig. 5. Comparisons of predicted and actual acceleration of the third floor (PGA 0.6g) 
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Fig. 6. Comparisons of predicted and actual acceleration of the third floor (PGA 0.8g) 
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Fig. 7. Comparisons of predicted and actual acceleration of the third floor (PGA 1.0g) 
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5   Conclusions 

A kind of multi-branch BPNN model is used to identify the multi-input multi-output 
nonlinear structural dynamic system in this paper. The network is trained by the ex-
perimental data from a shaking table test of a reinforced concrete building structures. 
In addition, the trained model was used to predict structural responses under the seis-
mic wave with different amplitudes inputs to test the ability of generalization of the 
identified model. Numerical simulation shows that the proposed multi-branch BPNN 
model can accurately identify the structural nonlinear characteristics, and this model 
has a high precision in predicting structural future dynamic responses. Such high 
precision of model identification and response prediction can provide a solid founda-
tion for further structural control. 

Acknowledgements   

This research is financially supported by the National Natural Science Foundation of 
China (No. 50708016). This support is greatly appreciated. 

References 

1. Li, H.N., Yang, H.: System Identification of Dynamic Structure by the Multi-Branch 
BPNN. Neurocomputing 70, 835–841 (2007) 

2. Brown, A.S., Yang, H.T.Y.: Neural Networks for Multiobjective Adaptive Structural Con-
trol. J. Struct. Eng. 127, 203–210 (2001) 

3. Brown, A.S., Yang, H.T.Y., Wrobleski, M.S.: Improvement and Assessment of Neural 
Networks for Structural Response Prediction and Control. J. Struct. Eng. 131, 848–850 
(2005) 

4. Kim, D.H., Seo, S.N., Lee, I.W.: Optimal Neurocontroller for Nonlinear Benchmark Struc-
ture. J. Eng. Mech. 130, 424–429 (2004) 

5. Masri, S.F., Smyth, A.W., Chassiakos, A.G., Caughey, T.K., Hunter, N.F.: Application of 
Neural Networks for Detection of Changes in Nonlinear Systems. J. Eng. Mech. 126, 666–
676 (2000) 

6. Rajasekaran, S.: Functional Networks in Structural Engineering. J. Comput. Civil Eng. 18, 
172–181 (2004) 

7. Chen, H.M., Qi, G.Z., Yang, J.C.S., Amini, F.: Neural Networks for Structural Dynamic 
Model Identification. J. Eng. Mech. 121, 1377–1381 (1995) 

8. Masri, S.F., Nakamura, M., Chassiakos, A.G., Caughey, T.K.: Neural Network Approach 
to Detection of Changes in Structural Parameters. J. Eng. Mech. 122, 350–360 (1996) 

9. Ghaboussi, J., Joghataie, A.: Active Control of Structures Using Neural Networks. J. Eng. 
Mech. 121, 555–567 (1995) 

10. Hung, S.L., Kao, C.Y., Lee, J.C.: Active Pulse Structural Control Using Artificial Neural 
Networks. J. Eng. Mech. 126, 838–849 (2000) 

11. Kim, D.H., Lee, I.W.: Neuro-Control of Seismically Excited Steel Structure Through Sen-
sitivity Evaluation Scheme. Earthquake Eng. Struct. Dyn. 30, 1361–1377 (2001) 

12. Kim, J.T., Jung, H.J., Lee, I.W.: Optimal Structural Control Using Neural Networks. J. 
Eng. Mech. 26, 201–205 (2000) 



928 L. Huo, H. Li, and B. Li 

13. Li, H.N., Huo, L.S.: Semi-Active TLCD Control of Fixed Offshore Platforms Using Arti-
ficial Neural Networks. China Ocean Eng. 17, 277–282 (2003) 

14. Tang, Y.: Active Control of SDF Systems Using Artificial Neural Networks. Comput. 
Struct. 60, 695–703 (1996) 

15. Li, B.: Nonlinear Analysis of R/C Frame-Wall Structures to Multiple Earthquake Excita-
tions and Experimental Research. Ph. D. Dissertation, Dalian University of Technology, 
China (2005) 

16. Xu, Z.D., Shen, Y.P., Guo, Y.Q.: Semi-active Control of Structures Incorporated with 
Magnetorheological Dampers Using Neural Networks. Smart Mat. Struct. 12(1), 80–87 
(2003) 

 



W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 929 – 936, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Coupling Analysis of Manufacturing Characteristics and 
Mechanics Property of Microminiature Gear Mechanism 
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Abstract. A coupling analysis method of manufacturing characteristics and 
mechanics property of microminiature gear mechanism based on BP neural 
network was proposed. By use of the existing finite element model with 
manufacturing characteristics, output data as BP neural network training set of 
samples was obtained. Through a comparative study of the effects of different 
network parameters settings on the precision of network model, the optimal 
network structure and parameters were determined and the neural network model 
which can approximate the mechanics property microminiature gear mechanism 
with high precision. This shows the nonlinear coupling relationships between 
input manufacturing characteristics and the output mechanical characteristics, 
and verifies the accuracy of the model. 

Keywords: Neural Network, Manufacturing Characteristics, Mechanics property, 
Coupling Analysis, Microminiature Gear Mechanism. 

1   Introduction  

As reduction of size of micro-mechanical systems and components, the size that has 
no obvious effect inconventional systems will have strengthen role in the micro field. 
For example, effects on the performance of parts of manufacturing characteristics 
(which refers to an action of the manufacturing process given geometry and physical, 
reflecting the effect of the choice of process parameters and ability of process 
systems, It is mainly characterized by surface topography parameters, assembly 
errors, size errors, form and position errors, material properties, heat treatment 
hardness.) factors such as processing errors, the surface quality, assembly error can 
not be ignored [1-3]. The study of the effect of manufacturing characteristics of 
micromechanical systems on the relationship between manufacturing characteristics 
and mechanics property will have great significance on the evaluation of running 
performance of system. The coupling between manufacturing characteristics and 
mechanical characteristics is non-linear [4]. There is no explicit expression of 
function. To solve this kind of highly nonlinear problems, FEM software is often 
used. But because of the need to consider many manufacturing characteristics factors 
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and many values of each factor, the data of parametric modeling is a huge and the 
calculation is time consuming. So it is not conducive to the engineering application. 
ANN is a black box modeling tool. Through analysis of the actual system input and 
output parameters, we create a neural network model. BP neural network is 
commonly used, and one of the important applications is starting with the training 
samples to make non-linear approximation for unknown mapping function. In this 
paper, a coupling analysis method of manufacturing characteristics and mechanics 
property of microminiature gear mechanism based on BP neural network was 
proposed. By use of the existing finite element model with manufacturing 
characteristics and data, we got the training set of samples of BP neural network. BP 
neural network model which is used for coupling relationship analysis of 
manufacturing characteristics of microminiature gear and mechanics property was 
established. This realizes to express the nonlinear relationships between 
manufacturing characteristics and mechanics property by use of explicit function. The 
verification result shows that the neural network model is correct and the analysis 
error is less than 9%. 

2   The Structure of BP Neural Network 

Structurally, BP neural network is a typical multilayer network. There are three 
neuron layers in standard BP model. The lowest layer is input layer, the middle layer 
hidden layer, and the top one is output layer. Between layers the whole connecting 
way is used. The units do not connect with each other in the same layer, as shown in 
Figure 1. 

The basic idea of BP neural network model is: to study forward propagation of the 
signals and the back propagation of errors. In the process of forward propagation, 
input information is calculated on after another layer by layer from input layer to 
output layer. If ideal results have not been obtained in the output level, the changed 
value of its error is calculated, and then modifying the value of linking points 
reversely to achieve the desired goal. According to Robert Hecht-Nielson we can  
 

 

Fig. 1. Three-layer BP neural network 
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prove BP theorem that any continuous function in this interval of can be approached 
by a BP network containing a hidden layer. So a three-layer BP network can complete 
n to m dimensions nonlinear mapping relationships with any required precision [5-7]. 
There are n inputs which are

nXXX ,,, 21 L .  The hidden layer has m  neurons. The 

corresponding output neurons are myyy ,,, 21 L .  
ilω  is the weight value at the i  input 

node in the l  hidden layer, where ni ,2,1 L= , ml ,2,1 L= .
lkν is the connection 

weight value from hidden layer to output layer,
lk bb ,  are the deviations. The 

relationship between input and output is as follows: 
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3   The Coupled Model and Verification Based on BP Neural 
Network 

3.1   Coupled Modeling Based on BP Neural Network 

The basic idea of modeling of the coupled model between manufacturing characteristics 
and mechanics property is that to treat the specific manufacturing characteristics 
parametric variables such as dimension errors, material properties, temperature, form 
errors, and location errors as input variables. And treat the concerned structural 
characteristics of the output indicators such as stress, deformation and so on as output 
variables. Through study of engineering examples, the neural network obtains the non-
linear mapping relations between input and output variables. The specific ways of 
establishment are as follows: 

 ① Through a series of as few as possible deterministic test or structural finite 
element numerical calculation, obtain the output mechanics property of the structures 
under certain working conditions, and use them as training samples of a neural 
network model;  

 ② By using of BP neural networks, optimize the value and study the sample, to 
set up the mapping relations between the input parameters and output characteristics 
indicators;  

 ③ Corresponding to the way of normalization, transfer function, number of neural 
network layers, the number of neurons in each layer in the structure of network, the 
weight value and deviation will be trained successfully and then use them as known 
coefficient to substitute into the formula (1) and (2)  for conversion. So the coupling 
relationship between the output parameters and mechanics property is obtained. 

The network of the coupled model has three layers. There are 7 neurons in the 
input layer, which are position errors of three pairs of meshing gear respectively. T1 is 
the position error of the first level driving gear, T2 is the position error of the pinion in 
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first level, T3 is the position error of the bull gear in second level, T4 is the position 
error of the pinion in second level, T5 is the position error of the bull gear in third 
level, T6 is the position error of the pinion in third level, T7 is the tooth trace errors of 
gears (the same for all the gears). There are 6 neurons in the output layer, which are 
the maximum equivalent stress σ1, σ2, σ3, σ4, σ5 and σ6 of the six gears respectively. 
The transfer function between hidden layer and input layer is hyperbolic S-transfer 
function sigmoid, which has the function as non-linear magnification factor. The 

function can map the input of neurons from (-∞,+∞) to (-1, +1). The S activation 
function can be used to deal with and approximate non-linear relationship between the 
input and output. The linear transfer function purelin is used between hidden layer 
and output layer, so that any output value can get in the network. The structure of 
network is shown in Figure 2. 

 

Fig. 2. Structure of BP neural network 

3.2   Parameter Design of BP Neural Network Model 

  The design and selection of parameters of BP neural network models includes: 
choosing the training methods, determing the number neurons in hidden layer, 
selecting the initial weight value, and determining the study rate and the selection of 
expectation error. 

3.2.1   Training Method and Process of Network 
The selection of neural network training method lies on a number of factors, such as 
the complexity of the mapping, the number of training set samples, the number of 
network weight value and threshold, the error goal, the use of the network and so on. 
At the same time the speed of training is difficult to predict. However, LM algorithm 
is usually the fastest for function containing hundreds of weight value approximation 
of the network. In many cases, using the training function trainlm of the LM 
algorithm can get a smaller square error than any other method. This network has 7 
input parameters and 6 output parameters as well as more than 100 weight values. So 
it is relatively complex and requires a faster training method. Trainlm is Levenberg - 
Marquardt optimization method which has high computing speed. So we use trainlm 
as a training method of network. 

The input training data requires preprocessing, that is to normalize it in the interval 
(-1, +1), when it is inputted. In this paper, there are a total of 16 orthogonal 
experiments, 7 input elements, and 6 output elements. The basic computing unit of 
MATAB is matrix, so the input and output of training set of network are written in the  
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form of matrix and are 7 × 16 and 6 × 16 matrix respectively. The input row vector of 
the matrix is the value of the 16 tests of each factor (position and tooth trace errors of 
the gears) and column is the value of 7 factors for each test. The output row vector  
of the matrix line is the result of each of the variables (equivalent stress of gears)  
for 16 tests of the results and the column vector is the result of 7 dependent variables 
for each test. The input matrix is denoted by p and output matrix is t. In addition,  
the input parameters don’t require normalization because of they are all in interval  
(-1, +1) as well as the output results do not need anti-normalization.  

3.2.2   To Determine the Number of Neurons in Hidden Layer  
The number of neurons in hidden layer is determined by experiments. There are many 
input parameters, output parameters and training arrays, so more hidden neurons are 
needed to achieve accurate approximation and fast convergence. By setting different 
numbers of hidden neurons, we select the most appropriate number of hidden neurons 
through a series of tests and comparing the speed of convergence. The results are 
shown in Table 1: 

Table 1. Training results of different number of neurons in hidden layer 

Number of neurons 
in hidden layer  

Target errors Time of training 

18 277.74 20000 

20 8.7 20000 

22 228.37 20000 

24 255.43 20000 

26 366.63 20000 

27 0.0996 13073 

28 0.0892 111 

29 0.0085 631 

30 0.0079 3653 

We can see that the appropriate number of hidden layer neurons is between 28 and 
29 with fast convergence and fast training. The training error curves are shown in 
Figure 3 and Figure 4. Considering precision demand of the network, and the two 
networks on a group of its known function of the value of the parameters of training, 
we trained the parameters with known functions using the two networks. Through 
comparing the training results of the two networks, we know that the result is closer 
to the actual value of the function when the number of hidden neurons is 29. 

3.2.3   Determine of Other Parameters  
The initial weight values of the network use the default values, which is the random 
number in interval (-1,+1). When the characteristics of different networks are  
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Fig. 3. Training curve when S=28 Fig. 4. Training curve when S=29 

compared, the network needs to initialize. MATLAB statement is as follows [8]: net 
= init (net). Learning rate is 0.1, though smaller learning rate will lead to relatively 
slow convergence, it can guarantee the stability of the system. Through a series of  
 

pilot training, the learning rate is set to be 0.1 and mean square error (MSE) is set to 
be 0.01. There are 112 sets of data in this network, and all the data in the 102 orders of 
magnitude. Setting MSE to 0.01 can sufficiently meet the requirements of precision. 
The maximum time of training is set to 20000, the training will automatically stop 
when the error is within the expections error.  

3.3   Model Verification of the Network 

The validity of the BP neural network model is verified according to the FEM results 
of a microminiature gear mechanism. Table 2 shows the input data for verification of 
network testing set and Table 3 shows the comparison between results of the neural 
network model(

1Y ) and the FEM(
0Y ). 

Table 3 shows that the errors of solution of equivalent stress are less than 9%. The 
precision of the neural network model is relatively high and can be used as the 
explicit function of the coupling relationship between manufacturing characteristics 
and mechanics property of microminiature gear mechanism. It can be applied to solve 
the largest equivalent stress of gears meshing point.  

Table 2. Input data for verification of the network 

Position errors of each level（µm） Manufacturing  
                  characteristics 
Input data set 

1T
 2T

 3T 4T
 5T 6T

 

7T
 

（°） 

1 3 3 0 0 0 0 0 

2 0 0 3 3 0 0 0 

3 0 0 0 0 6 6 0 

4 0 0 0 0 0 0 0.01 

5 4 3 3 3 6 6 0.01 
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Table 3. Comparison between results of the neural network model and the FEM（MPa） 

Equivalent stress 
Input data set 1 2 3 4 5 6

0Y 381 570 365 193 126 116 

1Y 408 599 392 210 134 123
1

100)( 001 YYY 7.0% 5.1% 7.5% 8.5% 6.5% 6.0%

0Y 383 567 381 203 138 126

1Y 386 587 405 203 145 132
2

100)( 001 YYY 0.7% 3.6% 6.2% 0.1% 4.8% 5.1%

0Y 385 576 379 198 129 119 

1Y 378 575 361 196 130 112 
3

100)( 001 YYY 1.7% 0.1% 4.6% 0.8% 0.3% 5.5%

0Y 398 591 427 222 186 186

1Y 408 598 432 225 202 200
4

100)( 001 YYY 2.5% 1.2% 1.1% 1.6% 8.3% 7.7%

0Y 415 596 462 261 220 213

1Y 414 596 449 242 201 195
5

100)( 001 YYY 0.4% 0.1% 2.9% 7% 8.5% 8.5%
 

4   Conclusions  

Through analysis of output characters of microminiature gear mechanism, combining 
with neural network modeling approach, a three-layer BP neural network model with 7 
input nodes and output nodes is established. With the known finite element output data 
as a sample of training, through a comparative study of effects of different parameters of 
the network settings on the accuracy of the network model, the best network structure 
and parameters are determined. Explicit function expression of the nonlinear coupling 
relationship between manufacturing characteristics and mechanics property of 
microminiature gear mechanism is achieved. The results show that the neural network 
model can approximate the results of finite element analysis with errors of less than 9%. 
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Abstract. Gas concentration is one of key factors which influence safe production 
of coal mine, and it is very important to forecast gas concentration accurately for 
ensuring the coal mine safety. A novel approach is presented to forecast gas  
concentration based on support vector regression (SVR) in correlation space  
reconstructed by kernel principal component analysis (KPCA). A two-stage  
architecture is proposed to improve its prediction accuracy and generalization per-
formance for gas concentration forecasting. In the first stage, KPCA is adopted to 
extract features and obtain kernel principal components, so the correlation space 
of gas concentration is reconstructed according to the accumulative contribution 
ratio. Then, in the second stage, support vector regression (SVR) is employed for 
forecasting gas concentration, which hyperparameters are selected by adaptive 
chaotic cultural algorithm (ACCA). The approach is compared with the forecast-
ing model in whole space of gas concentration. The simulation shows that SVR 
model in correlation space using KPCA performs much better than that without 
correlation analysis. 

1   Introduction 

Gas concentration is a very complex dynamic phenomenon which is affected by many 
factors, and is also one of key factors which influence safe production of coal mine. It 
is very important to forecast gas concentration accurately for ensuring the coal mine 
safety. Gas concentration is nonlinear and chaotic time series in essence, so it can be 
forecasted using the method of chaotic time series model[1]. In fact, there has inter-
influencing correlation in all the gas concentrations, so we can observe the key gas 
concentration through other gas concentrations, in other words, the key gas concentra-
tion should be forecasted by the others. Therefore, a multi-inputs and single output 
model is built to realize gas concentration forecasting via correlation analysis. 

Nonlinear and chaotic time series prediction is a practical technique which can be 
used for studying the characteristics of complicated systems based on recorded 
data[2]. As a result, the interests in chaotic time series prediction have been increased, 
however, most practical time series are of nonlinear and chaotic nature that makes 
conventional, linear prediction methods inapplicable[3]. Although the neural net-
works is developed in chaotic time series prediction[3, 4], some inherent drawbacks 
such as the multiple local minima problem, the choice of the number of hidden units 
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and the danger of over fitting and so on, would make it difficult to put the neural 
networks into some practice. 

In recent years, support vector regression (SVR) has been proposed as a novel 
technique in time series prediction[5]. SVR is a new approach established on the 
unique theory of the structural risk minimization principle to estimate a function by 
minimizing an upper bound of the generalization error via the kernel functions and the 
sparsity of the solution[6]. SVR usually achieves higher generalization performance 
than traditional neural networks that implement the empirical risk minimization prin-
ciple in solving many machine learning problems[6, 7]. Another key characteristic of 
SVR is that training SVM is equivalent to solving a linearly constrained quadratic 
programming problem so that the solution of SVR is always unique and globally 
optimal[8].  

In developing a SVR model for gas concentration forecasting, the first important 
step is correlation analysis. Kernel principal component analysis (KPCA) is one type 
of nonlinear principal component analysis (PCA) developed by generalizing the ker-
nel method into PCA, which first maps the original input space into a high dimen-
sional feature space using the kernel method and then calculates PCA in the high 
dimensional feature space[9]. The linear PCA in the high dimensional feature space 
corresponds to a nonlinear PCA in the original input space. KPCA can also extract 
nonlinear principal components up to the number of training data points[10]. 

The paper proposes a correlation space reconstruction method based on KPCA 
with correlation analysis in order to improve quality of input space and accuracy of 
gas concentration modeling. On the basis of KPCA, some kernel principal compo-
nents are chosen according to their correlation degree. The restructured correlation 
space is then used as the inputs of SVR to solve gas concentration forecasting prob-
lems. By examining the gas concentration, the simulation shows that SVR by correla-
tion analysis using KPCA performs much better than that without correlation analysis. 

The rest of this paper is organized as follows. Section 2 presents the correlation 
space reconstruction of gas concentration. In section 3, the theory of SVR is pre-
sented. The architecture and algorithm of model are given in Section 4. Section 5 
presents the results and discussions on the experimental validation. Finally, some 
concluding remarks are drawn in section 6. 

2   Correlation Space Reconstruction of Gas Concentration 

2.1   Correlation Space Reconstruction via KPCA 

Given a set of centered input vectors kx ( lk ,,2,1 L= , and 0
1

=∑ =
l

k kx ), each of 

which is of m  dimension T
kkkk mxxxx ))(,),2(),1(( L=  (usually lm < ), The basic 

idea of KPCA is to map the original input vectors kx  into a high dimensional feature 

space )( kxΦ  and then to calculate the linear PCA in )( kxΦ . By mapping kx  into 

)( kxΦ  whose dimension is assumed to be larger than l , KPCA solves the eigenvalue 

problem (1). 
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iii Kααλ =~
, li ,,2,1 L=  (1) 

where K  is the ll ×  kernel matrix. The value of each element of K  is equal to the 
inner product of two high dimensional feature vector )( ixΦ  and )( jxΦ . That is, 

)()(),( jiji xxxxK Φ⋅Φ= . The advantage of using K is that one can deal with )( kxΦ  

of arbitrary dimensionality without having to compute )( kxΦ explicitly, as all the 

calculations of the dot product )()( ji xx Φ⋅Φ  are replaced with the kernel function 

),( ji xxK . This means that the mapping of )( kxΦ  from kx  is implicit. iλ~  is one of 

the eigenvalues of K , satisfying ii lλλ =~
 . iα  is the corresponding eigenvector of K , 

satisfying ∑ = Φ= l

j jii xju
1

)()(α ( )( jiα , lj ,,2,1 L= , are the components of iα ). 

For assuring iu is of unit length, each iα  must be normalized using the corre-

sponding eigenvalue by 

iii λαα ~~ = , li ,,2,1 L=  (2) 

Based on the estimated iα~ , the principal components for kx  is calculated by 

∑
=

=Φ=
l

j
kjik

T
ik xxKjxuis

1

),()(~)()( α , li ,,2,1 L=  (3) 

In addition, for making 0)(
1

=Φ∑ =
l

k kx , in (4) the kernel matrix on the training set 

K  and on the testing set tK  are respectively modified by 

)11
1

()11
1

(
~ T

ll
T
ll l

IK
l

IK −−=  (4) 

)11
1

)(11
1

(
~ T

ll
T
lltt l

IK
l

KK
t

−−=  (5) 

where I  is l dimensional identity matrix. tl  is the number of testing data points. l1  

and 
tl

1 represent the vectors whose elements are all ones, with length l and tl  respec-

tively. tK  represents the llt ×  kernel matrix for the testing data points. 

From above equations, it can be found that the maximal number of principal com-
ponents extracted by KPCA is l . If only the first several eigenvectors sorted in de-
scending order of the eigenvalues are considered, the number of principal components 
in ks  can be reduced. 

The popular kernel functions includes norm exponential kernel, Gaussian kernel 
function, sigmoid kernel, polynomial kernel, etc.. Gaussian kernel function is chosen 
in this paper. 

)exp(),( 2σkk xxxxK −−=  (6) 
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2.2   Reducing the Dimension of the Input Space Based on Correlation Analysis 

The kernel principal components ks in feature space can be computed as Section 2.1, 

which are denoted by lHHH ,,, 21 L ( Ti
l

iii HHHH ),,,( 21 L=  for li ,,2,1 L= ) in 

this part for convenience. 

Where i
jH  is the ith principal component of jth sample. The first q  principal com-

ponents are chosen such that their accumulative contribution ratio is big enough, 
which form reconstructed the phase space. As formula(7), training sample pairs for 
gas concentration modeling can be formed as below, 

1 2
1 1 1
1 2
2 2 2

1 2

q

q

q
l l l

H H H

H H H
X

H H H

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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⎥
⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ly

y

y

Y
M
2

1

 (7) 

Modeling for gas concentration, which is based on KPCA correlation space recon-

struction, is to find the hidden function f
~

 between input X and output Y such that 

)(
~

ii xfy = 。The above KPCA-based correlation space reconstruction choose the 

first q  principal components successively according to their accumulative contribu-

tion ratio (their accumulative contribution ratio must be big enough so that they can 
stand for most information of original variables). 

3   The Support Vector Regression 

The support vector regression (SVR) approach is used to approximate an unknown 

function from a set of (input, output) dada { }N

kkk yx 1, =  with input data n
k Rx ∈  and 

output data Ryk ∈ . Assuming that a set of basis functions { } 1
( )

l

s s
g x

=
 is given, there 

exists a family of functions that can be expressed as a linear expansion of the basis 
functions. That is, the problem of function approximation transforms into that finding 
the parameters of the following basis function linear expansion: 

1

( , ) ( )
l

s s
s

f x g x bθ θ
=

= +∑  (8) 

Where 1( , , )lθ θ θ∈ L  is parameter vector to be identified and b  is a constant. Usu-

ally, the solution for this problem is to find f  that minimizes the following empirical 

risk function: 

1

1
[ ] ( ( , ))

N

emp
k

R f L y f x y
N =

= −∑  (9) 
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Where ( ( , ))L y f x y−  is the loss function measuring the different between the desired 

y  and the estimated output ( , )f x y  for given input x . Although having the advantage 

of being relatively easy  to compute and being uniformly consistent hypothesis classes 
with bounded complexity, the attempt to minimize [ ]empR f  may directly lead to the 

phenomenon of overfitting and thus, poor generalization occurs in the case of a high 
model capacity in f . To reduce the overfitting effects, a regulation term is added into 

[ ]empR f , and (9) is modified as 

2
[ ] [ ]sv empR f R f γ θ= + ⋅  (10) 

Where 0γ >  is a regular constant. The idea of adding the regulation term is to keep 

the weight vector θ  as small as possible in the approximation process. 
In SVR, the ε -insensitive loss function, which was first introduced in the origi-

nally support vector machines (SVM). The ε -insensitive loss function is to define the 
loss function as 

0,
( )

for e
L e

e otherwise

ε
ε

⎧ ≤⎪= ⎨ −⎪⎩
 (11) 

A ε  zone is defined that if the e  value within zone, the loss is zeros. Otherwise, the 
loss is the magnitude of the difference between the absolute value of e  and ε  zone. 

By using the Lagrange multiplier method, the minimization of (9) leads to follow-
ing dual optimization problem, minimize 

* * *

1 1

* *

, 1 1

( , ) ( ) ( )

1
( )( )[ ( ) ( )]

2

N N

u u v v v
u v

N l

u u v v s u s v
u v s

Q y

g x g x

α α ε α α α α

α α α α

= =

= =

= + − −

+ − −

∑ ∑

∑ ∑
 (12) 

Subject to the constraint 

*

1 1

N N

u u
u u

α α
= =

=∑ ∑ , *0 ,u uα α γ< < , for 1, ,u N= L  (13) 

Where uα , vα , *
uα  and *

vα  are the Lagrange multipliers. It was shown that the inner 

product of basis functions ( )sg x  in (12) is replaced by the kernel function 

1

( , ) ( ) ( )
l

u v s u s v
s

K x x g x g x
=

=∑  (14) 

Where ux and vx  are any two input vector. The kernel function determines the 

smoothness properties of solutions and should reflect a prior knowledge on the data. 
In this paper, the Gaussian function is selected as kernel function that is defined as 
equation (6). Hence, the optimization of (12) is rewritten as 

* * * * *

1 1 , 1

1
( , ) ( ) ( ) ( )( ) ( , )

2

N N N

u u v v v u u v v u v
u v u v

Q y K x xα α ε α α α α α α α α
= = =

= + − − + − −∑ ∑ ∑  (15) 
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It was shown that the solution of SVR approach is in the form of the following linear 
expansion of kernel functions 

* *

1

( , , ) ( ) ( , )
N

k k k
k

f x K x x bα α α α
=

= − +∑  (16) 

Where the constant b  be taken as 

* *

1 1

1
{min( ( ) ( , )) max( ( ) ( , ))}

2

N N

k k k k k k k kk k
k k

d K x x d K x xα α α α
= =

− − + − −∑ ∑  (17) 

Note that only some of *( )k kα α− ’s are not zeros and the corresponding vectors kx ’s 

are called the support vectors (SVs). 

4   The Proposed Architecture and Algorithm 

The Basic idea is to use KPCA to reconstruct the correlation space and apply SVR for 
gas concentration forecasting. Fig.1 shows how the model is built. 

 

Fig. 1. The architecture of model for gas concentration forecasting 

Up to here the process of forecasting gas concentration is completed. The detailed 
step of algorithm is illustrated as the following: 

Step 1. For a gas concentration original input data kx , KPCA is applied to assign the 

reduced dimension with the accumulative contribution ratio. The principal compo-
nents ks , whose number of dimension is less than kx , is obtained  

Step 2. ks  is used for the input vector of SA, and select appropriate threshold θ  

according to the satisfied result. The dimension of the final input space of forecasting 
model  is assigned. 

Step 3. In the reconstructed input space, the structure of SVR model is built, trained 
and tested by the partitioned data set respectively to determine the kernel parameters 

2σ , γ and ε  of SVR with Gaussian kernel function as shown in equation(6). Choose 
the most adequate SVR that produces the smallest error on the testing data set for gas 
concentration forecasting. 
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5   Results and Analysis of Experiment 

From the Luling coal mine, located in north of Anhui province, 10 gas concentrations 

are researched, including Ⅱ816-working face T0 ( y ), Ⅱ816-working face T1 ( 1x ), Ⅱ

816-working face T2 ( 2x ),Ⅱ816-4#stone lane T2 ( 3x ),Ⅱ817-3#hole T1 ( 4x ),Ⅱ817-

1#hole T1 ( 5x ),Ⅱ818-1#hole T1 ( 6x ), Ⅱ818-2#hole T1 ( 7x ),Ⅱ825-working face T0 

( 8x ),Ⅱ825-4#stone lane T2 ( 9x ). 2010 samples of each gas concentration are col-

lected from online sensor underground after eliminating abnormal data in this study. 

For choosing the optimal number of principal components in ks , the  2σ  value 

from 0.1 to 100 are all investigated. So 2 15σ =  is adopted as shown in Fig.2, and 
number of principal components is 5 through correlation analysis with 90.0=θ  as 
shown in Table 1. The decreasing order of eigenvalues is  1x , 2x , 3x , 6x , 5x , 8x , 7x , 

9x , 4x , so the final input space ( ks ) concludes 1x , 2x , 3x , 6x  and 5x . 

 

Fig. 2. The eigenvalues in KPCA with  2 15σ =  

Table 1. The accumulative contribution ratio of former 5 principal in KPCA 

Former #Principal Component 1( 1x ) 2( 2x ) 3( 3x ) 4( 6x ) 5( 5x ) 

The accumulative contribution ratio 39.26% 59.51% 72.79% 85.57% 90.79% 

Then the model based on SVR is constructed to realize the following: 

1 2 3 6 5( ) ( , , , , )ky f s f x x x x x= =  (18) 

The prediction performance is evaluated using by the root mean squared error 
(RMSE) and the normalized mean square error (NMSE) as follows: 

( )∑
=

−=
n

i
ii yy

n
RMSE

1

2ˆ1
 (19) 
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( )∑
=

−=
n

i
ii yy

n
NMSE

1

2

2
ˆ

1

δ
, ( )∑

=
−

−
=

n

i
i yy

n 1

22

1

1δ  (20) 

where n represents the total number of data points in the test set, iy , iŷ , y are the 

actual value, prediction value and the mean of the actual values respectively. 
From the gas concentration series { , }ky s , we extracted 1000 input-output data 

pairs. The first 500 pairs is used as the training data set, the second 500 pairs is used 
as testing data set for testing the predictive power of the model. To assure there is the 
best prediction performance in the SVR model, through adaptive chaotic cultural 

algorithm (ACCA) to determine the hyperparameters of SVR, 2σ , γ  and ε are, re-
spectively, fixed at 0.45, 15 and 0.04. The simulation results are shown in Table 2. 

Table 2. The results of  gas concentration forecasting 

Model SVR KPCA+SVR 
#Principal Component 9 5 

Training 0.0147 0.0105 
RMSE 

Testing 0.0154 0.0116 
Training 0.0382 0.0297 

NMSE 
Testing 0.0765 0.0433 

 
From Table 2, it can be observed that the KPCA+SVR forecast more closely to ac-

tual values than SVR, So there are correspondingly smaller absolute prediction errors 
in the KPCA+SVR than the SVR. 

6   Conclusions 

This paper describes a novel methodology, a correlation analysis SVR based on 
KPCA, to model and predict gas concentration series. The correlated SVR model is 
developed by correlation analysis with KPCA algorithm in a two-stage architecture 
inspired by the idea of reducing dimension modeling method. Through this investiga-
tion, there are several advantages in the correlative SVR. In the first, KPCA is a 
nonlinear PCA by generalizing the kernel method into linear PCA, which is adopted 
to extract features of gas concentration, reflecting its nonlinear characteristic fully. 
Secondly, on the basis of KPCA, the correlative dimension of the input space of gas 
concentration is reduced according to the accumulative contribution ratio, so the 
model precision is improved greatly. The proposed model has been evaluated by real 
gas concentration from coal mine. Its superiority is demonstrated by comparing it 
with the model without correlation analysis. The simulation results show that the 
proposed model in the paper can achieve a higher prediction accuracy and better gen-
eralization performance than that with out correlation analysis.  

On the other hand, there are some issues that should be investigated in future work, 
such as how to ascertain the accumulative contribution ratio of KPCA and confidence 
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threshold of correlation analysis which affect deeply the performance of the whole 
model, how to construct the kernel function and determine the optimal kernel parame-
ters, etc. 
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Abstract. For the conceptual modeling of team simulation and training based 
on EBAT (Event-Based Approach to Training), it is crucial to solve the 
problem of effective communication between subject matter experts, training 
experts and simulation technologists, and the problem of conceptual modeling 
quality and reuse. By analyzing modeling elements of team training, a layered 
logical structure of the simulation and training conceptual model based on 
CMMS (Conceptual Model of the Mission Space) and a formal description 
approach are proposed. Based on the workflow patterns and interactive features 
of team training, the event causality patterns and formal description approach 
are presented for the process of event response. The results of the formal 
conceptual modeling of training cases show the validity  of the proposed formal 
conceptual modeling approach. 

Keywords: Team simulation and training, EBAT, Conceptual modeling, CMMS, 
Workflow patterns. 

1   Introduction 

Team training is an approach with some training strategies and instruments to 
enhance the trainee’s knowledge, kills, and attitudes related to teamwork[1]. Because 
team simulation and training offers a realistic, safe, cost-effective, and flexible 
environment in which to learn the requisite competencies for the job, commercial 
aviation and the military have invested heavily in the use of which[2]. For the 
simulation-based training environments, Oser, et al.[3] propose a event-based approach 
to training (EBAT), which is a team training approach focuses on scenario-based 
training design. The EBAT has been tested empirically and demonstrated in a variety 
of team simulation and training environments[4]. In the fields of research on team 
simulation and training based on EBAT, there is a lack of research on the problem of 
simulation and training formal conceptual modeling. 

In the military simulation field, there are some researches on the formal simulation 
conceptual modeling. Wang, et al.[5] propose an abstract description of task, space, 
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mission space, military mission space, CMMS. He, et al.[6] present a formal description 
of dynamic conceptual model based on the elements of task, decision, 
synchronization, control, condition, which considers the execution mechanisms of 
CMMS. He, et al.[7] propose a lightweight formal description and verification method 
of CMMS based on the elements of task, entity, relationship, event, and condition. 
The proposed approaches mainly focus on the description of modeling elements and 
the relationships of which. And, the event causality has not been considered yet, 
which includes the sequence and trigger conditions of events. 

In this paper, Section 2 analyses the conceptual modeling elements of team 
simulation and training. A layered logic structure of conceptual model is proposed in 
section 3. The formal description approach of conceptual model is presented in 
section 4. Section 5 implements the formal conceptual modeling of training cases. 
The conclusion follows in section 6. 

2   Logic Structure of Conceptual Model 

The layered logical structure of simulation and training conceptual model is shown in 
Fig.1.  

Based on the core concept of CMMS, a layered conceptual model is designed which 
includes the task space, the content space and the response space. The task space 
includes the task entities and the objective entities, reflecting the overall objectives of 
training. The content space includes the scenario entities for each training objective, 
and the related assessment and feedback entities. The response space describes the  
 

 

Fig. 1. Logic structure of simulation and training conceptual model 
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scenario entities, the assessment and feedback entities in the content space with the 
responder entity, the event and the interaction. The task space can be divided into the 
sub-spaces of task and objective, and the content space and the response space can be 
divided into three sub-spaces of scenario, assessment and feedback. 

3   Formal Description Approach 

The formal description based on the layered model, can not only describe more 
clearly the layered structure of the training task, content and the event response 
process entities, and the event response processes of these training content. Moreover, 
it can fully realize the modular description and the reuse of the description of training 
task, the content and the event response process. 

1. Task space 
The formal description of task space is mainly aimed at the characteristics of 

training task and objective entities, and the relationship between the entities. The 
detail descriptions are as follow: 

{ ,  ,  ,  ,  ,  }  1, 2, ..., ,  1, 2, ..., . max maxCM T O SET SET t T o OT t o T O TT TOδ δ= = =

( ,  ),  ,  ,  .sup inf sup inf sup infT T T T SET T TTT tt tt Tδ δ δ
⎧ ⎫
⎨ ⎬= = ∈ ≠
⎩ ⎭

{ }( ,  ),  ,  .T O T SET O SETTO to to t o t T o Oδ δ δ= = ∈ ∈  
(1) 

CMT : The task space. Tt : The task entity, t  is the task number, maxT  is the total 

number of tasks. Oo : The objective entity, o  is the objective number, maxO  is the total 

number of objective. SETT : The task set, T SETt T∈ . SETO : The objective set, O SETo O∈ . 

TTδ : The set of task relationship. ttδ  is the superior subordinate relationship of the 

task, supT  is the higher level task, infT  is the inferior level task. A task can have a 

number of inferior level tasks, the task can also belong to a number of higher tasks. 

TOδ : The set of the relationship between the objectives and tasks. toδ : The affiliation 

relationship of the tasks and objectives. A task can have multiple objectives; a number 
of objectives can also be attached to a task. 

2. Content space 
The formal description of content space is mainly aimed at the characteristics of 

scenario, assessment and feedback entities, the relationship between the entities. 

{ ,  ,  ,  ,  ,  ,  ,  }  1, 2, ..., ,  1, 2, ..., ,   1, 2, ..., . max max maxCM S E F SET SET SET s S e E f FC s e f S E F SE SFδ δ= = = =

{ }( , ),  ,  .S E S SET E SETSE se se s e s S e Eδ δ δ= = ∈ ∈ ( ,  ),  ,  .S F S SET F SETSF sf sf s f s S f Fδ δ δ
⎧ ⎫
⎨ ⎬= = ∈ ∈
⎩ ⎭

 
(2) 

CMC : The content space. Ss : The scenario entity, s  is the scenario number, maxS  is 

the total number of scenarios. Ee : The assessment entity, e  is the assessment number, 

maxE is the total number of assessment. Ff : The feedback entity, f  is the feedback 

number, maxF  is the total number of feedback. SETS : The set of the scenario, S SETs S∈ . 

SETE : The set of assessment, E SETe E∈ . SETF : The set of feedback, F SETf F∈ . SEδ : The 



 A CMMS-Based Formal Conceptual Modeling Approach 949 

set of the relationship of the scenario and assessment. seδ  is the relationship of the 

scenario and assessment, whose mapping is one-to-one. SFδ  is the set of the 

relationship between the scenario and assessment. sfδ  is the relationship between  

the scenario and the feedback , whose mapping is also one-to-one.  

3. Response space 
The formal description of response space is divided into the entities relationship 

and the event response processes. 

The relationship of entities 
The description of entities relationship abstracts the event response processes of  
the scenario, assessment and feedback into the process entities, and describes the 
characteristics of the entities of the scenario, assessment and feedback processes, the 
relationship between the entities, and the relationship between the entities of the content 
space and the response space. 

{ ,  ,  ,  ,  ,  }  1, 2, ..., ,  1, 2, ..., ,  1, 2, ..., . max max maxCM AS AE AF SET SET SET as AS ae AE af AFA as ae af AS AE AF= = = =  (3)

CM A : The response space. ASas : The scenario process entity, as is the scenario 

process number, maxAS  is the total number of the scenario processes. AEae : The 

assessment process entity, ae  is the number of the assessment process, maxAE  is  

the total number of the assessment processes. AFaf : The feedback process entity, af  is 

the number of the feedback process, maxAF  is the total number of feedback processes. 

SETAS : The set of the scenario processes, AS SETas AS∈ . SETAE : The set of evaluation 

processes, AE SETae AE∈ . SETAF  : The set of feedback processes, AF SETaf AF∈ . 

The event response process 
The formal description of event response process mainly describes the event response 
and interaction processes of the scenario, assessment and feedback, namely the 
responders to carry out the training content, the event response and interaction processes 
in the layered logical structure of the simulation and training conceptual mode. 

① The event causality patterns 
In order to describe the event causality, the workflow patterns are adopted to extend 
the formal conceptual modeling approach based on CMMS. The event causality 
patterns includes the inside causality patterns and the interaction causality patterns. 
The inside causality patterns is aimed at the event response processes responded by 
only one responder, without the interaction with others. The interaction causality 
patterns refer to the event response processes across many responders; there are 
interactions in the event response process. The type of event causality patterns is 
shown in Table 1. 

It can be seen from Table 1, in fact, the inside causality patterns choose part of the 
workflow patterns, and merge many workflow patterns, and describe the causality 
through the trigger conditions for the front and sequence events. In the interaction 
causality patterns, events connect through the interaction, namely to trigger the 
sequence events not only depends on whether the front events response have 
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completed, but also depends on whether the front events have sent the interaction. 
Meanwhile, the front and the sequence events may be responded by different 
responders. The implementation process of the event response described by the 
causality patterns is shown in Figure 2 and Figure 3. 

Table 1. Event causality patterns 

Patterns Type Patterns Name Description 
Sequence Sequence pattern in workflow patterns. 

Split Parallel Split(AND-Split), Muti-Choice(OR-Split)、Exclusive 

Choice(XOR-Split)patterns in workflow patterns. 
Inside causality 

patterns 

Join 
Synchronization(AND-Join), Simple Merge(OR-Join), 
Discriminator(XOR-Join)patterns in workflow patterns. 

Sequence Interaction Sequence-I. 

Split Interaction AND-Split-I、OR-Split-I、 XOR-Split-I. Interaction causality 
patterns 

Join Interaction AND-Join、OR-Join-I、 XOR-Join-I. 
 

AND-Split OR-Split XOR-Split

AND-Join OR-Join XOR-Join

Sequence

 

Fig. 2. Inside causality patterns 

AND-Split-I OR-Split-I XOR-Split-I

AND-Join-I OR-Join-I XOR-Join-I

Sequence-I

 

Fig. 3. Interaction causality patterns 
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② The description of the causality patterns 
The description of causality includes the common expressions and the patterns’ bound 
parameters. The common expressions describe the basic elements of various types of 
patterns; the different types of patterns are limited by different parameters. The 
common expressions are as follows: 

( ) { ,  ,  ,  ,  ,  ,  ,  },

{ ,  ,  ,  ,  ,  }.

Pattern type SET SET SET SET R R R RPRE POST EXR I TRIG EXR PRE EXR POST I

type Sequence Sequence I Split Split I Join Join I

= − −

= − − −
 (4) 

( )Pattern type : The event causality pattern, type : the type of the pattern. SETPRE : The 

set of the front events. SETPOST : The set of sequence events. SETEXR : The set of 

responders. SETI : The set of the interactions. RTRIG : The set of event trigger 

conditions, namely the vector of the causality. REXR PRE− : The relationship vector 

between the front events and the responders. REXR POST− : The relationship vector 

between the sequence events and the responders. RI : The relationship vector between 

the front events and the interactions. 
The bound parameters of the patterns are shown in Table 2. 

Table 2. Patterns’ bound parameters 

Patterns 
Type Parameters 

Sequence 
1,  1,  1,  , ,  ,   ,  SET SET SET SET R R R RPRE POST EXR I EXR PRE EXR POST TRIG I= = = = ∅ = ∅ = ∅ = ∅ = ∅− −

XXX is the amount of elements in the set. 

Sequence-I

1,  1,  2,  1, ,  ,   ,  SET SET SET SET R Exr R Exr R RPRE POST EXR I pre postEXR PRE EXR POST TRIG I= = = = = = = ∅ = ∅− −

Exrpre , Exrpost are the responders of front and consequent events. Exr Exrpre post≠ means the interaction should occur 

between different responders.

Split

( )1,   ( 1),  1,  , ,  ,   ... ,  1 2SET SET n n SET SET R R R r r r RPRE POST EXR nI EXR PRE EXR POST TRIG I= = > = = ∅ = ∅ = ∅ = = ∅− −

ri is the flag of whether event i  should be triggered, when the response state of front event is i . 1ri = means to 

trigger the event.  

AND-Split: ( )1 1 ... 1RTRIG = . OR-Split: ( )1 0 ... 1RTRIG = . XOR-Split: ( )0 1 ... 0RTRIG= .

Split-I

( ) ( ) ( )
1,   ( 1),   (1 1),   ( 1),

,  ... ,   ... ,  ' ' ... '1 2 1 2 1 2

SET SET n n SET k k n SET l n lPRE POST EXR I

R Exr R Exr Exr Exr R r r r R r r rpre k n nEXR PRE EXR POST TRIG I

= = > = < ≤ + = > >

= = = =− −

Exrpre , Exri  are the responders of front and consequent events, different consequent events can be responded by the 

same responder. Exr Exrpre i≠  means the interaction should occur between different responders. ri is the flag of 

whether event i  should be triggered, when the response state of front event is i . 1ri = means to trigger the event.  

AND-Split: ( )1 1 ... 1RTRIG = . OR-Split: ( )1 0 ... 1RTRIG = . XOR-Split: ( )0 1 ... 0RTRIG= .

'r i is the flag of whether interaction 'r i  should be sent, when the response state of front event is i . 1ri = means to 

trigger the event. Different events can send the same interaction.

Join

( ) ( 1),  1,  1,  , ,  ,   ... ,  1 2SET m m SET SET SET R R R r r r RPRE POST EXR mI EXR PRE EXR POST TRIG I= > = = = ∅ = ∅ = ∅ = = ∅− −

ri is the flag of whether to trigger consequent events should wait for front event i  has been responded. 1ri = means 

need to wait. 

AND-Join: ( )1 1 ... 1RTRIG = . OR-Join: ( )1 0 ... 1RTRIG = . XOR-Join: ( )0 1 ... 0RTRIG= .  
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Table 2. (continued) 

Patterns 
Type Parameters 

Join-I

( ) ( ) ( )
 ( 1),  1,   (1 1),   ( 1),

... ,  ,   ... ,  ' ' ... '1 2 1 2 1 2

SET m m SET SET k k n SET l m lPRE POST EXR I

R Exr Exr Exr R Exr R r r r R r r rk post m mEXR PRE EXR POST TRIG I

= > = = < ≤ + = > >

= = = =− −

Exri , Exrpost are the responders of front and consequent events, different front events can be responded by the same 

responder. Exr Exri post≠ means the interaction should occur between different responders. ri is the flag of whether 

event i  should be triggered, when the response state of front event is i . 1ri = means to trigger the event. 

AND-Join: ( )1 1 ... 1RTRIG = . OR-Join: ( )1 0 ... 1RTRIG = . XOR-Join: ( )0 1 ... 0RTRIG= .

'r i is the flag of whether interaction 'r i  should be sent, when front event i has been responded. 1ri = means to trigger 

the event. Different events can send the same interaction. Different events can send the same interaction.  

③ The description of event response process 
The description of event response process describes the relationship of entities in 
detail, namely describe the set of the event causality patterns and the combination 
relationship of the patterns included in the event response process entities. The 
description of event response process includes the set of events, the set of responders, 
the set of interactions, the set of causality patterns, as well as the set of processes. 

{ ,  ,  ,  ( ) ,  - ,  ,  ,  ,  ,  '

, }  1,2,..., , 1,2,..., ,  max max

1, 2, ..., ,   1, 2, ..., ,  1, 2, ..., . max max max

CM A I Exr Pattern type A PROCESS SET SET SET SETA a i e p ap A EXR I A PATTERN

SET a A i IA PROCESS PATTERN PROCESS

e E p P ap AP

δ

= −

= =− −

= = =

( - , )A PROCESSPROCESS PATTERN ap PATTERN PATTERNδ δ=− −

( ( ) , 

( ) ), 
.( ) , 

( )

PATTERN PATTERN

A PATTERN

Pattern typepp pre
Pattern type post

pp Pattern type pre
Pattern type SETpost

δ

δ δ−

−

⎧ ⎫=⎪ ⎪
⎪ ⎪
⎨ ⎬=
⎪ ⎪
⎪ ⎪∈
⎩ ⎭

 

(5) 

'CM A : The response process of events. Aa : The event entity, a  is the number of 

event, maxA  is the total number of events. Ii : The interaction entity, i  is the number 

of interaction, maxI  is the total number of interactions. Exre  : The responder entity, e  

is the number of responder, maxE  is the total number of responders. ( )Pattern type p : The 

event causality pattern entity, p  is the number of pattern entity, maxP  is the total 

number of pattern entities. -A PROCESSap : The process entity, ap  is the number of 

process, maxAP  is the total number of responders. SETA : The set of events, A SETa A∈ . 

SETEXR : The set of responders, Exr SETe EXR∈ . SETI : The set of interactions, I SETi I∈ . 

SETA PATTERN− : The set of patterns, ( )Pattern type SETp A PATTERN∈ − . SETA PROCESS− : The 

set of processes, -A PROCESS SETap A PROCESS∈ − . PROCESS PATTERNδ − : The set of processes 

and patterns. ppδ : The relationship of the patterns, ( )Pattern type pre  is the front process, 

( )Pattern type post  is the sequence process. The relationship between process patterns is 
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many-to-many. In the description of event response process, the process does not 
distinguish between scenario, assessment and feedback processes. That is the sets of 
various processes in the entity relationship are described as different types of process 
sets.  

4   Training Cases Modeling 

Taking the provincial and municipal institutions as the example, the training needs of 
the organization establishment are described as follows:  

First of all, the highest headquarters issues the mobilization startup order in advance, 
and then starts the process of provincial and municipal organization establishment. 
Secondly, the mobilization headquarters of the provincial and municipal establish the 
mobilization headquarters in wartime, which is divided into two types: to establish the 
wartime institutions by the national defense mobilization command staff, or to establish 
the wartime institutions by the national defense and economy mobilization command 
staff together. Third, the mobilization headquarters at all levels organize the subordinate 
headquarters to hold a video conference, announce the wartime adjustment order. 
Finally, the mobilization headquarters at all levels send a notice of completion of the 
organization establishment. 

The formal description of task space, content space, and response space is shown in 
Table 3. As the description processes of scenario, assessment and feedback processes 
are the same, and scenario 3 is the most complex one, so only the description of 
scenario 3 is presented. 

Table 3. The formal description of training cases 

Parameters Values 
Task space 

SETT
1:Establish wartime institutions, 2:Establish provincial wartime institutions, 3:Establish 

municipal wartime institutions. 

SETO
1:Issue an order of mobilization startup, 2:Establish institutions rapidly, 3:Hold a video 

conference. 

TTδ (1,2),(1,3). 

Content space

SETS

1:Issue an order of mobilization startup, 2:Establish institutions by national 

defence  mobilization commander, 3:Establish institutions by national defence and 

economy mobilization commander, 4:Hold a video conference. 

SETE

1:Veracity of the order of mobilization startup, 2:Rationality   and cost of institutions 

established by national defence  mobilization commander, 3:Rationality   and cost of 

institutions established by national defence and economy  mobilization commander, 

4:Rationality  of video conference. 

SETF

1:Feedback of the veracity of the order of mobilization startup, 2:Feedback of the 

rationality   and cost of institutions established by national defence  mobilization commander, 

3:Feedback of rationality   and cost of institutions established by national defence and 

economy  mobilization commander, 4:Feedback rationality  of video conference. 

SEδ (1,1),(2,2),(3,3),(4,4). 

SFδ (1,1),(2,2),(3,3),(4,4).  
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Table 3. (continued) 

Parameters Values 
Response space

Basis sets

SETA

1:Issue an order of mobilization startup, 2:Receive an order of mobilization startup, 3: 

Establish institutions, 4:Report the results of institutions establishment, 5:Receive the results 

of institutions, 6:Collect the results of institutions establishment, 7:Send a notice of 

institutions establishment finish, 8: Receive a notice of institutions establishment finish, 

9:Send a notice of video conference, 10:Receive a notice of video conference, 11:Enter the 

video conference. 

SETEXR

1:Provincial national defence  mobilization commander, 2:Municipal national 

defence  mobilization commander, 3: Provincial economy mobilization commander, 

4:Municipal economy mobilization commander. 

SETI
1: Order of mobilization startup, 2:Results of institutions, 3:Summary results of institutions, 

4:Notice of video conference. 

Event causality patterns ( SETA PATTERN− - ( )Pattern type )

Sequence 

Issue an order of mobilization startup: 

1.1:({1},{1},{1},null,null,null,null,null) (startup action) 

Establish institutions: 

1.2:({1},{3},{1},null,null,null,null,null),1.3:({2},{3},{2},null,null,null,null,null) 

1.4:({2},{3},{3},null,null,null,null,null),1.5:({2},{3},{4},null,null,null,null,null) 

Enter a video conference: 

1.6:({9},{11},{1},null,null,null,null,null), 1.7:({9},{11},{2},null,null,null,null,null) 

1.8:({10},{11},{3},null,null,null,null,null), 1.9:({10},{11},{4},null,null,null,null,null)  

Report the results of institutions establishment: 

1.9: ({3},{4},{3},null,null,null,null,null), 1.10: ({3},{4},{4},null,null,null,null,null)  

Sequence-I 

Issue an order of mobilization startup: 

2.1:({1},{2},{1,2},{1},null,(1),(2),null),2.2:({1},{2},{1,3},{1},null,(1),(3),null) 

2.3:({1},{2},{1,4},{1},null,(1),(4),null) 

Report the results of institutions establishment: 

2.4:({4},{5},{1,3}},{2},null,(3),(1),null),2.5:({4},{5},{2,4}},{2},null,(4),(2),null) 

Send a notice of institutions establishment finish: 

2.6:({7},{8},{1, 3},{3},null,(1),(3),null),2.7:({7},{8},{2, 4},{3},null,(2),(4),null) 

Send a notice of video conference: 

2.8:({9},{10},{1, 3},{4},null,(1),(3),null), 2.9:({9},{10},{2, 4},{4},null,(2),(4),null) 

Split 
Collect the results of institutions establishment: 

3.1:({6},{7,9},{1},(1,1),null,null,null,null),3.2:({6},{7,9},{2},(1,1),null,null,null,null) 

Join 
Collect the results of institutions establishment: 

4.1:({3,5},{6},{1},(1,1),null,null,null,null),4.2:({3,5},{6},{2},(1,1),null,null,null,null) 

Event response process

SETA PROCESS−

1:Issue a provincial order of mobilization startup, 2:Establish provincial institutions, 3:Hold a 

provincial video conference, 4:Establish municipal institutions, 5: Hold a municipal video 

conference. 

PATTERN PROCESSδ −

Establish provincial wartime institutions (as an example): 

(2, {(1.1, 1.2), (1.1, 2.2), (2.2, 1.4) , (1.4, 1.9), (1.9, 2.4), (2.4, 4.1), (1.2, 4.1) , (4.1, 3.1),  

(3.1, 1.6), (3.1, 2.8) , (3.1, 2.6), (2.8, 1.8) }). 

SAsδ (3,1),(3,2),(3,3),(3,4),(3,5).  
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5   Conclusions 

For the problem of conceptual modeling of team simulation and training based on 
EBAT, the modeling elements and a layered logical structure of conceptual model are 
proposed, according to the conceptual modeling approach of CMMS. On this basis, 
the formal description approach is presented. The results of conceptual modeling of 
training cases show that the proposed formal description approach can enhance the 
communication between subject matter experts, training specialists and simulation 
technologists, and can improve the quality and reuse of conceptual models efficiently. 
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Abstract. Alternating-Offer Protocol (AOP) is the most predominant way for 
one-to one bargaining. In this paper, we provide an alternative protocol, Sealed-
Offer Synchronous Bargaining Protocol (SOSBP), which can be useful for the 
automated bargaining between self-interested agents for Open E-Marketplaces. 
SOSBP introduces an intermediary agent who monitors the bargaining process 
and hides buyer’s offers from seller, and vice versa. Using SOSBP, agents 
could free submit their offers for evaluating because the intermediary agent has 
no preference on both buyer and seller. We design some mechanisms to 
facilitate the success of bargaining, such as Minimum Concession, Concession 
Reward, Surplus Quote and etc, and present the basic framework of SOSBP. 
From the result of strategy analysis and experimental study, we concluded that 
SOSBP has better performance than AOP when agents negotiate under 
specified situation.  

Keywords: Automated negotiation, MAS, Bargaining strategy, SOSBP, 
Alternating-Offer Protocol. 

1   Introduction 

In MAS, when autonomous agents were applied into the E-Commerce or E-
marketplace, the problem of how to negotiate effectively and efficiently between 
autonomous agents becomes an essential issue [1, 2]. Incorporating with theoretic 
results derived from the bargaining model in economics, MAS experts and scholars 
have endeavored much to explore and design special mechanism for negotiations in 
agent world, see [3-5]. Despite various different assumptions made for analysis 
convenience, there exists one common feature in traditional bargaining protocol----
almost all literatures on bargaining model use AOP, by which agents make offer and 
counter-offer in turn [6]. To avoid private info losing in using AOP, in this paper, we 
present a novel bargaining mechanism: Sealed-Offer Synchronous Bargaining 
Protocol (SOSBP). 

This paper was organized as follows: in section 2, we will describe main activities 
occurred under SOSBP. This includes the initiation of bargaining, what kind of 
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information being exchanged in the process, in what situation the bargaining reached 
an agreement or terminated, etc. What kinds of strategy should the agents employ are 
analyzed in section 3. Section 4 discussed the results of our experimental study; 
summarization and some future research avenues were concluded in the last section. 

2   General Description of SOSBP 

2.1   Symbols and Definitions 

We will adopt the similar symbols introduced in [4] for our study. 
Let B and S denote respectively the negotiating agent Buyer and Seller, and M be 

the fore-mentioned intermediary agent. t
a Mp → denotes the price that a ( { , }a B S∈ ) 

submit to M at time (or stage) t. max
at  is the deadline of a. ( )sur t denotes the surplus 

generated from the bargaining at time t. 

Definition 1: Concession The difference between the offer at time t and the previous 
offer at time t-1 is the concession agent a made at time t, i.e. 

1( ) | |, { , },t t
a a M a Mc t p p a B S t N−

→ →= − ∈ ∈  (1)

Definition 2: Concession Distance At any time t, the difference between the offers of 
B and S is the concession distance at time t, that is: 

( ) t t
dis B M S Mc t p p→ →= −  (2)

Definition 3: Concession Reward At time t, if t t
B M S Mp p→ →≥ , according to the 

efforts (concessions) bargainers have made for eliminating the concession distance of 
previous stage t-1, both agents will get some rewards defined as follows: 

( )
( ) | ( ) ( ) |, { , }

( 1)
a a
rew B S

dis

c t
c t c t c t a B S

c t
= ⋅ − ∈

−
 (3)

But SOSBP will make the rewards invisible to the agents for the reason of possible 
counter speculation. The rewards will be added or subtracted on agents next offers, 
denoted by:  

' '( ) ( )t t B t t S
B B M rew S S M rewp p c t and p p c t→ →= − = +  (4)

Definition 4: Concession Pressure if at time , 1t t > , then agent B’s concession 
pressure is the difference between S’s initial offer and S’s offer at time t:  

0( )B t
pre S M S Mc t p p→ →= −  (5)

Similarly, agent S’s concession pressure at time t is:  
0( )S t

pre B M B Mc t p p→ →= −  (6)

Definition 4 is used to compute how much concession pressure B or S has endured 
for achieving the agreement if it is possible. This parameter will decide how to divide 
the surplus between B and S 



958 L. Hong et al. 

Definition 5: Surplus Quote if at time ( ), 0,t sur t >=  the surplus quote of B is 

defined as follows: 

( )
( )

( ) ( )

B
preB

quo B S
pre pre

c t
s t

c t c t
=

+
 (7)

Clearly, 

( )
( ) 1 ( )

( ) ( )

S
preS B

quo quoB S
pre pre

c t
s t s t

c t c t
= = −

+
 (8)

Given the above definitions, we can define the final price of the agreement as:  

( ) ( ) ( ) ( )t B t S
B M quo S M quop p s t sur t or p p s t sur t→ →= − ⋅ = + ⋅  (9)

Or with concession rewards: 

' '( ) ( ) ( ) ( )t B t S
B quo S quop p s t sur t or p p s t sur t= − ⋅ = + ⋅  (10)

2.2   The Bargaining Process under SOSBP 

Generally speaking, a negotiating process can be separated into three main stages: 
Initiation, negotiation and termination [7, 8].  

1. B or S request M to initiate the bargaining session. 
2. M will ask B and S for their initial offers, sincere price constraints and their 

deadline information. 
3. At the time t, both B and S have two behavior options to choose:  

1) Submit new offers: They must satisfy that ( ), { , }a ac t a B Sλ ≤ ∈ ; 

2) Send termination message: due to reservation limit was reached or deadline 
was up or other possible reason. 

4. According to the information received from B and S at the time t, M has 
following possible actions:  

1) If both B and S submit new offers and t t
B M S Mp p→ →≥ , M will terminate 

the process and inform B and S the final price with following outcome:  

' ' '

' '

( ) ( )

( ) ( )

t B t t
B quo B S

t B t t
B M quo B S

p s t sur t p p
p

p s t sur t p p→

⎧ − ⋅ ≥⎪= ⎨
− ⋅ <⎪⎩

, otherwise, 

2) M will save the information of this time round, and send a message to B and 
S that they need to make some more concession to reach an agreement. And 
the process goes back to step 3 for a new bargaining round. 

3) If B or S or both submit termination message, M terminates the bargaining 
process without any delay and sends notification of the reason to both sides. 
The process is then over. 
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Fig. 1. The interactions under SOSBP 

3   Bargaining Strategy Analysis under SOSBP 

3.1   Buyer’s Strategy Analysis 

At stage t, B’s utility u can be classified as follows: 

(1) If B choose to terminate the bargaining, then Bu v= − ; 

(2) If  1Bt d= + , then B has to quit and Bu v= − ;  

(3) If 1St d= + , then S will quit and Bu v= − ;  

(4) If st d<= , then u is determined by the relation between t
Bp  and t

Sp .  

We can summarize B’s bargaining strategy as follows: 

(1) At the beginning, B submits its initial offer O and the sincere-price constraint r’ 
which S’s initial offer must satisfy.  

(2) If the bargaining goes into stage 2, and d=1, then B will terminate the process; 
otherwise, he will choose an offer for stage 2 according to proposition 3. 

(3) At any stage t (2<t<d), if the previous offer is r, then terminate; otherwise, 
choose a new offer according to proposition 5. 

(4) When t=d, r is B’s last offer. 
(5) When t=d+1, B will terminate the bargaining. 

From above discussion we can see that, to the buyer B, if there is no other external 
information which can modify B’s beliefs about S, his strategy for each bargaining 
round could be predetermined because the parameters o, r, λ have already been 
decided after first stage.  
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3.2   Seller’s Strategy Analysis 

Now we will point out the main differences in the utility functions of B and S: 

 For any offer x of B or S, if deal is made, then u is r-x-v for B; but for S, u is x-r-
v; or B; while for S, it’s the probability of 1Bt d= + ;  

 At stage t, ρ is the probability of 1St d= + f 

 For both B and S, µ is the probability of t t
B Sp p≥ .  

We can conclude S’s bargaining strategy as follows: 

(1) At the first stage, S submits its initial offer O and the sincere-price constraint 
r’ which B’s initial offer must satisfy. 

(2) S’s strategy for second stage is decided by the proposition 7 when the 
deadline of S is greater than 1.  

(3) If t d= , S’s last offer is r; If 1t d= + , S will quit the bargaining. 
(4) At any stage t ( 2 t d< < ), if the latest offer is r, then terminate, otherwise, 

choose new offer according to proposition 9. 

Just like B, if no other external information can change S’s beliefs about B, the 
strategy for each bargaining round will be set up just after the first stage, as the 
parameters o, r, λ have been preset. 

Hereto we have completed the basic analysis of B and S’ bargaining strategy for 
some special assumptions on bargainers’ beliefs. In the next section, we did an 
experimental study to show that, under such kind of beliefs, the result of bargaining 
under SOSBP is better than AOP on several aspects such as time saved, fairness, 
average deal rate etc.  

4   Experimental Study for SOSBP 

4.1   Generating Data 

We design the functions for generating test data as follows: 

Table 1. Functions for generating test data 

Common Price Pc ( )c l h lp p p p rand= + − ⋅  

Initial offer O (1 ), (1 )B c B Bo p randn r o randn= ⋅ + = ⋅ +  

Reservation Limit r (1 ), (1 )S c S Sr p randn o r randn= ⋅ + = ⋅ +  

Sincere-price constraint r’ , ,(1 ), (1 )B B S Sr r randn r r randn= ⋅ + = ⋅ −  

Common Deadline Dc ( )c l h lD D D D rand= + − ⋅  

Deadline d (1 )cd D randn= ⋅ +  

Belief of opponent’s deadline d’ ' ( )l h ld D D D rand= + − ⋅  
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In all functions, the rand function is to generate random real numbers uniformly 
distributed in (0, 1) and randn is to generate data which are normally distributed with 
mean 0 and variance 1. 

Table 2. Preconditions and limits 

Fore-mentioned parameters 500, 5000, 2, 30l h l hp p D D= = = =  

The randn for S’s initial offer and O’s 
reservation limit 

(0.5 0.1 ) 0.1randn randn+ ⋅ + ⋅  

The randn for B and S’ sincere-price 
constraint 

(0.3 0.1 ) 0.1randn randn+ ⋅ + ⋅  

 
And the randn for their deadlines is: 0.2 randn⋅ . It means the generated deadlines 

are normally distributed with a mean of zero and a variance of 0.04. For the 
illustration, we only show the generated data of the first 20 sessions of the first group 
within following figures:  

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Fig. 2. B and S’s price-related Info 

Fig.2. illustrates the randomly generated B and S’s price-related info. We take the 
third session as a typical example (see table 3) to confirm that the generated data is 
feasible for the experimental study.  

As we can see in the Table 3, because ’B SO r> and S BO r< ’, both bargainers 

satisfy each other’s sincere-price constraints, so their sincerities can be justified for  
 

Table 3. Price-Related info of the third session 

  Initial Offer Reservation Limit  Sincere-Price Constraint 
B 2263.04 3548.84 4898.67 
S 3863.91 2574.27 1618.56 
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this reason. On the other hand, although the initial concession distance 
(  1600.87S BO O− = ) seems a little high, and , ,S B B SO r O r> <  their deal opportunity 

(the agreement zone) is not too bad because of the difference between their 
reservation limits ( 974.57B Sr r− = ).  

In the Fig.3, bargainers’ deadline info was presented respectively. Again, we 
choose the third session as the example for the confirmation of feasibility. Table 4 
contains the deadline info of the third session.  

 

Fig. 3. Deadline info of the bargainers 

In B’s belief, S’s lowest possible deadline dB’ is 26, it is greater than dB, so to the 
buyer, there is no need to consider the possibility of 1St d= + during the bargaining 

session. Seller’s situation is different, because if the bargaining goes into stage t 
which is greater than 9, then he must keep changing his belief on dB till the bargaining 
is over. 

Table 4. Deadline info of the third session 

 Deadline Belief on opponent’s deadline 
B 13 26 
S 12 9 

4.2   Results 

The experiment is performed in completely same environment except the different 
bargaining protocol. In section 3, we have analyzed what strategy the bargainers 
should take for a given condition when using SOSBP. However, when using AOP, 
how to bargain? To answer this question, two things must be considered: which 
bargainer should take the first step? And how to update beliefs after receiving 
opponent’s offer?  

As for the first one, we classify the problem into three cases: Buyer Move First 
(BMF), Seller First (SMF) and Random one Move First (RMF). To the second, we 
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assume their beliefs will be updated in a manner that is similar to the assumption in 
section 3. New received offer will be used to changing bargainer’s beliefs.  

For example (suppose in BMF case and the bargaining info is from table 3), at first 
stage, B offers 2263.04. As it is less than 2574.27Sr = , S will not change his belief on 

this info and his counter offer will be his most desired price 3863.91. Now, the 
bargaining goes into second stage. Because  3863.91 3548.84 Br> = , B need not to 

change his belief at this moment, so he will choose 

2 ( ) / 2 2905.04B B Bp o r= + =  (11)

as new offer (Basing on analysis in section 3). What shall S do right now? At first, 
before he receive the 2

Bp , his new offer for stage 2 will be 

2 ( ) / 2 3219.09S S Sp o r= + =  (12)

If 2 2
B Sp p≥ , the S will accept B’s offer, but now, since 2 2

B Sp p< and 2
B Bp r> , S’s 

rational action is to change rS to 2905.04, thus, 

2 ( ) / 2 3384.48S S Sp o r= + =  (13)

In this manner, the bargaining will continue until the agreement is reached or the 
earlier deadline is up.  

4.2.1   Time-Saved Rate 
We record all the time-saved rates of all sixteen different cases in table 5 provide a 
clearer view. Apparently, under SOSBP, the time-saved rate of each data group is 
much higher than its counterparts under the traditional protocol. Therefore, it’s 
reasonable to say that, under the given environment, bargainers will reach agreement 
more quickly using SOSBP, that’s to say, more time could be saved if bargainers 
adopt the SOSBP as the rule of negotiation. 

Table 5. Time-Saved rate 

 40 120 360 1080 
SOSBP 0.647 0.678 0.698 0.716 
BMF 0.437 0.519 0.549 0.541 
SMF 0.410 0.503 0.545 0.541 
RMF 0.435 0.489 0.537 0.544 

4.2.2   Surplus-Division Rate 
Table 6 provides us the data on some aspects of surplus-division rate. Except Rsd, we 
also calculated the percentage of surB and surS respectively, because that who is the 
first mover is a key factor for surplus division under the traditional protocol.  

Our experimental results provide some helpful evidences which indicate, under 
AOP, that who will take the first move is an important factor for dividing the surplus. 
After reviewing the cases of BMF and SMF in table 6, we found that the first mover  
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Table 6. Surplus-Division rate 

40 120 360 1080  
Rsd surB sur

S 

Rsd sur
B 

sur
S 

Rsd sur
B 

sur
S 

Rsd sur
B 

su
rS 

SOSBP 0.001 0.499 0.501 0.022 0.511 0.489 0.015 0.507 0.493 0.020 0.510 0.490 
BMF 0.116 0.442 0.558 0.125 0.438 0.562 0.057 0.471 0.529 0.095 0.453 0.547 
SMF 0.242 0.621 0.379 0.135 0.567 0.433 0.200 0.600 0.400 0.204 0.602 0.398 
RMF 0.109 0.554 0.446 0.008 0.496 0.504 0.061 0.531 0.469 0.049 0.524 0.476 

 
always got the less part of the whole surplus no matter what scale of the group is. Due 
to the higher Rsd in these two rows, taking the first move means getting much less 
surplus from the deal, thus, for both bargainers, it’s reasonable to refuse to be the first 
mover. In our view, this could be a main obstacle to a smooth bargaining process 
under AOP. Although RMF may be the feasible solution of this problem, as we 
mentioned earlier, its fairness level is not as good as SOSBP.  

4.2.3   Deal Rate 
Finally, we show the results about deal rate in the table 7. For each group of sessions, 
R1st, R2nd and Rend have also been provided for more discussions. From the table 7, we 
can see the deal rates seem a little too high in all cases (over 0.7), the possible reasons 
may rest on the way of data generation, or our assumptions that bargainers are honest 
and their motivations are pure.  

Table 7. Deal rate 

 

Three sub measures considered here help us getting more understandings about the 
two kinds of protocol. First, R1st reflects the situation where the deal is made instantly 
after one-stage bargaining. In each group of sessions, R1st under SOSBP is very tiny. 
It means that the traders’ most desired prices will seldom match each other instantly. 
While under traditional protocol, R1st is much higher no matter who will take the first 
move. This is because the bargainer who takes the second move uses its optimal price, 
rather than the reservation limits, to compare with the first mover’s offer.  

5   Conclusion 

Conventionally, AOP is the most predominant way for one-to-one bargaining. Almost 
all past theoretical or practical researches on bargaining issue took it as the  
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default-trading rule. Regardless of its entrenched place in people’s mind, we provide 
an alternative protocol SOSBP that can be useful in autonomous bargaining between 
self-interested agents. The idea comes from one weak point of the traditional protocol. 
When agents begin to bargain, both of them are unwilling to show their reservation 
limit or even ordinary offer to the opponent, because he may take advantage of the 
revelation of private info. With SOSBP, agent could feel free to reveal their offer to 
the intermediary agent who has no any preference on both sides. Additionally, since 
the bargainer does not know what offers his opponent have ever made, the ex-post 
regret are also excluded by this mean, i.e. if the agreement is reached, the bargainer 
should not feel that he may get more out from his opponent. Through the minimum 
concession constraint, concession reward and surplus quote, SOSBP facilitates the 
success of bargaining by stimulating the bargainers to make more concessions.  

Besides the traditional bargaining protocol, we believe that SOSBP could be an 
alternative for automated bargaining if only buyer and seller agree with each other to 
employ it. SOSBP should be built in bargaining applications and co-exist with 
existent protocol. One important issue is that where the intermediary agent should be 
located. In [9], MAGNET provides an explicit intermediary infrastructure for agent 
negotiation. We anticipate that the intermediary can be added into MAGNET as 
bargaining service provider. For this purpose, we need to identify the proper interface 
between SOSBP and MAGNET so that they can work together smoothly.  

Perhaps it is somewhat imprudent to claim that SOSBP has great advantage before 
it can be applied in practical systems. Many aspects and potential problems need to be 
investigated carefully. Therefore, our research will continue to be hold in the 
laboratory till it can be released as a practical trading protocol. 
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Abstract. Most calibration methods are based on the camera model
which consists of physical parameters of the camera including position,
orientation, focal length, and optical center. In this paper, we propose
a new approach which is based on the neural network model instead
of the physical camera model. The neural network employed in this pa-
per is primarily used as a nonlinear modeling function between 2D image
points and points of a certain space in 3D real world. The neural network
model implicitly contains all the physical parameters, some of which are
very difficult to be estimated in the conventional calibration methods. In
order to show the performance of the proposed method, images from two
different cameras with three different camera angles were used for cali-
brating the cameras. The performance of the proposed neural network
approach is compared with the well-known Tsai’s two stage method in
terms of calibration errors. The results show that the proposed approach
gives much more stable and acceptable calibration error over Tsai’s two
stage method regardless of camera camera angle.

Keywords: camera calibration, image coordinate, real world coordinate,
camera model, focal length, neural network.

1 Introduction

Camera calibration methods have been mostly studied on the estimation of cam-
era physical parameters including position, orientation, focal length, and optical
center [1,2,3,4]. This kind of the traditional method explicitly evaluates the phys-
ical parameters, and referred to be an explicit calibration method. However the
main objective of camera calibration is to obtain the correlation between camera
image coordinate and 3D real world coordinate. In this context we can use an
implicit calibration method, where the nonlinear mapping model functions as an
implicit model which can give us a transformation between 2D image points and
points of a certain space in 3D real world. This model is called as an implicit
model, and the calibration method using this model is an implicit calibration
method [5,6].

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 967–975, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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This paper is concerned with an implicit calibration method in terms of an
artificial neural network (ANN). ANNs have been shown to have the ability to
model an unspecified nonlinear relationship between input patterns and output
patterns. This nonlinear mapping ability can be utilized to address some physical
parameters in implicit camera calibration that cannot be readily estimated by the
existing calibration methods. The ANN-based camera calibration approach does
not estimate camera physical parameters. However, this is not an issue when the
objective of the camera calibration process is to obtain the correlation between
the camera image coordinates and the 3D real world coordinates. The implicit
camera calibration approach, which can calibrate a camera without explicitly
computing its physical parameters, can be used for both the 3D measurement
and the generation of image coordinates.

2 Explicit Calibration Method

Most conventional calibration methods are based on the explicit estimation of
camera parameters of the camera model initially established. Tsai’s two stage
method (TSM)[4] is one of the widely used explicit calibration methods. This
paper choose Tsai’s two stage method as a reference state of art method for the
purpose of performance comparison. The TSM first obtains the transformation
parameters with the assumption that there exists no distortion in the camera.
The TSM then refines the transformation parameters with the distortion of the
camera by using a nonlinear search. That is, first, the camera model is assumed
to be ideal for the camera calibration by neglecting the lens distortion.

Fig. 1 shows the camera model used in TSM. A point P is an object of
the real world coordinate(Xw, Yw, Zw) and (x,y,z) is a 3D camera coordinate.
The center of the camera coordinate is the optical center O and (X,Y) is the
image coordinate with the center of Oi. The distance between O and Oi is f,
the focal length of the camera. (Xu, Yu) is the corresponding point with the
assumption of no lens distortion. (Xu, Yu) is then translated to (Xf , Yf ), which
is a point in computer image coordinate on the image buffer and is expressed
in pixel numbers. The basic geometry of the camera model can be written as
the transformation of the two coordinates with the following displacement and
orientation: ⎡⎣x

y
z

⎤⎦ =

⎡⎣ r1 r2 r3

r4 r5 r6

r7 r8 r9

⎤⎦⎡⎣Xw

Yw

Zw

⎤⎦ +

⎡⎣Tx

Ty

Tz

⎤⎦ (1)

with
r1 = cosψ cos θ
r2 = sin ψ cos θ
r3 = − sin θ
r4 = − sinψ cos θ + cosψ sin θ cosφ
r5 = cosψ cos θ + sin ψ sin θ sin φ
r6 = cos θ sin φ
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Fig. 1. Camera model defined in TSM

r7 = sin ψ sin φ + cosψ sin θ cosφ
r8 = − cosψ sin φ + sin ψ sin θ cosφ
r9 = cos θ cosφ

where θ, φ and ψ represent yaw, pitch and roll, respectively.
As can be seen from the above equations, there are six extrinsic parameters:

θ, φ, and ψ for rotation, and three components for the translation vector T . The
problem of camera calibration is to find the six parameters θ, φ, ψ,Tx, Ty, and Tz

by using the number of points measured in the (Xw, Yw, Zw) coordinate.
In the second stage of the TSM, a distortion parameter is considered. The

relations between the computer image coordinate with distortion and the real
world coordinate can be derived as follows:

Sx(Xf − Cx)(1 + G(X2
d + Y 2

d ))

= f

(
r1xw + r2yw + r3zx + Tx

r7xw + r8yw + r9zw + Tx

)
(2)

Sx(Xf − Cy)(1 + G(X2
d + Y 2

d ))

= f

(
r4xw + r5yw + r6zx + Tx

r7xw + r8yw + r9zw + Tx

)
(3)

where (Xf , Yf ) is the image coordinate of the frame grabber, (Cx, Cy) is the image
center, Sx and Sy are components of the translating scale of the x-axis and y-axis
when the A/D transform is performed, (Xd, Yd) is a distorted coordinate by lens
distortion, andG is the distortion parameter. TSM obtained the solution byusing a
gradient-based nonlinear search method. In an explicit calibration, the calibration
is performedwith extrinsic parameters.However, the distortionparameters cannot
include all the parameters involved in the distortion of the image. Even with the
assumption of perfect inclusion of distortion parameters, there still remains room
for errors in finding the right solution for such parameters.
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3 Camera Calibration Using ANN

3.1 Implicit Calibration Method

Suppose that there is a calibration plane and the center of the calibration plane is
defined as O. In the calibration plane, we have N points. A point, P:(Xi, Yi) ∈ wi,
i = 1, 2, · · · , N , in the world plane is ideally projected to p̄ : (x̄i, ȳi) in the camera
CCD plane. However, because of the distance of the camera lens, the point of the
world plane is projected to a distorted point, p:(xi, yi). This point is observed
through the frame buffer coordinate p(ui, vi) in pixels.

For a back-projection problem, a transformation from the image coordinates
in the frame buffer to the world coordinates in the calibration plane is required.
For this purpose, an ANN is adopted in the proposed ANN-based calibration
approach, where the input and the output of the ANN are the image coordinates
and the world coordinates, respectively. After proper training of the ANN with
training points, the ANN can map the relation of two planes. Owing to the
nonlinear system modeling capability of the ANN, it is not necessary to utilize
all the physical parameters involved with the camera calibration, including the
lens distortion and the focal length of the camera.

With the coordinate system shown in Fig. 2, (x1, y1, z1) and (x2, y2, z1) are
defined as two points on the calibration plane Z = z1, and (x′

1, y
′
1, z2) and

Fig. 2. The center of a perspective projection
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(x′
2, y

′
2, z2) are two other points on the plane Z = z2. The line equations that

pass each of the two points can be expressed by the following equations:

−→
P = (x1,y1,z1) + t(x′

1 − x1, y
′
1 − y1, z2 − z1) (4)

−→
Q = (x2,y2,z2) + t(x′

2 − x2, y
′
2 − y2, z2 − z1) (5)

−→
P = −→

Q (6)

Since the equations given by Eq.(1) and Eq.(2) meet at the point C, i.e.,
Eq.(3), this point can be considered as the perspective center of the image, as
shown in Fig. 2.

By using the perspective center of an image, the estimation of the image
coordinates of any 3D world point P can be obtained. In this case, an ANN that
is trained with the real world coordinates of points on Z = z1 as inputs and the
image plane coordinates for the corresponding points as targets is given. It should
be noted that the input and target for the ANN in this case are different from
those of the back-projection problem. When the image coordinate of a point (P1)
on any calibration plane Z is needed, the line equation that passes the point(P1)
in the calibration plane Z and the perspective center of a camera(C) is first
obtained. The line equation can produce P0 on the calibration plane Z = z1. By
using P0 as the input to the trained ANN, we can obtain the image coordinates
of the point p̂. This process is shown in Fig. 2.

3.2 ANN Structure for Camera Calibration

The ANN model adopted in this paper is a standard MultiLayer Perceptron Type
Neural Network (MLPNN) and an error back-propagation algorithm is used for
training the MLPNN. After several experiments, the architecture of the MLPNN
is selected as 2 × 10 × 8 × 2, as shown in Fig. 3. Note that the selection of a

Fig. 3. ANN structure for camera calibration
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specific architecture is a state of art and other architectures can be also used
without any degradation of the resulting performance. With the architecture
chosen, no overfitting problem was experienced with 5,000 training epochs. Note
that proper numbers of training epochs are dependent on the complexity of the
given problem and the number of training data. Note that the neurons in the
input and output layers represent the 2D coordinates. More detailed information
on the MLPNN and error back-propagation algorithm can be found in [7].

Unlike the explicit camera calibration method, the proposed ANN-based
method finds the direct relation between the world coordinates and the image
coordinates. The ANN adopted in this implicit calibration approach can incor-
porate all the extrinsic parameters of the camera and the distortion parameters
when the ANN is trained properly.

4 Experiments and Results

4.1 System Environment for Experiments

The specifications of the image acquisition tool for our simulation environment
are summarized in Table 1.

Table 1. The specification of image acquisition

Image aquisition tool Specification
Frame grabber Horizontal resolution 512 Vertical resolution 512

CCD Image censor Scale of cell(X-axis) 8.4 µm Scale of cell (Y-axis) 9.8 µm

lens Focal length (F 1.4) 16mm

Images are acquired at three different orientations. The performance of camera
calibration results using artificial neural networks is compared and analyzed with
that of Tsai’s two stage method, the most widely used approach for explicit
camera calibration. In this paper, the average error between the calibrated image
coordinates and real world coordinates is used to compare the performance of
the camera calibration methods. The average error in pixels (AEIP) is defined
as follows:

AEIP =
1
N

N∑
i=1

[(Xfi − X̂fi)2 + (Yfi − Ŷfi)2]1/2 (7)

where (X̂fi, Ŷfi) is the estimated image coordinate, which is computed by using
calibrated variables from the real coordinate point (Xwi, Ywi, Zwi) corresponding
to the computer image coordinate (Xfi, Yfi).

The images used for the experiments are obtained by positioning the camera
in the real world coordinate. The positions of the camera are also rotated for
obtaining image data with different orientations. Each image is composed of 99
calibration points (11 × 9), which have an interval of 25mm between columns
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(a) (b)

(c)

Fig. 4. The calibration points at different angles: (a) angle = 30 ◦, (b) angle = 60 ◦,
and (c) angle = 90 ◦

and an interval of 20mm between rows. Among the calibration points acquired
from two images including 99 calibration points for each different heights, 79
randomly selected calibration points in each image are used for training the
ANN and the remaining 20 points are used for evaluation of the trained ANN.
Fig. 4 shows the images with different heights used in our experiments.

4.2 Experiments on Image Coordinate Projection

The proposed method is compared with Tsai’s two stages method, which finds
the physical parameters of the camera using the interrelation between the im-
age coordinates and the known 3D space coordinates. For the calculation of the
physical parameters for Tsai’s method and training ANN, 10 sets of 79 randomly
chosen calibration points are collected. For each set of calibration points, the re-
maining 20 points are used for testing the performance of both methods. Table 2
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Table 2. Comparison of estimation errors in AEIP

Case Tsai’s two stage method ANN-based method
angle = 30 ◦ 0.84 0.47
angle = 60 ◦ 0.63 0.45
angle = 90 ◦ 0.43 0.45

Average 0.63 0.46

shows the test results for both methods. As shown in Table 2, the average im-
provement of the proposed ANN-based method over Tsai’s method in terms of
AEIP is 27 %.

4.3 Experiments on 3D Real World Coordinate Reconstruction

The real space coordinate obtained by estimating the 3D space coordinate at
an arbitrary height can be reconstructed after training the ANN with points on
two calibration plans, i.e., Z = 0 and Z = 40, as follows: select a certain point of
the image and then find the point of the real space coordinate of Z=0 and Z=40
calibration plane corresponding to the selected image point. Using Eq. (1) - Eq.
(3), the perspective center of the image can be found. The real points for the
space coordinate of the Z = 0 and Z = 40 calibration plane corresponding to
the selected image points are then found. By using Eq. (1) - Eq. (3), ten linear
equations connecting points of Z = 0 plane with points of the Z = 40 plane
are formulated for estimating the coordinate of the 3D space on the Z = 40
calibration plane. The average error on 3D world point reconstruction comes up
with 0.65, which is accurate enough for this calibration system to be efficiently
used in many computer vision applications.

5 Conclusion

This paper proposed a camera calibration method using an artificial neural net-
work. The proposed ANN-based implicit method is applied to the estimation of
2D coordinates of an image world with given 3D space coordinates. The proposed
method has advantages over Tsai’s two stage method in real-time applications
as it can be operated in real time after proper training while Tsai’s two stage
method requires somewhat time consuming procedures for calculating proper
parameters for a given task. The proposed method is also more flexible than
Tsai’s two stage method since it is not affected by camera position, illumination
or distortion of the camera lens. More importantly, the proposed ANN-based
method is not affected by the quality of the camera lens in finding the mapping
function between the image coordinates and the real coordinates whereas Tsai’s
method is considerably affected by the quality of the camera. In comparison to
the conventional approach Tsai’s two stage method, the proposed ANN-based
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method shows promising results for calibrating camera when issues including
practical applicability, flexibility, and real-time operation are relevant.

Acknowledgment. This work was supported by the Korea Research Foundation
Grant funded by the Korea Government (MOEHRD-KRF-2005-042-D00265).

References

1. Heikkila, J.: Geometric Camera Calibration Using Circular Control Points. IEEE
Trans. on Pattern Anal. Mach. Intell. 22, 1066–1077 (2000)

2. Xu, Q., Ye, D., Che, R., Huang, Y.: Accurate Camera Calibration with New Mini-
mizing Fuction. In: Proc 2006 IEEE ROBIO, pp. 779–784 (2006)

3. Douxchamps, D., Chihara, K.: High-Accuracy and Robust Localization of Large
Control Markers for Geometric Camera Calibration. IEEE Trans. on Pattern Anal.
Mach. Intell. 31, 376–383 (2009)

4. Tsai, R.: An Efficient and Accurate Camera Calibration Technique for 3-D Machine
Vision. In: Proc. IEEE Int. Computer Vision and Pattern Recognition, pp. 364–374
(1986)

5. Martins, H.A., Birk, J.R., Kelley, R.B.: Camera Models Based on Data from Two
Calibration Plane. Computer Graphics and Image Processing 17, 173–180 (1981)

6. Mohr, R., Morin, L.: Relative Positioning from Geometric Invariant. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, pp. 139–144 (1991)

7. Rumelhart, D., Hinton, G., Williams, R.: Parallel Distributed Processing. MIT
Press, Cambridge (1986)



W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 976–985, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Credit Risk Assessment Model of Commercial Banks 
Based on Fuzzy Neural Network 

Ping Yao1, Chong Wu2, and Minghui Yao3 

1 Shool of Economics & Management , Heilongjiang Institute of Science and Technology, 
Harbin 150027, China 

2 Shool of Management, Harbin Institute of Technology, Harbin 150001, China 
3 Shool of Management, FuDan Uiverstiy, Shanghai 200433, China 

Abstract. A commercial bank credit risk assessment model based on fuzzy 
neural network has been established using the credit assessment index system 
established for commercial banks. This network is a 6 layered structure with 4 
factor inputs and one output measuring the credit risk of commercial banks. The 
fuzzy rule layer has the capability of making necessary adjustments in 
accordance with specific conditions of problems. The operation of this model is 
much better than the totally black-box operation of a neural system. A 
substantiation analysis has been made with 167 observations as sample data; 
training results indicate that the network prediction has less error. 

Keywords: Commercial bank, credit risk assessment, fuzzy neural network, 
factor analysis. 

1   Introduction 

Without doubt credit evaluation is an important topic for research in the field of 
financial risk management [1-3].Due to the important of credit risk evaluation, there 
is an increasing research stream focusing upon credit risk assessment and credit 
scoring. After that logit regression [4-6] or probit regression [7] have widely adopted 
in subsequent work. Nevertheless empirical results have shown that most of financial 
ratios violate the assumptions of the multivariate statistical model used in these 
previous studies. Recent studies have revealed that emerging artificial intelligent 
techniques, such as artificial neural networks (ANNs)[2,3,8-11,12], evolutionary 
computation (EC) and genetic algorithm (GA)and support vector machine (SVM) are 
advantageous to statistical analysis and optimization models for credit risk evaluation 
in terms of their empirical results[13]. 

Although almost all classification methods can be used to evaluate credit risk, the 
use of a technique depends on the complexity of the institution, and the size and the 
type of loan. Analytical models, such as empirically derived credit scoring systems 
(based on historical data), use the probability of default to predict the relative 
creditworthiness of a loan applicant. But, the credit-scoring model does not 
completely eliminate the human element. The section of cutoff scores is a subjective 
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decision. Moreover, the evaluation of applicants that have scores between the accept-
scores and the reject-scores is quite subjective. Thus, to be more objective in 
evaluating loan applications, many institutions are exploring the use of artificial 
intelligence techniques such as artificial neural systems and fuzzy logic. 

This study investigates the classification of neural-fuzzy systems to consumer loan 
applications. The rest of this paper is organized as follows. In Section 2, the basic 
ideas of modeling are described in detail; Section 3 describes the data and variables 
used in this study; explains the design of a neural fuzzy system model and analyzes 
the empirical examples, and finally, In Section 4, some concluding remarks are 
drawn. 

2   Basic Ideas of Modeling 

In this section, the basic ideas of methods for credit risk assessment are provides: (1) 
the structure of neuro-fuzzy system; (2) hybrid learning algorithm (Gradient-Descent 
and the LSE). 

2.1   Neuro-fuzzy System Structure 

Once the input and output variables are identified the neuro-fuzzy system is realized 
using a six-layered network: The input, output, and node functions of each layer are 
explained in the subsequent paragraphs. 

(1) Layer 1 (input layer) 
Each node in layer 1 represents the input variables. This layer simply transmits these 
input variables to the fuzzification layer. 

(2) Layer 2 (fuzzification layer) 
The fuzzification layer describes the membership function of each input fuzzy set. 
Membership functions are used to characterize fuzziness in the fuzzy sets. The output 
of each node i in this layer is given by µAi(xi), where the symbol µAi(xi) is the 
membership function. Its value on the unit interval [0,1] measure the degree to which 
element x belongs to the fuzzy set A, xi is the input to node i and Ai is the linguistic 
label for each input variable associated with this node. 

Gradient methods can be used easily for optimizing their design parameters. Thus 
in this model, we have replaced the triangular fuzzy memberships with Gaussian 
functions. Gaussian function is specified by a set of two fitting parameters {a,b} as  

2
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(3) Layer 3 (inference layer) 
The third layer is the inference layer. Each node in this layer is a fixed node and 
represents the IF part of a fuzzy rule. This layer aggregates the membership grades 
using any fuzzy intersection operator which can perform fuzzy AND operation [23]. 
The fuzzy intersection operators are commonly referred to as T-norm (triangular 
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norm) operators. Most frequently used T-norm operators are min or product operators. 
For instance 

Rule 1: IF x is A1 AND y is B1 THEN 1111 ryqxpf ++= ; 

Rule 2: IF x is A2 AND y is B2 THEN 2222 ryqxpf ++= ; 

The output of ith node in layer 3 is given as 

)()(,3 yµxµwiO
ii BAi ==  (2) 

(4) Layer 4 (normalization layer) 
The ith node of this layer is also a fixed node and calculates the ratio of the ith rule’s 
firing strength in inference layer to the sum of all the rule’s firing strengths 

R

i
ii www

w
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+++
==

L21
,4  (3) 

where Ri ,,2,1 K= and R is total number of rules. The outputs of this layer are called 
normalized firing strengths. 

(5) Layer 5 (output layer) 
This layer represents the THEN part (i.e., the consequent) of the fuzzy rule. The 
operation performed by the nodes in this layer is to generate the qualified consequent 
(either fuzzy or crisp) of each rule depending on firing strength. Every node i in this 
layer is an adaptive node. The output of the node is computed as 

iii fwO =,5  (4)

where iw  is a normalized firing strength from layer 3 and fi is a linear function of 

input variables of the form )( 21 iii rxqxp ++ , where },,{ iii rqp is the parameter set of 

node i, referred to as consequent parameters or f may be a constant. If fi is linear 
function of input variables then it is called first order Sugeno fuzzy model and if fi is a 
constant then it is called zero order Sugeno fuzzy model.  

(6) Layer 6 (defuzzification layer) 
This layer aggregates the qualified consequents to produce a crisp output. The single 
node in this layer is a fixed node. It computes the weighted average of output signals 
of the output layer as 

∑ ∑ ∑
∑
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i i i i

i ii
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w
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fwOO ,51,6  (5)

2.2   Hybrid Learning Method 

For the ANFIS architecture above, when the values of the premise parameters are 
fixed, the overall output can be expressed as a linear combination of the consequent 
parameters. In symbols the output f can be written as 
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which is linear in the consequent parameters p1, q1, r1, p2, q2 and r2. From this 
observation, we have  

S   set of total parameters, 
S1   set of premise (non-linear) parameters, 
S2   set of consequent (linear) parameters. 

Using the above notation, the Hybrid Learning Algorithm is discussed below. 
Assuming that the adaptive network under consideration has only one output 

represented by 

),( SifO =  (7)

where i is the vector of input variables, S is the set of parameters, and f is the overall 
function implemented by the adaptive network. If there exists a function H such that 
the composite function fH o is linear in some elements of S, then these elements can 

be identified by the least-squares method. As illustrated before, if the parameter set S 
can be divided into two sets 

21 SSS ⊕=  (8)

(where ⊕  represents the direct sum) such that fH o is linear in the elements of S2, 

then upon applying H to Eq.(7), we have 

),( SifHOH oo =  (9)

which is linear in the elements of S2. Assuming H is identity, Eq.(6) and Eq.(9) are 
equivalent. Given values of elements of S1, we can put P training data in Eq.(9) and 
obtain a matrix equation 

yAθ =  (10)

Where θ is an unknown vector whose elements are parameters in S2. This is a standard 

linear least-squares problem, and the best solution for θ, which minimizes
2

yAθ − , 

is the least-squares estimator (LSE) θ*: 

yAAAθ TT 1* )( −=  (11)

where AT is the transpose of A and (ATA)-1ATis the pseudoinverse of A, if ATA is non-
singular. Further, we can use the recursive LSE formula to calculate θ*. if the ith row 
vector of matrix A is ai

Tand the ith element of y is yi
T, then θ can be calculated 

iteratively as follows: 
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where the LSE θ* is equal to θp. The initial conditions needed to bootstrap Eq.(12) are 
00 =θ and γIP =0 , where γ is positive large number and I is the identity matrix of 

dimension M×M. 
The hybrid learning algorithm combines the Gradient-Descent Model and the LSE 

to update the parameters in an adaptive network. The ANFIS employs an external 
reference signal, which acts like a teacher and generates an error signal by comparing 
the reference with the obtained response. Based on error signal, the network modifies 
the design parameters to improve the system performance. It uses gradient descent 
method to update the parameters. The input/output data pairs are often called as 
training data or learning patterns. They are clamped onto the network and functions 
are propagated to the output unit. The network output is compared with the desired 
output values. The error measure EP, for pattern P at the output node in layer 6, may 
be given as  

2
6 )(

2

1 PPP OTE −=
 

(13)

where PT is the target or desired output and PO6 the single node output of 

defuzzification layer in the network. Further, the sum of squared errors for the entire 
training data set is  
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The error measure with respect to node output in layer 6 is given by delta (δ) 
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This delta value gives the rate which the output must be changed in order to 
minimize the error function. The delta value for layer 5 is given as  

5

6

65 O

O

O

E

O

E

∂
∂

∂
∂=

∂
∂

 
(16)

Similarly, for Kth layer, the delta value may be calculated using the chain rule as  
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Now, if α is a set of design parameters of the given adaptive network, then 
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Where P is the set of adaptive nodes whose output depends on α. Thus, update for 
parameters α is given by 

α
Eηα
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(19)

where η is the learning rate and may be calculated as 
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Where k is the step size. The value of k must be properly chosen as the change in 
value of k influences the rate of convergence. 

3   Empirical Analysis 

3.1   Variables Selection 

3.1.1   Variables Selection Principles 
(1) It is feasible in China. In the present capital market of China, it is very common 

and serious for the forgery and fabrication of accounting documents and accounts, and 
fraudulent financial statement preparation.  

(2) The internal credit rating results are taken as benchmarks according to New 
Basel Capital Accord. All the requirements are taken into consideration in variable 
selection and econometric model determination so as to make the model practical. 

(3) The matured experience and international standards in the same western 
industry are concerned.  

(4) The predictive principle. Variables should reflect the future development trend. 

3.1.2   Credit Risk Assessment Index System Establishment 
Based on the comprehensive concerns on each impact factor of credit risk, 16 
variables are finally determined in the commercial bank credit assessment: (1) Net 
sales/ Total assets; (2) Total assets turnover; (3) Current assets turnover; (4) Fixed 
assets turnover; (5) Inventory turnover; (6) Accounts receivable turnover; (7) Current 
ratio; (8) Operation capital / Total assets; (9) Quick ratio; (10) Conservation quick 
ratio; (11) Debt ratio; (12) Cost profit rate; (13) Sales net profit rate; (14) Return on 
assets; (15) Return on net assets; (16) Type of loan.  

3.2   Sample Data Acquisition 

The sample data from the short term loan of same industry is employed to evade the 
problem. The data herein is from the credit department of the headquarter of Industrial 
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and Commercial Bank of China (ICBC), and ICBC Heilongjiang Branch, Nangang 
Subbranch of Harbin City. 

Data acquired retrieval conditions are as follows: 

(1) Sample industrial scope: Type C — manufacturing industry; 
(2) Loan type: short term loan within 1 year; 
(3) Loan granted date: January 1, 1998 to January 31, 1998; 
(4) Loan balance closing date: August 13, 2001; 
(5) Loan modes: credit, guarantee, mortgage, and pledge according to the General 
Provisions of Loans of the People's Bank of China; 
(6) Loan amount: actual loan granting amount; 
(7) Loan balance: loan balance recognized as loss until August 13, 2001; 
(8) Loan state: the present state of the loan; 
(9) Business full name and code: the only identification code of the business 
(10) Financial statements date and statements: corporate balance sheet and income 
statement on the date of December 31, 1997. 

3.3   Model Application and Results Analysis 

First, we work on the stability of the samples .Because of the large capacity sample of 
data, the broader range of indicators and relative smoothness of data, twice or three 
times standard deviation abnormal test is used to select data, and ultimately 167 
sample data is obtained. Then SPSS is used for the factor analysis on the data. These 
16 variables were grouped under factor analysis with varimax rotation. The list of 
financial ratios and the factor loading is summarized in Table 1. 

Table 1. The varimax rotated factor matrix 

FactorVariable
1 2 3 4 1 2 3 4

1 Net sales / Total assets
2 Total assets turnover
3 Current assets turnover
4 Fixed assets turnover
5 Inventory turnover
6 Accounts receivable turnover
7 Current ratio
8 Operation capital / Total assets
9 Quick ratio
10 Conservation quick ratio
11 Debt ratio
12 Cost profit rate
13 Sales net profit rate
14 Return on assets
15 Return on net assets
16 Type of loan

0.966 0.195 0.052 0.033 0.032
0.966 0.195 0.052 0.033 0.032
0.953 0.192 0.022 0.038 0.009
0.843 0.170 0.076 0.029 0.064
0.819 0.165 0.025 0.045 0.104
0.755 0.152 0.037 0.014 0.227

0.899 0.032 0.276 0.009 0.053
0.891 0.040 0.273 0.014 0.136
0.782 0.038 0.240 0.004 0.249
0.750 0.024 0.230 0.007 0.230
0.566 0.012 0.174 0.004 0.338

0.879 0.048 0.005 0.325 0.037
0.843 0.050 0.005 0.312 0.045
0.823 0.009 0.009 0.304 0.117
0.694 0.007 0.022 0.257 0.065

0.821 0.004 0.028 0.037 0.786  
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It can be seen from table 1, 16 variables are divided into four interpretation factors, 
and the detailed results used as sample data of this paper (We have selected 100 
observations as training samples and 67 observations as testing samples.). The network's 
second layer is fuzzy layer, and its role is to fuzzy the input variables. Fuzzy processing 
is the transformation of input in form of digit into the sequence of a specified code often 
expressed in a language value. This paper chooses Gaussian function. 

From the above, we can see that network is a 6-layer network structure where the 
input layer has four nodes, the output layer one node. The parameters of network 
research are as follows: 

(1) Epochs: 300; 
(2) Goal of error: 0.01;  
(3) Learning algorithm: hybrid learning method (a combination of least square 
estimation and back propagation for membership function parameter estimation); 
(4) Use noise measurement to collect data; 
(5) The weight of each rule is 1;  
(6) The training data is 100 observations, and the testing data is 67 observations; 

Editor GUI of Fuzzy Logic Toolbox ANFIS in MATLAB 7.0 is used to train the 
fuzzy neural network. After training, we get a real fuzzy neural network structure 
which is a complicated fuzzy neural network consisting of four inputs, one output, a 
fuzziication layer of 12 neurons, and a inference layer of 81 rules . the structure of the 
fuzzy neural network is shown in Fig 1: 

 

Fig. 1. Structure of fuzzy neural network 

The Camber observer in GUI tools is used to show the dependence between one 
output and one or two inputs. That is to say that it generates or draws the output 
Camber mapping. As Input 1, 2 and 3, 4 are independent with each other, so Fig 2 can 
be formed. It is about Input 1 and 2 and the Camber map of output function after 
training (Figure on the left) and  Input 3 and 4 and the Camber map of output function 
after training (Figure on the right). 

 



984 P. Yao, C. Wu, and M. Yao 

 
Fig. 2. Function Camber after training 

Through rule editor, 81 fuzzy rules are generated. Because of the limited space, not 
all will be listed in detail. The following procedures can be got with MATLAB. We 
forecasted 67 test observations (appendix table 2) and got the average forecast error 
0.0233. For the error curve are shown in Fig 3. 

 

Fig. 3. Error curve after training 

Seen from the results of training, the error is very small, and the results of training 
is satisfactory, so we can see that fuzzy neural network method is very suitable for 
assessing credit risk of commercial banks. 

4   Conclusions 

In this paper, indicator system to assess credit risks of commercial has been 
established; a credit risk assessment model of commercial banks based on the fuzzy 
neural network has been established. The results of the empirical study have shown 
that FNN is very suitable for assessing credit risk of commercial banks. There are few 
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errors in the prediction of network, and fuzzy rule layer also has the regulating ability 
on specific issues, which is superior to the characteristics of a complete black-box 
operation, and is suitable for credit risk assessment of commercial banks. 
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Abstract. In this paper, we proposed a laser welding quality monitoring system 
based on vector machine, which uses the light and sound sensors access to the 
various signals of the welding and Gabor transform features to extract the 
vector. The basic features of Laser welding is the formation of small holes, pool 
and photo-induced plasma, and the result is quality of the welding of light, 
sound and the potential of poor signal. On this basis, making use of the 
advantage and objectivity of machine leaning, SVM classification and more 
comprehensive information to determine the parameters of laser welding quality 
of the welding seam. 

Keywords: SVM, Laser welding, Feature extraction. 

1   Introduction 

Compared with the traditional welding, the Laser welding and soldering with high-
performance, high-quality and other advantages is widely used in the electronics, 
automotive, aviation and other industry.. However, because the possibility that some 
accidental instability leads to change in the state of welding, consequently welding 
defects occur, it will not be able to meet the quality requirements of the modern 
industrial process. The real-time monitoring of the quality is of great significance 
during the laser welding process [1, 2].  

The basic features of Laser welding process is the formation of small holes, pool 
and photo-induced plasma production, which result in characterization of the welding 
quality of light, sound and the potential of poor signal [3, 4]. This paper takes the 
plasma reflect the state of visible light, infrared light and radiation bath plasma welding 
quality of the voice signal to monitor the signal of the laser welding process. Through 
appropriate algorithm which can extract the features of the vector, and with the help of 
computer to establish a set of real-time monitoring system for laser welding. 

SVM (Support Vector Machine) is proposed by V.Vapnik of AT & TBell 
Laboratory. SVM is proposed for the classification and regression problems of 
statistical learning theory [5]. Since the SVM has many advantages and promising 
experimental performance, it draws more and more attention and become a hot area of 
research [6-8]. 
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This article introduces the support vector machine (SVM) related to the theory and 
its application in laser welding process of classification. 

2   Support Vector Machine 

The machine learning which based on data is very important of modern intelligence 
technology. The main method is finding the law which is use to observe or predict of 
the future. 

Support Vector Machine method is based on the VC-dimensional of the statistical 
learning theory and the principle of minimum risk. The SVM obtain the best way 
between the accuracy and capacity in order to obtain the best ability to promote 
(Generalization Ability). 

SVM from the linear case can be divided into the optimal development of surface 
classification; the basic idea can be discussed by Fig. 1. In Fig. 1, solid and hollow-
point on behalf of the two types of samples, H is the classification for the line, H1, H2 
are various types of classification from the line in the most recent samples and 
parallel to the classification of straight lines, the distance between them is called 
interval classification (Margin). The best classification line requires that the 
classification line not only the right to separate two types of (training error rate of 0), 
but also between the largest classification. Classification equation for the line is 

0x w b⋅ + = . According to normalizing, we can make on the linear set of samples: 

( ), , 1,i ix y i = ∈ d…, n, x R ，where { }1, 1y ∈ + − ，satisfy: 

( ) 1 0, 1, ,i iy w x b i n⋅ + − ≥ =⎡ ⎤⎣ ⎦ " . (1) 

 

Fig. 1. The best line in linear classification used in Support Vector Machine 

The interval of the classification is . The maximum interval is equivalent to 

the minimum of . The classification surface which satisfies the conditions (1) and 

makes the minimum is the best classification surface, and the samples of H1 

and H2 are called Support Vector. Get the maximum intervals of the classification is 
to get the maximum of the capacity and this is one of the core idea of SVM. 
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For the non-linear conditions, the X samples can be mapped to a high-dimensional 
feature space H, and then use the functions of the original space to convert it to be a 
linear problem to another space. According to the relevant functional theory, as long 
as a core function can satisfy the conditions of Mercer, it corresponds to a inner 
product of a space.. Therefore the classification of the non-linear problem can be 
implemented by adopting appropriate inner product. In a nutshell, first the SVM 
transforms the non-linear to a high-dimensional space by the appropriate inner 
product, and then get the optimal classification of the surface. 

SVM classification function is similar to the form of a neural network, the output is 
the linear combination of the middle nodes, each node in the middle is correspond to a  
support vector, as shown in Fig. 2. 

 

Fig. 2. Support Vector Machine (SVM) structure used in lasser welding indentification 

The output (decision-making rules): 
 

( )sgn ,i i i
s

y y K x x bα⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑

 
(2) 

And the weight variable i iyα  is the inner product of 1 2, , , sx x x⋅ ⋅ ⋅  which support 

s vectors. 

( )1 2, , , dx x x x= ⋅⋅⋅ . 

Obviously it ensures that all the samples are classified appropriately, that’s to say 
get the best performance of the promotion when the experience is 0 for Remp. If you 
want to experience the risks and seek to promote some kind of performance among all 
values through the introduction of the relaxation factor is wrong to allow the existence 
of sub-samples. At this time, bound by (1) change to 

( ) 1 0, 1, ,i i iy w x b i nξ+ − + ≥ = ⋅⋅⋅⎡ ⎤⎣ ⎦i .
 

(3) 
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At the same time, add a punishment
1

n

ii
C ξ

=∑ to the target which is obtain the 

smallest , and 
1

n

ii
C ξ

=∑  geometric loss of the wrong classification, which 

reflects the structural risk minimization (SRM) ideas. 

3   Implementation 

For the monitoring of the welding process, the researchers are focusing how to handle 
the signals between the melting and non-melting of the wielding line. Because the 
complexity of the welding we analyze the signal with Gabor transformation, then 
classify the state of the wielding line by SVM. 

3.1   Extraction of Feature Vector 

The difference of signal between the melting and non-melting states can be describe 
in two fields. One is the signal intensity of the statistical value of a difference; another 
is there are differences in the frequency of the signal. Here, take the blue-violet light 
as an example to extract feature vector. The waveform of Blue-violet light signal after 
filtering shown in Fig. 3. 

In order to get the signal features of the frequency band, apply time-frequency 
analysis to the signal.. The signal which is transformed by Gabor transform is shown 
in Fig. 4. 

 

 

 
 

 

Fig. 3. The waveform of Blue-violet light for laser welding (unit: V) 
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According to Fig. 4, we can see that the blue-violet light has more energy in  
2 ~ 3 kHz. It can be speculated that blue-violet light signals in the frequency of 
paragraph 2 ~ 3 kHz possible representation to the quality of the welding features. 

Similarly, the frequency features of infrared light, as well as voice signals can be 
extracted. And combined with the mean, variance, as well as welding technology, and 
other parameters, so each of the selected feature vector takes 9 attributes as input  
vector of SVM, that’s to say enter a 9-dimensional features Vector. As the difference 
between the feature vectors, it is necessary to map prior to the value of the property so 
normalized so that it is in a range of the same size, reduce the influence of individual 
features of the vector model. 

 

Fig. 4. The voice signal of laser welding after Gabor transformation 

3.2   SVM Algorithm and Parameters 

The different kernel functions of SVM will form different algorithms, currently there 
are three types of kernel functions:  

①polynomial kernel function： ( ) ( ) 1
q

iK x x= +⎡ ⎤⎣ ⎦iix, x   

②gauss kernel function(RBF)： ( )
2

2
exp ix x

K
σ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

ix, x  

③Sigmoid kernel function： ( ) ( )( ), tanhi iK x x v x x c= +i  

Kernel functions are corresponding to the mapping function, and feature space. So 
kernel function and the parameters of them will change the complexity (dimensions) 
of the sub-space. And the dimensions of the sub-space decides the dimension of 
maximum VC thus it decides minimum error experience of the linear classification. 
Therefore choose the right kernel function is very important to promote their well-
SVM classifier. 

The punishment parameter C is used to determined the regulation of machine 
learning the scope of confidence and experience of sub-space, so that the proportion 
of the risk of machine learning to promote the ability of the best. Parameter C is 
different in different sub-optimal space, in the sub-space the error punishment is small 
when parameter C is small, the complexity of machine learning but the experience of 
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a small risk is great, and vice versa. For each sub-space, at least there is a suitable C 
makes the ability to promote the best, when the C above a certain value, SVM 
complexity reached. The experiences of the risks almost have no ability to promote 
change. However, at present there is no uniform method to determine the best C 
value. General common and more effective way is through continuous experiment to 
select the C to be satisfied with the results. 

Currently the choice of kernel function are based on experience, the some a use 
repeated experiment to get them. Kernel choice becomes a dedicate research field 
called model selection, the choice of the kernel functions and parameters are the key 
of the SVM. 

4   Simulation and Analyze 

The kernel function of the paper is radial basis function, the rules for decision-making 
at this time (reference to the type (2)) 

( ) ( )
1

sgn
N

i
i

f x K x x bγα
=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠
∑ . (4) 

( )iK x xγ −  depends on the distance between the two vector, for a fixed γ , is a 

monotone function of the non-negative, and tends to infinity when ix x−  tends to 

zero. According to the topic of the actual situation of this paper, and through a large 
number of experiments we get the appropriate punishment factor C and the width of 
the kernel parametersγ . 

In order to verify the accuracy of SVM classification, we extracted a sample of 52 
of the weld, where the penetration and non-state penetration 50% of each state. 
Arbitrary selecting 26 samples for the training model, the remaining 26 samples for 
testing model. In this case, the identification of the penetration obtains good results, 
and for the identification of the same seam has reached 100%. 

For different Weld circumstances, we selected 4 typical welds and each seam select 
a 26 samples of the total 104 samples for the training model, and the penetration and 
non-state penetration are 50% of each state. Then select another to weld to verify the 
model, tested the performance of the model shown in Fig. 5. 

 

Fig. 5. The classification ability of SVM in several weld seams 
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It has a high requirement because the feature extraction and recognition are based 
on different parameters. In a test of 131 samples, there are 9 miss identifications. 
Compare with single weld recognition, the correct rate of classification decreases 
from 100% to 93.1%. Of course, after the algorithm is optimized for integration, it’s 
able to get a better correct rate. 

5   Conclusions 

The statistical learning theory and support vector machine found a theory framework 
and general method for the machine learning of the limited samples. It is the fastest 
growing field of the research on the basis of theory.  

Support vector machines is high precision, fast and ability to promote strong, 
especially in small samples in the classification reflects the neural network as opposed 
to a huge advantage. SVM algorithm, of course, due to the development of a relatively 
short time, there are still many unresolved issues in the application is started relatively 
late. For example, the system will be able to continue to optimize the standard of SVM 
algorithm to make some improvement. From the application perspective, through a 
large number of experiments to verify the feature vectors which attributes to the final 
status of the formation to play a key role, together with its on a larger weighted factor, 
to attribute the difference to the value of the final form Weld's status. 
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Integrating Generalized Linear Auto-Regression and 
Artificial Neural Networks for Coal Demand Forecasting 

Ping Yao 

School of Economics & Management, Heilongjiang Institute of Science and Technology, 
Harbin 150027, China 

Abstract. In this study, a novel combined forecasting model integrating 
generalized linear auto-regression (GLAR) with artificial neural networks 
(ANN) was proposed to obtain accurate prediction results and ameliorate 
forecasting performances. We compare the performance of the new model with 
the two individual forecasting models-GLAR and ANN. Empirical results 
obtained reveal that the prediction using the combined model is generally better 
than those obtained using the individual model of GLAR and ANN in terms of 
the same evaluation measurements. Our findings reveal that the combined model 
proposed here can be used as an alternative forecasting tool for coal demand to 
achieve greater forecasting accuracy and improve prediction quality further. 

Keywords: GLAR, ANN, Combined model, Forecasting, Coal demand. 

1   Introduction 

Coal demand modeling and forecasting has been a common research stream in the last 
few decades. Over this time, the research steam has gained momentum with the 
advancement of computer technologies, which have made many elaborate computation 
methods available and practical. However, it is not easy to predict coal demand due to 
its high volatility and noise. But the difficulty in forecasting coal demand is usually 
attributed to the limitation of many conventional forecasting models; this has 
encouraged academic researchers and business practitioners to develop more predictable 
forecasting models. As a result models using artificial intelligence such as artificial 
neural network (ANN) techniques have been recognized as more useful than 
conventional statistical forecasting models.  

PENG [1] simulated the main factors of influencing the coal consumption and 
employed the artificial neural network method to forecast the coal consumption; 
WANG & SUN [2] set up GM(1,3) model based on grey system theory to forecast 
coal demand.; NING [3] gave a forecast of annual increase ratio of coal consumption 
by using superposition wavelet-neural network model. Recently, more hybrid 
forecasting models have been developed that integrate neural network neural network 
techniques with many conventional and burgeoning forecasting methods such as 
econometrical models and time series models to improve prediction accuracy. 

This study proposes a novel nonlinear ensemble forecasting model for coal demand 
forecasting. This model utilizes the NN technique and PCA technique, integrates 
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GLAR with NN models, and takes full advantage of hybrid methods and combined 
techniques. The proposed novel nonlinear ensemble model is the PCA-NN nonlinear 
ensemble forecasting approach, which integrates GLAR and NN models as well as the 
single hybrid methodology. The aims of this study are two aspects: (1) to show how 
to predict coal demand using the proposed ensemble model and (2) to display how 
various methods compare in their accuracy in forecasting coal demand. 

2   Basic Idea of Methods 

The GLAR and the neural network BP models are summarized in the following as 
foundation to describe the ensemble forecasting model. 

2.1    Generalized Linear Auto-Regression (GLAR) Model 

The generalized linear auto-regression (GLAR), first introduced by Shephard [4], is 
equivalent to a system of reduced form equations relating each endogenous variable 
to lag endogenous (predetermined) and pertinent exogenous variables. That is, in a 
GLAR model, the future value of a variable is assumed to be a linear function of 
several past observations and random errors. Generally, the form of the GLAR model 
is given in the following. 

tttt εxLDyLCαy +++= −− 11 )()(  (1)

Where yt and εt are the actual value of endogenous variables and random disturbance 
at time t, xt-1 is the actual value of related exogenous variables, α is a constant term, 
C(L) and D(L) are the pth and qth order lag polynomial of endogenous variable and 

exogenous variables respectively in the lag operator L, such that C(L)=C0-C1L- C2L
2
-

…-CPLP and D(L)= D0-D1L-D2L
2
-…-DqL

q. L denotes the lag operator, e.g., Lyt=yt-1, 
L2yt=yt-2 and so on, and random disturbances, εt are assumed to be independently and 
identically distributed with a mean of zero and a constant variance of σ2, i.e. εt ~ 
IID(0, σ2). 

Based on earlier works [4, 5, 6], the GLAR model involvers the following five-step 
iterative procedures: 

(1) Stationary test of time series, such as unit root test; 
(2) Identification of the GLAR structure, i.e. the model order is determined; 
(3) Estimation of the unknown parameters; 
(4) Model checks and diagnostics; 
(5) Forecast future outcomes based on the known data. 

This five-step model building process is typically repeated several times until a 
satisfactory model is finally selected. The final model selected can then be used for 
prediction purposes. The advantage of GLAR is that it is capable of receiving external 
information from exogenous variables. Furthermore, the GLAR model fits the linear 
characteristic of time series well. The disadvantage of the GLAR is that it cannot 
capture nonlinear patterns coal demand time series if nonlinearity exists. 
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2.2    Neural Network Approach 

The BP neural network consists of an input layer, an output layer and one or more 
intervening layers also referred to as hidden layers. The hidden layers can capture the 
nonlinear relationship between variables. Each layer consists of multiple neurons that 
are connected to neurons in adjacent layers. Since these networks contain many 
interacting nonlinear neurons in multiple layers, the networks can capture relatively 
complex phenomena [7, 8]. 

A neural network can be trained by the historical data of a time series in order to 
capture the characteristics of this time series. The model parameters (connection 
weights and node biases) will be adjusted iteratively by a process of minimizing the 
forecast errors. For each training iteration, an input vector, randomly selected from 
the training set, was submitted to the input layer of the network being trained [9]. The 
output of each processing unit (or neuron) was propagated forward through each layer 
of the network, using the equation 

∑
=

+=
N

i
iitit bxw

1

NET

 
(2)

Where NETt is an output of unit t; wti is the weight on connection from the ith to the 
tth unit; xi is an imput data from unit i (input node) to t; bt denotes a bias on the tth 
unit; and N is the total number of input units. A bias or activation of a proper 
magnitude can affect output activation in the same manner as imposing a limit on the 
network mapping function. 

A sigmoid transformation was then applied to the summation for each unit in a 
hidden layer, using the equation 

)1/(1)NET( NETtefy tt
−+==  

(3)

The activity of each output unit was also computed by Eq.(2), using the weights on 
the connections from the last hidden layer. But, unlike any output from the hidden 
unit activity, NETj was not transformed by the sigmoid function. An error δj

(L) for the 
jth output unit was calculated by 

jj
L

j Tδ NET)( −=
 (4)

Where L denotes the number of the output layer (Eq.(4)). For example, L=3, 
j=1,2,…,k, k is the number of output unit, and T is the target or the desired activity of 
the output unit. This error was propagated back to the lower hidden layers as follows: 
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(5)

Where )(l
tiw is the weight from the ith unit in layer l to the tth unit in layer (l+1), 

l=1,2,…,L-1, and )(' ⋅f is the first derivative of the sigmoid function. 

In order for the network to learn, the value of each weight had to be adjusted in 
proportion to each unit’s contribution to the total error in Eq.(5). The incremental 
change in each weight for each learning iteration was computed by (Eq.(6) and (7)) 
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where c1 is a learning constant that controls the rate of learning; c2 is a positive 
constant that, being less than 1.0, is the momentum term to smooth out the weight 
changes, and 

)1()( −∆= l
ti

l
ti wm  

(7)

The procedures for developing the neural network BP model are as follows [10]: 

(1) Normalize the learning set; 
(2) Decide the architecture and parameters: i.e., learning rate, momentum, and 

architecture. There are no criteria in deciding the parameters except on a trial-
and-error basis; 

(3) Initialize all weights randomly; 
(4) Training, where the stopping criterion is either the number of iterations reached 

or when the total sum of squares of error is lower than a pre-determined value; 

The major advantage of NN models is their flexible nonlinear modeling capability. 
They can capture the nonlinear characteristics of time series well. However, using NN 
to model linear problems may produce mixed results [11, 12, 13]. Therefore, we can 
conclude that the relationship between GLAR and NN is complementary. To take full 
advantage of the individual strengths of two models, it is necessary to integrate the 
GLAR and NN models. 

2.3    The Hybrid Methodology Integrated GLAR with ANN 

Time series forecasting problem such as coal demand prediction is far from simple due 
to high volatility, complexity, and irregularity and noisy out environment. Furthermore, 
real-world time series are rarely pure linear or nonlinear. They often contain both and 
nonlinear patterns. If this is the case, there is no omnipotent model that is suitable for all 
kinds of time series data. Although both GLAR and NN models have achieved success 
in their own linear or nonlinear domains, neither GLAR nor NN can adequately model 
and predict time series since the linear models cannot deal with nonlinear relationships 
while the NN model alone is not able to handle both linear and nonlinear patterns 
equally well. On the other hand, as previously mentioned, for time series forecasting the 
relationship between GLAR and NN is complementary. GLAR is a class of linear 
models that can capture time series’ linear characteristics, while NN models trained by 
back-propagation with hidden layers are a class of general function approximates 
capable of modeling nonlinearity and which can capture nonlinear patterns in time 
series. Commixing the two models may yield a robust method, and more satisfactory 
forecasting results may be obtained by incorporating a time series model and a NN 
model. Therefore, we propose a hybrid model integrating GLAR and NN for coal 
demand forecasting. In view of the works of [14], the proposed hybrid model is a two-
phase forecasting procedure, which incorporating GLAR model with NN model in an 
adaptive manner. The motivation of hybrid methodology is to create a synergy effect 
that further improves the prediction power. 
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In the first phase, a GLAR model is used to fit the linear component of time series, 
which is assumed to be },2,1,{ L=tyt , and generate a series of forecasts, which is 

defined as }ˆ{ tL . However, since some time series, such as coal demand, often contain 

more complex patterns than those of linear regression models also need to discover 
the nonlinear relationship of the time series in order to improve prediction accuracy. 

By comparing the actual value yt of the time series and forecast value tL̂ of the linear 

component, we can obtain a series of nonlinear components, which is assumed to 
be }{ te , that is, 

ttt Lye ˆ−=  (8)

Thus, a nonlinear time series is obtained. The next step is how to fit the nonlinear 
component of series. 

The second phase of the hybrid methodology, a neural network model is used to 
model the above nonlinear time series. By training the NN model using previously 
generated nonlinear time series as inputs, the trained NN model is then used to 

generate a series of forecasts of nonlinear components of time series, defined by }ˆ{ tN . 

In order to obtain the synergetic forecast results, the final forecasting results, 
defined by }ˆ{ ty ,are calculated as 

ttt NLy ˆˆˆ +=  (9)

In summary, the proposed hybrid methodology consists of two phases or four steps 
as follows: 

(1) A GLAR model should be identified and the corresponding parameters should 
be estimated; 

(2) The nonlinear components are computed from the GLAR model; 
(3) A neural network model is developed to model the nonlinear components; 
(4) Then combined forecast results are obtained from Eq.(9). 

2.4    Forecasting Evaluation Criteria 

Yokum and Armstrong [15] conducted an expert opinion survey about evaluation 
criteria to select forecasting techniques. Clearly, accuracy was the most important 
criterion, with the other one being the cost savings generated from improved 
decisions. In addition, execution issues such as ease of interpretation and ease of use 
were also highly rated. In this study, three criteria of forecasting accuracy were used 
to make comparisons of the forecasting capabilities. 

The first measurement is the mean square error (MSE; Eq.(10)), 

∑
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(10)

Where tŷ is the predicted value at time t; ty is the actual value at time t; and T is the 

number of predictions. 
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The second criterion is the mean absolute error (MAE; Eq (11)), 
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(11)

The third criterion is the mean absolute percentage error (MAPE; Eq (12)), 
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3   Empirical Study 

3.1    Data Description 

On the consideration of the economic development, characteristics of the energy 
structure and changes of the coal consumption, we choose three exogenous variables: 
GDP growth rate (%), coal proportion of the energy consumption (%) and coal  
 

Table 1. Variable values and prediction results 

Year 
Domestic 

Coal 
 demand 

GDP 
growth 

 rate 

Coal 
proportion  

of the energy 
consumption  

Coal  
consumption 
growth rate 

GLAR 
model 

ANN 
model 

Combined 
model 

1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 
2004 

585.16 
606.24 
605.65 
641.26 
674.85 
744.18 
814.16 
861.89 
920.40 
982.76 

1000.42 
1025.55 
1104.32 
1140.85 
1209.93 
1286.83 
1315.24 
1345.93 
1310.70 
1294.90 
1263.56 
1245.37 
1262.11 
1366.05 
1637.32 
1890.00 

7.60 
7.80 
4.50 
8.50 

10.20 
15.20 
13.50 
8.80 

11.60 
11.30 
4.10 
3.80 
9.20 

14.20 
13.50 
11.80 
10.50 
9.60 
8.80 
7.80 
7.10 
8.00 
7.50 
8.30 
9.50 
9.50 

71.31 
72.15 
72.47 
73.67 
74.16 
75.27 
75.81 
75.83 
76.21 
76.17 
75.81 
76.20 
76.10 
75.70 
74.60 
75.00 
74.60 
74.70 
71.50 
69.60 
67.10 
67.80 
66.70 
66.30 
68.40 
68.00 

3.45 
3.60 
-0.10 
5.88 
5.24 

10.27 
9.40 
5.86 
6.79 
6.78 
1.80 
2.51 
7.68 
3.31 
6.06 
6.36 
2.21 
2.33 
-2.62 
-1.21 

-11.19 
8.26 
1.37 
8.24 

19.83 
13.90 

___ 
___ 

633.37 
613.26 
681.95 
714.17 
816.62 
888.12 
916.46 
985.46 

1052.13 
1029.77 
1061.96 
1190.10 
1189.08 
1288.40 
1373.38 
1358.50 
1391.66 
1296.59 
1298.07 
1252.32 
1245.73 
1294.15 
1478.01 
1903.61 

___ 
___ 

609.20 
626.20 
691.10 
732.40 
816.80 
845.10 
932.20 
959.80 

1002.70
1009.30
1092.70
1153.50
1207.90
1266.40
1345.90
1324.80
1277.00
1294.20
1261.00
1247.40
1263.30
1394.50
1676.00
1899.00

___ 
___ 

605.60 
641.00 
674.40 
743.20 
815.90 
862.30 
916.20 
986.80 

1000.60 
1025.50 
1103.80 
1140.80 
1210.90 
1282.80 
1315.70 
1345.60 
1310.60 
1294.90 
1263.70 
1245.60 
1262.10 
1366.00 
1637.00 
1890.10 
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consumption growth rate (%). These three exogenous variable values from 1979 to 2004 
are listed in table 1, in order to save space, the prediction results are also listed in table 1. 

3.2    Empirical Results 

In this study, all GLAR models are implemented via the Eviews software package, 
which is produced by Quantitative Micro Software Corporation. The individual ANN 
model, the combination model with minimum-error method is built using the Matlab 
software package, which is produced by Mathworks Laboratory Corporation. In the 
ANN model, a three-layer BPNN with the architecture of 3-6-1 is used. That is, it has 
3 input neurons, 6 TANSIG neurons in the hidden layer and one PURELIN neuron in 
the output layer. The network training function is the TRAINSCG. Besides, the 
learning rate and momentum rate is set to 0.15 and 0.30. the accepted average squared 
error is 0.005 and the training epochs are 3000. The above parameters are obtained by 
trial and error. 

Fig. 1 give graphical representations of the forecasting results for coal demand 
using different models. Table 2 show the forecasting performance of different models 
from different perspectives. Form the graphs and tables; we can generally see that the 
forecasting results are very promising under the different forecasting evaluation 
criteria. Table 3 shows the coal demand forecasting of China from 2005 to 2013. 
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Fig. 1. A graphical comparison of coal demand forecasting results using different models 
(1981-2004) 
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Table 2. A comparison of error between different methods 

Method GLAR ANN Combined model 

MSE 2204.4520 312.6939 2.3537 

MAE 31.4225 13.9246 0.8196 

MAPE 0.0273 0.0127 0.0008 

GLAR: generalized linear auto-regression; ANN: artificial neural network; 
MSE: mean square error; MAE: mean absolute error; MAPE: mean absolute percentage error. 

Table 3. Coal demand forecasting of China. from 2005 to 2013 

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Coal 
demand 

2003.5 2095.3 2192.0 2293.6 2400.1 2511.2 2627.3 2794.7 28762 

4   Conclusions 

The authors proposed to use a hybrid model that combines the time series GLAR 
model and the neural network BP model to predict coal demand of China. The results 
showed that the combined model is superior to the GLAR and ANN model. The 
MSE, MAE and MAPE were all the lowest for the combined model, indicating that 
the combined forecasting model can be used as a viable alternative solution for coal 
demand prediction. 
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Abstract. On-line System identification of linear time-varying (LTV) systems 
whose system parameters change in time has been studied lately. One neural 
network based such on-line identification method was studied by the author 
with a generalized ADAptive LINear Element (ADALINE).  Since the 
ADALINE is slow in convergence, which is not suitable for identification of 
LTV system, two techniques were proposed to speed up convergence of 
learning. One idea was to introduce a momentum term to the weight adjustment 
during convergence period. The other technique was to train the generalized 
ADALINE network with data from a sliding window of the system’s input 
output data. The second technique took multiple epochs to train which was 
considered as a shortcoming.  In this paper, simulation study towards 
optimizing the momentum term and learning rate parameter will be presented. 
Simulation results show that once the momentum factor and learning rate are 
tuned properly, time varying parameters of LTV systems can be identified quite 
effectively;  which, in turn, sows that the fined tuned GADLINE is quite 
suitable for online system identification and real time adaptive control 
applications due to its low computational demand. 

Keywords: System identification, Neural network, ADALINE, Tapped delay 
line feedback. 

1   Introduction 

Given the structure (or simply order here) of a single input single output (SISO) 
linear time varying (LTV) system is known, system identification reduces to a 
parameter estimation problem from the measurable input and output data of the 
system, which can be well solved by traditional identification methods, such as least 
squares method, maximum likelihood method and instrumental variable method (L. 
Ljung 1999, Söderström and Stoica 1989).  Increased interests in system identification 
area based on neural network techniques (Haykin 1999, Mehrotra 1997) have been 
seen in the past decade.  Most neural networks used for system identification are in 
the category called recurrent (feedback) neural networks, such as, Multi-Layer 
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Perceptron (Rumelhart 1986) with feedback and Hopfield neural network (Hopfield, 
1982). And most neural network methods studied for system identification are mainly 
for nonlinear systems based on MLP (Sjöberg et al. 1994, Narendra and Parthasarathy 
1990, Qin et al. 1992).  Other types of neural networks are also seen, Hopfield (Chu et 
al. 1990), Radial Basis Function (Valverde 1999), Support Vector (Gretton 2001) and 
Self-Organizing Map (Abonyi and Szeifert 2002). 

In this paper, the author continues to study the online identification method based 
on the generalized ADaptive LINear Element (GADALINE) neural network, for LTV 
systems which can be described by a discrete time model.  In such systems, the 
current output is dependent on past outputs and on both the current and past inputs.  
So the GADALINE needs to have output feedback and to remember past input/output 
data. The proposed neural network employed a Tapped Delay Line (TDL) for both 
input and output of the system to remember the past input/output data. The 
GADALINE learning included a momentum term for the weight adjustment. This 
momentum term is turned on only during convergence period and the learning curve 
is therefore smoothed by turning off the momentum once the learning error is within a 
given small number – epsilon.  Extensive simulation study towards optimizing the 
momentum term and learning rate parameter is performed. Simulation results show 
that once the momentum factor and learning rate are tuned properly, time varying 
parameters of LTV systems can be identified quite effectively. The rest of the paper is 
organized as: in section 2, the author’s previous work GADLINE applied to system 
identification is summarized; section 3 explains the idea of optimization of the 
momentum term and learning rate; section 4 presents simulation study and section 5 
draws some conclusion. 

2   The GADALINE and System Identification 

Originally, ADALINE was developed by Widrow and Lehr (Widrow and Lehr 1990) 
to predict the next bit by recognizing binary patterns from reading streaming bits from 
a phone line. The structure of an ADALINE is shown in Fig. 1, where a threshold 
logic unit can also be attached to the output. The structure of a GADALINE is shown 
in Fig. 4. 

2.1   Structure of GADALINE 

In the GADALINE structure, the bias input is removed, and each input is expanded 
through a TDL to become a number of delayed inputs and the output feedback is 
introduced to the input, also passing through a TDL to become a number of inputs.  If 
we still keep the notation for inputs as u1 ~ um, then the output y can be found by, 

y = Σ1
m wiui = uTw 

where u is the input vector and w is the weight vector, 

u = [u1 u2 … um]T 

 w = [w1 w2 … wm]T 

An example GADALINE structure for linear SISO system identification is shown 
in Fig. 4. 
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Fig. 1. An ADALINE unit 

2.2   GADALINE Learning Algorithm 

The GADALINE learning algorithm is based on the Widrow-Hoff rule with generali-
zation by adding a momentum term to speed up convergence. The implication on the 
generalized learning will be discussed in Section 3. 

Widrow-Hoff’s delta rule or Least Mean Square algorithm (LMS), is based on 
minimizing the cost function, 

E(w) = 1/2 e2(t) 

where t is the iteration index and e(t) is given by, 

e(t) = d(t) – y(t) 

where the desired output d(t) at each iteration t is constant. 

According to LMS, the weight adjustment is 

      ∆w(t) = w(t+1) – w(t)= – ηe(t)u(t)                                            (1) 

here the learning–rate is usually in the range of 0 < η < 1.   
It is well known (Haykin 1999), the LMS algorithm has a slow convergence speed.  

Especially for bigger learning parameter, the convergence trajectory exhibits a zigzag 
form.  This can be stabilized partially by normalizing input vector to a unit vector in 
the weight adjustment equation (2) so that the weight adjustment magnitude is 
independent of the magnitude of the input vector. That is, the weight adjustment is 
given by, 

∆w =  η e u/||u|| 

where ||u|| is the Euclidean norm of the input vector u or the length, which is 
calculated as, 

|  |u|| =  (u1
2 + u2

2 +…+ um
2)1 / 2 
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In order to speed up the convergence and thus to increase the capability of tracking 
time varying system parameters, a momentum term is introduced into the weight 
adjustment equ. (1). The new weight adjustment now becomes, 

                                  ∆w(t) =  η e(t)u(t) + α∆w(t–1)                                    (2) 

where 1 > α ≥ 0 is a small non-negative number. 
Because of this added momentum term, the weight adjustment continues after 

convergence, that is, when even the magnitude of the error term e is small.  For linear 
system identification purpose, these weights correspond to system parameters.  It is 
desirable to keep these parameters fixed once convergence is seen.  So we should turn 
off the momentum term after convergence is detected, say |e| < ε, ε > 0 is a  small 
number.  However, when the LTV system parameters change at a later time, another 
convergence period will begin.  Then it is better to turn the momentum back on. 

GADALINE training is performed by presenting the training pattern set – a 
sequence of input-output pairs.  During training, each input pattern from the training 
set is presented to the GADALINE and it computes its output y.  This value and the 
target output from the training set are used to generate the error and the error is then 
used to adjust all the weights.   

2.3   Identification Using GADALINE 

Consider a discrete time SISO LTV system, the observable input and output data can 
be given in the form of a time series: {u(kT), y(kT)}, T is the sample period, a 
constant, thus the data is often simply written as {u(k), y(k)}.  Then the system can be 
modeled by the following difference equation, 

y(k) + a1y(k−1) + a2y(k−2) + … + any(k−n)  

                                  = b1u(k−1) + b2u(k−1) + … + bmu(k−m)                                   (3) 

where n and m are system structure parameters, m ≤ n, n is the order of the system; ai 
and bj are system parameters, i = 1, 2, …, n and j = 1, 2, …, m.  If ai and bj are 
constants, the system is said to be time invariant, otherwise time varying.  In the time 
varying case, ai and bj can be slowly changing with time or can be switched to 
different values at different time instants. 

Then the system identification becomes a parametric estimation problem, that is, 
given n and m, to determine coefficients ai and bj from the input and output data of the 
system according to a certain criterion, such as minimizing an error function, which is 
a measure of how close the model is to the actual system. Fig. 2 shows a general 
system identification architecture, yu(k) is the deterministic output, n(k) is the noise 
(white) and e(k) is the error.  

In the following, the paper will discuss how the model in the dashed line box in 
Fig. 2 can be approached by training a GADALINE, whose weights correspond to 
coefficients ai and bj. 

As can be seen earlier, GADALINE is a simple linear neural network which can be 
trained to adaptively model a linear or near-linear system. Adaptive training (also 
called online/incremental training, as opposed to batch training) can be used so that  
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Fig. 2. System identification of a LTV system 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The GADALINE learning  

any change in parameters of the system also changes the weights of the neural  
network. Thus, at any instant of time, GADALINE can track changes in the 
parameters of a linear time varying systems. Fig. 3 summarizes the GADALINE 
learning algorithm. 

The idea is to use a GADALINE in place of the block of Fig. 2 in the dashed line 
box. For system identification, the GADALINE can be configured as in Fig. 4, where 
the system input uS is passed through a TDL to feed to the linear combiner of the  
 
 

GADALINE Learning Algorithm 
 
Start with a randomly chosen weight vector w(0) 
Let t = 1 
While % online version is an infinite loop 

Let u(t) = (u1, .., um) be next input vector, for which d(t) is the desired output 
Calculate e(t) = d(t) - uT(t)w(t-1) 
∆w(t) = ηe(t)u(t) 
If | e(t)| > ε, then  

∆w(t) = ∆w(t) + α∆w(t–1) 
Adjust the weight vector to 
 w(t) = w(t-1) + ∆w(t) 
Increment t 

End while 
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Fig. 4. GADALINE configuration 

ADALINE. And the measured system output yS is also taken to pass through a TDL 
as feedback.  Then the input vector to the GADALINE can be set up as, 

u(k) = [uS(k−1) … uS(k−m) −yS(k−1) … −yS(k−n)]T                             (4) 

and the weight vector 

w(k) = [w1(k) w2(k) … wm(k) wm+1(k) … wm+n(k)]T                                   (5) 

corresponds to an estimate of the system parameters, 

θ = [b1 b2 … bm a1 a2 … an]
T 

See the system model (3). 
Then, we have the following identification procedure. 

1) Experiment design: As in traditional system identification, the input signal should 
be selected such that it is “rich” enough to excite all modes of the system, this is 
called persistent exciting. For linear systems, input signal should excite all 
frequencies and amplitude is not so important.  Common used persistent exciting 
signals that can be tried are: random signal, multi-sine signal and random binary 
sequence signal (RBS) – the signal switches between two levels with given 
probability. 

2) Data collection: Measurement of input-output data uS(k) and yS(k) and to set up 
u(k). 
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3) Parameter estimation: Apply the training algorithms to estimate the parameters 
θ(k) = w(k). 

3   Optimizing Momentum Term and Learning Rate 

To see the effect of the momentum, we can expand the equation starting from t = 0, 

                  ∆w(0) = ηe(0)u(0) 

                  ∆w(1) = ηe(1)u(1) + α∆w(0) = ηe(1)u(1) + αηe(0)u(0) 

    ∆w(2) = ηe(2)u(2) + α∆w(1) = ηe(2)u(2) + αηe(1)u(1) + α2ηe(0)u(0) 

                   ∆w(t)  = ηe(t)u(t) + α∆w(t–1) 

   = ηe(t)u(t) + αηe(t–1)u(t–1) +  …  + αn-1ηe(1)u(1) + αn ηe(0)u(0) 

                              =
0

( )
t t e uτ τ
τ

η α τ−
=∑  

Remember e(t)u(t) is just –∂E(t)/∂w(t), then 

  ∆w(t)= 
0

t t τ
τ

η α −
=∑ ∂E(τ)/∂w(τ) 

So, we have an exponentially weighted time series.  We can then make the following 
observations, 

i) If the derivative ∂E(t)/∂w(t) has opposite sign on consecutive iterations, the 
exponentially weighted sum ∆w(t) reduces in magnitude, so the weight w(t+1) is 
adjusted by a small amount, which reduces the zigzag effect in weight adjustment. 

ii) On the other hand, if the derivative ∂E(t)/∂w(t) has same sign on consecutive 
iterations, the weighted sum ∆w(t) grows in magnitude, so the weight w(t+1)  is 
adjusted by a large amount.  The effect of the momentum term is to accelerate descent 
in steady downhill region. 

4   Simulation Study 

Simulation study is performed on several example systems. Based on a classic 
representative example, the comparison on convergence speed and capability of 
tracking time varying systems’ parameters among the normal LMS training algorithm 
and the SWLMS training algorithms is presented in this section. 

Consider a second order linear SISO system described by the following difference 
equation, 

y(k) − 1.5 y(k−1) + 0.7 y(k−2) 

                           = 1.0 u(k−1) + 0.5 u(k−2) 
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Fig. 5. MTMS trajectories for different α 

The system is to be simulated with an RBS input signal switching between -1 and 1 
with equal probability from k=1 to k=1200. Assume at k=800, that system parameters 
b1 and b2 are switched to 0.8 and 0.7, respectively. Fig. 5 shows the comparison of 
parameter trajectories obtained with different α values, i.e., α = 0 and α = 0.8.  

From Fig. 5, we can observe that the average convergence speed of all parameters 
is doubled and the capability of tracking time varying parameters is improved when 
α=0.8 as opposed to α=0.   

Fig. 6 shows the parameter trajectories obtained by the sliding window LMS 
algorithm with different number of epochs and window size combinations.  We 
observed much faster convergence speed and much better capability of tracking time 
varying parameters but the bigger sliding window Fig. 6(a) vs. 6(b) did not show 
apparent improvement. 

The system is also simulated with the output contaminated with a white noise 
signal of variance σ2 = 0.05, Fig. 7. Increased α improves performance while makes 
the parameter trajectories more fluctuating.  Note that the learning rate parameter η is  
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Fig. 6. SWLMS trajectories with different ne and s 

now 5 times smaller. Increased sliding window size smoothes the curves, Fig. 7(b) vs. 
(a). Again, increased number of epochs speeds up the convergence, but it also tracks 
the noise mixed in the system’s output, Fig. 7(c). Therefore, tradeoff on the two 
tuning parameters should be considered. 

 
 
 

(a) ne =1, s = 4(na+nb), η = 0.1 

(b) ne =4, s = na+nb, η = 0.1 
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Fig. 7. SWLMS trajectories for output with noise 
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5   Conclusions 

The ADALINE neural network is generalized and used for adaptive system 
identification of linear time varying systems.  Two techniques are proposed to 
improve the LMS learning algorithm. The momentum term helps to speed up the 
learning process and reduce the zigzag effect during convergence period of learning.  
The second training technique uses each set of samples for several epochs obtained 
from a sliding window of the system’s input output data.   The second technique took 
multiple epochs to train which was considered as a shortcoming.  In this paper, 
simulation study towards optimizing the momentum term and learning rate parameter 
is presented. Optimal or near optimal range for momentum term combined with 
proper learning rate is determined. Simulation results show that once the momentum 
factor and learning rate are tuned properly, time varying parameters of LTI systems 
can be identified quite effectively;  which, in turn, sows that the fined tuned 
GADLINE is quite suitable for online system identification and real time adaptive 
control applications due to its low computational demand.  
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Abstract. This paper presents an evolutionary method for identifying
a system of ordinary differential equations (ODEs) from the observed
time series data. The structure of ODE is inferred by the Multi Expres-
sion Programming (MEP) and the ODE’s parameters are optimized by
using particle swarm optimization (PSO). The experimental results on
chemical reaction modeling problems show effectiveness of the proposed
method.

Keywords: Multi expression programming, Ordinary differential equa-
tions, Particle swarm optimization, Chemical reaction.

1 Introduction

In the fields of physics, chemistry, economics, bioinformatics etc. a lot of prob-
lems can be expressed in term of ordinary differential equations(ODEs). Weather
forecasting, quantum mechanics, wave propagation, stock market dynamics and
identification of biological systems are some examples [1]. For this reasion many
methods were proposed for inferring ODEs during the last few years. The re-
searches can be classified into two classes of methods: the one is to identify the
parameters of the ODEs and the other is to identify the structure. The for-
mer is examplified by Genetic Algorithms (GA), and the latter by the Genetic
Programming (GP) approach.

Cao and his colleagues use GP to evolve the ODEs from the observed time
series in 1999 [2]. His main idea is to embed a genetic algorithm in genetic pro-
gramming, where GP is employed to discover and optimize the structure of a
model, while a GA is employed to optimize its parameters. They showed that
the GP-based approach introduced numerous advantages over the most avail-
able modeling methods. H. Iba proposed a ODEs identification method by using
the least mean square(LMS) along with the ordinary GP [3][14]. Some individu-
als were created by the LMS method at some intervals of generations and they
replaced the worst individuals in the population. I.G.Tsoulos and I.E.Lagar pro-
posed a novel method based on grammatical evolution [1]. The method forms
generations of trial solutions expressed in an analytical closed form. The Bayesian

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 1014–1023, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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inferential methodology provides a coherent framework with which to character-
ize and propagate uncertainty in such mechanistic models and this provides an
introduction to Bayesian methodology as applied to system models represented
as differential equations [15].

In this paper we propose a new method, in which the particle swarm opti-
mization (PSO) is used along with Multi Expression Programming (MEP). We
infer the structure of the right-hand sides of ODEs by MEP and optimize the
parameters of ODEs by PSO. And the partitioning [4] is used in the process of
identification of structure of system. Each ODE of the ODEs can be inferred
separately and the research space reduces rapidly.

The paper is organized as follows. In Section2, we describe the details of our
method. In section 3, the three examples are used to examine the effectiveness
and veracity of the proposed method. Conclusions are drawn in Section4.

2 Method

2.1 Structure Optimization of Models Using MEP

Encoding. MEP is a relatively new technique in genetic programming that is
first introduced in 2002 by Oltean [5] [6]. A traditional GP [7] encodes a single
expression (computer program). By contrast, a MEP chromosome encodes sev-
eral genes. Each gene encodes a terminal or a function symbol which is selected
from a terminal set T or a function set F. The two sets for a given problem are
pre-defined. A gene that encodes a function includes some pointers towards the
function arguments. The number of the pointers depends on how many argu-
ments the function has. The best of the encoded solution is chosen to represent
the chromosome [8]. We use MEP to identify the form of the system of differential

dx1/dt dx3/dtdx2/dt

1:  x1

2:  x2

3 : + 1,1

4 : * 1, 3

5 : 1, 2

6 : - 2, 5

1:  x1

2:  x2

3 : + 1,2

4 : - 1, 3

5 :  x3

6 : + 1, 1

1:   1

2:  x2

3 : + 1,2

4 : - 1, 3

5 :  x3

6 : + 3, 5

Fig. 1. Example of a ODEs
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equations. For this purpose, we encode right-hand side of each ODE into a MEP
chromosome. For example a ODEs model with the form of⎧⎪⎨⎪⎩

.

X1 = aX1 + bX2
.

X2 = cX1
.

X3 = dX2 + e

(1)

can be represented as three MEP chromosomes{E3, E6, E3} illustrated in Fig. 1,
where the coefficients a, b, c, d, e are derived by PSO (described later in this
paper).

We infer the system of ODEs with partitioning. Partitioning, in which
equations describing each variable of the system can be inferred separately, sig-
nificantly reducing the research space. When using partitioning, a candidate
equation for a signal variable is integrated by substituting references to other
variables with data from the observed time series [4].

Fitness Function. A MEP chromosome contains some expressions, so each
expression Ei is calculated by root mean squared error(RMSE) or the sum of
absolute error(SAM):

f(Ei) =

√√√√ 1
n

n∑
j=1

(xji − x′
j) (2)

f(Ei) =
n∑

j=1

∣∣xji − x′
j

∣∣ (3)

Where xji is the time series by expression Ei and x′
j is the targeted time se-

ries. The fitness of a chromosome is equal to the best fitness of the expressions
encoded.

Genetic Operators. The genetic operators used within MEP algorithm are
crossover and mutation [5].

(1) Crossover. In this paper, we choose the one-point crossover. Firstly, two
parents are selected according to the predefined crossover probability Pc. One
crossover point is randomly chosen and the parents exchange the sequences
at this point.

(2) Mutation. One parent is selected according to the predefined mutation prob-
ability Pm. One mutation point is randomly chosen. If the mutation position
encodes a function symbol, it may be mutated into a terminal symbol or
another function with arguments and parameters. And we can mutate the
function arguments and parameters into random arguments and parameters.

2.2 Parameter Optimization of Models Using PSO

Encoding. At the beginning of this process, we check all the constants con-
tained in each equation , namely count their number ni and report their places.
Distribution of parameters in each chromosome is illustrated in Fig. 2.
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1 : x1

2 : x3

3 : + 1, 1

4 : * 1, 3

5 : 1

6 : - 2, 5

P1 P2

P3

P4 P5

Fig. 2. Distribution of parameters in each chromosome

According to ni, the particles are randomly generated initially. Each particle
xi represents a potential solution. A swarm of particles moves through space,
with the moving velocity of each particle represented by a velocity vector vi.
At each step, each particle is evaluated and keep track of its own best position,
which is associated with the best fitness it has achieved so far in a vector Pbesti.
And the best position among all the particles is kept as Gbest [9]. A new velocity
for particle i is updated by

vi(t + 1) = vi(t) + c1r1(Pbesti − xi(t)) + c2r2(Gbest(t) − xi(t)) (4)

where c1 and c2 are positive constant and r1 and r2 are uniformly distributed
random number in [0,1]. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1) (5)

2.3 Fitness Definition

The fitness of each variable is defined as the sum of squared error and the penalty
for the degree of the equations:

fitness(i) =
T−1∑
k=0

(x′
i(t0 + k∆t) − xi(t0 + k∆t))2 + a (6)

where t0 is the starting time, �t is the stepsize, T is the number of the data
point, xi(t0+k�t)is the actual outputs of i-th sample, and x′

i(t0+k�t) is ODEs
outputs. All outputs are calculated by using the approximate forth-order Runge-
Kutta method. And a is the penalty for the degree of the equations. To reduce
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the problem space, degrees of the individuals are limited to the stated range
according a. When calculating the outputs, some individuals may cause overflow.
In such cases, the individual’s fitness becomes so large that it will be weeded out
from the population.

2.4 Summary of Algorithm

The MEP for the optimal design of each ODE can be described as follows.

(1) Create a initial population randomly(structures and their corresponding pa-
rameters);

(2) Structure optimization is achieved by MEP as described in subsection 2.1;
(3) At some interval of generations, select the better structures to optimize pa-

rameters. Parameter optimization is achieved by PSO as described in sub-
section 2.2. In this process, the structure is fixed.

(4) If satisfactory solution is found, then stop; otherwise go to step (2).

If the parameters of ODEs have some error, we can use the standard fourth-
order Runge-Kutta method to integrate the ODE to optimize parameters.

3 Experimental Results

We have prepared four tasks to test the effectiveness of our method. Experimen-
tal parameters are summarized in Table 1. Function and terminal sets F and T
are follows:

F = {+, −, ∗}
T = {X1, ..., Xn, 1} (7)

3.1 Experiment I: Chemical Reaction Model

The reaction equations [2]are described below

HCHO + (NH2)2CO →k1H2N · CO · NH · CH2OH (8)

H2N · CO · NH · CH2OH + (NH2)2CO →k2(NH2CONH)2CH2 (9)

Table 1. Parameters for experiments

Exp1 Exp2 Exp3
Population size 20 50 50
Generation 50 100 100
Crossover rate 0.7 0.7 0.7
Mutation rate 0.3 0.3 0.3
Time series 1 1 1
Stepsize 0.01 0.05 0.05
Data point 30 30 48
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Fig. 3. Time series of the acquired model for chemical reaction

As a kind of typical consecutive reactions, the concentrations of the three
components in the system satisfy the following system:⎧⎪⎨⎪⎩

.

X1 = −1.4000X1
.

X2 = 1.4000X1 − 4.2X2
.

X3 = 4.2000X2

(10)

A time series was generated for the above set of reactions with initial con-
ditions {0.1, 0, 0} for {X1, X2, X3}. Experimental parameter for this task are
shown in Table 1. We have acquired the system of eq.(11), which gave the sums of
sums of absolute errors as (X1, X2, X3)=(3.6×10−12, 4.01×10−12, 8.79×10−12).
The time series generated is shown in Fig. 3 along with that of the target.⎧⎪⎨⎪⎩

.

X1 = −1.400017X1
.

X2 = 1.400044X1 − 4.199987X2
.

X3 = 4.199939X2

(11)

The best kinetic model acquired in [2] was as follows:⎧⎪⎨⎪⎩
.

X1 = −1.400035X1
.

X2 = 1.355543(X1 + t) − 4.482911X2
.

X3 = 4.069420X2 + t − 0.002812

(12)

Where the the sums of squared errors were(X1, X2, X3)=(1.6 × 10−11, 3.24 ×
10−8, 3.025×10−9). Note that the terminal set in [2] included the time variable t.
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Fig. 4. Time series of the acquired model for Lotka-Volterra model

3.2 Experiment II: Two-Species Lotka-Volterra Model

The Lotka-Volterra model describes interactions between two species, i.e., preda-
tors and preys, in an ecosystem [10]. The following ODEs represent a two-species
Lotka-Volterra model: { .

X1 = 3X1 − 2X1X2 − X1
2

.

X2 = 2X2 − X1X2 − X2
2

(13)

A time series was generated for the above set of reactions with initial con-
ditions {0.04, 0.4} for {X1, X2}. The time series generated is shown in Fig. 4.
Experimental parameter for this task are shown in Table 1. We have acquired
the system of eq. (14), which gave the sums of sums of absolute errors as (X1,
X2)=(2.5×10−11, 4.45×10−10). In all runs,we have succeeded in getting almost
the same ODEs.{ .

X1 = 2.999998X1 − 2.000081X1X2 − 0.9993 X1
2

.

X2 = 2.000005X2 − 1.000064X1X2 − 0.999997X2
2

(14)

The best model acquired in [4]was eq.(15). Compared with it, structure is
the same and the parameters of our model are closer to the targeted model.{ .

X1 = 3.0014X1 − 2X1X2 − X1
2

.

X2 = 2.0001X2 − X1X2 − X2
2

(15)
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Fig. 5. Time series of the acquired model for bimolecular reaction

3.3 Experiment III: Bimolecular Reaction

The a bimolecular reaction equations [11]are described below:

X2 + X1 →k1X3 (16)

X3 →k2X4 + X2 (17)

The corresponding rate equations for all the four species are as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
.

X1 = −2X1X2
.

X2 = −2X1X2 + 1.2X3
.

X3 = 2X1X2 − 1.2X3
.

X4 = 1.2X3

(18)

A time series was generated for the above set of reactions with initial con-
ditions {1, 0.1, 0, 0} for {X1, X2, X3, X4} which is shown in Fig. 5 along with
targeted time series. Experimental parameter for this task are shown in Table 1.

We have acquired the system of eq.(20), which gave the sums of sums of
absolute errors as (X1, X2, X3, X4)=( 1.6 × 10−11, 9.0 × 10−12, 8.8 × 10−12,
2.5 × 10−11). ⎧⎪⎪⎪⎨⎪⎪⎪⎩

.

X1 = −1.9920X1X2
.

X2 = −1.1983X1X2 + 1.9920X3
.

X3 = 1.9920X1X2 − 1.1983X3
.

X4 = 1.1983X3

(19)
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Compared with eq(19) [11], our predicted model and parameters are closer
to the targeted system and the model is able to predict the standard enzyme
kinetics scheme with rate parameters close to the generative values.⎧⎪⎪⎪⎨⎪⎪⎪⎩

.

X1 = −1.99999X1X2
.

X2 = 1.20000X3 − 1.99999X1X2
.

X3 = −1.20000X3 − 2.00000X1X2
.

X4 t = 1.99999X3

(20)

4 Conclusion

In this paper, a new approach for evolving ODEs is proposed. By several exper-
iments, we succeeded in creating the systems of ODEs which are close to the
targeted systems. The result shows the effectiveness and veracity of the proposed
method. The method has following two advantages: (1) a MEP chromosome en-
codes several expressions, so we can acquire the best structure of the ODE only
by a small population; (2) with partitioning, we can acquire the best system
very fast.

In the future, we will apply our approach to the bioinformatics fields to solve
some the real biological problems. We will work on the structure of the interactive
system, which proposes the possible solutions.
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Abstract. This paper investigates supply chain management between the re-
tailer and the supplier with revenue-sharing contract under uncertain demand by 
means of a single-period order within a Just-In-Time setting. And we also show 
how to effectively handle the demand uncertainty in a supply chain, both for the 
case of a centralized-decision-making system and the case of decentralized-
decision-making system. The aim of the paper is to find the optimal order from 
the retailer in both systems in order that the total expected profits are maximal. 
The paper focuses not only on the overall performance but also on the alloca-
tion of the profit between the retailer and the supplier. 

Keywords: Supply chain management; Demand uncertainty; Revenue-sharing 
contract. 

1   Introduction 

Coordination producer and supplier is one of the main issues of supply chain man-
agement (SCM) research, which has attracted many researcher and experts to study 
nowadays. SCM research has generated a significant body of literature. Most of SCM 
literature focuses on the criteria of minimizing expected cost or maximizing expected 
profits. Thus research in supply chain coordination is devoted to designing supply 
contracts that can improve the expected value of a given performance measure. 

Uncertainty plays an important role in the modern SCM. Handling uncertainty in 
an efficient and effective way is becoming more and more important to the success of 
SCM. Uncertainties in SCM include many elements, such as the demand rate, the 
order cost, the holding cost rate, seller’s price and so on. Yu[1],[2] has studied the 
classical economic order quantity (EOQ) model under significant uncertainties includ-
ing the demand, the order cost and the holding cost. And the demand disruptions in 
SCM coordination is also studied  

Traditionally, uncertainty is studied by stochastic models with some appropriate prob-
ability assumptions. For the related supply chain literature, we refer to M.A.Larivieve, 
R.Anupindi, H.Gurnami, and Y. Gerchak . 

Generally speaking, the literature on supply chain management can be roughly split 
into two classes. The first considers the supply chain from the point of view of one 
decision maker and determines those decisions that minimize overall total cost. In 
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these approaches the supply chain is considered as a fully vertically integrated firm 
where all information is common knowledge and the material flow is controlled by a 
single decision maker, where the production yield of the component is either determi-
nistic  or random . 

In fact, most of the models presented so far in the literature have treated subsys-
tems of SCM separately, and attempted to coordinate just parts of the SCM. A lot of 
research has been done considering multi-echelon inventory/distribution systems in 
this area. Models that coordinate the supply chain subsystems such as buyer-vendor 
and production-distribution subsystems ,have appeared in the last decade only. One of 
the representative analytical models that considers the whole SCM is developed by 
Cohen and Lee[3]. 

The second class considers the supply chain as a chain of antagonistically behaving 
companies and analyzes the implications of contract forms . There are only two deci-
sive makers, buyer and supplier. One of the first studies in this area is that of Mona-
ham[4]. 

In our paper, we consider a supply chain consisting of one supplier and one re-
tailer, where the supplier has normal supplying quantity Q  for the retailer. The order 

quantity from the retailer is determined by the market demands, which is stochastic. 
On the behalf of the retailer, he may order quantity is more than Q , which means 

supplier should build up the extra capacity at the higher expense, or less than Q , 

which means supplier should pay the holding cost of the un-ordering capacity. Then 
such supply chain has a coordination mechanism when maximizing the profit of the 
whole supply chain. 

Otherwise, our paper differs from the existing literature in that we not only attempt 
to find contract parameters that allow the decentralized system to perform just as well 
as a centralized one, but we investigate more general coordination mechanisms which 
in addition give us higher flexibility in allocating profit. 

In addition, for analytical simplicity, without loss of generality, we consider the 
system is controlled in the environment of just-in-time. We assume that there is little 
information delay between the retailer and its supplier[5]. Thus we don’t consider any 
inefficiency due to on information distortion in the supply chain[6], [7]. 

The remainder of the paper is organized as follow. In the next section, we establish 
mathematical models to describe the supplier-retailer relationship briefed above. De-
tails of the models and its assumptions are also elaborated. In section 3, we have con-
sidered two extreme cases analysis illustrates and centralized systems and is used in 
the following sections as a benchmark to evaluate the coordination mechanisms. In 
section 4, in which we give the kind of coordination mechanism in profit distribution 
after the joint operation. Finally, we give some examples and the further research’s 
directions. 

2   Models Formulation 

In this section, we model a supply chain consisting of only one manufacturer and its 
supplier. Analytical and managerial implications from this sparse model can be ex-
tended to more complicated situation. The retailer faces a unknown demand X  for a 
finished product which is assembled using a special component or primary product 
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that he orders in q from the supplier, here we suppose that retailer requires one unit of 

the component to produce one unit of the finished product. To the supplier, its normal 
capacity is denoted by Q . In order to satisfy the need of retailer, he should build up 

extra capacity Q∆ , for which is not in the plan, the supplier should use more man-

power and material resource in special setting to finish it, then the unit cost of Q∆ is 

more than that of normal Q . 

demand

supplier retailer

Without delay

Market demand

Suppy cost 0p Product price p
X:F(X),f(x)  

Fig. 1. Depicts the present model situation 

As shown in Fig.1 the delivery quantity q  depends on the normal quantity and ca-

pacity Q∆ . Here if Q∆ is positive, then the supplier should build up the extra capac-

ity Q∆ , otherwise, the supplier should put the | |Q∆  as inventory. Before we give the 

detail of models, we denote the notations as follow.  

q    Demand information/order from the retailer. 

Q    Normal capacity of the supplier. 

X   Random demand for the finished product. 
u    Shortage cost per unit for the finished product. 
v    Holding (recycling) cost of the primary product per unit of retailer 
h    Cost for overcapacity (holding cost) of the supplier. 
p   Product price to the market demand; 

0p   Purchase cost of the primary product per unit/ supply cost; 

ω   Cost for increase the capacity by one unit; 
( , )r q XΠ  The retailer’s profit when the order is q  and the demand is X ; 
( , )s q XΠ  The supplier’s profit when the order is q  and the demand is X ; 

( ( , ))rE q XΠ  The expected profit of the retailer when the order is q  and the de-

mand is X ; 

( ( , ))sE q XΠ  The expected profit of the supplier when the order is q  and the de-

mand is X ; 

Under the unknown market demand, the retailer faces the problem of determining 
the optimal order quality in order to maximum its profit. Here we first give the actual 
total profit of the retailer, and secondly determine the total expected profit depending 
on the random demand X . 

The total profit model: 

  0( , ) min{ , } ( ) ( )q X p X q u X q v q X p q+ +Π = − − − − −                   (1) 
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In the profit function described above, the first term represents the total revenue 
and the second two terms describe the shortage cost and the hold cost respectively, the 
last term shows the procurement cost. 

In this paper, we consider the demand X  is stochastic, that is to say, we don’t 
know the actual number. However through the market analysis, the distribution func-
tion ( )F X , and the density function ( )f X are known to the system, and the same 

time we fix the bound of X  e.g. 1 2[ , ]D D . Here 1D  is the below bound, and 2D is the 

upper bound. 
From the model (1), the total expected profit for the retailer is given by  

2

1

( ( , )) ( ) ( )
D q

m

q D

E q X pqf X dX Xpf X dXΠ = +∫ ∫
2

( ) ( )
D

q

u X q f X dX− −∫  

             1

0( ) ( )
q

D

v q X f X dX p q− − −∫                                       (2) 

The expected profit comprises the expected revenue (the first two terms), the ex-
pected customer penalty cost (the third term), the expected inventory cost (the forth 
term), and the expected procurement cost (the last term). And such the total expected 
profit can be expressed simply as follow. 

  

1

2

1

0 2( ( , )) ( ) ( ) ( )

( ) ( )

q

m

D

D q

q D

E q X p p q u D q p F X dX

u F X dX v F X dX

Π = − − − −

+ −

∫

∫ ∫
                          (3) 

Here we only give the total expected profit of retailer, and we will come back to 
this point later in section3 when we discuss different kinds of supply chain. 

In model (3), the retailer orders quantity q  from the supplier. After receiving the 

order q for goods, the decision-maker of the supplier will check his inventory Q . He 

will build up extra capacity if the order quantity is larger than Q , and if the order 

quantity is less than the Q , the supplier does not use all of the available capacity to 

produce components which must be stored, thus cost may correspond to the cost for 
overshooting capacity, for instance to store unused raw materials. And the cost for 
building up extra capacity is fixed at ω  per unit, at the same time, we suppose that 
the revenue of one unit of the component exceeds the cost of procuring this unit with 
extra capacity, that’s to say, 0p ω> . 

Then, for a given value of the order quantity q  of the producer, the profit for the 

supplier is given as the following models. 

               0( ) ( ) ( ) | ( ) |s q p Q Q Q h Qω + −Π = + ∆ − ∆ − ∆                           (4) 

or      

0( ) ( ) ( )s q p q q Q h Q qω + +Π = − − − −                                    (5) 
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In this model, the first term is denoted as the revenue, and the last two terms are 
cost to increase the capacity and cost for overcapacity respectively. From this model, 
we can see that the profit of supplier isn’t directly connected with the market demand. 
Then the expected function is just same to the model (4) or (5). 

3   Worst and Best Analysis 

In section2, we have given the models of the retailer’ profit as well as the supplier’s 
separately. In real-life situations, the retailer and the supplier optimize their objective 
functions independently. And apart from the order quantity they don’t exchange any 
further information, which is defined as the worst case in this paper. Excepting this 
case, there is another one, defined as the best case, in which there is only one decision 
maker choosing the optimal decision that yields maximize the total expected profit for 
the whole supply chain. So in the section, we will show how the models can be linked 
in different ways. We will also compare the results from the different two cases. At 
the same time, this section will have important relationship with the content of the 
next section. The worst and best case analysis have decided whether it is necessary to 
coordinate the supply chain. 

3.1   The Worst Case  

In the worst case, we assume that the retailer has no idea of the supplier’s informa-
tion. He will order the quantity which can maximize his expected profit. Base on this 
order quantity q , the supplier determines to product the extra capacity q Q−  or hold-

ing the surplus capacity Q q− . 

According to the model (3), the optimal order quality can be calculated as follow. 
Set:   

0( / ) ( ( , )) ( ) ( ) ( ) 0rd dq E X q p p pF q F q gF qπ πΠ = − + − − − =  

We have the solution 

* 1 0( )w

p p
q F

p g

π
π

− − +
=

+ +
                                                  (6) 

Since 2 2( / ) ( ( , )) 0rd dq E X qΠ < , the function ( ( , ))rE X qΠ  is strictly concave. So 

the order quality *
wq can maximize the expected profit of retailer, and retailer’s profit 

is *( ( , ))r wE X qΠ . 

As to the supplier under the worst case, we have two cases to be considered after 

receiving the order *
wq , obviously, the supplier’s profit is represented as follows. 

* *
0

* *
0

( )

( )
w w

s

w w

p q h Q q Q q

p q w q Q Q q

⎧ − − ≥⎪Π = ⎨ − − <⎪⎩
                                          (7) 



 Supply Chain Management with Revenue-Sharing Contract in a JIT Setting 1029 

 

3.2   Best Cast: Joint Operation System 

In this subsection, we will discuss the every member of supply chain management has 
the shared information, and common goals. The retailer cares about not only his 
profit, but also have fully known productivity or its order quality from the whole 
prospective. Depending on q and X  the actual profit of the supply chain is given 

below. 

( , ) min{ , } ( ) min{ , }( )j X q p X q X q g h q Xπ + +Π = − − − −  

                       ( ) min{ , }( )w q Q g h Q q+ +− − − −                                   (8) 

The profit function consists of the total revenue, shortage cost for not meeting the 
external demand, holding cost and cost for building up extra capacity. Note that in the 
cases, the decision-maker of supply chain management will hold the overcapacity or 
over-order product in the place where has the lesser holding cost. 

Then the expected total joint-profit is given as the following model. 

2 2 2

1

( ( , )) ( ) ( ) ( ) ( )
D D Dq

j

q D q q

E q X pqf x dx xpf x dx xf x dx q f x dxπ πΠ = + − +∫ ∫ ∫ ∫

1 1

min{ , } ( ) min{ , } ( ) ( ) min{ , }( )
q q

D D

g h q f x dx g h xf x dx w q Q g h Q q+ +− + − − − −∫ ∫  

To this complex model, we can be formulated below simply. 

1 1

2( ( , )) ( ) min{ , } ( )
q q

j

D D

E q X pq p F X dX D q g h F X dXπ πΠ = − − + −∫ ∫  

                    
2

( ) ( ) min{ , }( )
D

q

F X dX w q Q g h Q qπ + +− − − −∫                  (9) 

Since the total expected joint-profit function satisfies 2 2( / ) ( ( , )) 0jd dq E X qΠ < , 

then the function ( ( , ))jE X qΠ  is also strictly concave, and we can find the optimal 

solution through the following method. 
Set ( / ) ( ( , )) 0jd dq E X qΠ = , i.e. the two cases below. 

Case 1. when ,q Q> we have   

( ) min{ , } ( ) ( ) 0.p pF q g h F q F q wπ π− + − − − =  

Then the solution is  

1 ( )
min{ , }

p w
q F

p g h

π
π

− + −=
+ +

 

If 1q Q> , then the optimal order is 1q , otherwise set that the optimal order is Q  

for the function ( ( , ))jE X qΠ  is strictly concave. 
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Case 2. when 1 ,q Q≤ we have 

( ) min{ , } ( ) ( ) min{ , } 0.p pF q g h F q F q g hπ π− + − − + =  

Then the solution is 2 (1)q F −=  

If 2q Q≤ , then the optimal order is 2q , otherwise set that the optimal order is Q  

for the function ( ( , ))jE X qΠ  is strictly concave. 

From the analysis above, we can draw the following conclusion. 

   

^

min{ , } min{ , }
( ) ( )

min{ , } min{ , }

min{ , }
( ) (1)

min{ , }

(1) (1)

p w g h p w g h
F F Q

p g h p g h

p w g h
q Q F Q F

p g h

F F Q

π π
π π

π
π

− −

− −

− −

+ − − + − −⎧ >⎪ + + + +⎪
+ − −⎪= ≤ ≤⎨ + +⎪

⎪ <
⎪
⎩

       

(10) 

4   Coordination Mechanisms 

The worst /best case analysis shows that in a decentralized system without coordination 
the total expected profit of the entire supply chain is usually higher than in a centralized 
one. In the following, we will determine appropriate coordination mechanisms, which 
allow the decentralized system to achieve the same performance (the same maximal 
overall total expected profit) as a centralized supply chain. Here, we introduce the reve-
nue-sharing contract, which can coordination the profits between supplier and retailer.  

The revenue-sharing contract is flexible in the sense that it allows the supply chain 
profit to be divided between the supplier that the retailer according to any pre-
negotiated ϕ  within certain bounds as specified below. 

In the following analysis, we develop a lower bound and an upper bound for the re-
tailer’s shave ϕ  of the supply chain’ profit. 

The retailer’s expected profit in absence of any contract cannot be greater than that 
in the revenue-sharing contract. That is, 

             

^

( ( ( , )))jE X qϕ Π ≥ *( ( , ))m wE q XΠ                                      (11) 

Which gives a lower bound,  

*

^

( ( , ))

( ( , ))

m w

j

E q X

E X q

Π

Π
 

Likewise, for the supplier,  

   

^

(1 ) (( ( , ))) ( )j s w
E X q qϕ− Π ≥ ∏                                   (12) 
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Then the upper bound,  

^
*

^

( ( , )) ( )

( ( , ))

j s w

j

E X q q

E X q

Π − Π

Π
 

So, In order to ensure that retailer and supplier have incentives to enter into a reve-
nue-sharing contract, the retailer’s share ϕ  of the supply chain’s profit should satisfy: 

      

^
**

^ ^

( ( , )) ( )( ( , ))

( ( , )) ( ( , ))

j s wm w

j j

E X q qE q X

E X q E X q
ϕ

Π − ΠΠ
≤ ≤

Π Π
                         (13) 

It is easy to see that if the supplier and the retailer have agreed to the revenue-sharing 
contract, then both will be benefited, and the profit of the supply chain, the supplier 
and the retailer will increased by amount  

^
* *( ( , )) ( ( , )) ( )j m w s wE X q E q X qΠ − Π − Π

 
^

(1 ) (( ( , )))jE X qϕ− Π − *( )s wqΠ  

and  

^

( ( ( , )))jE X qϕ Π − *( ( , ))m wE q XΠ  

respectively. 

5   Discussion 

In order to get a better understanding of the underlying contract mechanisms problem 
and to illustrate the flexibility of profit allocation using the described coordination we 
consider a numerical example. For a general and deeper discussion of the behavior of 
the contract mechanisms, and particularly the range over which the total cost of the 
supply chain can be allocated. 

We assume the special case that the random market demand X  follows a uniform 
distribution over the range[2000,3800],  thus the density function ( )f x is given by 

1/1800 200 3800
( )

0

if x
f x

otherwise

≤ ≤⎧
= ⎨
⎩

 

The other parameters are specified as follows: The price charged by the supplier to 
the retailer for each unit of the supply product and the price for each unit to the 
marked are 0p =$10 and p =$16, respectively. The retailer must store any unsold 

supply product at a value of v =$4 per unit and pays a shortage cost for the final 
product, which is u =$30 per unit. In order to illustrate the complexity of the prob-
lem, we consider three cases to the normal capacity of the supplier, which are 
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3000, 3600,Q Q= = and 4200Q = respectively. To increase the capacity by one unit 

costs the supplier ω =$4 and the holding cost is h=$2 per unit. The analysis under 
different cases is given blow. 

Case 1. When normal capacity of the supplier 3000Q = . Worst case compared with best case  

(ϕ :=0.22). 

the optimal order q  ( )sE Π  ( )rE Π  ( )jE Π  

Worst case 3296 31480 8328 39808 
Best case 3537 32385 9134 41519 

 
Case 2. When normal capacity of the supplier 3600Q = . Worst case compared with best case 

(ϕ :=0.22). 

the optimal order q  ( )sE Π  ( )rE Π  ( )jE Π  

Worst case 3296 32352 8328 8328 
Best case 3600 34684 9783 44467 

 

Case 3. When normal capacity of the supplier 4200=Q .Worst case compared with best 

case  ( ϕ :=0.22). 

the optimal order q  ( )sE Π  ( )rE Π  ( )jE Π  

Worst case 3296 31152 8328 39480 
Best case 3800 34164 9636 43800 
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Abstract. As a new robot mechanism variable geometry truss manipulator can 
be applied widely for its good performance. Forward displacement of variable 
geometry truss manipulator is always transformed into finding the solutions of 
nonlinear equations. Newton iterative method is an important technique to one 
dimensional and multidimensional variable and often used to solve nonlinear 
equations. Iterative process is sensitive to the initial point. The mathematical 
programming method is adopted when the iteration diverges with the Newton 
and quasi-Newton methods. A new method of finding all solutions of nonlinear 
questions is proposed, in which we combine mathematical programming method 
with hyper-chaotic neuron network system and utilize  hyper-chaotic network 
system to obtain locate initial points. The numerical example in dodecahedron 
variable geometry truss manipulator synthesis shows that all solutions have been 
quickly obtained, and it also shows that the method is correct and effective. This 
provides a simple and new method for mechanism design.  

Keywords: Hyper-chaotic system, Neuron network, Mathematical programming 
method, Dodecahedron variable geometry truss manipulator, Non-linear equations. 

1   Introduction 

As robot mechanism the variable-geometry truss mechanisms have their particular 
structure characteristic and good mechanical performance, which overcome the bad 
stiffness in the sequence robots and little workspace in the parallel manipulator. The 
variable-geometry truss mechanism has the extensive potential application foreground 
in space navigation, industrial automation and new robot mechanism and so on. 
Variable-geometry truss mechanism is composed of series of variable geometry 
fundamental unit, in which tetrahedron, octahedron, decahedron and dodecahedron [1] 
are their four basic units. In this kind of mechanism only pull or tension is loaded on 
every component, which leads to good stiffness, high carrying capacity, large 
workspace and good facility. Many researchers have done much work [1-10] about the 
kinematic analysis of this kind of mechanism, which is composed of four fundamental 
units. The configuration analysis of these mechanisms is about how to find the 
solutions of non-linear equations and it is a very tough theoretic problem. We often use 
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numerical methods, analytic methods and numerical & analytic hybrid methods to find 
solutions. Numerical methods include optimization method, interval analysis method 
and Homotopy continuation method etc. and analytic methods include polynomial 
remainder method, Wu methods and Groebner base method etc.[6-8]  Analytic 
methods can find all the solutions with the shortcoming of large number of middle 
dilations term and long calculation time and unable to solve the high dimensionality 
problem. Numerical methods often can only find one solution with a high demand of 
initial value. The Homotopy continuation method can also find all the solution, but the 
computation in range of complex number field, computation task is huge and is hard to 
create the original equations. Chaos is one of most achievement in 21st century. How to 
use the chaotic characteristic in the mechanism is very important. Using the chaotic 
method, Luo et al.[10] had found the positive solutions of 6-SPS mechanism in the real 
numbers rang, in which he considered Julia set point appears in the neighbor space of 
solution equations’ Jacobian matrix determinant whose value is zero. But assumption 
is not proved and to the multi-variables Jacobian matrix determinant it is very difficult. 
Chaotic serials method is a new method, in which using chaotic and hyper-chaotic 
system to generate Newton initial value we can find all real solutions [11-13] in the 
mechanism synthesis. When divergent in the Newton and Quasi-Newton methods 
[14,15], we adopt hyper-chaos-based mathematic programming. The man-made neural 
network system is very complicated nonlinearity dynamics system that is the most 
perfect information processing with the function is up to now the strongest and the 
efficiency is the highest [16]. This paper provides a new method of mechanism 
synthesis, in which mathematical programming method combines hyper-chaos neural 
network system variable geometry truss manipulator. 

2   Hyper-Chaotic Neural Network of Permanent Sustaining Chaos 

Model of hyper-chaotic neural network of permanent sustaining chaos is as follows 
[16]. 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⋅−=+

−⋅−+⋅+⋅=+
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ty

i
i

β

α

µµ

                (1)  

Where, ix  is neuron output, iy  is internal condition of the ith neuron, ijW  is connect 

weights from the jth neuron to the ith neuron, iI is biased of the ith neuron, 0I  is 

positive constant, k  is damping factor of neuron（ 10 ≤≤ k ）, β  is the constant of 

simulated annealing rate（ 10 ≤≤ β ）； )(tzi is the constant term of self-control 

feedback, α  is joint strength between neurons, µ  is parameter of activation function, 

n  is the number of neurons. 
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Fig. 1. Topological structure of uni-axial cycle connection 

 

Fig. 2. Phase diagram of neuron 

While 0=β , self-control feedback term is zero, chaos has the characteristic of 

permanent sustaining [16]. Figure 1 is the joint neuron network of four neurons (n=4), 
let ,2.0,3.0,3.0)(,2 0 ==== kItziµ  7.0=α , internal condition initial value 

,)]1(),1(),1(),1([)1( Trandrandrandrandyi = is generated randomly, neuron biased is 

[0.92181,0.73821,0.17627,0.40571]= TI , weights is  

0 0.95013 0 0

0 0 0.8913 0

0 0 0 0.82141

0.4447 0 0 0

W

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

After calculating Lyapunov exponents are , respectively 

594168.0,019262.0.0

201916.0,380476.0

43

21

−=−=
==

LELE

LELE
. 
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The system has two positive Lyapunov exponents. The system is hyper-chaotic 
system and phase diagram is shown as Figure 2. 

3   Mathematical Programming of Nonlinear Equations 

Newton iterative method is often used and it is an important one-dimensional and 
multi-dimensional technique. We use mathematical programming method when 
Newton method and quasi-Newton method are not convergent [14,15]. 

If nonlinear equations are 

  ( ) 0( , 1,2, , )n
if D R i n= ∈ ⊂ =x x "                                      (2) 

Where ( )if x  has continuous 2-rank derivative in convex set, and there is * D∈x  

satisfying *( ) 0( 1, 2, , )if i n= =x " . 

Denoting 0( ( )i is sign f x= , where 0x  is initial value of D , because of function 

continuous, near 0x , x  satisfies 

( ) 0( 1,2, , )i is f i n≥ =x "                                             (3)  

Equations (2) can be transformed into 

1

( ) min ( )

. : ( ) 0 ( 1,2, , ) .

n

i i
i

i i

s f D

subject to s f i n
=

⎧ → ∈⎪
⎨
⎪ ≥ =⎩

∑ x x

x "
                 (4) 

Because ( ) 0,i is f ≥x  so
1

( ) 0
n

i i
i

s f
=

≥∑ x , substituting *( ) 0if =x  into formula （4） 

to satisfy constraint condition and objective value is zero. So *x  are the solutions of 
formula （4）. If there are no solutions for equations (2), the optimum point can not 
be the solutions of equations (2). If ( )if x  has no continuous 2-rank derivative in 

convex set, we use numerical difference substituting derivative. 

4   Solution Method for Nonlinear Equations Based on Hyper-
Chaotic Mathematical Programming 

The steps of solution for nonlinear equations based on mathematical programming of 
hyper-chaotic neural network are as follows. 

Step 1. For equation (1), select corresponding parameters of neural network of four 
neuron connection and generate initial point of internal state iy  to create hyper-

chaotic set 1 10( , )x i j ( 1 11,2., ,i n= " , 1n is the number of variables， 1 1,2, ,j N= " ，

where N is the length of hyper-chaotic set，where N is changeable with the tried 
solution). In addition, if 1 4n >  we should run many times to generate 1 10( , )x i j . 
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Step 2. Take 1j
th chaotic sequence 1(:, )x j as the initial value of mathematical pro-

gramming method, after running N times, we can get all real solutions *x . 

5   Forward Displacement of Dodecahedron Variable Geometry 
Truss Manipulator 

Dodecahedron variable geometry truss manipulator of six degrees is shown as figure 3. 
The mechanism is composed of ending platform FGH, six flex member (input bar), six 
stable length member and basic platform. With the change of input member length, 
ending platform will move compared to the basic platform and basic platform is fixed 
to the referent coordinate system. 

The constraint equations of dodecahedron variable geometry truss manipulator can 
be expressed as follows [3]. 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
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           (5) 

In equation (5), there are 15 constraint equations, given the bar length and every 
coordinate of joint points of basic platform, there are 15 variables for D,E,F,G,H 
coordinate.  

Let 1 2 15[ , , , ] [ , , , , , , , , , , , , , , ]T T
x y z x y z x y z x y z x y zx x x F F F H H H E E E D D D G G G= =x " , 

equation (5) can be transformed into 1 2 15( ) [ , , , ] 0Tf f f= =F x " . 

Given the geometry parameters  

1GD GF FH GH GE BD BE DA CEL L L L L L L L L= = = = = = = = =  

3
1, 0, 0.5,

2x y z x y z z x yA A A B B B C C C= = = = = = = = =  
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Fig. 3. Dodecahedron variable geometry truss manipulator of six degrees 

Table 1. Forward displacement of dodecahedron variable geometry truss manipulator 

NO 41x  42x  43x  31x  32x  33x  21x  22x  

1 -0.0733 1.0942 -0.4872 0.6791 0.9762 0.1609 0.9585 0.0240 
2 -0.0733 1.0942 0.4872 0.6791 0.9762 -0.1609 0.9585 0.0240 
3 0.0982 0.6341 1.0141 0.5982 -0.2320 1.0141 0.0231 0.5640 
4 0.0982 0.6341 -1.0141 0.5982 -0.2320 -1.0141 0.0231 0.5640 
5 0.1206 0.7048 -0.9637 0.3253 1.1513 -0.0927 0.0664 0.5390 
6 0.1206 0.7048 0.9637 0.3253 1.1513 0.0927 0.0664 0.5390 
7 0.2523 1.0273 -0.5666 0.5958 0.9733 0.3710 0.9397 0.0348 
8 0.2523 1.0273 0.5666 0.5958 0.9733 -0.3710 0.9397 0.0348 
9 0.3115 1.0116 0.5654 0.5642 0.9800 -0.4016 0.9207 0.0458 

10 0.3115 1.0116 -0.5654 0.5642 0.9800 0.4016 0.9207 0.0458 
11 0.6889 0.9751 -0.1210 1.1889 0.1091 -0.1210 0.4956 0.2912 
12 0.6889 0.9751 0.1210 1.1889 0.1091 0.1210 0.4956 0.2912 
13 1.0205 0.4565 0.4360 0.5377 1.0530 -0.2051 -0.4131 0.8159 
14 1.0205 0.4565 -0.4360 0.5377 1.0530 0.2051 -0.4131 0.8159 
15 1.0933 0.1521 0.4707 0.6077 1.0010 0.2622 -0.3093 0.7559 
16 1.0933 0.1521 -0.4707 0.6077 1.0010 -0.2622 -0.3093 0.7559 
17 1.1308 -0.0014 -0.4016 1.0318 -0.2360 0.5654 0.9207 0.0458 
18 1.1308 -0.0014 0.4016 1.0318 -0.2360 -0.5654 0.9207 0.0458 
19 1.1408 0.0293 0.3710 1.0158 -0.2952 -0.5666 0.3400 0.3810 
20 1.1408 0.0293 -0.3710 1.0158 -0.2952 0.5666 0.3400 0.3810 
21 1.1597 -0.2940 0.0927 0.6707 -0.2480 0.9637 0.0664 0.5390 
22 1.1597 -0.2940 -0.0927 0.6707 -0.2480 -0.9637 0.0664 0.5390 
23 1.1707 0.0258 0.2622 0.6784 0.8708 0.4707 -0.3093 0.7559 
24 1.1707 0.0258 -0.2622 0.6784 0.8708 -0.4707 -0.3093 0.7559 
25 1.1808 -0.0609 -0.2051 0.9056 0.6555 0.4360 -0.0203 0.5891 
26 1.1808 -0.0609 0.2051 0.9056 0.6555 -0.4360 -0.0203 0.5891 
27 1.1850 0.1000 -0.1609 0.9109 -0.6106 0.4872 0.9585 0.0240 
28 1.1850 0.1000 0.1609 0.9109 -0.6106 -0.4872 0.9585 0.0240 
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Table 1. (continued) 

NO 23x  51x  52x  53x  81x  82x  83x  

1 0.2842 0.5000 0.8181 0.2842 0.5492 0.3171 -0.5798 
2 -0.2842 0.5000 0.8181 -0.2842 0.5492 0.3171 0.5798 
3 0.8254 0.5000 -0.2620 0.8254 0.9875 0.5701 0.5611 
4 -0.8254 0.5000 -0.2620 -0.8254 0.9875 0.5701 -0.5611 
5 -0.8397 0.5000 -0.2120 -0.8397 1.0196 0.5886 -0.5414 
6 0.8397 0.5000 -0.2120 0.8397 1.0196 0.5886 0.5414 
7 0.3403 0.5000 0.1039 -0.8598 1.1721 0.6767 -0.3905 
8 -0.3403 0.5000 0.1039 0.8598 1.1721 0.6767 0.3905 
9 -0.3876 0.5000 0.7745 -0.3876 1.2256 0.7076 0.2972 

10 0.3876 0.5000 0.7745 0.3876 1.2256 0.7076 -0.2972 
11 -0.8183 0.5000 0.2836 -0.8183 0.2209 0.1275 0.1292 
12 0.8183 0.5000 0.2836 0.8183 0.2209 0.1275 -0.1292 
13 -0.4046 0.5000 -0.3121 0.8078 0.2106 0.1216 -0.0455 
14 0.4046 0.5000 -0.3121 -0.8078 0.2106 0.1216 0.0455 
15 0.5770 0.5000 -0.6458 0.5770 0.2092 0.1208 0.0045 
16 -0.5770 0.5000 -0.6458 -0.5770 0.2092 0.1208 -0.0045 
17 -0.3876 0.5000 0.7745 -0.3876 1.2256 0.7076 0.2972 
18 0.3876 0.5000 0.7745 0.3876 1.2256 0.7076 -0.2972 
19 -0.8598 0.5000 0.7964 0.3403 1.1721 0.6767 -0.3905 
20 0.8598 0.5000 0.7964 -0.3403 1.1721 0.6767 0.3905 
21 0.8397 0.5000 -0.2120 0.8397 1.0196 0.5886 0.5414 
22 -0.8397 0.5000 -0.2120 -0.8397 1.0196 0.5886 -0.5414 
23 0.5769 0.5000 -0.6459 0.5769 0.2092 0.1208 0.0045 
24 -0.5770 0.5000 -0.6458 -0.5770 0.2092 0.1208 -0.0045 
25 0.8078 0.5000 -0.7657 -0.4046 0.2106 0.1216 -0.0455 
26 -0.8078 0.5000 -0.7657 0.4046 0.2106 0.1216 0.0455 

          27 -0.2842 0.5000 0.8181 -0.2842 0.5492 0.3171 0.5798 

          28 0.2842 0.5000 0.8181 0.2842 0.5492 0.3171 -0.5798 

 
 
And lengths of driven part are 0.8, 1.2, 1GA GC BF BD FD FBL L L L L L= = = = = = . To solve 

equation ( ) 0=F x  with the proposed method, all the real solutions are shown as Table 1 

and the results are the same the reference [3], but the calculation is done in real number 
field. 

6   Conclusions 

The paper investigates the combination of mathematical programming and hyper-
chaotic neural network system. The hyper-chaotic sequences generated by the hyper-
chaotic neural network system and taken as initial values of mathematical 
programming methods, all solutions of nonlinear equations are found. The synthesis 
sample of dodecahedron variable geometry truss manipulator proves the method is 
correct and effective. It lays a good foundation for engineering and provides a good 
way for chaotic characteristic of other iterative method. 
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Abstract. This paper proposes an adaptive multi-objective hybrid genetic 
algorithm (MO-HGA) based on the serial scheduling method to solve the 
resource-constrained transport task scheduling problem (RCTTSP) with two 
optimal objectives. The proposed algorithm uses the serial scheduling method 
to initialize the population and evaluate the individual, and use the weighted 
sum method and the rank-based fitness assignment method to assign the 
individual fitness. Furthermore, an adaptive GA parameters tuning method 
based on fuzzy logic controller is implemented to improve the performance of 
the algorithm. Firstly, this paper describes the multi-objective RCTTSP and 
presents the principle of the adaptive MO-HGA, and then develops the 
algorithm to implement several experimental cases with different problem sizes, 
lastly the effectiveness and efficiency of the algorithm are compared. The 
numerical result indicates that the proposed adaptive MO-HGA can resolve the 
proposed multi-objective resource-constrained transport task scheduling 
problem efficiently. 

Keywords: Multi-Objective, Resource-Constrained Transport Task Scheduling, 
Serial Scheduling, Hybrid Genetic Algorithm, Fuzzy Logic Controller. 

1   Introduction 

The multi-objective resource-constrained transport task scheduling problem considers 
a transport scheduling problem in a transport network of multiple transport entities 
distributed across a predefined geographical area, and each entity has different tasks 
need to be scheduled simultaneously. A transport task is defined as a request to load 
some cargo at a certain entity after a given release time, to move it to its destination 
entity and to unload the cargo before a given due time. Each entity has limited 
capacity of transport resources including vehicles, docks for loading and unloading, 
parking lot and cargo storage space. Any entity can rent the vehicle from other entities 
when ever there is a lack of the vehicle, and the vehicle must return to its owner when 
the cargo has been transported to the destination entity. The executive process of a 
transport task consists of a series of activities including empty vehicle travel, loading, 
transporting with cargo, parking, unloading, storage and empty vehicle return. The 
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question is how to integrate these resource capacity restrictions in the scheduling 
process for the tasks of all entities. The result of scheduling is to determine the start 
time, the finish time and the operational cost of each activity, such that the precedence 
constraint and the resource constraint are obeyed. The optimal objectives include the 
total operational cost of all tasks is minimized and the total delay of all tasks is 
minimized. 

The multi-objective RCTTSP can be modeled as a vehicle scheduling problem 
with time windows[1,2]. The literature on vehicle scheduling problem seldom 
considers the multiple terminal heterogeneous resource capacity restrictions and the 
transport activity scheduling. Kim and Tanchoco[3] consider a manufacturing job 
shop with the automated guided vehicles. Such a system is characterized by several 
complex features such as the random pattern of material flows between machines, the 
limited capacity of machine buffers, shop deadlock phenomena, floating bottlenecks, 
etc. Van der Heijden and M.C., Ebben[4] apply a serial scheduling method to solve 
the vehicle scheduling problem in an automated transportation network. In their 
method, they neglect finite resource capacities at the terminals. In their cases, there 
are no parking and storage restrictions. M.J.R. Ebben and M.C. van der Heijden[5] 
present a dynamic vehicle scheduling problem with multiple resource capacity 
constraints. The transport resources include vehicles, docks, parking places, and 
storage. David Naso and Michele Surico[6] consider the supply chain for the 
production and distribution of ready-mixed concrete. The limited capacities of trucks, 
loading dock and unloading dock are taken into account. Loading, transport, 
unloading, and return activities are scheduled simultaneously. In these papers, the 
problem of multiple objectives optimized simultaneously does not be covered. 

The multi-objective RCTTSP can be characterized as an activity scheduling 
problem with the precedence and resource constraints. Resource constraints and 
activity scheduling are common for the resource-constrained project scheduling 
problem (RCPSP). The RCPSP is a generalization of the static job shop, flow shop, 
assembly line balancing, related scheduling problem and hence belongs to the class of 
NP-hard problems[7,8]. Two well-known heuristics for the resource-constrained 
project scheduling problem are the serial and parallel scheduling methods[9,10]. The 
classical RCPSP considers a determinate set of activities to be scheduled. But, the 
RCTTSP needs to determine some activities such as empty vehicle travel when the 
vehicle is rented from the other entity temporarily during the process of scheduling, 
not before scheduling. So the serial or parallel scheduling method for RCPSP can not 
be applied directly, so that it is needed to extend the serial or parallel scheduling 
method with the specific heuristic rules for transport activity scheduling. In the 
research area on RCPSP, some authors consider the hybrid genetic algorithm based on 
the serial scheduling method, which has been shown can improve serial scheduling 
method efficiently and is superior to the large-scale RCPSP problems[11,12,13]. 
Furthermore, the adaptive genetic algorithm has been developed to improve the 
convergence performance and the global search ability of the traditional GA which 
sets the GA parameter values fixed[14,15,16]. 

Recent years, the GA has been applied to resolve the multi-objective scheduling 
problem. G.Celano[17] proposes a multi-objective genetic algorithm for the 
scheduling of a mixed model assembly line. The simple sum and the weighted sum 
methods are used to calculate the fitness of individual. P.C. Chang[14] discusses a 
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scheduling problem for drilling operation in a real-world printed circuit board factory 
is considered. Two derivatives of multi objectives genetic algorithms are proposed 
under two objectives with the weighted sum method which the weights consist of 
random numbers. Loo Hay Lee[18] proposes a multi-objective genetic algorithm 
(MOGA) to solve the flight scheduling problem. The rank-based fitness assignment 
method and the SIMAIR 2.0 simulation model are used. 

In this paper, the scheduling model for the activity scheduling of the multi-
objective RCTTSP is proposed, which needs to obey the multiple resource constraints 
and the precedence constraints in a transportation environment with multiple transport 
entities. Then an adaptive MO-HGA based on the serial scheduling method and the 
fuzzy logic controller are developed to solve the multi-objective RCTTSP. Next 
section describes the multi-objective RCTTSP and presents the mathematical model 
of the multi-objective RCTTSP. Section 3 proposes a multi-objective hybrid GA 
which extends the standard GA with the serial scheduling method based on the 
priority of task and the heuristic rules of the transport activity scheduling, and the 
weighted sum based fitness assignment method and the rank-based fitness assignment 
method are used. Moreover, an adaptive GA parameters tuning method based on the 
fuzzy logic controller is implemented to improve the performance of the MO-HGA. 
Section 4, the computational experiments of various problem sizes are presented, and 
the effectiveness and efficiency of the MO-HGA are compared. The conclusion 
follows in section 5. 

2   Multi-objective RCTTSP 

The multi-objective resource-constrained transport task scheduling problem is 
described as follows: (1) Multiple transport entities are considered, each entity has 
multiple tasks to be scheduled, each task has a series of activities which needs various 
transport resource, and the start time of each activity is dependent upon the 
completion of some other activities (precedence constraints). (2) A feasible schedule 
is to determine the earliest release and due time of each activity, and the precedence 
and resource constraints are obeyed. (3) The scheduling objective is to minimize the 
total operational cost and the total delay. The mathematical model of the RCTTSP can 
be formulated as follows: 

1 1 1 1

1 1
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i: entity index, i = 1, 2, … ,I. l: task index in entity i, l = 1, 2, … , Li. m: activity 
index in task l of entity i, m = 1, 2, … , Mil. r: resource index in entity i, r = 1, 2, … , 
Ri. t: scheduling time, t = 1, 2, … , T. 

C: the total operational cost of all tasks. TT: the total delay of all tasks. qmr: the 
quantity of resource r consumed by activity m of each task of entity i, qmr = 0, 1, 2, …. 
cmr:  the unit cost of the resource r which is utilized for activity m of each task of entity 
i, cmr = 0, 1, 2, …. dm: the duration of activity m, dm = 0, 1, 2, …. FTm: the finish time 
of activity m，FTm = 0, 1, 2, …. STl: the start time (the release time ) of task l，STl = 
0, 1, 2, …. FTl: the finish time (the due time or the ready time) of task l，FTl = 0, 1,  
2, …. DTl: the expected finish time of task l, DTl = 0, 1, 2, …. Pm: the set of immediate 
predecessors of activity m. Qr : the maximum of resource r at entity i, Qr = 0, 1, 2, …. 
Mt :  the set of activities being in process period t (t-1, t). T: the maximum of the finish 
time of all activities. 

The objective function (1) minimizes the total cost of all tasks and the total delay. 
Constraint (2) considers the precedence relations between each pair of activities (n, 
m), where n immediately precedes m. Constraint (3) denotes that the interval between 
the release time and the ready time of each task equals the sum of the duration of all 
activities executed for this task. Constraint (4) states the limitation of the total 
resource usage within each period. Finally, constraint (5) defines the upper limit of 
the scheduling time. The executive process of one transport task is shown in Fig. 1. 

 

Fig. 1. The executive process of one transport task 

A task of the original entity is available to be executed at the release time. In case 
the cargo cannot be transported immediately, the cargo is stored in the storage. When 
the vehicle and dock resources are available, the cargo can be loaded, and the vehicle 
can start driving to the destination after loading. When the vehicle arrives at the 
destination, it is possible that the vehicle has to wait at the parking place until the 
unloading and storage capacities are available. After unloading, the cargo is stored in 
the storage until the due time, and the empty vehicle needs to return or is assigned to 
transport for a new task immediately. During the process of one task to be executed, 
the activities 1, 2, 5, 8 are optional. If there are sufficient vehicle and loading 
resources, the activities 1 and 2 need not to be scheduled. If there is a lack of 
unloading resource, the activity 5 needs to be considered. The activity 8 could not be 
executed if the transport destination is just the origin of the vehicle.  
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3   Adaptive MO-HGA 

Because the activities have to be determined during the scheduling process, it is 
considered to encode the priority sequence of the transport tasks. The position-based 
crossover (PBC), the partially mapped crossover (PMC), the swap mutation, and the 
elitist selection are used. 

The activities of each task should be scheduled by using a special local search 
method based on the heuristic rules, which is used to schedule the target value in the 
individual evaluation phase and to determine the individual fitness. The weighted sum 
method and the rank-based fitness assignment method are used to assign the 
individual fitness. The heuristic rules consider the cost and the delay factors, and the 
serial scheduling process produces two feasible schemes simultaneously. 

For the fine-tuning of GA parameters, the fuzzy logic controller (FLC) has been 
proved very useful. Kwan Woo Kim and Mitsuo Gen[12,13] use the fuzzy logic 
technique to regulate the increasing and decreasing range of the crossover and 
mutation probabilities. The scheduling process is shown in Fig. 2. 

 

Elitist selection with twice the population

No 

Yes 

Termination check ?

End

Initial population and evaluation

Start

Individual evaluation 

Activity scheduling of tasks with twice the population 

Genetic operation 

(1)  PBC ＋ Swap mutation 

(2) PMC ＋ Swap mutation

Calculate the individual fitness 

(1)  Weighted sum 

(2)  Rank-based fitness assignment 

Keep the scheduling result

Pc, Pm Tuning based on fuzzy controllers 

 

Fig. 2. The scheduling process of the adaptive MO-HGA 

3.1   Chromosome Encoding and Genetic Operator 

For encoding the sequence of the transport tasks, the position of a gene denotes a task 
and the value of a gene denotes the priority associated with the task. The value of a 
gene is an integer exclusively within [1, n] (n: the number of total tasks). During the 
process of evolution, the position-based crossover operator is to take some genes from 
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one parent at random and to fill vacuum position with genes from the other parent by 
a left-to-right scan. The partially mapped crossover operator is to select two random 
crossover positions and to produce the offspring according to the mapping relation 
between two parents firstly, and then to perform a repairing procedure to resolve 
precedence conflict. The swap mutation operator is used, which simply selects two 
positions at random and swaps their contents. The elitist selection is based on the 
proportional selection. 

3.2   Population Initialization 

The initial population to be evolved is produced by using the serial scheduling method 
based on the priority rules of tasks. Firstly, the entity to be scheduled preferentially is 
selected. Secondly, a kind of priority rule for the task scheduling is chosen, and the 
priority of all tasks is determined. The priority rules include the earliest due time, 
earliest release time, maximum task cost, and maximum duration. Lastly, the other 
individuals are initialized. 

3.3   Individual Evaluation 

In individual evaluation phase, the feasible scheduling of each activity to accomplish 
a task can be obtained by a heuristic local search method. It is to determine the 
scheduling target value and individual fitness simultaneously. In order to minimize 
the total cost and the total delay of all tasks, two kinds of heuristic rule for how to 
obtain the vehicle resources are used. The serial scheduling process with twice the 
population includes 4 steps: 

Step 1 is to convert the priority sequence to task scheduling sequence. 
Step 2 is to produce the activity scheduling by using the serial scheduling method 

based on the special heuristic rules, and to determine the start and finish time of each 
activity. The heuristic procedure is described as follows: 

(1) To check the resource constraints at the original entity i. The vehicle capacity is 
checked firstly. If there is a shortage of vehicle at entity i, vehicle needs to be rented 
from the other entity k according to the minimum cost rule, so that the earliest time 
while a vehicle can be available is determined. Then the loading capacity is checked 
to determine the earliest time while a loading resource is ready, and the earliest time 
of departure can be calculated at the same time. 

(2) To check the resource constraints at the destination entity j. After the cargo has 
been transported to entity j, the capacity of parking, unloading, and storage are 
checked in turn. The earliest time of parking (arriving), unloading, empty vehicle 
return, and storage can be determined. If the parking resource is not sufficient, the 
earliest time of vehicle needs to be postponed. 

(3) To combine the task l being scheduled with the unscheduled task of the 
destination entity j. If there is any task of entity j which is suitable for scheduling, and 
the destination entity of this new task is just the provider of the vehicle. 

Step 3 is to calculate the target value (the total operational cost), to convert the 
target value to the individual fitness, and to produce twice the population. 

Step 4 is to assign the fitness of individuals with the weighted sum method and the 
rank-based fitness assignment method. 
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3.4   Fitness Assignment 

The principle of weighted sum method[14] is to transform multiple objectives into 
single objective through the weighted sum of objectives. Once the weights are 
determined, the searching direction is fixed. To search all optimal solutions, the 
searching directions are changed to cover the whole solution space. The changes rely 
on the weights. The weights consist of random numbers. This rank-based fitness 
assignment method[18] explicitly emphasizes non-dominated solutions while 
maintaining diversity in the non-dominated solutions; it ranks each individual solution 
according to the number of solutions in the current population by which it is 
dominated. All non-dominated individuals are thus assigned Rank 1, and any other 
individual is assigned a rank equal to the number of solutions that dominate solution 
plus one. 

3.5   Adaptive GA Parameters Tuning 

The tuning principle for the crossover and mutation probabilities (Pc and Pm) is to 
consider the changes in the average fitness of the population. For the minimization 
problem, the changes of the average fitness at generation t and t-1 are ( : )avgFit V t∆  

and ( : 1)avgFit V t∆ − , and the changes of the Pc and Pm are cP∆  and mP∆ . These 

values can be considered to regulate the Pc and Pm as follows:  

(1) The inputs of the crossover and mutation FLCs are ( : )avgFit V tλ∆  and 

( : 1)avgFit V tλ∆ − , and the outputs are cP∆  and mP∆ . λ  is a scaling factor that 

regulates the average fitness. (2) The membership functions of fuzzy input and output 
variables are shown in table 1 and table 2, which are the same fuzzy decision tables 
quoted from the study by KwanWoo Kim[12]. (3) To calculate the cP∆  and mP∆ , 

cP∆ = ( , )Z i jα , mP∆ = ( , )Z i jβ , where the ( , )Z i j  is the corresponding values of the 

( : )avgFit V t∆  and ( : 1)avgFit V t∆ −  for defuzzification. The ( , )Z i j  is the same for the 

Pc and Pm. The α  and β  are the given values to regulate the increasing and 

decreasing range for the Pc and Pm. (4) To update the Pc and Pm by the following 
equations: ( ) ( 1)c c cP t P t P= − + ∆ , ( ) ( 1)m m mP t P t P= − + ∆ , where the ( )cP t  and ( )mP t  

are the crossover and mutation probabilities at generation t. (5) To reset the Pc and Pm. 
If the best target value of population has not changed in N successive generations and 
the Pc and Pm equal 1 or 0, then ( ) (0)c cP t P=  and ( ) (0)m mP t P= . (6) In this paper,  
 

Table 1. Input and output results of discretization 

Inputs Outputs Inputs Outputs 
0.7x ≤ −  -4 0.1  0.3x< ≤  1 

0.7 0.5x− < ≤ −  -3 0.3 0.5x< ≤  2 

0.5 0.3x− < ≤ −  -2 0.5 0.7x< ≤  3 

0.3 0.1x− < ≤ −  -1 0.7x >  4 

0.1 0.1x− < ≤  0   
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Table 2. Defuzzification table for control action of ( , )Z i j  

i ( , )Z i j  −4 −3 −2 −1 0 1 2 3 4 
−4 −4 −3 −3 −2 −2 −1 −1 0 0 
−3 −3 −3 −2 −2 −1 −1 0 0 1 
−2 −3 −2 −2 −1 −1 0 0 1 1 
−1 −2 −2 −1 −1 0 0 1 1 2 
0 −2 −1 −1 0 2 1 1 2 2 
1 −1 −1 0 0 1 1 2 2 3 
2 −1 0 0 1 1 2 2 3 3 
3 0 0 1 1 2 2 3 3 4 

j 

4 0 1 1 2 2 3 3 4 4 

 
4λ = , 0.125α = , 0.125β = , and N = 5. Where x is the input result of the 

( : )avgFit V t∆  and ( : 1)avgFit V t∆ − . 

4   Numerical Experiments 

In order to verify the effectiveness and efficiency of the adaptive MO-HGA, three test 
problems with different amounts of transport entities and tasks are designed. The 
amounts of entities are 3, 5, and 10, and the amounts of tasks are 12, 40, and 120. For 
each test problem with the same size of tasks, the no-overlapping execution time (T1) 
and the overlapping execution time (T2) are set, which is to analyze how the time 
complexity of tasks to influence the effectiveness and efficiency of the algorithm. The 
transport tasks data of the first test problem, the transport resource, unit cost of 
transport resource, time to transport, loading and unloading time parameters are 
shown in Table 3 to Table 6. The GA parameters of these problems are shown in 
Table 7. The transport tasks data of the other two test problem is similar to the first 
one, except the amount of entities and the amount of tasks. 

According to the problems with different sizes, the genetic operators, the fitness 
assignment methods, and the GA parameters, the four criteria are used to evaluate the 
effectiveness and efficiency of the algorithm. First one is the number of Pareto 
optimal solutions searched by the algorithm with different genetic operators and 
fitness assignment methods (PO1). The second one is the number of non-dominated 
solutions of the algorithm with different genetic operators and fitness assignment 
methods after the results are compared each other (PO2). The third one is the percent 
of non-dominated solutions (PO2 / PO1 (%)).The last one is the elapsed computation 
time (CPU Times). The proposed algorithm is developed in visual c++ language on 
PC with Pentium 1.8G CPU and 1G RAM. 

The scheduling results of the adaptive MO-HGA with the first set of GA 
parameters, different genetic operators and fitness assignment methods for the three 
test problems are shown in Table 8. For the third test problem, the scheduling results 
of the algorithm with the first three set of GA parameters are shown in Table 9, and 
the results with the first and last two sets of GA parameters are shown in Table 10. 
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Table 3. Transport task data 

T1 T2 
No. 

Original 
entity No. 

Task No. 
Terminal 
entity No. Start 

time 
Finish 
time 

Start 
time 

Finish 
time 

1 1 1 2 1 11 1 11 
2 1 2 2 2 12 7 17 
3 1 3 3 1 11 4 14 
4 1 4 3 2 12 9 19 
5 2 1 1 1 11 1 11 
6 2 2 1 2 12 7 17 
7 2 3 3 1 11 4 14 
8 2 4 3 2 12 9 19 
9 3 1 1 1 11 1 11 

10 3 2 1 2 12 7 17 
11 3 3 2 1 11 4 14 
12 3 4 2 2 12 9 19 

Table 4. Transport resource parameters 

Loading/unloading Vehicle Storage Parking Entity 
No. Max Unit cost Max Unit cost Max Unit cost Max Unit cost 
1 4 8 4 8 4 8 4 8 
2 3 10 3 10 3 10 3 10 
3 4 8 4 8 4 8 4 8 

 

Table 5. Transport time parameters Table 6. Loading/unloading time parameters 

Entity No. 1 2 3 
1 0 1 2 
2 1 0 1 
3 2 1 0  

Entity No. Transport time 
1 3 
2 2 
3 3  

Table 7. GA parameters 

No. Population size Initial Pc Initial Pm Max Generation Tuning 
1 100 0.8 0.6 1000 no 
2 50 0.8 0.6 1000 no 
3 200 0.8 0.6 1000 no 
4 100 0.8 0.6 1000 yes 
5 100 0.1 0.1 1000 yes 

 

 
Firstly, for each test problem, Table 8 shows that the effectiveness and efficiency 

of the algorithm with the rank-based fitness assignment method is better than the 
weighted sum method, and there is not significant distinction for different genetic 
operators. For the same genetic operator and fitness assignment method, the elapsed 
computation time of T2 is longer than T1, and the scheduling effectiveness of T2 is 
worse than T1, which means that the difficulty and the time of search increase with  
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Table 8. Results of three test problems with the first set of GA parameters 

PO1 PO2 PO2/PO1(%) CPU Times(s) Test
Problem

Genetic Operator + Fitness 
Assignment Method T1 T2 T1 T2 T1 T2 T1 T2

1 PMC + WS 23 25 11 11 48 44 30 27
1 PBC + WS 31 36 9 12 29 33 31 29
1 PMC + RBFA 33 39 11 12 33 31 36 34
1 PBC + RBFA 35 41 12 13 34 32 35 32
2 PMC + WS 21 23 9 11 43 48 101 97
2 PBC + WS 25 28 10 12 40 43 105 99
2 PMC + RBFA 30 32 10 11 33 34 113 109
2 PBC + RBFA 31 35 9 10 29 29 112 110
3 PMC + WS 19 20 7 9 37 45 215 210
3 PBC + WS 17 18 6 8 35 44 211 209
3 PMC + RBFA 19 19 6 7 32 37 227 219
3 PBC + RBFA 21 23 7 8 33 35 229 223  

Table 9. Results of the third test problem with the first three sets of GA parameters 

PO1 PO2 PO2/PO1(%) CPU Times(s) GA
Parameters

Genetic Operator + Fitness 
Assignment Method T1 T2 T1 T2 T1 T2 T1 T2

1 PMC + WS 19 20 7 9 37 45 215 210
1 PBC + WS 17 18 6 8 35 44 211 209
1 PMC + RBFA 19 19 6 7 32 37 227 219
1 PBC + RBFA 21 23 7 8 33 35 229 223
2 PMC + WS 17 19 7 8 41 42 111 107
2 PBC + WS 16 18 8 9 50 50 109 111
2 PMC + RBFA 18 19 7 8 39 42 125 117
2 PBC + RBFA 20 22 7 7 35 32 120 113
3 PMC + WS 21 21 8 9 38 43 375 357
3 PBC + WS 20 21 8 10 40 48 379 209
3 PMC + RBFA 23 25 9 7 39 28 397 389
3 PBC + RBFA 22 23 8 8 36 35 391 381  

Table 10. Results of the third test problem with the first and last two sets of GA parameters 

 
 

the increase of the time complexity of task execution. Furthermore, the difficulty and the 
time of search increase with the increase of the size of problems. Secondly, for the third 
test problem and the first three sets of GA parameters, Table 9 shows that the increase of 
the population size can improve the scheduling effectiveness, but the scheduling times 
increase at the same time. Lastly, for the third test problem and the first and last two sets 
of GA parameters, Table 10 shows that the effectiveness of the algorithm with adaptive 
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tuning the Pc and Pm is better than without tuning the Pc and Pm, but there is not 
significant distinction for the scheduling times. For different initial Pc and Pm, the 
effectiveness of the algorithm change. In other words, the effectiveness of the 
algorithm can be improved by setting proper initial Pc and Pm. 

5   Conclusions 

In this paper, an adaptive multi-objective hybrid genetic algorithm is proposed to 
solve the multi-objective resource-constrained transport task scheduling problem, 
which is to initialize the population and evaluate the individual by using the special 
serial scheduling method. The weighted sum method and the rank-based fitness 
assignment method are used for individual fitness assignment. An adaptive GA 
parameters tuning method based on the fuzzy logic controller is implemented to 
improve the performance of the MO-HGA. The computational experiments with 
different amounts of transport entities and tasks are presented, and the effectiveness 
and efficiency of the MO-HGA with different genetic operators and fitness 
assignment methods are compared. The results of numerical experiments show that 
the adaptive MO-HGA can schedule the tasks of multiple transport entities with 
multiple resource constraints and multiple optimal objectives effectively, and the 
adaptive GA parameters tuning method can improve the scheduling effectiveness of 
the MO-HGA further. 
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Abstract. This paper introduces a theoretical approach of the construc-
tion of a self developing and adaptive artificial digital organism with huge
remembrance and the ability of the interpretation of the surrounding
world. The paper describes the self development of intelligence of digital
organisms from small fragments of digital knowledge.

Keywords: digital evolution, knowledge graph.

1 Introduction

There is no right definition of intelligence. Instead of making useless definitions,
it is more promising to set up some essential principles that adjust the process
of collecting and interpreting data from the surrounding world. There are many
research papers that describe machines which collect data from the surroundings
and they have some kind of remembrance [1]. Their ability of interpretation of
the environment is restricted. The limits of these constructions are obvious: their
intelligence never becomes similar to that of mammals or octopuses.

Many papers [2,3,4] dealing with artificial organisms emphasized the impor-
tance of complexity. Not only life shows serious complexity. There are human
made constructions as well, such as the topology of Internet, that have increasing
complex structures with fractal properties [5,6,7]. This paper establishes some
principles that are really simple but like bricks they can be combined into ar-
bitrarily complex buildings. The purpose is to construct a self developing and
adaptive artificial digital organism, a so called digital evolution machine (DEM)
that collects and arranges, sometimes even restructures its database.

1.1 Evolution and Knowledge

Paleontology and geology serve many exciting examples of the one way evolu-
tion. The time flows in one direction, forward. Life always tries to adapt itself to
the circumstances, mainly to the weather (temperature, seasons, climate). If the
climate has changed, the adaptive organisms also change their right properties,
skills and manners. If one million years later the climate changed back, the evo-
lution did not remember the previous stage of the environment. The adaptivity
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also produces new properties that help to survive the changes. The evolution
seems to be recursive. It means the regulation is a kind of recursion, like a feed-
back. The current stage is the basis of the next step. Evolution never gets back.
There are no general physical laws in the background where the processes can
be computed from.

If an organism did not recognize the enemy, the food and the environment,
it had died soon or immediately. Consequently, organisms had to collect data
from their surroundings (perception) and interpret them (understanding). The
remembrance is probably one of the most important components of understand-
ing the world. The unreversable time, i.e. the serial recording of events and data
of the environment produces a huge database. It has to contain everything that
happened to an organism in its lifetime. The key of surviving is the interpreta-
tion of the surrounding world and the action. The speed of the reaction is also
important among animals.

1.2 The Early Evolution

Look at the following event that took place in the ancient ocean many million years
ago. A very primitive organism was swimming in the water. The temperature of
the sea became somewhat colder for him. He detected the low temperature and
realized it was bad for him. He decided to swim toward warmer waters (Fig 1).

The question is whether this reaction involves intelligence or not. A quick
look says, yes, it does. A thermostat does the same: detects, compares, makes a
dicision and acts something, but it is not yet considered intelligent, because a
kind of remembrance requires a huge knowledge-base and a fast graph algorithm.

Fig. 1. The weather and climate were the most effective factors of the evolution of
organisms. Every organism needs to interpret the measured and stored data of the
environment if they wanted to survive. This ability required a huge database containing
everything that ever happened to the organism. This is experience. The interpretation
required a fast graph algorithm that could find the right answer to the current challenge.

1.3 The Construction of the Knowledge Base

Biologists say there is a kind of self organisation among protein molecules in
vitro. Even if we assume it was the first step toward a real organism, it is
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evident there is no huge knowledge database and complicated interpretation
logic in it. Protein molecules seem to be inclined to form combinations. Their
data collection logic also has to be simple. Consequently a knowledge database
can be constructed from simple steps of data collection. The algorithm of the
knowledge graph search has to be simple.

The hierarchy of nature sciences is a traditional knowledge database. This
construction is hierarchical like a tree constructed by scientists. For example
the physics consists of mechanics, electrodinamics, thermodinamics, quantum-
mechanics, relativity theory and so on. How to construct a knowledge base for
a simple organism that has no scientists? The following sections try to answer
this question.

2 Principles of an Organic Knowledge-Base

Let us see some essential principles that regulate the data collection (perception)
for an organism that is named DEMentity in the followings.

2.1 General Principles

1. Data collection process is a lifelong task that builds up the knowledge base.
2. Let knowledge elements be named atoms.
3. Atoms are situated in a tree structure that is a graph.
4. There is no lonely atom, every atom connects to another one at least.
5. Any atom can be a member of any group. A group of complex knowledge

elements is named a context.
6. Identical operations are valid for atoms and contexts.
7. Let us allow contradictory atoms in the knowledge base.
8. Let us name a path the trajectory between two or more atoms.
9. If a search of the graph produces succes, the path becomes stronger (im-

printing). If a search produces fail, the path becomes weaker (oblivion).

2.2 Quantification of the Knowledge and Atomic Distances

Let us construct the knowledge-graph (Fig 2). It consists of atoms and their con-
nections. Atoms are the nodes and connections are the edges of knowledge-graph.
Let us define a context that includes arbitrary atoms of the tree; consequently,
the structure of the graph is not predefined. It depends on the atomic connec-
tions that depend on a time series, when events took place in time order one after
the other. The general principles declared the equality of atoms and contexts.
In other worlds a context can contain simple atoms or other contexts as well.

Let aij denote the i-th atom in the j-th context which contains N atoms. Let
the quantity of the knowledge of a context (kj ) be the sum of the quantity of
the knowledge of every atom in it:

kj =
N∑

i=1

aj
i (1)
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Fig. 2. The Knowledge-graph

The knowledge-base has two basic functions: receiving a question and answer-
ing. The key of the problem is to find the path from the questioning node to the
answering node in the knowledge-base.

Let lij denote the strength of the connection between ai and aj . Let lij = lij+1
if the tour produces good result and lij = lij − 1 if the result is bad. This logic
makes good paths stronger and bad ones weaker.

Look at the u and f nodes in the knowledge-graph (Fig 2). What is the right
distance definition for them? In the case of Euclidean distance, u and f nodes
are near. Since there is no direct connection between them, a better distance
definition has to depend on the length of the path along branches.

Let ai and aj be two nodes of the knowledge-graph where the path includes
m = j − i atoms between them. Let dij be the distance of these two nodes, let
the strength of their connection be denoted by lij , which is the reciprocal of
the sum of the strength of the connections between ai and aj . The stronger the
connection between two nodes, the closer they are.

The goal of the knowledge-graph is to answer a question arrising from the
circumstance. How to find the rigth path from the questioning node to the
answering one? The fastest is the right path, probably. This logic produces very
fast reaction in well known problems and may result fail in unknown cases. The
fail means unsuccessful escape, capture or something important for the organism.
If it survived the situation, i.e. the reaction was successful, and the path that
produced the success became stronger. If it did not survive the situation or the
result of the action was failed, i.e. the result of the action was unsuccessful, the
organism was knocked out or a path in the knowledge-graph became weaker.

2.3 Non Hierarchical Knowledge-Base

Let K denote the knowledge-base which consists of n atoms ai, aj ∈ K. Let us
name it the knowledge-matrix.
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K =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
an1 an2 . . . ann

⎞⎟⎟⎟⎠ (2)

Some of the atoms are in touch with other atoms in K. Let us describe the
links of ai and aj atoms with lij , where

lij =

⎧⎨⎩
1 if i = j
0 if i �= j and no link between them
u − v else where u succeeful and v unsuccessful

Let us organize the atomic links into a matrix form, and name it a link matrix
and denote it by L. The elements of the link matrix are lij that describe the link
of the atomic pointpairs. L is diagonal (lii = 1) and describes the relationships
of the atoms in the knowledge-matrix:

L =

⎛⎜⎜⎜⎝
1 l12 . . . l1n

l21 1 . . . l2n

...
...

. . .
ln1 ln2 . . . 1

⎞⎟⎟⎟⎠ (3)

2.4 The Properties of the K and L Matrices

1. Every atom has one link at least.
2. Let C be a context. C ⊆ K, i.e. C consits of any atoms of K.
3. Any atoms can be the member of any context.
4. Any contexts can be a member of any contexts. In this case, the knowledge-

matrix (K) is a hyper matrix where matrix elements can be matrices.
5. In summary an atom can be a

(a) Simple atom that is really elementary and belongs to one context.
(b) Multi-member atom that is also elementary but belongs to more than

one context.
(c) Aggregated atom that is a kind of simple atom, but its value is a rep-

resentation of a context. In other words, its value is a determinant or a
spur of the knowledge-matrix of a certain context.

(d) A complex atom that is a context that includes any kinds of atoms above
(Fig 3).

2.5 The Evolutional Snippets of the Knowledge-Base

1. The knowledge-base is a continuously increasing database which stores ev-
erything that happened to it. This is a one way process. The knowledge-base
is different from entity to entity.
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Fig. 3. A context is a complex atom in the knowledge-base. Any arbitrarily complex
knowledge-base can be constructed based on this logic. Since the knowledge-base is a
continuously increasing dataset, links can be arbitrarily complex too. In this case, the
context K is a complex atom (ai) of the context C.

2. There is no changing or erasing function in the knowledge-base.
3. Let the data collection be extensive if a DEM-entity perceives the circum-

stance and stores data. There are some important consequences of the ex-
tensive mode:
(a) Every individual knowledge-base is different. It depends on the career of

a certain DEM-entity. There are as many DEM-entities as many kinds
of knowledge-base exist.

(b) If some changes happen that certainly produces the same circumstance
in the past, the previously recorded atoms has not been changed, simply
a new atom has appended the end of the knowledge-base.

4. Let us have another mode that was named intensive, when there is no per-
ception. It is a ,,meditative” stage when the knowledge-base acquires the
data came from the extensive stage. The result of the data acquisition in
intensive mode may produce new contexts, faster path, more reliable work.
This stage is extremely important in learning the circumstance.

5. The feedback is a process when a DEM-entity is informed about the result
of its reaction. The result of this process is success or fail. As mentioned
previously, the success/fail makes stronger/weaker a certain path in the
knowledge-graph of the knowledge-base. The DEM-entity’s knowledge-base
becomes much stronger/ weaker if the feedback such as rewarding or punish-
ment comes from an external intelligent entity, because its knowledge-base
can be considered as an included context.

6. In the history of the Earth there was never only one organism. There were
always ensembles. Ensembles make organisms competitive. Competition re-
sults in different skills i.e. different knowledge-bases.

7. Different circumstances cause different experiences for the organisms.
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2.6 Searching in the Knowledge-Base

It is an elementary function to find the right answer quickly if a question appears.
The knowledge-graph contains the data that are the source of answering. How
to find the right answer?

1. Regarding the early era of the evolution where the combinations of protein
molecules were the most complex structure in the world, we can not suppose
the existence of fascinating graph algorithms in this structure. Only simple
algorithm can be like the preference of the fastest path, the most stronger
path, or something like that. It is named preconception in the everyday life.
The preconception accelerates getting answer.

2. So there is no more complicated algorithm that answer a certain question.
While the knowledge-base is increasing, the graph structure becomes more
and more complicated. The same simple algorithms have to serve the right
answer.

3. Questions and answers have to be stored together in the knowledge-base.
Questions may identify the start up context where the answer can be found.
This is also a kind of preconception.

4. The judgement of an answer of the organism (or DEM-entity) comes from
the environment. If the answer is right, the organism confirms the right path
in the knowledge-graph, if not the path has weakened. The result is a more
developed knowledge-base.

3 Some Constructional Aspects of the Knowledge-Base

The evolution is a process in time and in space dimensions. Regarding the results
of paleontology it is known that evolution is recursive, i.e. an evolution step
depends on the previous step only and it is a one way process, it can not be
turned back. This is known as Dollo’s law in paleontology [8]. This law was first
stated by Dollo in this way: ,,An organism is unable to return, even partially,
to a previous stage already realized in the ranks of its ancestors”. According to
this hypothesis, a structure or organ that has been lost or discarded through the
process of evolution will not reappear in that line of organisms.

The development means not only physical but mental changes as well in an or-
ganism. Mental means intelligence in this context. The adaptivity comes from its
knowledgebase. The quality of the knowledge-base has to influence the physical
properties also. Consequently the physical and mental evolution work collateraly.

3.1 Synthetic Worlds, Artificial Environment

If we are willing to create experienced DEM-entities there is no wizard unfortu-
nately. There is no a recipe to install them from little pieces. How to construct
a DEM-entity? Probably, it is impossible to construct only one of it. First we
should create an ensemble from many initial DEM-entites and leave them to live
in their own world.
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We have two access points to this problem. The first one is to construct an
artificial circumstance where DEM-entities live in. The second one is to construct
many initial DEM entities with simple perception and interpetation functions.
Let us look at some of the details:

1. The artificial world (AW) has some essential properties that define the frame
of this world.
(a) Let AW be huge where circumstances have spatial dependencies. Re-

garding the size of this world, environmental parameters are obviously
different. If we leave DEM-entities alone in this world they will have
different experiences and different knowledge-bases because of climatic
differences.

(b) If the AW is huge enough, the survival strategies will be different. One of
the DEM-entities escapes from the unfriendly circumstances but others
try to adapt. Different strategies result different knowledge-bases.

2. If there are many DEM-entities on the same territories, what is the conse-
quence?
(a) There are many DEM-entities who try to get better strategy in order to

be more successful than others. Someone gets advantages but someone
gets disadvantages since it fails to answer a certain question.

(b) Regarding the different DEM-entities and unique knowledge-bases, many
different strategies can coexist in the AW. Consequently, many different
strategies can be successful at the same time. Someone preferes the es-
cape, but someone the competition.

3. Many DEM-entities will have many different knowledge-bases.

3.2 The Digital Evolution Machine

The question is how to construct the prototype of a DEMentity? Before the
construction of the prototype, let us create the artificial world that will be the
space for DEM-entities. If AW has been created already many DEM-entities
should be available to start up in it. Properties and abilities of DEM-entities
were introduced previously, so the task is to make their software representation.
Regarding the quantity of DEMs and the huge sized world with different spa-
tial properties may result many formed DEMs, and these entities have different
knowledge-bases. An intelligent DEM-entity can exist in ensemble only. There is
no lonely intelligency because it is a collective product that is realized in some
successful entities? knowledgebases.

3.3 Pending Questions

There are many pending questions unfortunately. Let us see some of them:

1. The existence of the extensive stage is obvious, but not the intensive one. The
existence of the intensive stage does not result from the principles mentioned
above.
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2. The next unresolved problem is related to the intensive stage as well. The in-
stensive stage is a process when the perceived data coming from the extensive
stage have been evaluated and restructured into existing or new contexts.
Why and how do the evaluation produce a new context? Which principle
made the knowledge-base restructured?

3. It would be very useful if there were a lifetime for a DEM-entity. DEMs
collect data every day, every minute and the knowledge-base is building up.
If the starting date of data collection is too far from now the knowledge-base
has many unimportant and useless information even contexts. For example is
there any value for you if you know how to conquer a knight in tournament?
No, it is absolutely indifferent to you because you don not have any sword,
horse and there is no knights ever. Unfortunately the necessity of the limited
lifetime does not come from the principles.

4 Conclusions

This paper tried to introduce some principles and suppositions of how to con-
struct adaptive and self-developing digital evolution machines having their own
knowledge-bases that help them to understand and survive the challenge of the
environment. This is only a theoretical approach until we do not develop the
huge artificial world and millions of DEM-entities. The monitoring of DEMs’ life
will show the way of the evolution of intelligence.
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Abstract. Given a transportation network with capacity constraints, the initial 
occupancies and the destination nodes, evacuation route planning generates a 
set of evacuation routes and a schedule for the movement of people and 
vehicles along these routes, such that the evacuation is completed in the shortest 
possible time. This is a critical step in disaster emergency management and 
homeland defense preparation. In order to avoid the large storage and 
calculation costs brought by the time-expended-graph for transforming dynamic 
network flow problem to static network flow problem, the heuristic algorithm 
of the Capacity Constrained Route Planner (CCRP) is researched. One defect of 
the original CCRP algorithm is studied carefully and the new algorithm with 
longer route preferential is proposed to improve it. The result of the experiment 
shows the feasibility of the algorithm. 

Keywords: Evacuation planning, Routing and scheduling, Transportation network, 
Capacity constraint. 

1   Introduction 

Given a transportation network, a population distribution that vulnerable, and a set of 
destinations, evacuation route planning identifies routes to minimize the time to 
evacuate the people in the vulnerable area. Evacuation route planning is a vital 
component of efforts by civil authorities to prepare for both natural and man-made 
disasters, which include: hurricanes, terrorist acts, risky chemicals leakage, nuclear 
leakage, war, etc [1-4]. 

Various approaches to solve the evacuation route planning problem have been 
proposed in domains such as transportation science, mathematics and computer 
science. The Evacuation Route Planning researches mainly fall into three categories: 
(1) Linear Programming methods that generate optimal evacuation plans which 
minimize the total evacuation time [5-8], (2) Simulation methods that models traffic 
flow at single vehicle level [9-10], and (3) Heuristic methods do not always generate 
optimal evacuation routes but able to reduce the computational cost of the process 
dramatically, such as the Capacity Constrained Route Planner algorithm [11]. 

The network flow algorithms are used in the linear programming based approaches 
to evaluate the routes. The transportation network is transformed into a time-
expanded network [11] by duplicating the original evacuation network G  for each 
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discrete time unit 0,1,...,t T= . The multiple copies are connected by an edge cost 

(e.g., travel time). Then, the evacuation problem can be defined as a minimum cost 

network flow problem [12-13] on the time-expanded network TG . Finally, the 

expanded network TG  can be fed to the minimum cost network flow solvers, such as 

NETFLO, RelaxIV, CS2 [14-15], to calculate the optimal solution. Although these 
evacuation planning algorithms can generate optimal plans, they are expensive with 
respect to memory and take a long time to solve problems of the sizes encountered in 
urban evacuation scenarios. For example, if we solve a problem with 1,000 nodes and 
a maximum 300 minute evacuation time, the time expanded network will consist of 
300,000 nodes. Otherwise, this method requires a prior knowledge of an upper bound 
on the evacuation time T  to generate the time-expanded network, which might be 
hard to estimate precisely. An underestimated bound T  would result in a failure to 
reach a solution, whereas, an overestimated value for T  would result in an over-
expanded network, leading to unnecessary storage and run time. In practice, LP based 
approaches have been mainly used in scenarios that involve small sized networks 
such as, in the building evacuations. 

Simulation methods assume that the behavior of individual drivers is under the 
influence of environment like vehicles in their proximity, usually modeling the 
interaction between cars with car-following models. Theodoulou and Wolshon [16] 
used CORSIM microscopic traffic simulation to model the freeway evacuation around 
New Orleans. With the help of a micro scale traffic simulator, they were able to 
suggest alternative evacuation routes in a detailed manner. However, these simulation 
models are often accompanied with labor intensive network coding and significant 
running time, making it difficult to compare alternative configurations and validate 
the validity. Evacuation route planning with other microscopic traffic simulation (e.g., 
MITSIMLab [17]) have shown similar limitations. Thus, they are inappropriate for 
large evacuation scenarios. 

Though the methods in the third category based on heuristics do not always 
generate optimal evacuation routes, they have been able to reduce the computational 
cost of the process dramatically and to overcome the limitations of LP methods as 
well as simulation methods. A well-known approach that falls in this category is the 
Capacity Constrained Route Planner (CCRP) [11].  This method makes use of shortest 
path algorithms and extends them by incorporating capacity constraints. It models 
capacity as a time series to account for the time dependent nature of the networks. It 
uses only the original evacuation network instead of the time-expanded network used 
by the LP based approach and thus requires less memory. The performance evaluation 
of the three experiments has proved the advantages compared with one LP method of 
the NETFLO [11]. The main researchers of the heuristic algorithm for evacuation 
route planning are in the Department of Computer Science in the University of 
Minnesota. In 2003, Qingsong Lu first mentioned the heuristic algorithm for 
calculating the evacuation route planning, and proposed the Single-Route Capacity 
Constrained Planner (SRCCP) and the Multiple-Route Capacity Constrained Planner 
(MRCCP) algorithm [18]. In 2005, Qingsong Lu improved the former algorithm and 
proposed the Capacity Constrained Route Planner (CCRP) algorithm [11]. In 2007, 
Sangho Kim proposed some policies to improve the CCRP algorithm [19]. 
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In the CCRP algorithm, capacity is modeled as a time series because available 
capacity of each node and edge may vary during the evacuation. And a generalized 
shortest path search algorithm is used to account for route capacity constraints. This 
algorithm can divide evacuees from each source into multiple groups and assign a 
route and time schedule to each group of evacuees based on an order that is prioritized 
by each group’s destination arrival time. It then reserves route capacities for each 
group subject to the route capacity constraints. The quickest route available for one 
group is recalculated in each iteration based on the available capacity of the network. 
Performance evaluation on various network configurations shows that the CCRP 
algorithm produces high quality solutions, and significantly reduces the 
computational cost compared to linear programming approach. CCRP is also scalable 
to the number of evacuees and the size of the network [11]. 

One defect of the original CCRP algorithm is that the evacuees with the quicker path 
usually have earlier stating time and occupied the time and capacity resource prior. Then 
the remainder evacuees with longer paths to the destinations have to go through longer 
route and start later. As a result, the total evacuation time may delayed by the evacuees 
with later started longer route. The core idea of the algorithm in this paper is distributing 
the capacity on the routes to the evacuees which should go through the longer route 
preferentially. The method to implement which is choosing the longest route in the 
shortest paths of all the source-destination nodes pairs in each iteration, instead of 
choosing the shortest route every time in the original CCRP algorithm. 

The rest of the paper is organized as follows. In section 2, the evacuation problem 
is described detailed and a sample is given. Section 3 explains the new algorithm. In 
section 4, an experiment is devised to checkout the performance the new algorithm. 
Section 5 gives the conclusion and the future work. 

2   Problem Description 

In transportation science, there are various ways (e.g., microscopic, mid-scope and 
macroscopic) to interpret and formulate an evacuation situation. In this paper, the 
macroscopic model using mathematical graphs (i.e., flow network) is used to describe 
the evacuation situation due to its increased public attention, improved techniques and 
computational capacity [20]. A precise formulation of the research problem on 
evacuation route planning is as follows. 

 
Given: A transportation network with 

(1) integer capacity constraints on nodes and edges, 
(2) integer travel time on edges, 
(3) number of evacuees and their initial locations, 
(4) locations of evacuation destinations. 

To Find: An evacuation plan consisting of a set of origin destination routes and a 
scheduling of evacuees on each route. 

Object: Minimize the evacuation time. 
Constraint: (1) The scheduling of evacuees on each route should observe the 

capacity constraints. 
           (2) Edge travel time preserves First-In First-Out. 
           (3) Limited amount of computer memory and the calculate ability. 
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The problem definition described above is illustrated in Fig.1[11]. Each node is 
shown by a circle, the source nodes are with two attributes: maximum node capacity 
and initial node occupancy, and the other nodes have just the attribute of maximum 
node capacity. For example, at node N1, the maximum capacity is 50, which indicates 
that this node can hold at most 50 evacuees at any time instant. The initial occupancy 
is shown to be 10, which means there are 10 evacuees at this node when the 
evacuation starts and this is a source node. If the node capacity is not meaningful 
(e.g., node as a city or an intersection), it can be set to infinity. Each edge, shown as 
an arrow, represents a link between two nodes. Each edge also has two attributes: 
maximum edge capacity and travel time. For example, at edge N1-N3, the maximum 
edge capacity is 7, which means at each time point, at most 7 evacuees can start to 
travel from node N1 to N3 through this link. The travel time of this edge is 1, which 
means it takes 1 time unit(s) to travel from node N1 to N3. The time unit is defined 
according to the requirement of precision in evacuation time (e.g., minute or hour). 
The example in Fig.1 has 10 evacuees at node N1, 5 at node N2, and 15 at node N8. 
The goal is to compute an evacuation plan that evacuates the 30 evacuees to the two 
destinations (thick lined, nodes N13 and N14) using the least amount of time. 

Table 1 shows an example evacuation plan for the evacuation network in Fig.1. 
Each row in the table describes the schedule of a group of evacuees moving together 
with a series of node IDs and arrival time of each node. Take source node N8 for 
example; initially there are 15 evacuees at N8. They are divided into 3 groups: 6, 6 
and 3 people. The first group starts from node N8 at time 0 and moves to node N10,  
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N8,65
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Fig. 1. An example of evacuation problem modeled using graph 
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Table 1. A feasible rout planning solution of the evacuation problem example 

Source
# of  

Evacuees 
Route with Schedule 

nodeID(arrivalTime)-nodeID(arrivalTim)-… 
Destination 
arrival time 

N8 6 N8(0)-N10(3)-N13(4) 4 
N8 6 N8(1)-N10(4)-N13(5) 5 
N8 3 N8(0)-N11(3)-N14(5) 5 
N1 3 N1(0)-N3(1)-N4(4)-N6(8)-N10(13)-N13(14) 14 
N1 3 N1(0)-N3(2)-N4(5)-N6(9)-N10(14)-N13(15) 15 
N1 1 N1(0)-N3(1)-N5(4)-N7(8)-N11(13)-N14(15) 15 
N2 2 N2(0)-N3(1)-N5(4)-N7(8)-N11(13)-N14(15) 15 
N2 3 N2(0)-N3(3)-N4(6)-N6(10)-N10(15)-N13(16) 16 
N1 3 N1(1)-N3(2)-N5(5)-N7(9)-N11(14)-N14(16) 16 

 
then moves from node N10 at time 3 to node N13, and reaches destination N13 at 
time 4. The second group follows the same route of the first group, but has a different 
schedule due to the capacity constraints of this route. The second group moves from 
N8 at time 1 to N10, then moves from N10 at time 4 to N13, and reaches destination 
N13 at time 5. The third group takes a different route. It starts from N8 at time 0 and 
moves to N11, then moves from N11 at time 3 to N14, and reaches destination N14 at 
time 5. The procedure is similar for other groups of evacuees from source node N1 
and N2. The whole evacuation egress time is 16 time units since the last groups of 
people reach their destination at time 16. This evacuation plan is an optimal plan for 
the evacuation scenario shown in Fig.1 [11]. 

3   The Algorithm for the Route Planning 

The CCRP algorithm that Qingsong Lu proposed is a heuristic algorithm of greedy. In 
each iteration it choose the shortest path, that means to evacuate the evacuees in the 
source node which has the earliest arrive time to a destination first, then arrange time 
and space resources to the evacuees with the longer arrive time to a destination. The 
thought of which is effective. But when we consider the final object again, it can be 
found that the total evacuation time is always lying on the last evacuee that arrive the 
destination. If we consider the evacuation time as the route passing time adding the 
start time, one defect of the original CCRP algorithm would lie in: the evacuees with 
the shorter path usually have earlier stating time and occupied the time and capacity 
resource prior. Then the remainder evacuees with longer paths to the destinations 
have to go through longer route and start later. As a result, the total evacuation time 
may delayed by the evacuees with longer routes. 

A thought to change this status is to distribute the capacity and time resources to 
the evacuees that should go through the longer route preferentially. Every time, we let 
the evacuees longer from the destinations start first, to shorten the total evacuation 
time of them. The evacuees closer with the destinations would start later, the arrival 
time would longer than in the original algorithm. But the total evacuation time 
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depends on the evacuees through longer paths, so it can be shortened in the new 
algorithm. 

The core idea of the algorithm in this paper is distributing the capacity on the 
routes to the evacuees that should go through the longer route first. The method is 
choosing the longest route in the shortest paths of all the source-destination nodes 
pairs in each iteration, instead of choosing the shortest route every time in the original 
CCRP algorithm. The overall algorithm structure is described below: 

 
Input: 
(1) ( , )G N E : a graph G  with  a set of nodes N  and a set of edges E ; 

Each node n N∈  has tow properties: 

_ _ ( )Maximum Node Capacity n : non-negative integer 

_ _ ( )Initial Node Occupancy n : non-negative integer 

Each edge e E∈  has two properties: 

_ _ ( )Maximum Edge Capacity e : non-negative integer 

_ ( )Travel time e : non-negative integer 

(2) S : set of source nodes, S N⊆ ; 

(3) D : set of destination nodes, D N⊆ . 
Output: 

Evacuation plan: Routes with schedules of evacuees on each route 

Pre-process network: add virtual source node 0s  to network, in the 0s  node, the 

_ _Maximum Node Capacity TotalEvacuatorNum= ; 

link 0s  to each source nodes with an edge which 

_ _ ()Maximum Edge Capacity EvacuatorNumInSourceNode=   

and _ () 0Travel time = ;                         (0)                                                

Main algorithm: while the super source node 0s  has evacuee do { 

         Find route 0 1, ,..., kR n n n< >  with time schedule 0 1, ,..., kt t t< >  using 

one generalized shortest path search from virtual source 0s  to all destinations 

(where s S∈ , d D∈ , 0n s= , kn d=  ), such that R has the latest 

destination arrival time among routes between all ( , )s d  pairs, and 

1
_ _ ( , ) 0

i in n iAvailable Edge Capacity e t
+

>  

    and 
11_ _ ( , _ ( )) 0

i ii i n nAvailable Node Capacity n t Travel time e
++ + > , 

{0,1,..., 1}i k∀ ∈ − ;                                                                             (1) 

   flow = Min  ( number of evacuees still at the node 0s , 

1
_ _ ( , ) 0

i in n iAvailable Edge Capacity e t
+

> , 
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11_ _ ( , _ ( )) 0
i ii i n nAvailable Node Capacity n t Travel time e

++ + > , 

{0,1,..., 1}i k∀ ∈ −  );                                                                            (2) 

  ( 0; ; )for i i k i= < + +  { 

     
1

_ _ ( , )
i in n iAvailable Edge Capacity e t

+
 reduced by flow ; 

11_ _ ( , _ ( ))
i ii i n nAvailable Node Capacity n t Travel time e

++ +  reduced 

by flow;   }                                                                                                        (3) 
  } 

 
In each iteration of while loop, the algorithm first searches for the route with the 

latest arrival time in the shortest paths from any source to any destination, taking 
available edge capacity into consideration. That is the main different from the 
algorithm of the CCRP. The next step finds the minimum flow along the path found 
which is equivalent to the size of a group of evacuees who travel through the path. 
Then, the last step reserves the minimum flow. It is a task of updating available 
capacity. 

4   Experiment 

4.1   The Input Data 

The graph data for test is generated by the random graph generator: NETGEN [21]. 
The input parameters of the NETGEN are listed in Table 2. 

Table 2. The input parameter of the NETGEN generator for the experiment data. The ‘#’ 
means the number, the ‘trans’ is the shortening of the ‘transshipment’ and the ‘caped’ is the 
shortening of the ‘capacitated’. 

Name Net8_1 Net8_2 Net8_3 Net8_4 Net8_5 Net10_1 
seed 101027544 101027544 101027544 101027544 101027544 120429482 

problem 1 1 1 1 1 1 
# of nodes 256 256 256 256 256 1024 

# of sources  26 26 26 26 26 102 
# of sinks 26 26 26 26 26 102 
# of arcs 768 768 768 768 768 3072 

min arc cost 1 1 1 1 1 1 
max arc cost 50 50 50 50 50 50 
total supply 7500 10000 12500 15000 17500 10000 

trans. sources 0 0 0 0 0 0 
trans. sinks 0 0 0 0 0 0 

max cost arc % 0 0 0 0 0 0 
caped arc % 100 100 100 100 100 100 
min arc cap 1 1 1 1 1 1 
max arc cap 200 200 200 200 200 200 
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To represent the typical traffic network features, the edges are 3 times of the nodes 
in every network listed in table 2 [11]. The sizes of the networks are the same in the 
first five networks, but the evacuee number increase gradually. The nodes of the sixth 

network increased to 102 from 82 that the former networks have. The capacities of the 
nodes are set random and are different between every two networks. 

NETGEN doesn’t generate random capacities for the intermediate nodes, so in the 
experiment, which are generated use the pseudo random number generating function 
of ()rand  in the C++. The seed is set to the nodeID, and the upper limit of the 

capacity is set to ()%( / )rand totalSupply sourcNodesNumα β∗ + , that 

means, the minimum capacity is β and the maximum capacity 

is ()%( / )rand totalSupply sourcNodesNumα ∗ , in the experiment, the 

parameters are set to: 3, 20α β= = , which can be reset according to the actual 

situation. 

4.2   The HarDware for the Experiment 

The experiment is calculated on a compatible desktop computer.  The main resource 
needed for the calculation is the CPU and memory, so just these two items listed in 
the Table 3. 

Table 3. The hardware configure of the computer for experiment 

CPU Intel Core 2 Duo E7200 @ 2.53GHz, L1cache :2*32KB, L2 cache :3MB 
memory DDR2 2G, PC2-6400 (400 MHz) 

4.3   The Experiment Result 

The result include the evacuation route planning like the lists is the table1, the total 
evacuating time, the iteration times and the execution time. We just list the evacuation 
time, the planning number (equal to the iteration times) and the execution time in the 
Table 4. 

Table 4. The result data of the experiment 

Name Net8_1 Net8_2 Net8_3 Net8_4 Net8_5 Net10_1 
evacuation time 1655 1706 2517 2833 2760 1015 

# of plan 1124 1487 1987 2291 2900 1216 
execute time (s) 192 301 738 902 1553 308 

 
To verify the validity of the algorithm in this paper, the result of the comparison of 

the evacuation time with the original CCRP algorithm is listed in the Table 5 
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Table 5. The comparison of the evacuation time with the original CCRP algorithm 

Name Net8_1 Net8_2 Net8_3 Net8_4 Net8_5 Net10_1 
CCRP 1601 2160 3153 2632 2439 1126 

Longer Route Preferential 1655 1706 2517 2833 2760 1015 

4.4   The Analysis of the Result 

Compare with the original CCRP algorithm, the evacuation time of the Net8_2, 
Net8_3 and Net10_1 network has shortened distinctly, which proved the validity of 
the new algorithm. Meanwhile, it can be seen that the new algorithm doesn’t suit for 
all the cases; for example, the evacuation time is degenerative in the network Net8_1, 
Net8_4 and Net8_5. Which is in anticipation, no method can be the most suitable for 
all the situations because of the complexity of the network characteristics and the time 
process. And specifically for the new algorithm, in which exist risk that giving up 
some shorter routes but adopt some longer path. In practice, the two algorithms can be 
combined to take the better solution. 

5   Conclusion and the Future Work 

To solve the evacuation route planning problem, the heuristic algorithm of CCRP is 
researched, and found that the method of choosing the shortest route in every iteration 
may cause a defect that prolonging the total evacuation time. To improve it, a new 
thought of the longer route preferential method is put forward and the new algorithm 
is proposed to try to reduce the total evacuation time. To verify the feasibility of the 
algorithm, an experiment is designed and both of the CCRP algorithm and the longer 
route preferential algorithm calculated the six instances, and the result shows the 
validity of the new algorithm. 

In the future, more work should be done to improve the performance of the 
evacuation route planning algorithms. And some standard data for experiment could 
be researched to compare the performance of the different algorithms and check the 
distance of them to the optimal evacuation time. 
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Abstract. How to effectively anticipate the correct future trends of the
foreign investment are the most important job and critical issue for the
economic development. With data warehouse and neural network, the de-
velopment states of foreign investment are predicted in foreign investment
management decision support system. The paper illustrates the architec-
ture and implementation of decision support system oriented to foreign
capital, moreover, the method which multidimensional data-mining based
on neural network is applied in data warehouse is presented. The experi-
mental result shows that the method can be used to analysis and decision
of foreign investment information.

Keywords: Neural network, Data warehouse, Decision support system,
Data mining, Foreign investment.

1 Introduction

With the continuous development of the global economic integration, it has a
significant impact on China’s economic development trend. There are various
analysis demands of foreign investment, such as trend analysis, real-time evalua-
tion, important factor analysis etc [1]. Those results of analysis will contribute to
formulate China’s foreign policy and deal with international economic issues [2].
Therefore, it is necessary to build a decision support system which uses intelli-
gent technology to obtain the hidden knowledge of foreign investment.

The data of foreign investment are usually stored in database. The data has
some characteristics, such as the rapid growth in data volume, the dynamic up-
date of history data. It is hard to analyze the mass and wide reference date with
the anciently state method. Therefore, foreign investment management decision
support system (FIMDSS) is firstly built according to data warehouse technol-
ogy. In this paper, the data warehouse architecture of FIMDSS is introduced,
including the analysis topic, fact table, and dimension etc. On the basis of data
warehouse, the neural network is used for multi-dimensional data mining of for-
eign investment data [3]. According to the results of data mining, the model
of foreign investment development is established in order to achieve high-level
information analysis and forecasting functions of foreign investment.
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2 Data Warehouse Architecture of FIMDSS

FIMDSS will provide unified management platform by integrating familiar tech-
nologies, such as knowledge base, model base, and data warehouse methods. In
FIMDSS, data warehouse is used for the relational data analysis, multidimen-
sional analysis, data mining and online analytical processing. The model base can
provide guidance for all analytical tools. The knowledge base is used to sum up
history experience and discovery new knowledge [4]. The data warehouse is the
core in FIMDSS. By building a hierarchical architecture of data warehouse, the
decision support system can not only make up for the lack of information man-
agement system and multi-dimensional analysis, but also coordinate the foreign
investment data, analytical models, decision methods and knowledge to make
better decision results [5]. According to the decision demands, the architecture
of FIMDSS can be composed by four main levels: data preparation, data process,
rules options and result assessment. The details are shown in Fig. 1.

The data warehouse of FIMDSS has two main analytical subjects: perfor-
mance analysis of foreign-funded enterprises and investment data analysis of
country around the world. The former brings foreign-funded enterprises as the
core objects. The analysis contents include total investment analysis, the regis-
tered capital analysis, the contracted foreign capital analysis, the actually uti-
lized foreign capital analysis and actual investment analysis [6]. The related
analysis dimensions include time, region, trade, enterprise type, etc. The lat-
ter centralizes the investment data of countries around the world. The analysis
contents include investment and loan. The related analysis dimensions include

Fig. 1. The architecture of FIMDSS based on data warehouse
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Fig. 2. The extensible star schema model of FIMDSS

investment country, investment region, investment trade, investment type and
so on.

The dimensional data store of foreign investment can be implemented phys-
ically in the form of several different schemas model. Based on the demand of
efficiency and maintenance, the multi-dimension data store schema of FIMDSS
is determined as an extensible star schema model. In a star schema, the fact
table which is located in the center of schema wills storages the fact data [7].
The dimension tables will storage dimension data. The fact table links to re-
lated dimension table with the dimension key in the fact table. The benefit of
having a star schema is that it is simpler than other dimensional data store
schemas, making it easier for the data preparation processes to load the data
into FIMDDS. The multi-dimension data store schema of FIMDSS is shown in
Fig. 2. The center of the schema is two fact tables: basic information of foreign-
funded enterprises (BIFFE Fact table) and detail content of foreign investment
(DCFI Fact table). The BIFFE fact table contains unique identifying data for
foreign-funded enterprises, as well as data unique to the enterprise itself. The
five keys in the BIFFE fact table link the fact table with the four dimension
tables: Investment type, economic zone, region, trade, project type. On the one
hand the DCFI fact table links to the BIFFE fact table with the two keys which
are enterprise code and change time; on the other hand the DCFI fact table has
two foreign key relationships to the time dimension table and country dimension
table. The benefit of extensible star schema of FIMDSS is that the number of
dimension tables can reduce even if the fact data are relatively vast.
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3 The Multi-dimensional Data Mining Model

In FIMDSS, the problem which the decision-makers are focus on is that the
investment factors are impacted by the dimensions in the specific subject. For
example, which dimension members are key factors for the contractual foreign
investment in the performance analysis subject of foreign-funded enterprises? An
approach to solving the problem is that the key dimensions and members are
discovered in related multi-dimensional model. The issue can be briefly described
as follows: In subject S, there is a mining task T involving factor X . The object
of task T is to discovery which dimensions and members are most affected by
factor X . The task T is involved in n dimension. The member number of Each
dimension is Dn. Some members of dimension are hierarchical. How to select
members of dimensions is the key of task T .

The dimension is characterized by hierarchical structure, discrete data and
non-numerical attributes. There is difficult how to calculate the correlation be-
tween quantity (Q) of task T and n dimension. Because the direct members of
dimension reflect the property value of dimension, the property values are closely
related to Q according to statistically analysis method. Therefore, the function
model can be build to solve the problem. However, the function can not be de-
rived from general analysis method because of complex non-linear features. The
artificial neural network can solve those problems effectively [8].

In the hierarchical feed-forward neural network, the hidden layer is the feature
extraction layer and represents the characteristics of the input mode [9]. The di-
mension characteristics of the data warehouse can be reflected on the hidden
layer units. The related weight can determine the dimension value of the partic-
ular output level [10]. Aim at the features of foreign investment data warehouse,

Fig. 3. The neural network model of multi-dimensional data mining
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an extensible hierarchical feed-forward neural network is built to complete the
task of data mining [11]. The details are shown in Fig. 3.

Fig. 3 shows the X − V − Y (X denotes input neurons, V denotes hid-
den neurons, and Y denotes output neurons) architecture of a neural network
model. The input layer can be considered the dimension data of foreign in-
vestment and be divided into m groups according to the dimensions number
such as investment type, trade, region etc. The ith group is also divided into
ki components according to the dimension members. So the input mode is
X = ((x11, x12, · · · , x1k1), (xm1, xm2, · · · , xmkm)). The outputs layer represents
the key factor of foreign investment. The hidden layer determines the mapping
relationships between input and output layers, whereas the relationships be-
tween neurons are stored as weights of the connecting links. The input signals
are modified by the weight W 1 = ((w11, w12, · · · , w1k1), (wm1, wm2, · · · , wmkm)),
which represents the interconnection of the ith node of the input layer to the
mth node of the hidden layer. The sum of the modified signals is then modi-
fied by sigmoid transfer (f) function and the output is collected at the output
layer. The sum of the modified signals (total activation) is then modified by a
sigmoid transfer function (f). Similarly, the output signals of the hidden layer
are modified by interconnection weight W 2 of the node of the output layer to the
mth node of the hidden layer. The weight will identify the correlation between
dimensions and key factors. The weight is greater; the related dimension is more
importance to key factors.

Let Ip = ((Ip1, Ip2, · · · , Ipx), p = 1, 2, · · · , N) be the pth pattern among N
input patterns. Where w1

ikj
and w2

j are connection weights between the input
neuron to the mth hidden neuron, and the mth hidden neuron to the output
neuron, respectively output from a neuron in the input layer is Opi = Ipi(i =
1, 2, · · · , x).

Output from a neuron in the hidden layer is

Opi = f(Netpj) = f(
x∑

i=1

w1
ikj

Opi)(j = 1, 2, · · · , m) (1)

Output from a neuron in the output layer is

Op = f(Netp) = f(
m∑

j=1

w2
j Opj) (2)

The network activation function can choose linear function or S-type function
in accordance with the actual situation; network learning algorithm is still using
the following algorithm:

wl
ji(k + 1) = wl

ji(k) + α∆wl
ji(k) + η(wl

ji(k − 1) − wl
ji(k − 1)∆wl

ji(k)) =
∂E

∂wl
ji(k)

(3)
α is learning step; η is momentum factor.
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4 The Process of Multi-dimensional Data Mining of
Foreign Investment

The above model can be used for the date mining of FIMDSS application in-
volving specific subject. The following sample is multi-dimensional data mining
of contracted foreign investment in the performance analysis subject of foreign-
funded enterprises. The contracted foreign investment is one of the three major
indexes in foreign investment statistics and can accurately reflect actual situ-
ation of foreign investment. The decision makers are interest in the in-depth
analysis result of contracted foreign investment. For example, whose dimension
member (trade, region, investment type) are important for the contracted foreign
investment? The answer can provide the trend of foreign investment and policy-
making knowledge. Based on the standardized description of data mining tasks,
the sample task is: whose dimension member (trade, region, investment type) are
more important for the contracted foreign investment in the performance analy-
sis subject of foreign-funded enterprises from February 2002 to September 2004.

There are eleven dimensions related to performance analysis subject of foreign-
funded enterprises in FIMDSS. Some dimensions are not necessary to analysis
according to the management demand of actual foreign investment. Those di-
mensions will be removed from the dimensions space of mining model in order
to reduce the complexity and simplify the processing. By the important analysis
of all dimensions, three dimensions are identified to participate in the mining
model, including trade, region and investment dimension. Because the source
data of FIMDSS is update monthly, time dimension of problem model should
be located in month layer and related statistical mining data will be grouped
by month. The sample data is selected from February 2002 to September 2004.
The portion data are shown in Table 1.

CFI is the contracted foreign investment. Q is the CFI rate of monthly change
and the measure of mining task. X11 is the CFI rate of monthly change of
Sino-foreign joint ventures. X12 is CFI rate of monthly change of Sino-foreign

Table 1. The portion data of mining sample

Y ear Month Q X11 X12 X13 X14 X21 X22 X23 X31 X32 X33

2002 2 -0.412 -0.345 -0.353 -0.439 -0.250 -0.418 -0.309 -0.418 -0.341 -0.457 -0.253
2002 3 0.723 0.671 1.709 0.635 -0.816 0.748 0.544 0.468 0.407 0.720 0.761
2002 4 0.238 0.278 -0.236 0.314 3.526 0.225 0.351 0.371 -0.055 0.373 -0.089
2002 8 -0.260 -0.157 -0.480 -0.260 -0.513 -0.218 -0.412 -0.712 -0.585 -0.253 -0.264
2002 9 0.391 0.401 0.146 0.411 0.566 0.333 0.739 1.868 1.335 0.314 0.622
2003 1 -0.086 -0.127 0.158 -0.088 -0.607 -0.078 -0.438 0.492 -0.170 -0.056 -0.171
2003 2 -0.403 -0.402 -0.527 -0.394 0.542 -0.357 -0.614 -0.713 -0.417 -0.434 -0.298
2003 3 0.491 0.447 0.015 0.578 -0.794 0.434 1.905 0.329 1.429 0.461 0.511
2003 12 0.518 1.034 0.382 0.395 0.814 0.453 1.250 0.676 1.156 0.416 0.801
2004 1 -0.464 -0.551 -0.286 -0.442 -0.808 -0.440 -0.738 -0.203 -0.620 -0.428 -0.543
2004 8 0.218 0.767 0.444 0.132 -0.038 0.082 -5.678 0.659 0.423 0.223 0.188
2004 9 0.233 0.170 0.264 0.246 -0.052 0.227 0.587 -0.084 0.044 0.285 0.094
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cooperative enterprises. X13 is CFI rate of monthly change of wholly foreign-
owned enterprises. X14 is CFI rate of monthly change of foreign-invested joint-
stock enterprises. X21 is CFI rate of monthly change of eastern region. X22 is
CFI rate of monthly change of central region. X23 is CFI rate of monthly change
of western region. X311 is CFI rate of monthly change of the primary industry.
X32 is CFI rate of monthly change of the secondary industry. X33 is CFI rate of
monthly change of the tertiary industry.

The mining model is the hierarchical feed-forward neural network. The train-
ing data set is chosen from February 2002 to December 2003. The test data set is
chosen from January 2004 to September 2004. The neural network training and
verification are done in the neural network toolbox of Matlab. The trainbpx is
used for training function because it provides momentum method and adaptive
learning adjustment strategy. The training results confirm that the trainbpx can
improve the learning speed and increase the reliability of the algorithm. The
initial weights of neural network use initff. The learning parameters are chosen
by domain experts, including η = 0.01, α = 0.01, error = 0.01. The sum squared
error of training is shown in Fig. 4. After network training process is completed,
the weights of hidden layer to output layer are shown in Table 2.

According to the mining result, The conclusion is that the foreign joint ven-
tures of secondary industry in the eastern region are the most important dimen-
sion member for the contracted foreign investment. The CFI rate of monthly
change of these enterprises directly affects the trend of national foreign invest-
ment. The training result is 90.3 percent accuracy. The test result is 85.2 percent
accuracy. The mining model is proved feasibly and the analysis result can be pro-
vided to decision making.

Fig. 4. The sum squared error of training process

Table 2. The weights of hidden layer to output layer

Weight name Weight value Related dimension

W 2
1 0.278546950 Investment type

W 2
2 0.5581839069 Region

W 2
3 0.3117403824 trade
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5 Conclusion

This research aimed at decision analysis of the foreign investment in the finan-
cial statement, and used the hierarchical feed-forward neural network and data
warehouse technology to mining the in-depth knowledge of foreign investment,
in order to find a reliable basis for policy-making. This research adopted the
necessary dataset from the source database of foreign investment. This data was
then used to carry out a dimension member analysis. The sample is given to
clarify the feasibility and effectiveness of the evaluation model.

At present, data mining is a new and important area of research, and neural
network itself is very suitable for solving the problems of data mining because its
characteristics of good robustness, self-organizing adaptive, parallel processing,
distributed storage and high degree of fault tolerance. The combination of data
mining method and neural network model can greatly improve the efficiency of
data mining methods, and it has been widely used. It also will receive more and
more attention.
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Abstract. To study the allocating problem of total permitted pollution discharge 
capacity(TPPDC), an allocation method with variable supply based on the 
uniform price auction of divisible goods is proposed in this paper firstly. Then, 
a linear equilibrium bidding strategy of this new method is given. Lastly, the 
incentive compatibility and validity of this method are proved. Therefore, this 
method will provide valuable theoretical basis and guidance for building the 
pollution emission permits trade system.  

Keywords: Allocating of TPPDC, Uniform price auction, Bidding strategies, 
Incentive compatibility. 

1   Introduction 

As a limited resource, the values of total permitted pollution discharge capacity 
(TPPDC) depend on location, enterprise and pollutant discharge period. So the 
TPPDC must be allocated to polluters reasonably. The fairness and effectiveness of 
allocating the TPPDC is the basis of total capacity control, pollution control and 
environmental sustainable development, and is the key to maximize the utility of 
pollution control district[1]. 

TPPDC may be classed as divisible goods, whose allocation usually involves 
complicated private information. Recently, considerable attention has been given to 
the use of auction by divisible goods with uniform price. Many scholars have studied 
the divisible goods auction with uniform price. Ortega Reichert[2] analyzed the 
properties of sequential English auction, discriminatory price auction, and uniform 
price auction, and presented revenue equivalence theorem of multi-object auctions for 
the first time. Harris and Raviv[3] first gave an optimal conclusion, i.e., if the bidders’ 
valuations are independent, and follow uniform distribution, then the auction 
mechanism in Ref.[2] is optimal. Maskin[4] gave a complete characterization for the 
multi-object auctions and generalized the conclusions in Ref.[3] to any valuation 
distribution. Especially, for the auctions of divisible goods, Back and Zender[5, 6] 
compared the single object auction with divisible multi-object auctions, and designed 
a special uniform price auction mechanism of divisible goods. This is a new idea of 
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studying the auction of divisible goods. Thenceforward, Wang and Zender[7] derived 
equilibrium bidding strategies in divisible good auctions for asymmetrically informed 
risk neutral and risk averse bidders when there is random noncompetitive demand. 
Kremer and Nyborg[8] studied the impact of different allocation rules in divisible 
good, uniform price auction. Damianov[9] concluded that low-price equilibria in the 
uniform price auction with endogenous supply do not exist if the seller employs the 
proportional rationing rule and is consistent when selecting among profit-maximizing 
quantities. Indranil Chakraborty[10] studied the asymptotic price in the uniform price 
auction, the results showed that the expected price becomes large depend only on the 
aggregate of the marginal distributions of each bidder’s marginal values, and not on 
the correlation between the marginal values. However, most of these research results 
are obtained based on some simple and especial conditions, for example, unitary 
demand for every bidder’s valuation follows uniform distribution, the bid price of 
bidders are discrete, the bidders are symmetrical and so on. When these conditions are 
changed, the corresponding conclusions need to be reconsidered. 

In this paper, an allocation method with variable supply based on the uniform price 
auction is proposed. It aimed at improving the social creditability and validity of 
TPPDC allocation, and provides a universally applicable method for auctioning and 
allocating the emission rights, stocks, treasury bills, network bandwidth and son on. 

2   The Auction Model 

Let 0Q  be the quantity of TPPDC, and n  is the total number of polluters. Let )(xfi  

and )(xgi  denote the actual marginal cost function and declared marginal cost 

function of pollution treatment respectively of the ith polluter, and iG and iq ∈[0,∞) 

( ni ,,2,1 "= ) denote the actual pollutant discharge capacity and the permitted 

pollution discharge capacity respectively of the ith polluter, where ii qGx −=  denotes 

the surplus pollution treatment.  
Supposed that the government allocates TPPDC, 0Q , under a uniform price 

)( iii qGgp −=  ( ni ,,2,1 ""=∀ ) in which the marginal cost )(xgi  is declared by 

the ith polluter. This polluter must pay ipq  to obtain the allocated permitted pollution 

discharge capacity iq . The government’s decision goal is 
0

p
  pQUMax = . Then, a 

specific allocation can be described as follows. 
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Proposition 1. The bidders’ collusion and low-price equilibria will occur if the total 
permitted pollution discharge capacity are allocated by the method of model 1D . 
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Proof: The proof process can be seen in [3-6, 11].  
Proposition 1 shows that the government would be unwise to use Model 1D , 

because it does not guarantee sufficient fairness and validity of TPPDC allocation. 

The main reason is that the equality 0
1

Qq
n

i
i =∑

=
 in model 1D  restricts any decision by 

the government. Therefore, we must improve the Model 1D  to improve the 

government decisions, and to enhance the creditability and validity of TPPDC 
allocation. 

Actually, 0
p

 pQMax  of Model 1D  is completely determined by polluters. Thus, in 

order to improve government decisions and limit the scale of false declarations by 
polluters, we improve the Model 1D . The assumptions are as follows. 

Assumption 1. Suppose that the equality restriction 0
1

Qq
n

i
i =∑

=
 be modified such that 

0
1

QQq
n

i
i ≤=∑

=
, where ],0[ 0QQ ∈  is a random variable. This information is common 

knowledge. 
Assumption 1 shows that the government should announce an upper limit on 0Q , 

and determine the actual capacity Q  according to the principle of maximizing 

government income based on all polluters’ specific declared marginal costs or prices.  

Assumption 2. The marginal treatment cost )(xgi declared by the ith polluter is 

invariably less than the actual treatment cost )(xfi , i.e., )()( xgxf ii ≥ . 

Assumption 3. i∀ , 
( )

0≥
dx

xdfi  and 
( )

0≥
dx

xdgi . In other words, the marginal costs 

increase with pollution treatment capacity x , such that ( ) ''
iii bxaxf +=  (where 0' ≥ia  

and 0' ≥ib represent the variable and the fixed cost coefficient, respectively). For every 

polluter, '
ia  and '

ib  are all constants. Specially, we set ( ) ( ) == xfxf 21  ( )xfn=" . 

Assumption 4. A strategy for bidder i is a nonincreasing continuous differentiable 
function )( pqi . 

Assumption 5. There is no co-operation among the polluters. 
Based on the above assumptions, we establish a new auction model. 

The government’s goal is to maximize its income pQpq
n

i
i =∑

=1

, raised from 

TPPDC allocation by choosing a specific total capacity 0QQ ≤  and a uniform 

price 0>p . Hence, 
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)( 2D       
( )⎪

⎩

⎪
⎨

⎧

=≤≤
==−

≤=∑

n,,iGq
n,,ipqGg

QQq

TS

pQMax

ii

iii

i
i

,21       ,0
,21,

                     

     ..

      

0

"
"

 

The goal of the ith polluter is to maximize income  

( )( ) ( ) )( ppqdxxfMaxdxpxfMax i

G

qG i

G

qG i
i

ii

i

ii
−=− ∫∫ −−

 

by choose the optimal bidding strategy )( pqi . 

2D  may be thought to describe an auction method of completely divisible goods 

under a uniform price. Next we give the linear equilibrium bidding strategy of this 
new method, and discuss the incentive compatibility and validity of this method in the 
next section. 

3   Bidding Strategy Analysis 

Proposition 2. Suppose that all polluters are risk neutral, then a linear equilibrium 
bidding strategy )( pq exists in the auction model 2D , i.e.,  

p
GnbnaQb

Qnqnn
qpq

i
'''

)2()1(
)(

−−
−−−−=  

where q  is the demand when auction base price is zero, and ),[ ∞∈
n

Q
q .  

Proof. We give two steps to prove this conclusion. Firstly, we suppose the linear 
equilibrium bidding strategy exists in the auction model 2D , and solve this strategy. 

Let the equilibrium bidding strategies of all polluters are bpapq −=)( , 

)0,0( ≥> ba . When 0=p , we have qq =)0( , thus 

aq =                                                                 (1) 

In a symmetric equilibrium, Qpnq =∗ )( , where ∗p  denotes the equilibrium price, 

so we have Qbpan =− ∗ )( , and 

nb

Q

b

a
p −=∗                                                       (2) 

Suppose that the polluters nii ,,1,1,,2,1 "" +−  submit the same bidding strategies 
)( pq , and the polluter i ’s best response function is )( py . When in an equilibrium, 

we have Qpypqn ee =+− )()()1( , thus 

)()1()( ee pqnQpy −−=                                             (3) 
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So the polluter i ’s income will be 

=R )()(
)( ee

G

pqG i pypdxxf
i

ei
−∫ −

                                          (4) 

By Assumption 3, we set ( ) '' bxaxfi += , then we obtain  

)])(1([
2

)(
)(

2
'

2
''

2
'

ee
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i
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bpaGab
G
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According to the optimization condition 0=
∂
∂

ep

R
, namely, 

0)2)(1()( '' =−−+−+−−− eei bpanQbbbpaGba  

We have 

'2

'''

)1(2

)1(

bbbn

naQGbbbaabb
p i

e +−
−+−−−=                                     (5) 

In addition, the maximize second-order condition 0)1(2
)(

'2
2

2

<−−−=
∂

∂
bnbb

p

R

e

 

is also satisfied.  
Because we assume that the linear strategy )( pq  is a equilibrium strategy, so 

polluter i  will not deviate this linear strategy, namely, =)( py bpapq −=)( ,  and 
∗= ppe . Then we have 

'2

'''

)1(2

)1(

bbbn

naQGbbbaabb
p i

e +−
−+−−−=

nb

Q

b

a
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Thus 

ii nGbnaQb
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a
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−−
−−

−−
−=                               (6) 

From (1) and (6), we obtain 

qa = ,  
iGnbnaQb

Qnqnn
b

'''

)2()1(

−−
−−−=                                       (7) 

Substituting the values of ba,  into bpapq −=)( , we have 

p
GnbnaQb

Qnqnn
qpq

i
'''

)2()1(
)(

−−
−−−−=                                         (8) 

Secondly, we prove the above linear strategy (8) is a real equilibrium strategy. On 
the premise that polluters nii ,,1,1,,2,1 "" +−  all submit the same bidding strategies 
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(8), we need prove that the polluter i  will not deviate this linear strategy. The 
detailed method is as follows: We are not consider the assumption of equilibrium, and 

substituting (7) into (2) and (5) respectively. We are easy to obtain ∗= ppe , which 

means linear strategy (8) is a real equilibrium strategy.  

Proposition 3. Suppose that all polluters are risk neutral, then the expected Uniform 
price in auction model can be expressed as  

⎥
⎦

⎤
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⎣

⎡
−

−−−
−−= ][
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0 n

Q
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EQpE i . 

Proof. By Proposition 2, we have  

p
GnbnaQb

Qnqnn
qpq

i
'''

)2()1(
)(

−−
−−−−=  

Thus 

)]([
)2()1(

)(
'''

Qqq
Qnqnn

GnbnaQb
Qp i −

−−−
−−=  

In a symmetric equilibrium, we have
n

Q
Qq =)( . So if all polluters are risk neutral, 

then the equilibrium auction price is 

][
)2()1(

)(
'''

0 n

Q
q

Qnqnn

GnbnaQb
Qp i −

−−−
−−=                               (9) 

In addition, the auction price is a random variable before the auction is over. So all 
polluters can’t know the accurate value of auction price, and they only know a 
expected value based on the prior distribution of Q . Thus  

⎥
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0 n

Q
q
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EQpE i                           (10) 

4   Stimulant and Validity Analysis 

Every polluter possesses the private information which unknown by the auctioneer 
and the other polluters. If don’t give them proper stimulant, then they will not 
announce their private information honestly. In general, an auction mechanism is an 
effective and feasible mechanism, the condition of incentive compatibility must be 
satisfied. In this section, we will discuss the incentive compatibility of Model 2D .  

Proposition 4. In Model 2D , the government’s optimal decision will be 0
* QQ = . 
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Proof. Suppose that the equilibrium price is *p , the equilibrium allocation quantity of 

polluter i  is *
iq , and an equilibrium total capacity chosen by the government is *Q  

where 0
* QQ < . If there exists a polluter i  who can profit from the deviation of the 

equilibrium while the deviation can also make a profit for the government, then the 
players (comprising the government and the polluters) will reach their equilibrium 
only while 0

* QQ = . 

We set 1Q ∈ ],0[ 0Q , 2Q ∈ ],0[ 0Q , 21 QQ < . On the one hand, when the 

government’s quantity supplied increases from 1Q  to 2Q , we consider the changes in 

government’s income.  
By (9), the government’s income can be denoted as  

== pQB Q
n

Q
q

Qnqnn

GnbnaQb i ][
)2()1(

'''

−
−−−

−−
 

     
1

2

2''''2
'

)2(
)1(

)2(

k

k

n
Q

qnn

qnbqnaQqbaQ
n

b

∆
−−−

−−++−
=  

Obviously, for the denominator 1k , the greater the value of Q  is, the smaller the 

value of 1k  is. For 2k , when the government’s quantity supplied increases from 1Q  to 

2Q , the variable quantity of 2k  is  

=∆ 2k ])2([)2( 2
''2

2

'

2
''2

2

'

QqbaQ
n

b
QqbaQ

n

b ++−−++−  

)]()()[( 1'2''
12 n

Q
qb

n

Q
qbaQQ −+−+−=  

Because 0,0,0,0 12'' >−>−>>
n

Q
q

n

Q
qba , 21 QQ < , so we have 02 >∆k , in 

other words, when the value of Q  increase, the value of 2k  will increase. Therefore, 

when the government’s quantity supplied increases from 1Q  to 2Q , the government’s 

income 
1

2

k

k
B =  will increase, which means the government will make a profit. 

On the other hand, we consider the changes in polluter i’s income. When the 
government’s quantity supplied increases, the allocated capacity iq of the ith polluter 

satisfies *
ii qq ≥ , and the auction clearing price *pp < . So its income will be 

( ) ( ) ( ) ( ) ][][ **
*

*

i

G

qG iii

qG

qG ii

G

qG i pqdxxvqqpdxxvpqdxxv
i

ii

ii

ii

i

ii
−+−−=− ∫∫∫ −

−

−−
 

( ) *
* i

G

qG i pqdxxv
i

ii
−≥ ∫ −

( ) **
* i

G

qG i qpdxxv
i

ii
−≥ ∫ −
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which means the ith polluter will also profit by its smart deviation. Thus by 
accumulating the players’ profits, the former equilibrium capacity *Q  chosen by the 

government must increase until 
0

* QQ = . 

Proposition 5. The auction mechanism given by model 2D  is an incentive 

compatibility mechanism. 

Proof. Suppose that the equilibrium price is *p , the equilibrium allocation quantity of 

polluter i  is *
iq , and an equilibrium total capacity chosen by the government is 

0
* QQ = . The allocated capacities nqqq ,...,, 21  may be regarded as functions of a 

uniform price p , where ∑
≠
=

−=
n

ij
j

ji qQq
1

 and 0≤
dp

dqi  ( ni ,,2,1 "= ). 

First, the government’s goal is pQMax
p

. According to the optimization condition 

and Proposition 4, we have 0
*

=
= pp

dp

dU
. Thus 0

)(
)(

**

** =+=
== pppp

dp

pdQ
ppQ

dp

dU
. 

So we have 

*
0

* p

Q

dp

dQ

pp

−=
=

                                                             (11) 

Then the ith polluter’s goal is ( ) )(
1

ppqdxxfRMax i

G

qQG i
i

n

ij
j

ji
−= ∫ ∑+−

≠
=

. According to 

the optimization condition, we have 

( ) 0)]([

*
1* 1

=−−=

=≠
=∑+−

=
∑∫

≠
=

pp

n

ij
j

j

G

qQG i

pp

qQpdxxf
dp

d

dp

dR i
n

ij
j

ji
 

Namely,  

0)(

)(

)(

*
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1

**
1
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−

=≠
=

=

≠
=

∑
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ij
j

j
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n

ij
j

ji

ii dp

dq
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qQGd
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0)()(

**
1

**

1
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=≠
=

=≠
=

∑
pp

n

ij
j

j
i

pp

n

ij
j

j
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dq
pq
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So we obtain 

( ) ( )
***

**

1

*** )()(
pp

i
i

pp

i
n

ij
j pp

j
ii dp

dq
pxf

dp

dq

dp

dq
pxfq

==≠
= =

−+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+−−= ∑  

     ( ) ( )
**

**** )()(
pp

i
i

pp

i dp

dq
pxf

dp

dQ
pxf

==

−+−−=                  (12) 

Taking the sum of both sides of Equations (12) where i is from 1 to n 

( ) ( )
**

**

1

**
0 )()(

pp

i

pp

n

i
i dp

dQ
pxf

dp

dQ
pxfQ

===
−+−−= ∑  

From (11) and (12), we have ∑
−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−=

1

1
*
0**

0 ])1()([
n

i
i p

Q
pnxfQ , Thus 

n

xf
p

n

i
i∑

−

==

1

1

*

*

)(
 

By assumption 2, ( ) )(xfxfi = , ni ,,2,1 "= , then )(
1 **

ii xf
n

n
p

−= . 

Proposition 5 shows that Model 2D  can guarantee a base price of allocation or 

auction for a government, and the government can almost gain the actual average 
marginal treatment cost of the polluters, provided n  is sufficiently large. It is shown 
that the auction mechanism given by model 2D  is an incentive compatibility 

mechanism. 

5   Conclusions 

This paper studies the allocating problem of total permitted pollution discharge 
capacity (TPPDC), and presents an allocation method with variable supply based on 
the uniform price auction. If the polluters are symmetric, such that their marginal 
treatment cost functions )(xf and pollutant discharge capacities G  are each the same, 

it has been shown that the government obtains an equilibrium price, expressed 

as ( )** 1
xv

n

n
p

−= . This price is in accordance with, but more universal in applicability 

than an equilibrium price derived by Back[6] and Damianov[9]. It is shown that our 
new allocation method is feasible and effective.  
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Fuzzy Group Decision Making Method 
and Its Application 
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Abstract. This paper studies the problems of fuzzy multi-attribute group 
decision making in which the attribute values are given in the form of linguistic 
fuzzy numbers, and presents a new fuzzy group decision making method. 
Firstly, some definitions and conclusions about trapezoidal fuzzy numbers are 
given. Secondly, an operator named TOWA is presented to aggregate the 
trapezoidal fuzzy numbers. Thirdly, a new method is presented for the problems 
of fuzzy multi-attribute group decision making via the TOWA operator and 
grey relative degree. Finally, this new method is applied in the problem of 
official evaluation and selection. Therefore, a feasible and effective way is 
obtained to solve the problems of fuzzy multi-attribute group decision making 
under the uncertain environments.  

Keywords: Multi-attribute group decision making, Trapezoid fuzzy numbers, 
TOWA (Trapezoidal Ordered Weighted Averaging) operator, Grey relative 
degree. 

1   Introduction 

In practical decision making, decision makers usually express their preference 
information over alternatives with the type of linguistic fuzzy variables[1-3]. For 
example, when they make evaluation on the problems of human’s makings, 
automobile’s capability, pollution extent and so on, linguistic labels like worst, worse, 
bad, common, good, better, best” or “lowest, lower, low, common, high, higher, 
highest ”[2] are usually used. Nowadays, it is very important and popular for us to 
study on the problems of multi-attribute group decision making with the attribute 
values in the forms of linguistic fuzzy numbers. Some authors have paid attention to 
this research domain, and proposed some approaches to solving the multi-attribute 
decision making problem with linguistic information [4-9]. However, these methods 
are easy to lose decision information, so the precise decision results can’t be obtained. 
In addition, the structures of these models are very complicated, the maneuverability 
and practicability of these models are not very good. Based on these disadvantages, 
this paper studies the problems of fuzzy multi-attribute group decision making in 
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which the attribute values are given in the form of linguistic fuzzy numbers, and 
presents a new decision making method. It tries to find a new and effective way to 
deal with the problems of fuzzy multi-attribute group decision making under the 
uncertain environments. 

2   Decision Principle and Method 

First of all, we describe the problems of fuzzy multi-attribute group decision making 
as follows. 

Let },,,{ 21 mXXXX "=  be the set of alternatives, and let },,,{ 21 npppP "=  the 

set of attributes. ),,,( 21 nwwwW "= is the vector of attribute weights, where jw  

satisfies ∑
=

=≤≤
n

j
jj ww

1

1  ,10 . Let },,,{ 21 ldddD "=  be the set consisting of 

decision makers. The weight vector of decision makers is denoted as 

),,,( 21 lvvvV "= , where ∑
=

=≤≤
l

k
kk vv

1

1  ,10 . 

Suppose that the evaluation value of alternative ix ),,2,1( mi "=  on attribute jp  

),,2,1( nj "= , which given by decision maker Ddk ∈ , is in the form of linguistic 

fuzzy number, it is denoted as )(~ k
ijt , mi ,,2,1 "= , nj ,,2,1 "= , lk ,,2,1 "= . So 

there exists one decision making matrix given by every decision maker kd , it is 

denoted as kT , where ( )( )k
k ij m nT t ×= � , lk ,,2,1 "= .  

Now if the information of all matrixes lTTT ,,, 21 "  are given, then we need to make 

evaluation and rank order for all alternatives, and choose the best one among all 
alternatives. The decision principle and method are given as follows. 

2.1   Processing Data for Attributes 

In practical decision making, if the attribute values are given in the form of linguistic 
fuzzy numbers by the decision makers, such as “worst, worse, bad, common, good, 
better, best” or “lowest, lower, low, common, high, higher, highest ”. We can 
transform all linguistic fuzzy numbers into trapezoidal fuzzy numbers. Firstly, we 
give some definitions and conclusions about trapezoidal fuzzy numbers. 

Definition 1. Let ),,,(~
11111 edcba =  and ),,,(~

22222 edcba =  be two trapezoidal fuzzy 

numbers. Then 

(1) ),,,(),,,(),,,(~~
212121212222111121 eeddccbbedcbedcbaa ++++=+=+  

(2) ),,,(),,,(~
111111111 edcbedcba λλλλλλ == , 0>λ  

Based on the above operations of trapezoidal fuzzy numbers, we will define the 
distance between two trapezoidal fuzzy numbers. Distance may be defined in many 
ways. In this paper we give the following definition based on absolute value.  
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Definition 2. Let ),,,(~
11111 edcba =  and ),,,(~

22222 edcba =  be two trapezoidal fuzzy 

numbers. The distance from 1
~a  to 2

~a  is defined by 

)~,~( 21 aaD )(
4

1
21212121 eeddccbb −+−+−+−=  

Obviously, the above distance )~,~( 21 aaD  satisfies the following conditions:  

(i) 0)~,~( 21 ≥aaD , 2121
~~0)~,~( aaaaD =⇔= ;  

(ii) )~,~()~,~( 1221 aaDaaD = ;   

(iii) )~,~()~,~()~,~( 322131 aaDaaDaaD +≤ . 

For any two trapezoidal fuzzy numbers ),,,(~
11111 edcba =  and ),,,(~

22222 edcba = , if 

1111 edcb === , 2222 edcb === , then both 1
~a  and 2

~a  become real numbers. So we 

have 

)~,~( 21 aaD ),()(
4

1
212121212121 bbdbbbbbbbbbb =−=−+−+−+−=  

Definition 3 [10]. Let ),,,(~
11111 edcba =  be a trapezoidal fuzzy numbers, the expected 

value of  1
~a   is defined by 

4
]~[ 1111

1

edcb
aE

+++= . 

Theorem 1. Let ),,,(~
11111 edcba =  and ),,,(~

22222 edcba =  be two trapezoidal fuzzy 

numbers. Then 21
~~ aa >  iff ]~[]~[ 21 aEaE > . 

Proof. The Theorem 1 may be proved by a similar process of Ref. [10].  
The Theorem 1 gives a method for ranking trapezoidal fuzzy variables based on 

expected value operator.  

Definition 4. If the elements of vector R  are all trapezoidal fuzzy numbers, then R  
is called a trapezoidal fuzzy vector. If the elements of two trapezoidal fuzzy vector are 
all just the same, then we call these two vectors are equal vectors. 

Secondly, We can transform all linguistic fuzzy numbers into trapezoidal fuzzy 
numbers by the following Definition 5. 

Definition 5. Suppose that 1S ={worst, worse, bad, common, good, better, best}[2] or 

2S ={lowest, lower, low, common, high, higher, highest}[11], then 1S  and 2S  are 

called the set of linguistic fuzzy numbers, and their corresponding trapezoidal fuzzy 
numbers are defined as follows: 

(i) For the type of revenue attributes, we have 

best=(0.8,1,1,1)；better=(0.7,0.9,1,1)；good=(0.6,0.8,0.8,0.9)； 
common=(0.3,0.5,0.5,0.7)；bad=(0,0.2,0.2,0.4)；worse=(0,0,0.1,0.3)； 

worst=(0,0,0,0.2) 
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(ii) For the type of cost attributes, we have 
best=(0,0,0,0.2)；better=(0,0,0.1,0.3)；good=(0,0.2,0.2,0.4)； 

common=(0.3,0.5,0.5,0.7)；bad=(0.6,0.8,0.8,0.9)；worse=(0.7,0.9,1,1)； 
worst=(0.8,1,1,1) 

the corresponding trapezoidal fuzzy numbers for 2S  are the same as 1S . 

When the attribute values are all transformed into trapezoidal fuzzy numbers, they are 

denoted as kR , where =kR nm
k

ijs ×)~( )( , ),,,(~ )()()()()( k
ij

k
ij

k
ij

k
ij

k
ij edcbs = , lk ,,2,1 "= . We 

need to normalize the matrix kR . The following algorithms[11] are given to 

normalize the matrix kR . Suppose that the matrix kR  is transformed into the matrix 

kY , where 

=kY nm
k

ijy ×)~( )( ,  ),,,(~ )(')(')(')(')( k
ij

k
ij

k
ij

k
ij

k
ij edcby = ,  

mi ,,2,1 "= , nj ,,2,1 "= , lk ,,2,1 "=  

For the type of revenue attributes, we have 

),,,(~ )(')(')(')(')( k
ij

k
ij

k
ij

k
ij

k
ij edcby =  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∧∧= 1

)(max
,1

)(max
,

)(max
,

)(max )(

)(

)(

)(

)(

)(

)(

)(

k
ij

i

k
ij

k
ij

i

k
ij

k
ij

i

k
ij

k
ij

i

k
ij

b

e

c

d

d

c

e

b
                 (1) 

For the type of cost attributes, we have 

                   ),,,(~ )(')(')(')(')( k
ij

k
ij

k
ij

k
ij

k
ij edcby =  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∧∧= 1

)(min
,1

)(min
,

)(min
,

)(min
)(

)(

)(

)(

)(

)(

)(

)(

k
ij

k
ij

i
k

ij

k
ij

i
k

ij

k
ij

i
k

ij

k
ij

i

b

e

c

d

d

c

e

b
                 (2) 

where operator “ ∧ ”is the floor operator. 
In the process of decision making, we need to synthetize the decision results of all 

decision makers to make evaluation for all alternatives. For solving this problem, an 
operator named TOWA is presented as follows. 

Definition 6. Let naaa ~,,~,~
21 " be the trapezoidal fuzzy numbers which need to be 

aggregated, where ),,,(~
iiiii edcba = , ni ,,2,1 "= . The TOWA  operator is defined by  

),,,(~~
)~,,~,~(

11111
21 ∑∑∑∑∑

=====
⋅⋅⋅⋅=⋅=⋅=

n

i
ii

n

i
ii

n

i
ii

n

i
ii

n

i
iinW ewdwcwbwgwGWaaaTOWA "  

where ),,,( 21 nwwwW "=  is a vector of weights, and it satisfies  ,10 ≤≤ iw  

∑
=

=
n

i
iw

1

1 . )~,,~,~(
~

21 ngggG "=  is a ranking vector of naaa ~,,~,~
21 " , and jg~  is the j-th 

number which ranked by the ranking approaches given in Theorem 1. 
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By using the TOWA operator given by Definition 6, the matrixes  lYYY ,,, 21 "  are 

aggregated as the group decision making matrix =Z nmijz ×)~( , where  

== ),,,(~ """"
ijijijijij edcbz GVyyyTOWA l

ijijijW

~
)~,,~,~( )()2()1( ⋅="  

),,,(~
1

)('

1

)('

1

)('

1

)('

1
∑∑∑∑∑

=====
⋅⋅⋅⋅=⋅=

l

k

k
ijk

l

k

k
ijk

l

k

k
ijk

l

k

k
ijk

l

k
kk evdvcvbvgv                            (3)  

and ),,,( 21 nvvvV "=  is the weight vector of decision makers, )~,,~,~(
~

21 lgggG "=  is a 

ranking vector of naaa ~,,~,~
21 " , and kg~  is the k-th number which is ranked by the 

ranking approaches given in Theorem 1. 

2.2   Algorithm of Grey Relative Degree 

Grey relational space is the measure space of difference information which satisfies 
grey relational axioms, and difference information is the numerical value which 
represents the difference between reference sequence and compared sequence [12]. In 
this subsection, from the idea of difference information, we will present an algorithm 
of grey relative degree for ranking all alternatives in the problems of fuzzy group 
decision making. 

Firstly, the definitions of fuzzy positive ideal and grey relative degree of the 
trapezoidal fuzzy vector are given.  

Definition 7. Using the ranking approaches given by Theorem 1 to choose the 
maximum number among all trapezoidal fuzzy numbers of every column in the group 
decision making matrix =Z nmijz ×)~( , and these n  new trapezoidal fuzzy numbers 

form a new fuzzy vector, it is denoted as )~,,~,~( 21 ntttT "= . Then T  is called a fuzzy 

positive ideal. 

Definition 8. Let fuzzy positive ideal )~,,~,~( 21 ntttT "=  be the reference sequence, and 

alternative points mXXX ,,, 21 "  be the compared sequences, where 

)~,,~,~( 21 iniii zzzX "= , mi ,,2,1 "= . Let 

  
)~,~(maxmax5.0)~,~(

)~,~(maxmax5.0
)~,~(

ijj
ji

ijj

ijj
ji

ijj ztDztD

ztD
ztr

+
= ,                                  (4) 

          ∑
=

=
n

j
ijjji ztrwXTr

1

)~,~(),( ,                                           (5) 

where )~,~( ijj ztD  is the distance from jt
~  to ijz~ (The definition of distance between 

two trapezoidal fuzzy numbers is given by Definition 2), and jw  is the weight of the 

j-th attribute jp , nj ,,2,1 "= . Then ),( iXTr  is called the grey relational degree 
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between trapezoidal fuzzy vectors T  and iX , its shortened form is grey relational 

degree of trapezoidal fuzzy vectors. 

Theorem 2. The grey relational degree ),( iXTr defined above satisfies the grey 

relational analysis (GRA) four axioms, i.e., normality, symmetry, wholeness, 
approachility. 

Proof. The Theorem 6 may be proved by a similar process of Ref. [13, 14]. 
Applying the grey relational degree defined in Definition 15, we can calculate the 

grey relational degree ),( iXTr  between alternative point iX  and fuzzy positive ideal 

T . The greater the value of ),( iXTr  is, the better the alternative iX  is.  

Secondly, we give the steps for the algorithm of grey relative degree. 

Step 1: For m  decision alternatives, determining the original decision making 
matrixes lTTT ,,, 21 "  by all decision makers. 

Step 2: Using Definition 5 to transform all linguistic fuzzy numbers into 

trapezoidal fuzzy numbers, we get matrixes lRRR ,,, 21 " . 

Step 3: Using (1), (2), (3) to process data of lRRR ,,, 21 " , then the group decision 
making matrix =Z nmijz ×)~(  is obtained. 

Step 4: Determining the positive ideal solution T  and alternative points 

mXXX ,,, 21 "  from matrix Z  respectively. 

Step 5: Calculating the grey interval relational degree ),( iXTr , mi ,,2,1 "= . 

Step 6: Ranking all alternatives in accordance with ),( iXTr . 

3   An Application Example 

Official evaluation and selection is a problem of fuzzy multi-attribute group decision 
making. Now one department will select an optimal candidate among four alternatives 

ix )4,3,2,1( =i , and five attributes[15] are given to evaluate these four alternatives, 

i.e. moral ( 1p ), work style ( 2p ), the level and the structure of knowledge ( 3p ), 

leadership ability ( 4p ), deploitation ability ( 5p ).Three decision makers (denoted as 

321 ,, ddd ) are invited to evaluate these four alternatives according to the five 

attributes above, and their evaluation information are listed in Table 1 to Table 3.  
 

Table 1. The decision making matrix given by decision maker 1d  

 P1 P2 P3 P4 P5 
x1 better best best common better 
x2 best good common good best 
x3 good good best better best 
x4 good good worse better best 
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Table 2. The decision making matrix given by decision maker 2d  

 P1 P2 P3 P4 P5 
x1 better good best common good 
x2 best better common better best 
x3 best better good good best 
x4 better good common better best 

Table 3. The decision making matrix given by decision maker 3d  

 P1 P2 P3 P4 P5 
x1 common good good better best 
x2 good better better best good 
x3 good good best good best 
x4 common better worse better best 

 

 
Suppose that the vector of attribute weights is )1.0,2.0,2.0,3.0,2.0(=W , and the 

weight vector of decision makers is )3.0,4.0,3.0(=V . Our aim is to rank all 

alternatives and to choose the optimal candidate. 
 

1) By Step 1 , Step 2 and Step 3, the group decision making matrix =Z nmijz ×)~(  is 

obtained as follows 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

)1,1,1,8.0()1,86.0,8.0,6.0()61.0,29.0,29.0,09.0()1,92.0,83.0,63.0()1,79.0,74.0,54.0(

)1,1,1,8.0()1,97.0,87.0,67.0()1,1,97.0,77.0()1,97.0,87.0,67.0()1,1,93.0,73.0(

)1,1,97.0,77.0()1,97.0,9.0,7.0()91.0,59.0,59.0,39.0()1,92.0,83.0,63.0()1,1,97.0,77.0(

)1,94.0,9.0,7.0()1,63.0,59.0,39.0()1,1,97.0,77.0()1,1,93.0,73.0()1,73.0,71.0,51.0(

Z

 
2) Determine the fuzzy positive ideal T  from matrix Z  

)1,1,1,8.0(),1,97.0,9.0,7.0(),1,1,97.0,77.0(),1,1,93.0,73.0(),1,1,97.0,77.0((=T  

3) Calculate the grey interval relational degree ),( iXTr , 4,3,2,1=i , respectively.  

816.0),( 1 =XTr ； 839.0),( 2 =XTr ； 945.0),( 3 =XTr ； 701.0),( 4 =XTr  

4) Rank all the alternatives in accordance with ),( iXTr , 4,3,2,1=i . 

Since  

),(),(),(),( 4123 XTrXTrXTrXTr >>> , 

so the alternatives are ranked as follows: 

4123 xxxx ;;;  

Therefore, 3x  is the optimal candidate. 
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4   Conclusions 

In this paper, a new model of multi-attribute group decision making is proposed based 
on the TOWA operator and grey relative degree. According to the results of the 
application example, we can conclude that this new model has some advantages, for 
example, the decision principle of this new model is scientific and feasible, and the 
computation process is simple. Therefore, it has a great theoretical value and 
application value in practice. 
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Abstract. Considering capacity constraints of manufacturer, a problem of 
multi-time period production planning of supply chain under customers’ 
demands uncertainty was studied in this paper. According to characteristics of 
the problem, an optimal stochastic chance constraint programming model with 
objective of minimum costs was presented, and a real number matrix encoding 
and stochastic sampling constraints verifying based PSO algorithm was 
proposed. A numeric example is performed, and the results illustrate the 
feasibility and the effectiveness of proposed model and algorithm.  

Keywords: Supply chain, Multi-time period production plan, Demands 
uncertainty, Stochastic chance-constraint programming, PSO algorithm. 

1   Introduction 

Supply chain is a functional network that connects suppliers, manufacturers, 
distributors, retailers and end customers into a whole. Production planning is one of key 
problems of supply chain management, which plays an important role in maximizing 
profits or minimizing cost of the supply chain. So the problem of production planning 
of supply chain has been studied extensively.  

Shapiro et al. analysed the mode of supply chain management from strategic, tactical 
and operational level respectively [1]. Garavelli and Okogbaa presented a single time 
period model of production - distribution planning for single product with objective of 
maximizing profits, and the genetic algorithm was used to solve the model [2]. Hou 
Younghang and Chang Yinghua adopted the model proposed in ref. [2], and used the 
evolutionary programming algorithm to solve the problem [3]. Lanzenauer and 
Glombik proposed a mix integer programming model for tactical planning problem of 
supply chain [4]. Vidai and Goetschaalcks proposed a multi-products single time 
period tactical production planning model of supply chain with objective of 
maximizing profits [5]. Considering situation of multi-products and multi-time periods, 
a production- distribution planning model with goal of minimizing costs was presented 
by Zubair [6]. Jang Y J et al. divided entire supply chain network into three two-class 
sub-network for modelling and solving respectively [7]. Aiming at inventory and 
distribution management, a resource allocation model is built by Han [8]. In view of 
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that the operations of supply chain will be influenced by many uncertain factors, 
recently, more and more researchers have paid their attention to supply chain 
optimizing under uncertain environment. Escudero and Galindo studied the planning 
decision problem of manufacturing - distribution system under uncertainty 
environment [9]. Gupta and Maranas studied medium-term planning problem of 
multi-echelon supply chain under uncertainty demand, dividing the problem into 
production stage and logistics stage, a two-stage stochastic programming mathematical 
model was used to describe the problem and a solving algorithm was presented [10].  

The researches existing mostly focus on the problem of single time period 
production planning. There are only a few literatures to deal with the problem of 
multi-time period production planing of supply chain. At the same time, almost there is 
no literature considering the problem of multi-time period production planing of supply 
chain under uncertainty environment.  

Considering a planning horizon that includes multi time periods, this paper focuses 
on making decision of production and distribution plan of multiple products of supply 
chain under customers’ demand uncertainty with objective of minimizing costs. 
According to characteristics of the problem, we build stochastic programming 
mathematical model and proposed a solving approach of real number genome matrix 
based particle swarm optimization combining with stochastic sampling constraints 
verifying. A numeric example is performed and the results illustrate that proposed 
model and algorithm are feasible and effective.  

2   The Problem of Multi-time Periods Production Planning of 
Supply Chain under Demand Uncertainty 

2.1   Problem Description and Denotation 

Considering a general supply chain network include a manufacturing plant and some 
customers shown as Fig.1. 

...

 

Fig. 1. Supply chain structure 

The plant produces N products for K customers. The production of Manufacturer is 
driven by consumers’ orders. The demands of products from customers are uncertainty 
that will cause products surplus or insufficient and reduce the manufacturer’s profit and 
customers’ satisfaction degree. The multi- time periods production planning is to 
determine the amount of each product produced and delivered according to stochastic 
demands of customers at each time period under capacity constraints of production 
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with the objective of minimum costs. So, in order to ensure that optimum of decision in 
whole planning horizon, it is necessary to combine all time periods to a whole to make 
production and delivery decisions. For convenient modelling, we definite notations and 
variables as follow: 

Notation: k: the index of customer (k=1,2,…,K); n: the index of products 
(n=1,2,…,N); t: the index of planning time period (t=1,2,…,T); Capt�production 
capacity of manufacturer at t time period; nP :capacity consumption of producing unit 

product n; ,n tC : production cost of producing unit product n at the t time period; 
nθ : 

setup cost of producing product n; ,0nI : initial storage of product n; ,n tI : product n 

storages at t time period; ,n tH : storage cost of unit product n; , ,n k tγ :unit transportation 

cost conveying product n to customer k at t time period; , ,k n tα : confidence coefficient at 

which stochastic chance constraint that customer k needs product n is contented at time 

period t; , ,k n tD� : amounts of product n demanded by customer l at time period t 

(random). 
Variables: 

,n tQm : Quantity of product n produced at t time period (decision variable); 

, ,k n tQ : Quantity of product n distributed to customer k at t time period (decision 

variable); 

2.2   Stochastic Chance Constrain Programming Model 

Considering affection of stochastic factors, suppose that customers’ demands are 
stochastic variables and described as 2

, , ~ ( , )k n t i i iD N µ σ� , i = 1, 2, ...,I. Planning horizon is 

known, and can be divided into some equal time periods; the costs in each time period 
are known and stable, and without regard to the safe inventory and lead time of 
ordering; the stochastic chance constrain programming mode is built as follows: 

[ ], , , , , , , , , , , , , ,
min ( )

n t n t n k n t k n t n t n t k n t k n t k n t

t n t k n t n t k n

C C Qm Q I H E D Qθ γ α
+

= ⋅ + + ⋅ + ⋅ + − ⋅∑∑ ∑∑∑ ∑∑ ∑∑∑ �   (1) 

..ts    

,n n t t

n k

p Qm Cap⋅ ≤∑ ∑      t=1,2,…,T                                 (2) 

               , 1 , , , ,n t n t k n t n t
k

I Qm Q I− + − =∑   t=1,2,…,T   

n=1,2,……,N                               (3) 

                 , ,, , , ,Pr( )0
k n tk n t k n tD Q α≥− ≤

∼

     n=1,2,……,N； 

            l=1,2,……,L                                (4) 
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[ ]
, 0,

0, ,

x if x
x

otherwise

+ >
=
⎧
⎨
⎩  (5) 

              , 0n tQm ≥
; , , 0k n tQ ≥

                                                 (6) 

The objective of the model is minimum total cost of supply chain, and the first part is 
the variable cost and set up cost of manufacturing; the second part is storage cost of 
products; the third part is punishment when products cannot satisfy customers’ 
demands. Constraint (2) describe that the amount of products produced should be 
within the manufacturer’s capacity; constraint (3) is the quantity balance of 
manufacturing, delivering and storage; constraint (4) indicates that the probability of 
customer’s demand for each product satisfied may keep above confidence coefficient 

, ,k n tα  in time period t; In the constraint (3), if , , , 1 ,k n t n t n tD I Qm−≥ +� , then , , , ,k n t k n tD Q=� and , 0n tI ≥ , 

manufacturer will hold the storage of products; if , , , 1 ,k n t n t n tD I Qm−≥ +� , then , 0n tI = , namely 

manufacturer can not satisfy the demands of customer. 

3   Solving Method 

It is very difficult to solve stochastic chance constraint programming model by using 
traditional mathematic method. Particle Swarm Optimization is an intelligent 
optimization algorithm which emerges in recent years, and used in solving many 
optimization problems. In view of intractable characteristic of the model presented 
above, we adopt Particle Swarm Optimization algorithm combining with stochastic 
sampling constraints verifying to solve the model. The overall solving process is as 
follows:  

(1) Setting the algorithm parameters: swarm size (swarm-size), learning factor, 
maximum speed, inertia weight, maximum number of evolution generations 
(Generations); 

(2) Creating particle individuals randomly for initializing the swarm and checking 
feasibility; 

(3) Adopting stochastic sampling technology to calculate the fitness value of all 
particles in the swarm; 

(4) Update speed and position of particles; 
(5) Checking the termination condition is satisfied or not, if not satisfied, goes to step 

(3); else, finish calculation, output global historical optimal solution. 
 

In above solving process, we should design corresponding procedures according 
to characteristics of the problem. 

3.1   Individual Presentation and Swarm Initializing 

Considering the relation between time periods, the amount of products produced and 
delivered in different time periods must be determined according to the probability 
distribution of customers demand. We use a real number encode based matrix that  
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Fig. 2. Solution structure 

denotes decision variable among multi-time periods production planning. The feasible 
solution structure can be represented as Fig 2. 

The rows of matrix denote the different products; the columns of matrix denote the 
amount of products produced and delivered in each time period. 

The initial swarm is generated stochastically according to the probability 
distribution of the customers’ demands within the capacity of production.  

3.2   Stochastic Chance Constraints Verifying and Objective Function Calculating 

The key of using PSO algorithm to solve constraint optimal problem is to find suitable 
encoding way to represent solution of the problem, to deal with constraints effectively, 
and to guarantee the rationality and validity of swarm in evolution process.  

Regarding the presented model, constraint (4) is a stochastic chance constraint 

concerning satisfaction degree of customer. It is necessary to verify in solving process 

to guarantee to satisfy customers’ demands. We adopt stochastic sampling technology 

to examine the constraint. For stochastic chance constraint
, ,, , , ,Pr( )0

k n tk n t k n tD Q α≥− ≤
∼

 

here, , ,k n tD�  is a stochastic vector, whose cumulative probability distribution is , ,( )k n tDΦ � . 

For given decision variable , ,k n tQ , M independent stochastic variables , , ,k n tD� can be 

generated according to probability distribution , ,( )k n tDΦ � , supposing that M ′  is the times 

that inequality , , , , 0k n t k n tD Q− ≤� is tenable in M samples, the frequency '/M M  is used to 

estimate the probability. Therefore, only when '
, ,k n tM M α≥ , stochastic chance constraint 

is tenable.  
Because there is a stochastic variable , ,k n tD�  in objective function, the value of 

objective function can also be calculated through computing the mathematic 
expectation of stochastic variables , ,k n tD� generated according to the probability 

distribution , ,( )k n tDΦ � .  

As the problem studied is to find minimizing cost, the objective function must be 
translated to fitness function. The fitness function of individual particles and the swarm 
are as follow: 

( ) ( ) ( )
( )⎩

⎨
⎧

≥
<−

=
max

maxmax

0 Cxf

CsfxfC
xF

i

ii
i

 
(6) 
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( ) ( ){ }xfxF imax=                                                         (7) 

Here, ( )xFi
and ( )xfi

are fitness and objective value of individual particle 

respectively, maxC is the maximum value of the objective among current all particles; 

( )xF  is the fitness of the swarm. 

4   Computation Example 

Considering a supply chain including three customers and one manufacturing plant, the 
plant may produce 3 kinds of products. Demands of customers are stochastic, and the 
probability distributions are known in each time period. The problem is to determine 
the quantity of products produced and delivered that can satisfy the demands of 
customers, and make overall cost minimum. Table 1-2 give all data known. 

Table 1. Production capacity and products demand distribution 

Time period 1 2 3 4 
Production capacity 500 450 460 430 

Products demand distribution 
Product1 N(40,10) N(30,9) N(35,9) N(45,10) 

Product2 N(50,10) N(40,9) N(45,10) N(47,8) Customer1 

Product3 N(30,5) N(25,8) N(35,10) N(30,10) 

Product1 N(25,5) N(20,9) N(30,10) N(20,10) 

Product2 N(40,8) N(50,15) N(40,10) N(55,8) Customer2 

Product3 N(30,5) N(20,9) N(35,8) N(25,5) 

Product1 N(35,9) N(30,5) N(38,8) N(40,10) 

Product2 N(40,10) N(35,8) N(45,9) N(50,20) Customer3 

Product3 N(30,10) N(30,5) N(35,10) N(30,9) 

Table 2. Cost of production, inventory and transportation 

Product 1 2 3 
Setup cost 300 400 200 

Unit cost of production 7.22 5.24 8.32 
Inventory cost 2.89 2.10 3.33 

Unit capacity consuming 1 2 1 
Transportation cost 

Customer1 1.89 2.53 2.14 
Customer2 1.10 1.38 1.47 
Customer3 2.33 1.31 2.06 
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Because customers’ demands are uncertain, the quantity of products produced and 
delivered may not satisfy the customers’ demands some time, and will result in lacking 

loss of products. The satisfaction of customer k can be defined as , ,

, ,

n k t

n k t

Q
E D⎡ ⎤⎣ ⎦
� , the 

penalty of lacking products can be measured by the satisfaction degree of the 
customers. Supposing the penalties are the same in each time period, the penalty 
function can be given as Fig 3. 
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Fig. 3. Penalty function 

The algorithm is programmed with VC++6.0 and appropriate algorithm parameters 
could be determined through computing experiments of setting different parameters 
and comparing the computation results. Fig. 4 gives the convergence trends of the 
algorithm under three kinds of different parameters when confident level , ,k n tα  is 0.9. 

The suitable algorithm parameters are swarm size=100, earning factors=2.0, Vmax = 2.0. 
The evolution of the maximum generation is 500, and whole process of the running 
time is approximately 15seconds, the results are given in Table 3 and Table 4. 
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Fig. 4. Convergent trends of the algorithm 
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Table 3. Throughput of each time period 

Product Period 1 Period 2 Period 3 Period 4 
1 109.7 93.3 103.4 98.0 
2 138.2 123.6 134.1 126.9 
3 96.0 79.8 92.3 83.4 

Table 4. Distribute quantity of each customer 

 Product Period 1 Period 2 Period 3 Period 4 
1 43.32 37.65 40.27 36.77 

2 50.83 46.89 51.33 50.58 Customer1 

3 32.25 24.31 31.66 28.41 
1 27.88 22.66 26.35 25.68 
2 40.99 36.51 41.78 37.77 Customer 2 

3 29.59 25.29 30.35 29.34 
1 36.70 30.24 35.59 32.90 
2 36.76 37.57 41.33 38.23 Customer 3 
3 30.17 26.93 29.22 27.02 

 
Considering the uncertain demands of customers, we use the results (products 

produced and delivered in each time period) to verifying the satisfaction degree of 
customer, and give the results in Table 5. It is obviously that the satisfaction degrees of 
customers are more than 94% in each time period. 

Table 5. Customer satisfaction 

 Product Period 1 Period 2 Period 3 Period 4 
1 98% 95% 98% 94.5% 
2 99% 94% 98% 98% 

Customer 1 

3 98% 97.5% 99% 94% 
1 99% 92% 98% 98% 
2 98% 92.5% 99% 95% 

Customer 2 

3 99% 94% 99% 98% 
1 98% 92% 97% 95.5% 
2 99% 95% 98% 94% 

Customer 3 

3 98% 93% 96% 96% 

5   Conclusion 

This paper studied multi-time periods production planning problem of supply chain 
under demands uncertainty, a stochastic chance constraint programming model with 
objective of minimizing costs was built, according to the characteristics of the model, a 
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solving approach combining Particle Swarm Optimization algorithm with stochastic 
sampling constraint verifying was presented. A numeric example was performed and 
the computation results illustrate the feasibility and the effectiveness of proposed 
model and algorithm. 
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Abstract. First, based on the viewpoint of system theory, this paper explained 
the coordination and its degree’s concept and connotation. Then it introduced the 
performance of Data Envelopment Analysis (DEA) method and the membership 
concept of fuzzy mathematics degree, which established the coordination degree 
evaluation model of multiplexed system, appraised the running status and the 
tendency of the coordination among the multiplexed system’s essential factors 
and subsystems. Finally we took an empirical analysis with this model into 
Chinese Guangxi’s multiplexed system which concludes economy, education 
and Science Technical between 1994 and 2006. The result indicated: this 
multiplexed system’s static coordination degree changed in a big way, and the 
dynamic coordination degree swings nearby 0.92, the multiplexed system 
development is at a basic coordinated condition. 

Keywords: Multiplexed System, Coordination Degree, Data Envelopment 
Analysis (DEA). 

1   Introduction 

Coordination is used in a very widespread concept in the scholar research and the 
application, but actually does not have a very explicit definition. The system 
coordination’s basic philosophy is, by organizing and regulating the system through 
some methods, to seek for the solution of contradictious or conflicted plan, and finally 
causes the system to transform from the disorder into the order, achieves a better 
coordination degree or a harmonious condition. The system’s coordinated goal is to 
reduce its negative effect, enhances its whole output function and overall effect [1]. 

The multiplexed system’s coordinated essence is to make a full use of and to 
promote the positive relations of it. Coordination could manifest the condition of 
harmony, coordination, and the optimized relations of the various subsystems or the 
essential factors among the subsystems. The development performance could be 
regarded as a complicated system's process of movement [2]. To realize multiplexed 
system's coordination, it must regulate relations between various subsystems, 
including many kinds of mechanisms such as system structure's coordination, the 
interior, exterior coordination as well as the organization management coordination 
and so on [3]. In multiplexed system, each subsystem is independent, but also 
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interacted, multiplexed system's coordinated operating condition is the coordinated 
development among various subsystems. Therefore, coordination is not only one 
adjustment method, is also one kind of management and control function, sometimes 
also presents one condition to indicate the harmonious relations that between various 
subsystems,  essential elements, system functions, the structures or the goals, using 
for describing system's overall effect. 

2   Coordination Model Research of Multiplexed System  

2.1   Statement of the Appraisal System Method  

Because the coordinated developing system is a huge and complex system, and 
composed of many production subsystems, therefore, when appraised coordinated 
developing condition, the coordination coefficient that should be calculated is not one, 
but more. They connect and restrict mutually, constituting a system, these coordinated 
coefficients could be called coordination coefficient system. We give the following 
description regarding this coordinated coefficient system: 

)/( jiw : the coordinated coefficient from system i to system j，which means the 

close degree of what the output system i requests ,when takes system i as the input, 
and system j as the output; 

),/( kjiw : the coordinated coefficient from system i to system j and system k，

which means the close degree of what the output system i requests ,when takes system 
i as the input, and system j,k as the output; 

),,/( lkjiw : the coordinated coefficient from system i to system j,k,l，which 

means the close degree of what the output system i requests ,when takes system i as 
the input, and system j,k,l as the output. 

Although )/( jiw  and )/( ijw  could be calculated, but they only describe the 

coordinated degree from one system to another system, can not be able to reflect the 
coordinated degrees between the two systems. Coordinated degrees between two 
systems should be reflected by the formula ),( jiw : 

)}/(),/({

)}/(),/({
),(

ijwjiwMax

ijwjiwMin
jiw =

 
(1) 

Likewise，there needs to calculate the coordinated degree among three system. Its 
formula is: 

),(),(),(

),(),/(),(),/(),(),/(
),,(

***

jikjki

jijikkikijkjkji
kji WWW

WWWWWW
W

++
++

=
 

(2) 

Inference in turn，we may describe coordinated degree formulas among four, five, 
six systems as ),,,( lkjiw ， ),,,,( mlkjiw ， ),,,,,( nmlkjiw . 
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By above, the coordinated degree function ...),,( kjiw  reflected the coordinated 

developing system's synthesis coordinated coefficient that among many systems. its 
expression is the highest level. It reflects the overall system's coordinated developing 
degree comprehensively. The coordinated coefficient architecture relations, not can 
only describe the coordinated development degree between various levels’ system, 
but may also carry on the factor analysis, discover the reason of uncoordinated, and 
provide the basis for the formulation coordinated development strategy. 

2.2    Coordination Model of Multiplexed System Based on DEA  

Take long-term balanced relational various subsystems of a system as the input-output 
system mutually. With the method DEA from the macroscopic angle, it narrates and 
comments the coordinated development among the various subsystems, and through 
the definition to judge coordinated degree between subsystems’s, drawing support in 
the concept of membership of the fuzzy mathematics [4]. 

Refers to massive methods and predecessor's work, there may establish a set of 
scientific coordinated coefficient computation system. First there need to calculate the 
coordination degree between each two subsystems, then calculate coordination 
degrees between an element and the other two elements in turn, finally carries on the 
synthesis according to the formula, then there could obtain the coordination degree of 
three subsystems, and coordination degree computation among the multi-system's also 
depend on the above analogy. 

According to DEA and the concept of membership of the fuzzy mathematic, the 
coordination degree's computation step between two subsystems is: 

The 1st step: Takes a subsystem’s（marked 1s ）index as the input，and another 

subsystem’s (marked 2s ) index as the output. There can obtain the input surplus 

of 1s , the output debt of 2s , the scale benefit value∑λ  and the valid value ( 1w ) of 

the DEA, using the CCR model of the DEA method.  

The 2nd step: Takes a subsystem’s（marked as 2s ）index as the input，and 

another subsystem’s (marked as 2s ) index as the output. There can obtain the input 

surplus of 2s , the output debt of 1s , the scale benefit value∑λ  and the valid value 

( 2w ) of the DEA, using the CCR model of the DEA method.  

The 3rd step: Applying the ideology of the concept of membership of the fuzzy 
mathematics, which could establish coordination function of the development 
condition between two subsystems, to express the subordination degree of system to 
the coordination which is a fuzzy concept under certain value? To definite the 
function of membership as θθ =)(w ，θ represents the effective value mutually 

between input and output of the subsystems. Mark the static coordination from 1s  to 

2s  with 1w , which means the close degree of the development from the subsystem 

2s  to the requested harmonious condition that subsystem 1s  asks 2s  for; In addition, 
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we mark the static coordination from 2s  to 1s  with 1w , which means the close 

degree of the development from the subsystem 1s  to the requested harmonious 

condition that subsystem 2s  asks 1s  for. Then we could define the static coordination 

degree between the two subsystems as 2,1w  or 1,2w : 

{ }
{ }21

21
2,1 ,max

,min

ww

ww
w =

 

(3) 

The 4th step: How to obtain the dynamic coordination degree. Suppose the 

),( 11 tw θ ， ),( 22 tw θ ,…, ),( nn twθ  are the coordination degrees each time 

between  the time section of the multiplexed system from 1t to nt , the dynamic 

coordination degree’s function: 

( ) ( )∑
=+−

=
n

i
ii

n
nn tw

tt
ttw

11
11 ,

1

1
...;... θθθ

 

(4) 

( )nn ttw ...;... 11 θθ  represents the dynamic coordination degree of the multiplexed 

system from ,0t to nt ,and it could simplified as )( ,0 nttw ( 0t  is the base time). 

According to the synthesis formula computation, we could get the coordination 
degree function among three subsystems:  

),(),(),(

),(),/(),(),/(),(),/(
),,(

***

jikjki

jijikkikijkjkji
kji WWW

WWWWWW
W

++
++

=
 

(5) 

Among them, 

),,( kjiW  represents the coordination degree among three subsystems;  

),/( kjiW  represents the coordination degree between one subsystems and the other 

two; 

),( kjW  represents the coordination degree between two subsystems. 

When there are more than three subsystems, the coordination degree which marked 
with ...),,( kjiw  among them also could be reasoned out by the above. 

3   Computation of Coordination Degree of Multiplexed System 

According to the requisition of the appraisal of coordination degree, the evaluation 
index system has been designed as follows [5, 6]. 
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Fig. 1. Index structure for the coordination degree model of GuangXi 

The following index data are from the almanac of GuangXi which are showed in 
the following table 1. The index of development level of education and technique had 
been converted more intuitive, and we passed the expatiator detail over.     

Table 1. Index data from the almanac of GuangXi 

Economical subsystem Educational subsystem Technical subsystem 

years 
GDP 

(hundred- 

million) 

Fixedassets 

investment 

(hundred-

million） 

Fund input 

(ten-million) 

Develop 

-ment  

level 

Fund input 

(ten-million) 

Develop 

-ment 

level 

1994 1198 382 104 1205 27.37 643 

1995 1498 423 127 1253 30.28 738 

1996 1697 476 137 1391 31.58 722 

1997 1817 479 96 1533 32.47 719 

1998 1911 571 114 1411 36.07 801 

1999 1971 620 111 1565 40.87 805 

2000 2080 660 166 1801 48.79 784 

2001 2279 731 325 1647 67.18 767 

2002 2523 835 264 1664 79.35 953 

The coordination degree of GuangXi

Economical subsystem Educational subsystem Technical subsystem 

 
GDP 

 

Fixed 
assets 
invest
-ment 

Fund 
input 

Develo
-pment 
level 

Fund 
input 

Develo
-pment 
level 
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Table 1. (continued) 

Economical subsystem Educational subsystem Technical subsystem 

years 
GDP 

(hundred- 

million) 

Fixedassets 

investment 

(hundred-

million） 

Fund input 

(ten-million) 

Develop 

-ment 

level 

Fund input 

(ten-million) 

Develop 

-ment 

level 

2003 2821 987 374 1962 88.04 1119 

2004 3433 1263 418 1979 98.79 1157 

2005 4075 1769 527 2149 114.68 1434 

2006 4828 2246 502 2529 146.00 1624 

 
We chose the index which could represent the output and input of each subsystem 

best. And because there is no need to consider the units when use the method DEA, so 
we took the original data ,except for the development level of Technic and 
Education,in order to reflect the condition of each year in GuangXi more direct. Take 
the advantage of our model; we obtained our result as following table show.  

Table 2. Static coordination degree of multiplexed system of GuangXi 

year 1994 1995 1996 1997 1998 1999 2000 2001 2002 

  DEA 0.93 0.96 0.93 1 0.9 0.92 0.92 0.88 0.88 

year 2003 2004 2005 2006      

DEA 0.9 0.96 0.97 0.88      

Table 3. Dynamic coordination degree of multiplexed system of GuangXi 

year 1994 1995 1996 1997 1998 1999 2000 2001 2002 

DEA 0.93 0.945 0.94 0.955 0.944 0.94 0.937 0.93 0.924 

year 2003 2004 2005 2006      

DEA 0.922 0.925 0.929 0.925      

Through the curves of the static and dynamic coordination degree among three 
subsystems, the multiplexed system of GuangXi was basically coordinated from 1994 
to 2006, which could be reflected by the dynamic coordination values that were all 
above 0.92.And except for the year 2001, 2002 and 2006, the static coordination 
values were all above 0.9. First, we get our conclusion by analyzing the three years 
whose static coordination values are below 0.9(2001, 2002, 2006) from the 
coordination values between each two subsystems or between one and the other two. 
The biggest transformation of 2001 is the increase which reached almost 100% of the  
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Fig. 2. Change tendency of the coordination degree of GuangXi 

index of technical fund input, at the same time, the population of Science and 
Technique also get a fast increase ,and the development of the economic and 
education are comparatively smooth, that is the reason which make 2001’s 
coordination value a smaller value. And in 2002, while the education and economic is 
at a fast development, there has been a significant negative growth of the index of 
science and technique, which may be caused by the government’s Macro-control. In 
2006, the increase of the index of the S&T slow down again while the other two index 
are at a sustained growth, which makes the coordination value smaller, in particular to 
reduce the fund for S&T .  

From the coordination values of 1997, which is1, we found there is an obvious 
increase compared to the 0.93 of 1996.In 1997, the economic index growing speed, 
although compared the years to be slow, is quick compared to the education and S&T. 
So this indicated that the speed of development of S&T and education is in advance 
compared to economy before 1996. 

In 2004, 2005 two years, the coordination values have amounted to the mean value 
which are the continuously highest two years. Three subsystems’ rates of rise are all 
very quick, which showed that these rates of rise for each of them are quite ideal, we 
may take these three sub-system's growth rates of these two years to be the ideal 
reference value. 

We could observe from the dynamic coordination degree curve that the values are 
better in the years before 2000 than after 2000, the main causes were the higher 
education reform around 2000 and the funds fluctuation of science and technology 
each year. But the impact of the higher education reform, which reduced the 
coordination value, was temporary. We could foresee that the education will cause the 
other two subsystems to promote to make the multiplexed system of GuangXi change 
for the better. The hysteretic quality could be observed by the growth of coordination 
values of 2004 and 2005. 
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In brief, it could be discovered that from 1994 to 2006, the main cause for the years 
which have relatively small values of coordination degree is because of the 
fluctuation of index of S&T, and the rates of growth were quite ideal in 2004 and 
2005. 

4   Summaries 

From the viewpoint of interaction and mutual connection of multiplexed system, we 
have established coordination degree evaluation model using the DEA method and the 
concept of membership of the fuzzy mathematics .The model used statistical data 
from time series and was based on the multiplexed system whose subsystems accord 
with cointegration, in order to appraise the running status and the tendency of the 
multiplexed system among the subsystems or among the essential factors. Through 
the empirical analysis to the multiplexed system including Economy, Education and 
S&T of Guangxi from 1994 to 2006, static coordination degree of the multiplexed 
system changed in a big way, but the dynamic coordination degree swinged nearby 
0.92, so the multiplexed system is at a quite coordinated condition. Multiplexed 
system's coordinated development is the general objective which caused the social 
economy development sustainable; we have to take the scientific development 
concept as the instruction to plan the development of economy, education, and S&T 
in order to promote the ability for sustainable fast development. 
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Abstract. The variation of elements in a compound system is mostly non-
stationary. Whether these element variables have long-term mutual connection 
or balanced relations, is essential to determine the interaction relationships 
between the subsystems. Co-integration is usually used to describing the long-
term balanced relations between these non-stationary variables in a statistical 
method. In view of the fact that elements of a compound system is mostly non-
stationary, this paper gave a method using co-integration analysis to determine 
the long-term inter-relationship between elements of the compound system or 
its subsystems, and carried this method on the co-integration analysis of the 
Guangxi Province compound system, composed of education, economy  science 
and technology system, the result of which indicated that economy growth was 
the reason of the development of education and technological achievements in 
Guangxi from 1994 to 2006. 

Keywords: Vector Auto-Regressive, Multiplexed System, Co-integration Analysis. 

1   Introduction 

After having been reforming and opening up to the outside world for near 30 years 
since1978, China's comprehensive national strength has been being greatly enhanced. 
However, China's development is mainly depending on the massive resources 
consumption and the cheap labor force. This kind of extensive growth style makes 
China face lots of serious problems, such as the depletion of resources, Environmental 
Pollution, no remarkable improvement of people's living standard and so on. 
Therefore The Party Central Committee puts forward a series guidelines, for instance, 
“the economy development must depend upon the science and technology, the 
technical work must face to the economy development” as well as “the education 
must serve the socialist construction, the socialist construction must depend upon the 
education”, to transform our economy developing style and form a virtuous circle 
formation that science and technology innovation promotes the economy 
development, the economy development improves the educational level enhances, 
education lays the foundation for the science and technology innovation. So it is very 
important to study the internal relations between the education - economy – science  
＆technology compound system and find out their combinative point in order to 
promote their coordinated development.  
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The multivariate co-integration method was applied in this paper to find out the 
long-term relationship between the education - economy - science and technology 
compound system. So we chose the development indexes of the GDP (g), the number 
of graduates (e), scientific and technological level (t) as the parameters to measure the 
level of education, economy and science and technology. 

2   Evaluation to Interrelation of Sub-systems 

The variation of elements in a compound system is mostly non-stationary. Whether 
these element variables have the long-term mutual connection or balanced relations, is 
essential to determine the interaction and relationship between the sub-systems. Co-
integration is usually used to describing the long-term balanced relations between 
these non-stationary variables in a statistical method [1-3]. As the multi-variable VAR 
(Vector Auto-Regressive, VAR) model has the higher reliability than a single 
equation, and the elements in a compound system is mostly non-stationary, so we 
chose to determine the relationship between these elements in a multi-variable VAR 
system, in which a k-order VAR model can be expressed as:   

tktktt

k

i
titit

UYYY

UYY

+Π++Π+Π=

+Π=

−−−

=
−∑

...2211

1

 

( )ΩΠ ,0~ DU t  

 

(1) 

In this formula, ( )tNttt YYYY ,,2,1 ,...,,= and kΠΠΠ ,...,, 21  are parameter 

matrixes, tU  is a random error column vector and Ω  is a covariance matrix. 

If there are some co-integration relationships between the non-stationary variables 
in the VAR model, we can establish a vector error correction mode (VECM) based on 
the VAR model by co-integration. 

tktktkttt UYYYYY +Π+∆Γ++∆Γ+∆Γ=∆ −+−−−− 112211 ...
 

(2) 

In which Π  is influence matrix (or compression matrix), equaling to the sum of all 
the parameter matrixes subtracted a unit matrix or being interpreted as follow 
formula: 

Ik −Π++Π+Π+Π=Π ...321  
(3) 

And Π  can also be decomposed into Tαβ=Π , in which β  is co-integration 

coefficient matrix and all of its columns are co-integration vectors, andα  is adjusting 
coefficient matrix. We can choose the optimum lag period "k" by evaluating the joint 
significance of variables' largest lag period. 
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3   Co-integration Analysis Theory of Multiplexed System 

3.1   Unit Root Test 

An application of stationary test to the variables is required before the multivariate co-
integration analysis. Only all the variables in the t-order I(t) are stationary, can we 
carry on the co-integration analysis. 

Assumed that the time serials { ty } can be expressed as: 

1
1

P

t t i t i t
i

y t y yα β ρ λ ξ− −
=

= + + + ∆ +∑
 

(4) 

In which the lag length "p" should be large enough generally to make sure that 
there is no serial correlation between these error term or could be determined by the 
minimum AIC or Schwartz(SC) values, thus we can firstly estimate the following 
unrestricted regression equation based on OLS estimator: 

1
1

( 1)
P

t t i t i t
i

y t y yα β ρ λ ξ− −
=

∆ = + + − + ∆ +∑
 

(5) 

And then obtain the OLS estimator of the following restricted regression equation, 

which constrained by the hypothesis of unit root 01:0 =−= ρβH : 

1

P

t i t i t
i

y yα λ ξ−
=

∆ = + ∆ +∑
 

(6) 

Finally, according to the results of regression analysis, we can calculate the F-value 

to test whether ty
 is statistically significant tenable or not. 

3.2   Co-integration Test 

Co-integration was firstly built by Granger in 1981 just as a conceptive tentative idea, 
then extended by Engle and Granger, who gave rigorous theorem proving and 
concrete operational framework in 1987. And in the following 10 years, due to the 
remarkable works of Engle-Yoo, Johansen and Phillips et al., the co-integration 
models have become an effective and indispensable instrument for the analysis of 
non-stationary time-series and have been widely applied in practice.  

Co-integration theory, simply speaking, involves a group of variables, which are 
non-stationary separately and can drift when being combined together. These kind of 
drift shows that there is a linear relationship between these variables and can be 
regarded as a way to research the balanced relations of the variables in economy. Its 
definition could be interpreted as: a set of time-series vector has such property that all 
of the time series in this vector are integrations and a certain linear combination of  
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these time series is a stationary sequence. Besides, this concept can also be expressed 

in mathematical language as: if time series kttt XXX ,...,, ,21  are all d-order 

integrations and there exists a vector ( )kαααα ,...,, 21=  such that 

( )bdIXZ tt −= ~α  where b>0, ( )ktttt XXXX ,...,, 21= , then this time series 

kttt XXX ,...,, ,21 could be considered as ( )bd , co-integration, or denoted as 

( )bdCIX t ,~ , andα  is co-integration vector. 

3.3   Granger Causality Test 

It is a common problem to determine whether one time-series is the cause to another 
one in social economics. So Granger first put forward a set of tests to reveal 
something about causality, which is known as Granger Causality Test. 

A time series X is said to Granger-cause Y if it can be shown, usually through a 
series of F-tests on lag length of X (and with lag length of Y also known), that those 
X values provide statistically significant information about future values of Y.  

This work begins by estimating the following two regression models for testing the 
hypotheses that whether X Granger-cause Y or not: 

1 1

p p

i t i j t i t
i j

Y Y Xα β ξ− −
= =

= + +∑ ∑
 

(7) 

The model without restrictions:  

1

p

i t i t
i

Y Yα ξ−
=

= +∑
 

(8) 

The model with restrictions:  
In which p is the optimum lag length, and then make OLS regression toward these 

two models for unrestricted sum of squares of deviations 1RSS and restricted sum of 

squares of deviations 2RSS . So we can calculate the F-statistics, which obeys a 

( )KNQF −, distribution, by using the following formula: 

1 2

1

( )
( )

RSS RSS
F N K

QRSS

−= −
 

(9) 

Where N is the sample capacity, K is the number of the estimated parameters in the 

unrestricted model, and Q  is the number of the parameters to be estimated in the 

unrestricted model. Followed, we should examine whether this set of coefficients 

( )pβββ ,...,, 21  significantly equals to zero simultaneity. If really so, it should reject 

the null hypothesis that X does not Granger causes Y. 
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Then the null hypothesis－X does not Granger cause Y－can be tested in the some 
way, but it has to exchange the position of X and Y and test if the lag item of Y 
significantly equals to zero. For obtaining the conclusion that X brings about the 
variation of Y, the null hypothesis－X does not Granger cause Y should be rejected, 
whereas accepting the opposite hypothesis. 

4   Co-integration Analysis on the Economy-Education-Technology 
Multiplexed System in Guangxi Province 

4.1   Data Source 

There are differences in range between the development of education, the growth of 
economic and the advance in technology, but as a whole, they have close relationship 
[4-6]. In order to investigate whether there are the long-term mutual connection or 
balanced relations in the compound system of Guangxi, which composed of 
education, economy, science and technology system, this paper chose the 
development indexes of the GDP (g), the number of graduates (e), scientific and 
technological level (t) from 1994 to 2006 as the parameters to measure the level of 
education, economy and science and technology. What was shown in Table 1 is the 
14 years' standardized development index data of GDP, the number of graduates, the 
scientific and technological achievements of Guangxi province, and their trend were 
shown in Figure 1. 

Table 1. Standardized development index data of Guangxi province 

Year (y) GDP (g) Graduates (e) Technology (t) 

1994 0.000 0.000 0.000 

1995 0.107 0.137 0.041 

1996 0.187 0.116 0.146 

1997 0.264 0.111 0.237 

1998 0.359 0.220 0.158 

1999 0.436 0.225 0.263 

2000 0.512 0.199 0.403 

2001 0.592 0.176 0.308 

2002 0.693 0.393 0.312 

2003 0.790 0.554 0.478 

2004 0.902 0.587 0.492 

2005 1.026 0.802 0.575 

2006 1.153 0.927 0.738 
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Fig. 1. Trend of development index data of Guangxi province 

4.2   Unit Root Test 

An application of stationary test to the three variables mentioned above was required 
firstly before we carry on the co-integration analysis. Only all the variables in t-order 
I(t) are stationary, can we carry on the co-integration analysis. This paper made use of 
the ADF unit root testing method to test the stationary of these variables, the results of 
which were shown in Table 2. 

Table 2. The results of unit root test 

Variable 
ADF test 
Value 

Testing type 
 (c，t，d) 

critical value AIC value Stationarity 

e -0.716084 (c，t，0) -3.388330** -1.694055 Non -tationary 

∆e -2.788455 (c，0，0) -2.728985** -1.574121 stationary 

t -0.28475 (c，t，1) -3.933364* -2.191312 Non -tationary 

∆t -5.071917 (c，0，1) -3.212696* -2.203401 stationary 

g -1.471024 (c，t，2) -4.008157* -4.189669 Non -tationary 

∆g -4.990870 (c，t，2) -4.107833* -4.900132 stationary 

 
As it can be seen from Table 2, all of the variables are non-stationary series, and 

we should reject their null hypothesis of unit root. So the time-series e, g, t can be 
considered as non-stationary. And for all variables calculated with the first order 
difference, their hypothesis of unit root cannot be rejected, it is to say, their first 
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difference is stationary or integrated of order one, i. e. I(1). Obviously, we can test the 
relevance of these non-stationary variables by using co-integration method but not 
traditional linear regression analysis. 

4.3   Co-integration Test 

Using the method firstly proposed by Johansen, we can make co-integration tests on 
these variables directly by constructing the likelihood ratio statistics and the trace 
statistics based on the maximum Eigen value. The test results were shown in Table 3 
and Table 4 respectively. From these tables we can see that there are 3 co-integration 
relationships between these time series: e, g, t. 

Table 3. Judgment with the trace statistic 

Null hypothesis Latent Root Trace Statistic critical value P-value 

None cointegration 0.922 46.930 29.797 0.0002 

At most 1 
cointegration 

0.723 18.810 15.494 0.0152 

At most 2 
cointegration 

0.344 4.654 3.841 0.0309 

Table 4. Judgment with λ-max statistic 

Null hypothesis Latent Root λ-max Statistic critical value P-value 

None cointegration 0.9224 28.1196 21.1316 0.0044 

At most 1 cointegration 0.7238 14.1562 14.2646 0.0519 

At most 2 cointegration 0.3449 4.6541 3.8414 0.0309 

4.4   Granger Causality Test 

By using the Granger test on these three time series of GDP (g), the number of 
graduates and the level of technology (t), its results was shown in Table 5. 

Table 5. Granger causality test 

Null hypothesis Lag length F statistic P-value 

g does not Granger Cause e 2 3.6501 0.0918 

e does not Granger Cause g 2 0.4976 0.6310 

T does not Granger Cause e 2 3.6297 0.0926 
e  does not Granger Cause t 2 6.1362 0.0354 
T does not Granger Cause g 2 0.6521 0.5542 

G does not Granger Cause t 2 10.2555 0.0115 
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Conclusions: There are two-way Granger causality between t and e; g Granger cause 
e and the probability that e does not Granger because g is high up to 63.10%; g 
Granger cause t and the probability that t does not Granger because g is 55.42%. 

5   Summary 

According to the above testes, there are long-run co-integration relationships between 
the economies, education, and technology multiplexed system of Guangxi province. 
And also we can learn from the results of these testes that economy growth is the 
reason of the education development and technological achievements from 1994 to 
2006. Besides, Guangxi's high-speed economic growth has enhanced the financial 
capacity, greatly enlarging the government investment in education and scientific 
research. It is just in this period that the quality of education in Guangxi had a 
substantive leap. With the completely popularization of nine-year free education and 
the increase of the quantity of the senior high schools and variety of vocational 
technical schools, a large number of high-quality labor are cultivated to serve society. 
The higher education would be soon accessing to a popular state, and the rapid growth 
of the quantity of specialized personnel brings to the enrichment of the scientific and 
technological achievements. So the development of technology and education promote 
and influence each other, establishing the benign circulation mechanism of the two 
systems. But what we can not ignore is that the technology and education of Guangxi 
province are still in a low level, playing a limited role in the development of economy. 

Therefore Guangxi should continue to develop education and scientific research 
vigorously in future. Focusing on the development of vocational education combining 
with practices, efforts should be paid to improve the quality of education and increase 
the average education years as an important means to guarantee the construction of 
the talents who can comply with the social demand; And Guangxi province should 
make use of any means to draw on the talents, strengthen the transformation of 
scientific and technological achievements and optimize industrial structure. Only thus 
economic development can be promoted in a better and faster way. 
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Abstract. This paper focus on the stability analysis of the Automatic pipeline, 
variable inventory and order based production control system. Traditionally, 
dynamics of production inventory control system has been studied with transfer 
functions in frequency domain and the stability analysis is usually based on a 
fixed production delay. In this paper, state space representations are derived 
directly by a group of difference equations. The linear system theory is used to 
determine the stability region. The most significant point is that the region is 
independent on the production delay. Furthermore, two commonly used 
production ordering strategies are analyzed by the given region. 

Keywords: Inventory control, Production delay, APVIOBPCS, Difference 
equation. 

1   Introduction 

A well designed production planning and inventory control system is essential for 
competitive dynamic behavior, and choosing the properly decision parameters will be 
a difficult problem. This paper focuses on how the decision parameters affect the 
stability of a type of production inventory control system especially for the situation 
when the production delay is any long. 

The dynamics of production inventory control system has been extensively studied 
over years since the first work by Simon [1], who applied servomechanism 
continuous-time theory to manipulate the production rate in a simple system involving 
just a single product. The idea was extended to discrete-time models by Vassion [2]. 
A breakthrough, however, was experienced in the late 1950s by the so-called 
“industrial dynamics” methodology, which was introduced by Forreste [3]. The 
methodology, later referred as “system dynamics” used a feedback perspective to 
model, analyze and improve dynamic systems, including the production inventory 
system. However, the “industrial dynamics” methodology was criticized for not 
containing sufficient analytical support and for not providing guidelines to the system 
engineers on how to improve performance. Motivated by the need to develop a new 
framework that could be used as a base for seeking new novel control laws, Towill [4] 
presented the inventory and order based production control system (IOBPCS) in a 
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block diagram form. Some later work was studied on the framework by changing the 
strategy of production planning or the demand forecasting methods, which can be 
convenient to measure and eliminate the bullwhip effect [5,6,7,8]. However, the 
systems studied were mostly based on small delay or fixed delay. Additionally, with a 
large production lag, it is hard to analyze the stability. However, the long production 
delay exists in real world; for example, a chip can be made only after hundreds of 
production procedure in the semiconductor industry.  

This paper focuses on the Automatic pipeline, variable inventory and order based 
production control system (APVIOBPCS). State space representations are derived by 
a group of difference equations. The linear system theory is used to determine the 
stability region with any production delay. Furthermore, the given region is tested by 
simulation. 

The structure of the paper is as follows: In Section 2, the studied production 
inventory control system is described by a group of difference equations, based on 
which state space representations are derived. In Section 3, a stability region is 
derived for any production delay. In section 4, two commonly used production 
planning strategies are analyzed by the given region. Finally, some concluding 
remarks are given in Section 5.  

2   Difference Equations and State Space Representations 

The production planning problem of a manufacturer in each period is considered. We 
focus on how the decision parameters affect the system stability. The timing of the 
events is as follows: (a) At the beginning of a period, to receive the goods ordered 
before and to review the inventory including the inventory working in progress (WIP) 
and the net stock. (b) Using the predictive demand and the actual demand in the 
previous period to predict the possible demand in the current period. Exponential 
smoothing is the chosen method because it is easy to implement and relatively 
accurate for short-term forecasts [6]. After the prediction, a production order is 
created. (c) Demand is fulfilled and the excess demand will be backlogged. 

A group of difference equations can be derived according to the above events 
order. Suppose that the current period is dented by t ; the lead time denoted by pT , 

which is the time from the issue of orders until the receipt of goods from production 
line. It is assumed that the receiving goods in the current period, ( )Comrate t , equal to 

the order quantity pT  periods before, ( )pOrate t T− . It should be known that the pT is 

the multiple of integers. 

( ) ( )pComrate t Orate t T= − . (1) 

System inventory levels are the accumulated sum of the difference between the 
production completion rate and the actual consumption rate. The difference equation 
required to capture inventory levels is shown in (2) 

( ) ( 1) ( ) ( 1)Ainv t Ainv t Comrate t Const t= − + − − , (2) 

where ( )Ainv t and ( 1)Const t −  denotes the inventory level and actual demand. 
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The acual work-in-progress levels (WIP) are calculated as the accumulated sum of 
the difference between production order rate and the production completion rate. The 
difference required to monitor WIP is shown in (3).  

( ) ( 1) ( 1) ( )Wip t Wip t Order t Comrate t= − + − − , (3) 

where ( )Wip t denotes the WIP at time t . 

The following event is the demand forecasting. The method chosen is exponential 
smoothing. Our forecasting mechanism is according to the actual demand happened in 
the last period, ( 1)Const t − , and the value of prediction in last period, ( 1)Avcon t − , 

to predict the demand in the current period, which is expressed by (4). 

( ) (1 ) ( 1) ( 1)Avcon t Avcon t Const tθ θ= − − + − , (4) 

where θ  is a forecasting parameter.  
The strategy of production planning plays an essential role in a production control 

system. With different decision parameters, the system might exhibit completely 
different dynamics and performances. In order to make the planning activities more 
flexible, we consider the Automatic pipeline, variable inventory and order based 
production control system(APVIOBPCS). The APVIOBPCS can be expressed in 
words as “Let the production targets, ( )Order t , be equal to the sum of an 

exponentially smoothed representation of demand, ( )Avcon t ,plus a fraction ( )1/ iT of 

the inventory error in net inventory, plus a fraction ( )1/ wT of the WIP error [6]. The 

target of the inventory replenishment term in the production ordering policy is to 
bring the actual inventory towards the desired inventory. Because the demand may be 
fluctuate from time to time, the desired inventory of the APVIOBPCS is ( )a Avon t× . 

The WIP contribution to the ordering policy allows the ordering rate to depend on the 
WIP, and the WIP will also change as the demand fluctuating. The goal of WIP is 
often set to cover the demand during the production lead time, which is ( )pT Avon t× . 

As a result, the production order is  

1 1
( ) ( ) ( ( ) ( )) ( ( ) ( ))p

i w

Order t Avcon t a Avcon t Ainv t T Avcon t Wip t
T T

= + × − + × − . (5) 

The relationship between APVIOBPCS and other production strategies is given in 
Table 1 [8]. 

Substitute (2), (3), (4) into (5). Let [ , , , , ]T
p i wT a T Tµ θ= be the parameter vector 

and [ ( ), ( ), ( ), ( )]TAinv t Wip t Avcon t Order t be the state vector. Integrate the above 

difference equations, the state space representations can be described as (6) 

( ) ( ) ( 1) ( )( ) ( ) ( 1)d px k A x k A x T B u kµ µ µ= − + − + − , (6) 

Where ( 1)u k − denotes the demand in the ( 1)k −  period and 

1
( ) 1 0 (1 )

T

p

i w i

Ta
B

T T T
µ θ θ

⎡ ⎤
= − + + +⎢ ⎥
⎣ ⎦

, (7) 
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1 0 0 0

0 1 0 1

0 0 1 0( )

1 1 1
(1 )(1 )p

i w i w w

A

Ta

T T T T T

θµ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−=
⎢ ⎥
⎢ ⎥− − − + + −⎢ ⎥⎣ ⎦

, 

 

(8) 

0 0 0 1

0 0 0 1

( ) 0 0 0 0

1 1
0 0 0

d

i w

A

T T

µ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− +
⎢ ⎥⎣ ⎦

. (9) 

From the view of modern control theory, the system is a discrete time system with 
a fixed delay and the stability is determined by the element of vector µ . 

Table 1. The brief relationship between production strategy in APVIOBPCS and other 
strategies in IOBPCS family 

Model Description Inventory  
feedback  
gain 

WIP  
feedback  
gain 

Inventory  
feed-forward 
gain 

OBPCS Order based production control 
system 

iT = ∞  wT = ∞  0a =  

IBPCS Inventory based production 
control system 

iT  wT = ∞  0a =  

VIBPCS Variable inventory  
based production control system 

iT  wT = ∞  a  

APIOBPCS Automatic pipeline, inventory and 
order based production control 
system 

iT  wT  0a =  

APVIOBPCS Automatic pipeline, 
variable inventory and order 
based production control system 

iT  wT  a  

3   Stability Analysis on APVIOBPCS  

The focus of this paper is to give a parameter region, in which the system might be 
stable. Before analyzing the system stability, three theorems are given as follows: 

 
Theorem 1. [9] With real or complex coefficient, if the polynomial expression 

1 1 0( ) ....s s
s sP z a z a z a z a−= + + +  such that 1 2 0...s s sa a a a− −> + + , then all the roots 

of ( ) 0P z = will be in the unit circle. 
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Theorem 2. Let 1, 0pTς ς= − ≥ , the system denoted by (6)-(9) is stable if and only if 

for 0 1θ< < and the roots of the equation 
1 (1/ 1) (1/ 1/ ) 0w i wz T z T Tς ς+ + − + − =  are in the unit circle. 

 

Proof. For a linear constant system, the BIBO stability can be satisfied by the 
structure stability. 

( ) ( ) ( 1) ( )( )dx k A x k A xµ µ τ= − + − can be converted into  
1( ) ( ) ( ) ( ) ( )dx z A z x z A z x zτµ µ− −= + by using the z transformation.  

( ) ( ) ( )df z zI A A z ςµ µ −= − − is the corresponding eigenfunction. Suppose that the 

eigenvalues of ( ) ( )dA A z ςµ µ −+ are ( , ), 1,2,3, 4i iλ µ ς  = , where µ is the parameter 

vector. The eigenfunction is given by 
4

1

( ) ( ( , )i
i

f z z λ µ ς
=

= −∏ .  

By computation, the eigenvalues of ( ) ( )dA A z ςµ µ −+ are 1 0,λ = 2 1,λ = 3 1λ θ= −  

and ( ) ( )4 (1/ ) 1/ 1/ 1i w wT z T z Tς ςλ − −= − + − + .  

Because the demand don’t affect WIP directly, the condition keeps the system 
stable occurs only when 0 1θ< < and the roots of  

1 (1/ 1) (1/ 1/ ) 0w i wz T z T Tς ς+ + − + − =  are in the unit circle. 
 

Theorem 3. the system denoted by (6)-(9) is stable if , iTθ and wT  satisfy: 

{ }( , , ) ( , , ) | ,0 1, 0, 0 .i w i w w i i i w i w i wT T T T T T T TT TT T Tθ θ θ∈ − + − < < < > >  (10) 

Theorem 3 can be immediately obtained according theorems 1 and 2, which gives a 
sufficient condition that keeps the system of (6)-(9) stable. The most significant point 
is that the stability region is independent on the production delay. The parameter 
region is shown as Fig.1. Furthermore, the conservation of the region is tested by 
simulation to be very low. 

 

Fig. 1. Illustration of the stability region 
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The coefficient of exponential smooth method, θ , satisfies 0 1θ< < . Without 
losing the generality, the value of θ  is set to 0.8 throughout the paper. Assume that 
the distribution of demand follows normal distribution with a mean equal to 40 and a 
variance equal to 4. For the case 1/1.5, 1/ 0.8, 10i w pT T T= = = , the system will be 

stable as the case shown by Fig.2(a). Fig.2(b) shows the situation when 
1/1.5, 1/ 0.7, 10i w pT T T= = = . 

    

Fig. 2. (a, b) Impact of , ,i w pT T T on the stability 

4   Extensions  

With the stabilty result obtained in section 3, we can extend it to two commonly used 
ordering policies.   

4.1   Stability Analysis on Order-Up-to Policy 

In any order-up-to policy, ordering decisions are as follows: 

t tO S inventory position= −  , (11) 

where tO  is the ordering quantity, tS  is the order-up-to level in the current period. 

The inventory position equals to the net stock plus on WIP, where the net stock equals 
inventory on hand minus backlog. The order up to level is updated every period 
according to 

L L
t t tS D k σ

∧ ∧

= − , (12) 

where L denotes the order lead time and L
tD

∧
is an estimate of mean demand over the 

L  periods. L
tσ

∧
is an estimation of standard deviation of the demand over L  periods, 

and k  is a chosen constant to meet a desired service level. The order-up-to level will 
be constant when the average and the standard deviation of the demand during the 

(a) (b) 
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production lead time are known with certainty. When the demand is unknown, we 
must forecast the demand, and this forecasting creates variability in the order-up-to 

level. To simplify the analysis, we set k  equal to zero. The value of L  is inflated and 
the extra inventory denotes the safety stock, then as for the order-up-to level 
( 1) ( )pT Avocn t+ , the order rule is as follows: 

( )( ) 1 ( ) ( ( ) ( ))pOrder t T Avcon t Ainv t Awip t= + − + , (13) 

while the order policy in our model can be converted into 

1 1
( ) (1 ) ( ) ( ) ( )p

i w i w

Ta
Order t Avcon t Ainv t Wip t

T T T T
= + + − − . (14) 

By contrast, (13) and (14) are the same when a  is zero and both iT  and wT  equal to 

1. iT  and wT equal to 1 fall into the region given by theorem 3, which means the order 

up to level policy can keep the system in stability. 

4.2   Stability Analysis on DE-APIOBPCS Policy 

With a special case of i wT T= , the production inventory systems will be called as DE-

APIOBPCS [10]. As being pointed out, i wT T=  guarantees the system to be stable and 

robust to changes in the distribution of the production delay. 
1 (1/ 1) (1/ 1/ ) 0w i wz T z T Tς ς+ + − + − =  can be changed to ( (1/ 1)) 0wz z Tς + − =  

according to the theorem 2, which means that the system is stable when 
0 1/ 1/ 2i wT T< = < . This is a sufficient and necessary condition. Meanwhile, the 

parameters satisfying this condition are in the region that theorem 3 has given. It is 
noticeable that the system will be unstable when 1/ iT  and 1/ wT  are more than two. 

5   Conclusion 

This paper gives a sufficient stability parameter region for a type of general 
production inventory control system. The conservation is very low, which is tested by 
simulations. The most important point is that the stability region is independent on the 
production delay. Furthermore, we analyzed the stability of two commonly used 
ordering policy by the given stability region.  

In the future research, we can consider the performance in the given region, such as 
the bullwhip effect, cost and customer service level. The study can also be extended 
to two echelon supply chains. Another direction of research includes modeling the 
nonlinear and random factors, which might exhibit much more complex behaviors 
such as chaos, bifurcations and so on. 
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Abstract. The present article describes a case-based decision model at the 
background of product conceptual design. The notion of the bounded rationality 
in the process of estimating similarity is used for proposing an improved 
similarity algorithm based on a distance threshold. The general algorithm and 
the improved algorithm are used to analyze the similarity between new target 
and finished products for conceptual design of circular gear reducers. An 
example validates the improved algorithm can effectively exclude useless cases. 

Keywords: Case-based decision, Product conceptual design, Bounded rationality, 
Distance threshold. 

1   Introduction 

The product design process is a complex creative activity based on knowledge and 
experience. And the conceptual design determines the basic features and the main 
frame [1], which is not only the key link but also the bottleneck problem of the 
product design process. In traditional artificial design, product conceptual design 
always uses analogical design methods or empirical design methods to design the new 
product by altering finished products. Using artificial intelligence to design the 
product conceptual model which can improve the efficiency of product design has 
been the hotspot in the research of product conceptual design [2]. The Case-Based 
Reasoning (CBR) method which uses past successful experience to solve new 
problems is the most important reasoning technique of artificial intelligence. The 
method can reduce a lot of workload of obtaining knowledge, and have low 
requirements for knowledge complement. The most important point is that the case-
based reasoning is closer to the thinking model of the designer. Currently the 
technique has been used in the area of industry design [3]. 

The Cased-Based Decision Theory (CBDT) [4] which is established on the base of 
case-based reasoning is proposed by Gilboa and Schmeidler. Many ideas of cognitive 
psychology and artificial intelligence are applied in CBDT where decision-makers 
solve a new decision problem depending on the experience of similar problems in 
memory. The dependence of experience is based on the assumption that similar 
problems have similar solutions. Along with experience accumulating, referable cases 
increase rapidly. Searching all the case is too costly, so decision-makers don’t always 
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rely on the whole experience when the time is limited. Eyke Hullermeier proposed a 
nearest neighbor classification method [5] which collects all the cases whose nearest 
neighbor is the targeted problem. This method also assumes that all cases have 
similarity with the target. However, during the process of similarity estimation, 
people cannot perceive the similarity between any couple of things. People always 
estimate with bounded rationality which makes them can only perceive the similarity 
within the perceivable range. 

This paper proposes a case-based decision model for product conceptual design. 
We explore the bounded rationality during similarity estimation. Our considerations 
give rise to improve the similarity algorithm of case-based decision model. The 
improved similarity algorithm is validated by an example of conceptual design. 

We start with an overview of CBDT in Section II. In section III, we discuss the 
frame of product conceptual design case-based decision model from the standpoint of 
decision-making. The Euclidian distance is analyzed as the independent variable of 
the similarity function and an improved similarity algorithm is proposed in section IV. 
Section V validates the algorithm with an example of conceptual design of circular 
gear reducers. The paper ends with some remarks on the improved algorithm and 
discusses the further research direction. 

2   Overview of CBDT 

The method of CBDT connects the solved problems and the problem to solve. We call 
the problem demanding solution as targeted problem and call the solved problems as 
memory problem. The decision process depends on the similarity between the targeted 
problem and the memory problem.  

CBDT views cases as instances of decision making. A case is formally expressed 

as ),,( rapc  which splits each case to three components: the decision problem (p), 

the solution that was chosen by the decision maker (a), and the outcome he has 
experienced (r). The set of cases is the case-base denoted as RAPC ××=& , in 
which P is the problem-set, A is the solution-set, and R is the result-set. Utility 
function )(ru  is the utility expression of the decision results. Subset CM ⊆  is the 

memory of the decision maker. Cases in M express solved problems and their results. 

The similarity is formally expressed as pσ ：P×P→ [0, 1]. Given a targeted 

problem 0p  and a memory problem ip , the similarity between 0p  

and ip is ),( 0 ip ppσ . 

The valuation of a case depends on the similarity between the targeted problem and 
all the solved problems and the utilities of their results. That is, given a memory 

CM ⊆ and the targeted problem 0p , every solution 0a  is evaluated by the function 

∑
∈

⋅==
Mrap

pMp ruppaUaU
),,(

00,0

0

0
)(),()()( σ&  (1) 

where a maximizer of this functional is to be chose. 
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3   Case-Based Decision Model of Product Conceptual Design 

According to the general process of product conceptual design, we can consider the 
product design as a decision problem. The product design target describes a decision 
problem. The design technique is the solution. Actual performance attributes of the 
product is the outcome. So the performance attributes of finished products are not only 
the description of the problem, but also the evaluation of the decision result. Then we 
establish the case-based decision model of product conceptual design as below: 

The case-base C is the set of products. The memory M contains all the finished 

products. The case can be expressed as ),( iii apc . If a type of products has n 

performance attributes ),,,( *2*1* nxxx K  and the attributes’ weights can be expressed 

by ),,,( 21 nwwww K= . Then ),,,( 21 iniii xxxp K=  denotes actual 

performance attributes of the product, and ia  denotes the technique and structure 

used to design the product, solution of the problem namely. The targeted problem 

),,,( 002010 nxxxp K=  characterizes the target of the new product. Here use  

pσ ：P×P→ [0, 1] to denote the similarity of the targeted problem and memory 

problems as well. 
In the product conceptual design, the more similar with the target attributes, the 

more valuable for design the finished product is. The objective function 

)},(max),(|),{()( 0
),(

0 ppppapAC p
Map

ipii σσ
∈

==  (2) 

defines the choice set C(A) of solution-set A. The cases in the choice set have the 
highest similarity with the targeted problem. The decision maker can obtain the 
design solution of the new product by altering the solutions of the cases in choice set. 

4   Bounded Rationality Analyses and Improved Similarity 
Algorithm 

To calculate the similarity of multi-attribute problems, the general way is to get the 

discrepancy of the targeted problem 0p  and the memory problem ip  first, and then 

calculate the similarity according to the function of discrepancy and similarity. Here 
use Euclidian distance 

∑
=

−⋅=
n

j
ijjji xxwppd

1

2
0

2
0 )(),(  (3) 

as the discrepancy. Most literatures use 

),(1

1
),(

0
0

i
i ppd

ppsim
+

=  [6] (4) 

to express the relationship of discrepancy and similarity.  
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The discrepancy is noted as d and the similarity is noted as s for short. Then the 
relation between them can be described as 

d
s

+
=

1

1
. (5) 

 

Fig. 1. If d and s satisfies function (5), the curves describes the change of d with s 

Fig.1 shows that between the targeted problem and memory problems there always 
exists a similarity except that the discrepancy tends to infinite. The slope of the curve 
increases when the discrepancy decreases. It implies that the discrepancy is smaller 
the similarity changes more quickly. 

Practically, people’s perception capability of discrepancy and similarity isn’t 
consistent with Fig.1 completely. During the similarity estimations people always 
characterize some kind of bounded rationality. From the point of view of discrepancy 
perception, there always exists a perception threshold which defines the perceptible 
range. If and only if the discrepancy of two things is within the perceptible range, 
people think the two things are comparable and the similarity is more than 0. If the 
discrepancy is beyond the perceptible range, the two things are incompatible and the 
similarity is 0. On the other hand, in the beginning (the end) of the perceptible range 
people are short-sighted (far-sighted). Namely, in the perceptible range, people are 
not sensitivity to the change of the discrepancy which is close to 0 or the threshold. 

We define λ  as the distance threshold which is the maximal Euclidian distance 
decision makers can realize. According to the analyses to the bounded rationality 
above, we use a piecewise function to describe the relation of d and s: 
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where 

∑
=

−⋅==
n

j
ijjji xxwppdd

1

2
0

2
0 )(),( . (7) 

The relation curve of d and s is showed in Fig.2. 

 

Fig. 2. If d and s satisfies function (6), the curve describes the change of d with s 

In Fig.2, in the area of ∈d [0, λ ) the curve is over the d axis, and in the area of 

∈d [ λ , ∞ ) the curve is overlapping with d axis. The line of 
2

λ=d  is the boundary 

of the curve. The curve on its left is convex where the slope grows with d’s growth. 
And on its right side, the curve is concave where the slope declines with d’s growth. 
Therefore the piecewise function (6) correctly presents the bounded rationality during 
the similarity estimations. Definition 1 defines the similarity algorithm formally. 

Definition 1. Suppose the targeted problem is ),,,( 002010 nxxxp K=  and the 

memory problem is ),,,( 21 iniii xxxp K= . nxxx *2*1* ,,, K are n attributes of the 

problems and their importance can be presented by a weight vector 

),,,( 21 nwwww K=  which is of the form 1
1

=∑
=

n

j
iw . Euclidian distance between 

0p  and ip  is denoted as ),( 0 ippd . If a distance threshold λ  is given, the 

similarity of 0p  and ip  is defined as 
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5   Example 

This section uses (4) and (8) to calculate the example of circular gear reducer 
conceptual design in reference [7]. Compute the similarity of finished gears and the 
design target to validate the algorithm of (8). 

The key feature attributes of 10 finished gears are listed in table 1. The weights of 
the key feature attributes are in table 2. Table 3 lists the target for the new product. 

Table 1. Key feature attributes of 10 finished circular gear reducers 

Product 
Number 

Transmission 
Power 

Service Life 
Transmission 
Ratio 

C1 95 10 4.5 
C2 59 10 3.55 
C3 142 10 20 
C4 68 15 16 
C5 40 15 12.5 
C6 161 10 18 
C7 36 15 14 
C8 105 10 14 
C9 73 15 14 
C10 68 15 2.5 

Table 2. Weights of the key feature attribute 

 Transmission Power Service Life Transmission Ratio 

Weight 
10

3

 20

9

 4

1

 

Table 3. Design target of the new product 

Product Number 
Transmission 
Power 

Service Life 
Transmission 
Ratio 

C0 70 14 10 

 
The distance of the target and every finished product is calculated as below. 

Table 4. Distance of the target and every finished product 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
C0 7.867 4.209 21.652 2.382 9.285 27.318 10.445 10.500 2.423 3.700 

 
With the distances in table 4, we can use (4) and (8) to calculate the similarity 

separately with the distance threshold 10=λ given by decision maker. The results 
are listed in table 5. 
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Table 5. Similarity of the target and every finished product 

Algorithm C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
(4) 0.113 0.192 0.044 0.296 0.097 0.035 0.087 0.087 0.292 0.213 
(8) 0.091 0.646 0 0.887 0.010 0 0 0 0.883 0.726 

 
We can order 10 finished products according to their similarity with the target. 

With the algorithm in (4), we have C4>C9>C10>C2>C1>C5>C8>C7>C3>C6. With 
the algorithm in (8), we have C4>C9>C10>C2>C1 whose similarity is positive. 

Some products which have slight similarity with the target are filtered by the 
improved algorithm. The improved algorithm narrows the distance between the 
similarities of the most similar finished products to the target. This improvement 
makes the decision maker evaluate the most valuable products for the new one. The 
orders show that improvement does not influence the result. 

6   Conclusion 

This paper established a case-based decision model of product conceptual design 
which provided a way of using decision methods to solve the problems in machine 
design. The improved similarity algorithm which can effectively choose most useful 
cases for decision and make noise filtered described a kind of bounded rationality 
during the similarity estimations. The example proved that if only the decision maker 
has enough general knowledge and can choose reasonable distance threshold, he 
could make the correct decision even with some kind of bounded rationality. 

The choice of attributes weight is not mentioned in this paper although it’s the key 
point for rational decision. This part will be the next work target. 
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Abstract. Vendor selection is a vital issue for compgaoanies in supply chains. 
In practice it is usually made by a group of decision makers according to 
multiple criteria. However, almost all the vendor selection models published 
were based on single-person decision-making and laid less emphasis on ordinal 
data. An information integration approach based on multi-criteria group 
decision-making (MCGDM) is developed for vendor selection with ordinal 
preferences of alternatives given by multiple decision makers in respect to each 
criteria considered. A 0-1 programming model considering the weights of the 
criteria and the decision makers under every criteria was proposed to obtain the 
integrated rankings of the alternatives for the group. An illustrative case shows 
the proposed method is effective and simple in computation. This study extends 
Bernardo’s method for multi-criteria decision-making to MCGDM. 

Keywords: Supply chain management, Vendor selection, Multi-criteria decision-
making, Group decision-making, Ordinal preference. 

1   Introduction 

Because of the emphasis on outsourcing, strategic partnering, strategic alliances, and 
relationship marketing, many organizations purchase not only raw materials and basic 
supplies but also complex fabricated components with very high value-added content 
and services over the last two decades. The need to gain a global competitive edge on 
the supply side has increased substantially. Particularly for companies who spend a 
high percentage of their sales revenue on parts and material supplies, and whose 
material costs represent a larger portion of total costs, savings from supplies are of 
particular importance. Moreover, the emphasis on quality and timely delivery in 
today’s globally competitive marketplace adds a new level of complexity to 
outsourcing and vendor selection decisions. These, strongly urge for a more systematic 
and transparent method to purchasing decision making, especially regarding the area of 
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vendor (supplier) selection. Selecting the right suppliers significantly reduces the 
purchasing cost and improves corporate competitiveness, on which the success of a 
supply chain is highly dependent. 

The overall objective of vendor selection process is to reduce purchase risk, 
maximize overall value to the purchaser, and build the closeness and long-term 
relationships between buyers and vendors. Selecting vendors from a large number of 
possible alternatives with various levels of capabilities and potential is a difficult task. 
Nowadays, on the one hand, simply looking for vendors offering the lowest prices is 
not “efficient sourcing” any more. Multiple criteria including quality, delivery, 
performance history, warranties, price, technical capability and financial position 
need to be taken into account simultaneously in the vendor selection decision-making 
process. Dickson [1] emphasized that cost, quality, and delivery performance were the 
three most important criteria in vendor evaluation. In a comprehensive review of 
vendor selection methods, Weber et al. [2] reported that quality was perceived to be 
the most important vendor selection criterion followed by delivery performance and 
cost. With the increasing significance of vendor selection and competition of global 
environment, the approach to traditional criteria has been changed to reflect the new 
requirements according to the role of vendors in the supply chain. For instance, 
instead of price, total cost of ownership is considered, instead of quality, total quality 
and certification issues become the major concern, etc. [3]. In modern management, 
one needs to consider many other factors with the aim of developing a long-term 
vendor relationship. So vendor selection is a multi-criteria decision-making problem. 
Due to the complexity and importance, on the other hand, vendor selection is usually 
made by multiple decision makers such as experts in quality control, financial 
management or supply chain management, and related administrative officials. So 
vendor selection is inherently a typical multi-criteria group decision-making 
(MCGDM) problem [4-6].  

According to De Boer et al. [7], a vendor selection problem typically consists of 
four phases, namely (1) problem definition, (2) formulation of criteria, (3) 
qualification of suitable vendor (or pre-qualification), and (4) final selection of the 
ultimate vendor(s). The vast majority of the decision models for vendor selection 
apply to the final choise phase. Among these models multi-criteria decision-making 
approaches are frequently used [8]. To the best of our knowledge, however, almost all 
literatures published on vendor selection only have regarded it as a single-person 
decision-making problem except [5,6,9] and laid less emphasis on ordinal data. Thus 
we propose a MCGDM approach based on 0-1 programming to vendor selection in 
which every decision maker gives his rankings of alternatives with respect to each 
criteria considered. This method can rank the alternatives for the decision maker 
group and generalize Bernardo’s method [4] for multi-criteria decision-making to 
MCGDM considering the weights of criteria and decision makers. 

The remainder of the paper is organized as follows. The following section 
formulates the vendor selection problem and details the proposed method that ranks 
the alternative vendors for the group. In section 3, we present a numerical example 
and some discussions on the results. Finally, some concluding remarks are provided 
in section 4. 
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2   The Proposed Method 

Now we shall develop a new MCGDM model based on 0-1 programming for vendor 
selection with ordinal preferences of the alternatives given by the decision makers. 

Firstly, we define and formulate the vendor selection problem as follows. Consider 
a vendor selection problem with I  decision makers evaluating J  vendors according 
to K  criteria. ( 1,2, , )iD i I= L  is decision maker, ( 1,2, , )jS j J= L  is vendor, and 

( 1,2, , )kC k K= L  is criteria. ( 1, 2, , )k k Kλ = L  is the weight of criteria kC  which 

satisfies 
1

1
K

k
k =

λ =∑  and 0kλ > . ( 1, 2, , ; 1,2, , )i
k k K i Iω = =L L  is the weight of 

decision maker iD  under kC which satisfied 
1

1
I

i
k

i

ω
=

=∑  and 0i
kω > . i

kjr  is the ranking 

of alternative jS  with respect to criteria kC  given by decision maker iD  and 

{ }1,2, ,i
kjr J∈ L . For certain ( 1,2, , )i i I= L , all i

kjr  constitute individual decision 

matrix i i
kj J K

R r
×

⎡ ⎤= ⎣ ⎦  as follows.  

11 12 1

21 22 2

1 2

i i i
K

i i i
i K

i i i
J J JK

r r r

r r r
R

r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M M

L

 

To obtain the final rankings of all vendors for the decision maker group, we 
develop the solution approach based on 0-1 programming. The algorithm proceeds as 
follows. 

 

Step 1. Define the consistency matrix i i
k kmn J J

E e
×

⎡ ⎤= ⎣ ⎦  for ( 1,2, , )iD i I= L  under 

( 1,2, , )kC k K= L  where 

1, ;
( , 1, 2, , )

0, .

i
i km
kmn

when r n
e m n J

otherwise

⎧ =⎪= =⎨
⎪⎩

L  

Step 2. Calculate the decision maker-weighted consistency matrix kE  for the group 

under ( 1,2, , )kC k K= L . 

[ ]
1

I
i i

k kmn k kJ J
i

E e Eω
×

=
= = ×∑  

Step 3. Calculate the integrated consistency matrix E  for the group after the weights 
of criteria are considered. 
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[ ]
1

K

mn k kJ J
k

E e E
×

=
= = λ ×∑  

Step 4. Obtain the ranking jr  of ( 1,2, , )jS j J= L  for the group by solving the 

following 0-1 programming problem: 

{ }

1 1

1

1

( ) max

. . 1, 1,2,...,

1, 1,2,...,

0,1 , , 1,2,...,

J J

mn mn
m n

J

mn
n

J

mn
m

mn

P e x

s t x m J

x n J

x m n J

= =

=

=

= =

= =

∈ =

∑∑

∑

∑

 

1 ( , 1,2, , )mnx m n J= = L , the solution of ( )P , indicates mr n= , that is, the 

integrated ranking of mS  for the group is n . 

3   Illustrative Case and Discussion 

Consider a vendor selection committee consisting of 3I =  decision makers evaluates 
5J =  feasible vendors according to 3K =  criteria: quality, price and delivery. The 

weights of criteria and decision makers and ordinal preferences of the suppliers are 

listed in table 1. ( 1,2,3)iR i =  are as follows. 

Table 1. Weights of criteria and decision makers under each criteria 

k  kλ  1
kw  2

kw  3
kw  

1 0.3 0.3 0.4 0.3 

2 0.3 0.3 0.3 0.4 

3 0.4 0.4 0.3 0.3 

 

1 2 3

5 3 3 4 1 3 4 4 4

2 1 2 2 3 1 1 2 1

3 4 4 , 5 4 5 , 5 5 5

4 5 5 3 2 4 3 3 2

1 2 1 1 5 2 2 1 3

R R R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Now we first detail the procedure of obtaining the final rankings of the vendors for 
the committee by the proposed method. 
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Step 1. Define ( , 1,2,3)i i
k kmn J J

E e i k
×

⎡ ⎤= =⎣ ⎦ . Below we just list 1 2 3
1 1 1, ,E E E . 

1 2 3
1 1 1

0 0 0 0 1 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 , 0 0 0 0 1 , 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0

E E E

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Step 2. Calculate ( 1,2,3)kE k =  as follows. For example, 1 2 3
1 1 1 10.3 0.4 0.3E E E E= + + .  

1 2 3

0 0 0 0.7 0.3 0.3 0 0.3 0.4 0 0 0 0.7 0.3 0

0.3 0.7 0 0 0 0.3 0.4 0.3 0 0 0.6 0.4 0 0 0

0 0 0.3 0 0.7 , 0 0 0 0.6 0.4 , 0 0 0 0.4 0.6

0 0 0.7 0.3 0 0 0.3 0.4 0 0.3 0 0.3 0 0.3 0.4

0.7 0.3 0 0 0 0.4 0.3 0 0 0.3 0.4 0.3 0.3 0 0

E E E

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢= = =
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

Step 3. Calculate E  as follows 1 2 30.3 0.3 0.4E E E E= + + .  

0.09 0 0.37 0.45 0.09

0.42 0.49 0.09 0 0

0 0 0.09 0.34 0.57

0 0.21 0.33 0.21 0.25

0.49 0.30 0.12 0 0.09

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Step 4. Obtain the final ranking ( 1, 2, ,5)jr j = L  by solving the following 0-1 

programming problem: 

11 13 14 15

21 22 23

33 34 35

42 43 44 45

51 52 53 55

5

1

5

1

( ) max (0.09 0.37 0.45 0.09

0.42 0.49 0.09

0.09 0.34 0.57

0.21 0.33 0.21 0.25

0.49 0.3 0.12 0.09 )

. . 1, 1,2,...,5

1, 1, 2,...,5

mn
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m

P x x x x

x x x

x x x

x x x x

x x x x

s t x m

x n

x

=

=

+ + +
+ + +
+ + +
+ + + +
+ + + +

= =

= =

∑

∑
{ }0,1 , , 1,2,...,5n m n∈ =

 

The result is 14 22 35 43 51 1x x x x x= = = = =  which indicates 1 2 34, 2, 5r r r= = = , 

4 53, 1r r= = . So the final ranking for the committee is 5 2 4 1 3S S S S Sf f f f . 
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4   Conclusions 

Vendor evaluation and selection is one of the most critical activities of companies in 
supply chains. Because of the complication and importance of the problem, vendor 
selection is a typical MCGDM and the decision makers tend to give their ordinal 
preferences of the alternatives.  

We develop a MCGDM model based on 0-1 programming for vendor selection 
with ordinal data. The numerical case illustrates the proposed method is effective and 
simple in computation. More importantly, this study generalizes Bernardo’s method 
[4] for multi-criteria decision-making to MCGDM. 

We did not involve the topics of weight elicitation, consensus and other group 
interactions in the study. How to solve vendor selection problems with ordinal 
preferences in other form is also should be investigated further. 
 
Acknowledgments. This work is partially supported by National Natural Science 
Foundation of China (No. 60774084), Scientific Research Fund of Hunan Provincial 
Education Department (No. 08B030) and Scientific Research Fund of Hunan Institute 
of Science and Technology (No. 2008Y17). 

References 

1. Dickson, G.W.: An Analysis of Vendor Selection Systems and Decisions. Journal of 
Purchasing 2(1), 5–17 (1966) 

2. Weber, C.A., Current, J.R., Benton, W.C.: Vendor Sselection Criteria and Methods. 
European Journal of Operational Research 50, 2–18 (1991) 

3. Choy, K.L., Lee, W.B., Lau, H.C.W., Choy, L.C.: A Knowledge-based Supplier Intelligence 
Retrieval System for Outsource Manufacturing. Knowledge-Based Systems 18, 1–17 (2005) 

4. Hwang, C.L., Lin, M.J.: Group Decision Making under Multiple Criteria: Methods and 
Applications. Springer, Berlin (1987) 

5. Li, W., Chen, Y.G., Fu, Y.Z.: Combination of TOPSIS and 0-1 Programming for Supplier 
Selection in Supply Chain Management. In: 2008 IEEE International Conference on 
Networking, Sensing and Control, pp. 1531–1535. IEEE Press, New York (2008) 

6. Li, W., Chen, Y.G., Chen, Y.: Generalizing TOPSIS for Multi-criteria Group Decision-
Making with Weighted Ordinal Preferences. In: The 7th World Congress on Intelligent 
Control and Automation, pp. 7505–7508. IEEE Press, New York (2008) 

7. De Boer, L., Labro, E., Morlacchi, P.: A Review of Methods Supporting Supplier Selection. 
European Journal of Purchasing & Supply Management 7, 75–89 (2001) 

8. Ng, W.L.: An Efficient and Simple Model for Multiple Criteria Supplier Selection Problem. 
European Journal of Operational Research 186, 1059–1067 (2008) 

9. Chen, C.T., Lin, C.T., Huang, S.F.: A Fuzzy Approach for Supplier Evaluation and 
Selection in Supply Chain Management. International Journal of Production Economics 102, 
289–301 (2006) 

 



Models Choice of Grid-Based Decision Support
System

Zhiwu Wang1,2, Yanhui Zhang1,	, Haigang Song3, and Xueguang Chen2

1 Henan Institute of Engineering, Zhengzhou, 451191, P. R. China
2 Institute of System Engineering, Huazhong University of Science and Technology,

Wuhan, 430074, P. R. China
3 Basic Research Service of the Ministry of Science and Technology of the P. R.

China, Beijing, 100862, P. R. China
wangzhiwu1974@gmail.com, huihui2001922@163.com, xgchen9@mail.hust.edu.cn

Abstract. Grid-based Decision Support System created a new research
area. Decision-making model offers assistant support for decision-makers
in model service just like the idea of grid service. How to make a better
choice among many model services is the new problem which decision-
makers are facing. In this paper, through the definition of model
service quality, we transfer the problem of model service choice into
multi-attributive decision of model service quality evaluation. TOPSIS
method is used to find the solution of this problem, and we also discuss
the principle of three kinds of weight mode. At last, we prove the scien-
tific rationality of subjective-objective weight mode by exact samples.

Keywords: Models choice, DSS, Gird, Model service, QoS.

1 Introduction

The emerging concept of Grid-based Decision Support System (GBDSS) expands
and enriches the theory and application of Decision Support System (DSS) [1].
Model is the important resource of DSS, and the essential feature of DSS is to
assistant decision through model or combined models. Model management has
long been the core of research in DSS, which directly influences the development
of DSS, and thus in GBDSS.

GBDSS weakens the component of local model base and model management
system (MMS) in traditional DSS. It treats the Internet as its limitless storeroom
of decision resources and uses it intelligently to meet users’ needs [2] and [3]. In
grid environment, model offers assistant decision for decision-makers in model
service style. Decision-makers face the first of all the problems to choose among
the many models. Scientific and reasonable comment on model services can offer
effective help for decision-makers’ choice.

In this paper, we propose a new method of model service choice in GBDSS,
through the definition of model service about quality attribute, multi-attributive
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decision of changing model service choice into comment on model service quality,
TOPSIS method is used to find the solution of this problem. Section 2 defines
the quality attribute of model service; Section 3 discuss three different kinds of
weight mode; Section 4 proves its reasonability by some exact cases; Section 5
is our conclusion.

2 Quality Attribute of Model Service

Quality attribute of model service can be described in many ways in current
evaluation model of Web service and grid service, such as response time, price,
performance, reliability, availability, security, reputation, Throughput, etc [4]
and [5]. But careful analysis shows some targets are crossed and some are not
easy to measure. So this paper chooses four targets (service price, response time,
reliability and reputation), which can indicate decision-makers’ requests of model
service quality to describe model service’s quality attribute. These targets are
independent, easy to get and have clear definition, which are based by mentioned
QoS (Quality of Service).

Definition: QoS of model service can be divided into four groups:

QoS(MS) = {QoSpr(MS), QoSRT (MS), QoSre(MS), QoSRD(MS)} . (1)

QoS(MS) represents model service quality and consists of four attached at-
tribute:

1. Price of model service (QoSpr(MS)): refers to related cost caused by the use
of model service, which is announced by supplier of model service.

2. Response time of model service (QoSRT (MS)): refers to the interval between
the applying for service and getting response of service by service applier,
including the transportation time and process time, which can be calculated
in the following list:

QoSRT (MS) = Ttrans(MS) + Tprocess(MS). (2)

Ttrans(MS) can be defined by the service historical record, and take the
average transit time of several time. The formula is.

Ttrans(MS) =
n∑

i=1

Ti(MS)

/
n. (3)

Among this, Ti(MS) is the recorded transmission time, n is the number.
Service processing time (Tprocess(MS)): released by provider of model

service.
3. Reliability of model service (QoSre(MS)): refers to the probability that keeps

model service normally work, is the rate of successful implementation number
and the total call number. Model service is selected by call numbers, the
reliability can be calculated by statistical methods as the following formula:

QoSre(MS) = Nc(MS)/k. (4)
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Among this, Nc(MS) refers to successful operation number, k refers to total
call number.

4. Reputation degree of model service(QoSRD(MS)): refers to the measure of
the credibility of service reputation, which is influenced by experience of the
end-users. Different users have different opinions on the same service. The
formula is the following:

QoSRD(MS) =
n∑

i=1

Ri

/
n. (5)

Among this, Ri refers to the judge on the model service by users, which often
chooses the decimal between 0 and 1, n is the number that model service is
judged.

3 Evaluation on Model Service Quality

3.1 Selection of Methods to Evaluate QoS

It is multi-attribute decision problem to evaluate model service quality that can
satisfy function request. TOPSIS(Technique for Order Preference by Similarity to
Ideal Solution) is stated as the evaluation method for model service quality [6].

The Solution Idea of TOPSIS. The positive ideal solution x∗ is a supposi-
tional value, it’s composed of all best values attainable of attribute, whereas the
negative ideal solution x0 is made up of all worst values attainable of attribute.
In n-dimensional space, the comparison of alternatives xi and the distance of
x∗ and x0, based on the concept that the chosen alternative should have the
shortest distance from the positive ideal solution (PIS) and the farthest from
the negative-ideal solution (NIS) for solving a multi-attribute decision making
problem.

The Solution Steps of TOPSIS

– Step 1: Normalize the evaluation matrix. If A = {aij} is a decision matrix
of QoS, Z = {zij} is a normalized one, then:

zij = aij

/√√√√ m∑
i=1

a2
ij , i = 1, ..., m; j = 1, · · · , n. (6)

– Step 2: Construct the weighted normalized evaluation matrix: X = {xij}.
If the weight of each service quality attribute is set( which will be discussed
in the following 3.2), w = (w1, w2, · · · , wn)T , then xij = wj ·zij , j = 1, · · · , n.

– Step 3: Determine positive ideal Solution x∗ and negative ideal solutions x0.
No. j’s attribute value of positive Ideal solution x∗ is x∗

j , No. j’s attribute
value of the negative ideal solutions x0 is x0

j , then:
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Positive ideal solution x∗
j =

{
max

i
xij j(beneficial attribute)

min
i

xij j(cost attribute) j = 1, · · ·, n.

(7)

Negative ideal solution x0
j =

{
max

i
xij j(cost attribute)

min
i

xij j(beneficial attribute) j = 1, · · ·, n.

(8)
– Step 4: To determine the distance from each alternatives xi to x∗ and x0.

The distance of xi to x∗ and x0 is:

d∗i =

√
n∑

j=1

(xij − x∗
j )2, i = 1, · · · , m;

d0
i =

√
n∑

j=1

(xij − x0
j )2, j = 1, · · · , m.

(9)

– Step 5: To determine the composite evaluation index of each alternatives.

C∗
i = d0

i

/
(d0

i + d∗i ), i = 1, · · · , m. (10)

– Step 6: The order of Si alternative is ranked according to inverted sequence
of Ci*.

3.2 Discussion on Weight Mode

No matter what kind of analysis method is used, attributive weight mode should
be determined first to multi-attribute decision problem. Three kinds of weight
modes, Subjective Weight Mode, Objective Weight Mode and Subjective-
objective Weight Mode will be discussed in the following.

Subjective Weight Mode. To imagine weight index is decided by user’s
hobby, service discovering system will choose service by the way of over-best
right [6].

To imagine wj is qj ’s weight index, w∗
j is the determined weight index,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min f1 ==
n∑

k=1

n∑
j=1

(dkjwj − wk)2

subject to
n∑

j=1

wj = 1

wj ≥ 0, j = 1, 2, · · · , n.

(11)

dkj > 0, djk = 1/dkj , dkk = 1,
n∑

k=1

dkj =
n∑

k=1

wk

/
wj , i, k = 1, 2, · · · , n. (12)
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Objective Weight Mode. To imagine weight index is decided by objective
data without considering user’s hobby [7] [8], service discovering system will
choose service by

w∗
j ∈ w = {

n∑
j

wj = 1, wj ≥ 0, j = 1, 2, · · · , n}. (13)

To imagine wj is service attribute, qj is weight mode index, w∗
j is the index

decided by average difference method.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min f2 =

m∑
i=1

n∑
j=1

(b∗j − bij)2w2
j

subject to
n∑

j=1

wj = 1

wj ≥ 0, j = 1, 2, · · · , n.

(14)

b∗j = max{b1j, b2j , · · · , bmj} represents qj ’s ideal index, target f2 requests the
difference between ideal index and other prepared service qj to be the least.

Subjective-objective Weight Mode. To imagine weight mode is decided by
the objectivity of service quality and user’s hobby [9] [10], service discovering

system will choose service by w∗
j ∈ w = {

n∑
j=1

wj = 1, wj ≥ 0, j = 1, 2, · · · , n} to

imagine wj is qj ’ weight mode, w∗
j ∈ w = {

n∑
j=1

wj = 1, wj ≥ 0, j = 1, 2, · · · , n} is

the index determined by the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f1 =
n∑

k=1

n∑
j=1

(dkjwj − wk)2

min f2 =
m∑

i=1

n∑
j=1

(b∗j − bij)2w2
j

subject to
n∑

j=1

wj = 1

wj ≥ 0, j = 1, 2, · · · , n.

(15)

To solve the pattern above, following list is arranged:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min f3 = α

n∑
k=1

n∑
j=1

(dkjwj − wk)2 + β
m∑

i=1

n∑
j=1

(b∗j − bij)2w2
j

subject to
n∑

j=i

wj = 1

wj ≥ 0, j = 1, 2, · · · , n.

(16)

Among this α and β represents the relative importance degree of subjective
and objective weight mode and satisfied the following list: α+β = 1, 0 < α < β.
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4 Case Analysis

4.1 Case Introduction

This paper supposes that 10 models services satisfy user’s function demand and
offer Four-dimensional (QoSpr(MS), QoSre(MS), QoSRT (MS), QoSRD(MS))
to satisfy model service user’s similarity threshold value constrictthe following
Table 1 is easy to get.

Table 1. QoS attributes of 10 similarity model services

Order No S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Price(Pr) 0.19 0.25 0.15 0.20 0.23 0.25 0.20 0.21 0.23 0.20
Response time(RT) 226 201 209 203 216 226 241 206 201 196

Reliability(re) 0.72 0.77 0.74 0.67 0.74 0.72 0.76 0.70 0.74 0.74
Reputation degree(RD) 0.83 0.89 0.82 0.86 0.89 0.79 0.83 0.87 0.83 0.79

To imagine the attribute comparison matrix of D1 and D2 given by model
service user as the following:

D1 =

⎡⎢⎢⎣
1
3
4
4

1/3
1
1/2
1/3

1/4
2
1
5/4

1/4
3
4/5
1

⎤⎥⎥⎦, D2 =

⎡⎢⎢⎣
1
2
3
3

2
1
2
2

1/3
1/2
1
4/3

1/3
1/2
3/4
1

⎤⎥⎥⎦.

4.2 Case Solution

Solving this case with TOPSIS.

Standardization of Attributes Vectors. The following is resulted from stan-
dardization of attributes vectors in the Table 1.

Table 2. Standardization of attributes vectors matrix

Order No S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Pr 0.2821 0.3712 0.2227 0.2969 0.3415 0.3712 0.2969 0.3118 0.3415 0.2970
RT 0.3356 0.2985 0.3104 0.3015 0.3208 0.3356 0.3579 0.3059 0.2985 0.2911
re 0.3117 0.3333 0.3203 0.2900 0.3203 0.3117 0.3290 0.3030 0.3203 0.3203

RD 0.3122 0.3348 0.3084 0.3235 0.3348 0.2972 0.3122 0.3272 0.3122 0.2972

Calculate Standardization of Vectors Weighted Vector Matrix

1. Calculate weight vector according to D1 and D2, separately by Subjec-
tive Weight Mode, Objective Weight Mode and Subjective-objective Weight
Mode, show as the Table 3.

2. Standardization of Weighted Vector Matrix can be achieved according to
Table 3 and Table 2, show as the Table 4.
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Table 3. Weighted Vector

D W
D1 D2

Pr RT re RD Pr RT re RD
subjective 0.08 0.48 0.24 0.2 0.13 0.15 0.33 0.39
objective 0.15 0.35 0.31 0.19 0.15 0.35 0.31 0.19

subjective-objective 0.10 0.42 0.27 0.21 0.14 0.29 0.32 0.25

Table 4. Standardization of Weighted Vector Matrix

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

sub

Pr 0.0226 0.0297 0.0178 0.0238 0.0273 0.0297 0.0238 0.0250 0.0273 0.0238
Rt 0.1611 0.1433 0.1490 0.1447 0.1540 0.1611 0.1718 0.1468 0.1433 0.1397
re 0.0748 0.0800 0.0769 0.0696 0.0769 0.0748 0.0790 0.0727 0.0769 0.0769
Rd 0.0624 0.0670 0.0617 0.0647 0.0670 0.0594 0.0624 0.0655 0.0624 0.0594

obj

Pr 0.0423 0.0557 0.0334 0.0446 0.0512 0.0557 0.0446 0.0468 0.0512 0.0446
Rt 0.1175 0.1045 0.1086 0.1055 0.1123 0.1175 0.1253 0.1071 0.1045 0.1019
re 0.0966 0.1033 0.0993 0.0899 0.0993 0.0966 0.0102 0.0939 0.0993 0.0993
Rd 0.0593 0.0636 0.0586 0.0615 0.0636 0.0565 0.0593 0.0622 0.0593 0.0565

Sub-obj

Pr 0.0282 0.0371 0.0223 0.0297 0.0342 0.0371 0.0297 0.0312 0.0342 0.0297
Rt 0.1410 0.1254 0.1304 0.1266 0.1347 0.1410 0.1503 0.1285 0.1254 0.1223
re 0.0842 0.0900 0.0865 0.0783 0.0865 0.0842 0.0888 0.0818 0.0865 0.0865
Rd 0.0656 0.0703 0.0648 0.0679 0.0703 0.0624 0.0656 0.0687 0.0656 0.0624

Table 5. The results of d∗
i , d0

i and C∗
i according to D1

Subjective Weight Objective Weight Subjective-objective Weight 

d di
0 C d di

0 C  d di
0 C

S1 0.0230 0.0142 0.3819 0.0332 0.0176 0.3462 0.0210 0.0145 0.4086 

S2 0.0124 0.0313 0.7160 0.0380 0.0407 0.5167 0.0152 0.0287 0.6538 

S3 0.0111 0.0268 0.7072 0.0191 0.0243 0.5597 0.0104 0.0263 0.7162 

S4 0.0132 0.0282 0.6820 0.0292 0.0313 0.5177 0.0147 0.0254 0.6337 

S5 0.0174 0.0208 0.5443 0.0365 0.0298 0.4501 0.0176 0.0195 0.5262 

S6 0.0261 0.0119 0.3128 0.0444 0.0286 0.3914 0.0258 0.0110 0.2993 

S7 0.0330 0.0115 0.2584 0.0420 0.0178 0.2977 0.0294 0.0133 0.3105 

S8 0.0125 0.0263 0.6774 0.0307 0.0310 0.5020 0.0137 0.0238 0.6342 

S9 0.0115 0.0297 0.7200 0.0341 0.0366 0.5180 0.0136 0.0266 0.6614 

S10 0.0101 0.0334 0.7683 0.0279 0.0361 0.5636 0.0114 0.0302 0.7259 

Confirm the Ideal Solution and Negative Ideal Solution. X∗ and X0

may be calculated according to the Table 4 and Formula (7), (8).

1. by subjective weight mode, the following can be got:
X∗

1 : (0.0178, 0.1397, 0.0800, 0.0670); X0
1 : (0.0297, 0.1718, 0.0696, 0.0594)

2. by objective weight mode, the following can be got:
X∗

2 : (0.0334, 0.1019, 0.1033, 0.0636); X0
2 : (0.0557, 0.1253, 0.0899, 0.0565)
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Table 6. The results of d∗
i , d0

i and C∗
i according to D2

 Subjective Weight Objective Weight Subjective-objective Weight 

d di
0 C d di

0 C  d di
0 C

S1 0.0153 0.0152 0.4989 0.0332 0.0176 0.3462 0.0178 0.0161 0.4754 

S2 0.0193 0.0223 0.5359 0.0380 0.0407 0.5167 0.0209 0.0240 0.5348 

S3 0.0115 0.0233 0.6696 0.0191 0.0243 0.5597 0.0096 0.0269 0.7373 

S4 0.0179 0.0164 0.4793 0.0292 0.0313 0.5177 0.0178 0.0205 0.5349 

S5 0.0166 0.0190 0.5332 0.0365 0.0298 0.4501 0.0192 0.0178 0.4808 

S6 0.0262 0.0079 0.2317 0.0444 0.0286 0.3914 0.0271 0.0095 0.2588 

S7 0.0165 0.0171 0.5087 0.0420 0.0178 0.2977 0.0228 0.0167 0.4228 

S8 0.0157 0.0166 0.5137 0.0307 0.0310 0.5020 0.0165 0.0192 0.5386 

S9 0.0183 0.0151 0.4522 0.0341 0.0366 0.5180 0.0182 0.0206 0.5306 

S10 0.0181 0.0171 0.4866 0.0279 0.0361 0.5636 0.0146 0.0240 0.6218 

3. by subjective-objective weight mode, the following can be got:
X∗

3 : (0.0223, 0.1223, 0.0900, 0.0703); X0
3 : (0.0371, 0.1503, 0.0783, 0.0624)

Calculate Distance. This part will calculate distance from every scheme to
ideal and negative ideal solutions. d∗i and d0

i may be calculated according to the
Formula (9) and Table 4, the results are as shown in Table 5.

Calculate Distance

1. C∗
i can be used to calculate every service case’s on-line index, C∗

i may be
calculated according to the Formula (10) and Table 5, the results are as
shown in Table 5.

2. Based on the method above, d∗i , d0
i and C∗

i can be achieved as the following
when the attribute comparison pattern is D2, the results are as shown in
Table 6.

4.3 Result Analysis

According to calculation result, the order of model services with three kinds of
weight mode are compared and analyzed.

Adopting Subjective Weight Mode. Only user’s hobby information is con-
sidered calculating weight when subjective mode is adopted. Decision-makers’
evaluation will be stated by the comparison of matrix D1 and D2. When D1 is
adopted, the list order for achieved every service attribute case is S10 � S9 �
S2 � S3 � S4 � S8 � S5 � S1 � S6 � S7. When D2 is adopted, the list order
for achieved every service attribute case is S3 � S2 � S5 � S8 � S7 � S1 �
S10 � S4 � S9 � S6. Comparison of two list order shows great changes exist.
Evaluation index of every service attribute case C∗

i has big difference while D1

and D2 are separately adopted, evaluation of some special attribute case exists
jerky nature., which resulted from the followings: weight mode result relying on
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the index of attribute comparison pattern; attribute comparison pattern having
hobby information subjectively decided by decision-makers, which directly influ-
ences evaluation result. This indicates when subjective weight mode is adopted,
evaluation of service attribute is decided by users’ hobby and has great free rein.

Adopting Objective Weight Mode. Only real index of every attribute target
is considered for weight mode calculation when objective weight mode is adopted,
and has no relation with users’ hobby information. Pattern D1 and D2 will have
the same list order, that is S10 � S3 � S9 � S4 � S2 � S8 � S5 � S6 �
S1 � S7. Even his method is instructed by strict mathematics theory, it cannot
reflect users’ hobby, which shows it cannot care for different user’ individual
request.

Adopting Subjective-objective Weight Mode. Weight mode calculation
will consider objective information of every attribute target index and users’
hobby when subjective-objective weight mode is adopted. Users’ hobby is stated
by attribute comparison pattern D1 and D2. When D1 is adopted, the list order
for achieved every service attribute case is S10 � S3 � S9 � S2 � S8 � S4 �
S5 � S1 � S7 � S6. When D2 is adopted, the list order for achieved every
service attribute case is S3 � S10 � S8 � S4 � S2 � S9 � S5 � S1 �
S7 � S6.The comparison of the two result shows small change exist. The change
indicates users’ hobby plays its function, while small change indicates users’
hobby information does not change the result of service order list. Attribute
target index of service objectively stabilizes order list result of service. This
method is more scientific as it shows users’ hobby, also promises its objectivity.

5 Conclusion

How to select model service to satisfy the request is a big trouble for the users of
model service. This article offers a detailed analysis on model service research,
then by a further step, Abstract model service into multi-attribute decision prob-
lem. TOPSIS is offered to evaluate quality attribute of model service. How to
calculate weight mode is also analyzed by offering three kinds of methods: subjec-
tive weight mode, objective weight mode and subjective-objective weight mode.
The reasonability and availability of this model service is proved by exact sam-
ples and analysis.
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Abstract. The increasing amount of application software in power system  
demands for an effectual software integration pattern. Web services satisfy the 
requirement. But WSDL and UDDI standards lack the capability of semantic 
representation. In this paper, we present a semantic description for service 
based on OWL-S, and design an exactor which gets IPOE information from 
WSDL/UDDI, propose an architecture SM4PS based on OWL-S and power 
system domain ontology for service discovery and composition. A prototype of 
composing service for a provincial power system operation management is 
shown. 

Keywords: Semantic, Web services, OWL-S, Power system. 

1   Introduction 

In recent years, China has undergone a rapid development in power system. To ensure 
the secure and stable operation of the power system, it is required to develop and 
apply more advanced software. Within power companies, software systems had 
evolved over the decades and have become more and more complex, the systems are 
numerous having lots of applications like CRM, GIS, and SCADA from different 
vendors like ABB, SIEMENS and other IT companies. The software architecture had 
changed from central to distributed, and now the web-based architecture. These dif-
ferent applications have to integrate and exchange data. Therefore, the research on the 
problem of application software integration and interaction in electric power system is 
increasing importance and urgency. 

In past years, some well-known systems such as CORBA, COM/DCOM (only for 
Microsoft systems), and Java RMI achieve communication of heterogeneous systems 
but not coordination between components. Their communication does not guarantee 
the exploitation of the full functionality in some products, especially between hetero-
geneous systems. So such systems are in fact successful only with platforms of the 
same vendor.  

Web services are self-contained, Web-enabled applications capable not only of per-
forming business activities on their own, but also possessing the ability to engage 
other Web services in order to complete higher-order business transactions [1]. Web 
services Protocol Stack including SOAP, WSDL, UDDI, and BPEL enable the  
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interoperation and analysis of existing software component or complex services 
which is possibly offered by different service providers. All these standards are XML 
format document. Simple Object Access Protocol (SOAP) is a web service communi-
cation and invocation protocol. The Web Services Definition Language (WSDL) 
outlines what input the service expects and what output it returns. Universal Descrip-
tion, Discovery and Integration (UDDI) is a registry standard for discovering web 
services. UDDI describes businesses and classifies services, but it doesn’t provide 
information on what a service does. The Business Process Execution Language 
(BPEL) is used to formally specify business processes and interactions for web ser-
vices. Overall, Web services technology is basically a syntactical solution and lacking 
the semantic part. So finding correct web service is difficult despite the existence of 
UDDI registries because descriptions are in text and can only be searched by key-
word, and composing web services is still considered challenging and requires an 
expert. Semantic description of web services is an attractive solution. Semantic Web 
services are Web services which have been marked or annotated with machine-
interpretable semantic markup, in the form of ontologies [2]. Semantic interface de-
scription languages include OWL-S [3] or WSMO [4]. At present, there are many 
research works on ontology building for power system [5, 6]. 

In this paper we focus on the composition of power system management applica-
tions based on web services. We propose two steps to compositing power system 
services, first, the services semantic information are described, and domain-specific 
ontologies are created based on OWL. Then services composition is made more 
automatically and correctly. 

2   Semantic Description for Power System Management Services 

Two main issues are involved in power system management services composition. 
First of all Web service discovery aims at reaching the user goal and selecting the 
suitable service. The second issues is to plan a workflow which describes how these 
services interact and how the functionality they offer could be orchestrated and moni-
tored at runtime. For the WSDL and UDDI have not explicit representation of the 
whole semantic description of Web services, some extended semantic definitions are 
given in the subsections below. 

2.1   Definition for Semantic Service of Power System 

Web Ontology Language - Services (OWL-S) [3] is ontology, based on OWL, to 
semantically describe web services. It enables Web service discovering, selecting, 
composing and interoperating automatically. OWL-S is characterized by three mod-
ules: Service Profile, Process Model and Grounding. Service Profile describes the 
capabilities of web services, it includes four elements IPOE: 

Input: Set of necessary inputs that the requester should provide to invoke the  
service. 

Output: Results that the requester should expect after interaction with the service 
provider is completed. 

Preconditions: Set of conditions that should hold prior to service invocation. 
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Effects: Set of statements that should hold true if the service is invoked successfully 
Process Model describes how a service works; it defines three types of process: 

Atomic processes: directly invoked by an agent, have no subprocesses, executed in a 
single step. 
Composite processes: consist of other non-composite or composite processes. They 
have a composedOf property, by which the control structure of the process is indi-
cated, using a ControlConstruct subclasses. 
Simple processes: abstract concepts, used to provide a view of some atomic process, 
or a simplified representation of some composite process.  
 

Definition 1. Domain ontology DO, a set of definitions of elements in power system. 
 

Definition 2. Service is defined as s= (Is, Ps, Os, Es), where Is is the input list, Ps is the 
preconditions, Os is the output list, Es is the service affect. 
 

Definition 3. Services container SC, a set of Web services. SC= {s1, s2,……, sn} 
 

Definition 4. Services query is defined as Q=(IQ, PQ, OQ, EQ ), where IQ is the ex-
pected service input list, PQ is the expected service preconditions, OQ is the expected 
service output list, EQ is the expected service affect. 
 

Definition 5. Services discovery: Given a services container SC and a query Q, auto-
matically finding a set of services S from SC, S={s| s=(Is, Ps, Os, Es ), s∈SC, IQ ⊆ Is, 
PQ ⊆ Ps, OQ ⊆ Os, EQ ⊆Es}. 

2.2   Description of services composition 

In this paper, directed graph is used as the structure of the services composition. 
 

Definition 6. Let G= ( V, E, C,vs,vg ) as a connected, directed graph with given 
weight, where V={ v1,……,vn } is the vertices collection of the graph G, every ver-
tex vi is related to a service si; E is the collection of directed edges of the graph G, if 

(vi, vj)∈E,then vi ∈ V, vj ∈ V;C = ( c1, ……, ck ), is the k global constraints which 
is brought out by users for the composite service; vs is the start node that users bring 
up; vg is the end node that users bring up. 
 

Definition 7.  Multi-constrained path: given the directed graph G= ( V, E, C,vs,vg ), a 
path P from start node to the end node is called multi-constrained path. 

3   Composition Architecture for Power System Service  

The SM4PS (Services Matcher for Power System) architecture (Fig 1) is proposed to 
tackle the Web service discovery challenge. The SM4PS includes four modules: ser-
vices publish, query, composition module, services container, services-query matcher 
and OWL-S extractor. Once a service provider publishes his service in services con-
tainer, the SM4PS will produce the semantic description and select the services auto-
matically. 
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Fig. 1. The architecture of services matcher SM4PS 

 
The services container can be UDDI registry or not. In SM4PS we use JUDDI reg-

istry and augment the JUDDI with semantic definition. When a service provider pub-
lishes his service in our JUDDI, the OWL-S extractor will get information from 
tModel. If the services container is not a UDDI registry, the OWL-S extractor will 
fetch service profile information form the WSDL file. The OWL-S/WSDL/UDDI 
mapping is given in table 1 below.  

Table 1. OWL-S/WSDL/UDDI Mapping 

OWL-S Profile WSDL Document UDDI  
input wsdlInputMessage Input_TModel 
inputtype wsdlInputMessagepart  
Output wsdlOutputMessage Output_TModel 
Outputtype wsdlOutputMessagepart  
Preconditions  Preconditions_TModel 

Effects  Effect_TModel 

 
Some domain ontologies for power system descriptions exist [5, 6, and 7] and 

building them is a challenging task. A major impediment is the lack of guidelines on 
how to build such ontologies, what knowledge they should contain and what design 
principles they should fellow. The process of building power system domain ontology 
is out if scope of the paper. According to A. Bernaras’s suggestion [7],  power system 
domain ontologies are complex and may be a combination of small-scale ontologies. 
For example, the transport ontology describes component of the network, including 
electrical components and compound structures. Breaker is a kind of electrical com-
ponents; Breakers are further specialized into central breaker, lateral breaker, bus-bar 
coupling breaker, and normal breaker (Fig.2). 

When users query some services, the services-Query matcher will match the inputs 
and the outputs of the request against the inputs and the outputs of correlating adver-
tisements in the services container based on domain ontology. The matching process 
is efficient. 
 

Services 
container 
Eg.juddi 

Services-
Query matcher  

OWL-S 
extractor

Power 
system 
Domain 
ontology 

Services publish, query, composite module 
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Interrupting devices 

breakers switches

electrical components 

central
breaker

normal 
breaker

lateral
breaker

Legend:
isa Relation — 
ancestor   ..… 

b-b-c
breaker

 

Fig. 2.  A fragment of the power system ontology 

4   The Design and Implement of a Prototype Composition System 

This section presents an example to show how the composing services works in prac-
tice. In a dispatch center of a provincial power system in China, when a breaker Kn of 
a transmission line in a substation Si is going to be placed under repair, changes to the 
system configuration and load rearrangement will be done by different   applications 
software (services). These services have the function of getting real time information 
of the power system, power system generation planning and equipment overhauling 
arrangement, protective relaying operation and management, operation sheet generat-
ing for operator.  

Consider the above scenario with three different Web services (table 2):  
Daily schedule service receives a device repairing requirement from a substation 
Si, it returns a plan P1. In accordance with the arrangement of Daily  
schedule service, Protective relay service returns the necessary arrangement R1 of 
the protective relay devices used, Operation sheet service returns the operation 
detail O1. 

Table 2. Semantic Web services for power system management 

Web Services Daily schedule Protective relay Operation sheet 
Input Kn, Si Kn, Si Kn, Si 
Output P1 R1 O1 
Preconditions PS PS,P1 PS,P1,R1 
Effects EDs EPr EOs 

 
The workflow of the three services is shown in Fig 3. Based on the semantic 

services matching method described in section 3, a composite service for power 
system operation management has been created; the Process Model in OWL-S is 
following: 
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Fig. 3. The example of operation management process  

 
<rdfs:Class rdf:ID="OperationManagement"> 
    <rdfs:subClassOf rdf:resource="#CompositeProcess" /> 
    <rdfs:subClassOf rdf:resource="http://www.daml.org/Process#Sequence" /> 
    <daml:subClassOf> 
        <daml:Restriction> 
           <daml:onProperty rdf:resource="http://www.daml.org/Process#components"/> 
            <daml:toClass> 
                <daml:subClassOf> 
                    <daml:unionOf rdf:parseType="daml:collection"> 
                        <rdfs:Class rdfs:about="#Daily schedule" /> 
                        <rdfs:Class rdfs:about="#Protective Relay " /> 
                        <rdfs:Class rdfs:about="#Operation sheet" /> 
                    </daml:unionOf> 
                </daml:subClassOf> 
            </daml:toClass> 
        </daml:Restriction> 
    </daml:subClassOf> 
</rdfs:Class> 

5   Conclusion and Future Work 

In this paper we outlined the main challenges faced by power system application 
software. Then we showed the advantage of Web services for software integration in 
power system. We analyzed the shortcoming of Web services existing standards 
WSDL, UDDI which lack the capability of semantic representation, and presented a 
semantic description for service based on OWL-S. The SM4PS architecture was de-
signed to discover and compose service based on OWL-S and power system domain 
ontology. An exactor which gets IPOE information from WSDL/UDDI was proposed. 
A prototype of composing service for a provincial power system operation manage-
ment shows the availability and flexibility of our implementation. 

For further studies we will extend the current work in service composition with 
semantic context of power system, and do more research on semantic matching 
method.  
 
Acknowledgments. The work is funded by the National Natural Science Foundation 
of China (Foundation No. 60773217). 
 

Operation management 

Daily schedule Protective relay Operation sheet 



1160 Q. Liu, J. Wen, and H. Sun 

References 

1. Jian, Y.: Web Services Componentization. Comunications of the ACM 46, 35–40 (2003) 
2. Sycara, K.P., Paolucci, M., et al.: Automated Discovery, Interaction and Composition of 

Semantic Web Services. J. Web Sem 1, 27–46 (2003) 
3. Ankolekar, A., Burstein, M., et al.: OWL-S 1.1 Release, OWL-based Web Service Ontol-

ogy. Web-Ontology Working Group at the World Wide Web Consortium (2004) 
4. Roman, D., Keller, U., Lausen, H.: WSMO – Web Service Modeling Ontology. Digital En-

terprise Research Institute (DERI) (2004) 
5. Ma, Q., Guo, J., Yang, Y.: An Ontology for Power System Operation Analysis. In: 2004 

IEEE International Conference on Electric Utility Deregulation, Restructuring and Power 
Technologies, pp. 597–601. IEEE Press, New York (2004) 

6. Mathias, U.: Semantic Interoperability within the Power Systems Domain. In: 1st Interna-
tional Workshop on Interoperability of Heterogeneous Information Systems, pp. 39–44. 
ACM, New York (2005) 

7. Bernaras, A., Laresgoiti, I., Bartolomc, N., Corera, J.: An Ontology for Fault Diagnosis in 
Electrical Networks. In: The International Conference on Intelligent Systems Applications 
to Power Systems, pp. 199–203. IEEE Press, New York (1996) 

8. Paolucci, M., Kawamura, T., et al.: Semantic Matching of Web Services Capabilities. In: 
Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Hei-
delberg (2002) 

 



W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part I, LNCS 5551, pp. 1161–1170, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Optimal Auction Model Analysis and Mechanism Design 
of Indivisible Goods 

Congjun Rao1,2, Yong Zhao1, Huiling Bao1, and Qing Wang1 

1 Institute of Systems Engineering, Huazhong University of Science and Technology, 
Wuhan 430074, China  

2 College of Mathematics and Information Science, Huanggang Normal University,  
Huanggang 438000, China 
raocjun79@163.com 

Abstract. In this paper, an optimal auction model that maximizes the seller’s 
expected utility is proposed for a kind of indivisible goods. Firstly, the correla-
tion of bidders’ valuations and the asymmetry of the private information are 
analyzed. Then, the properties of the optimal auction are given. Thirdly, the 
feasibility of optimal auction is discussed. Finally, an example of the optimal 
auction is given to show how to apply the discriminatory auction to realize the 
optimal auction mechanism. Therefore, this paper effectively generalizes the 
auction models with single-unit. 

Keywords: Indivisible goods, optimal auction, mechanism design. 

1   Introduction 

With the development of economy, the multi-unit auctions are widely applied in our 
life. People have more concern about the theory research on multi-unit auctions, and 
the mechanism design of multi-unit auctions is becoming one of the most active re-
search fields in auction theory[1]. 

Ortega Reichert[2] analyzed the properties of sequential English auction, discrimi-
natory price auction, and uniform price auction, and presented revenue equivalence 
theorem of multi-unit auctions for the first time. Harris and Raviv[3] first gave an 
optimal conclusion, i.e., if the bidders’ valuations are independent, and follow uni-
form distribution, then the auction mechanism in Ref.[2] is optimal. Maskin[4] gave a 
complete characterization for the multi-unit auctions and generalized the conclusions 
in Ref.[3] to any valuation distribution. Especially, for the auctions of divisible goods, 
Back and Zender[5, 6] compared the single object auction with divisible multi-unit 
auctions, and designed a special uniform price auction mechanism of divisible goods. 
This is a new idea of studying the auction of divisible goods. Thenceforward, Wang 
and Zender[7] derived equilibrium bidding strategies in divisible good auctions for 
asymmetrically informed risk neutral and risk averse bidders when there is random 
noncompetitive demand. Recently, Kremer and Nyborg[8] used a model of fixed 
supply divisible-good auctions, to study the effect of different rationing rules on the 
set of equilibrium prices. Damianov[9] then showed that a low-price equilibrium 
cannot exist in a uniform price auction with endogenous supply, if the seller employs 
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a proportional rationing rule and is consistent when selecting among profit-
maximizing quantities. Indranil Chakraborty[10] studied the asymptotic price in the 
uniform price auction, the results showed that the expected price becomes large de-
pend only on the aggregate of the marginal distributions of each bidder’s marginal 
values, and not on the correlation between the marginal values. These are all the im-
portant research results in auction theory in the past few years. However, most of 
these research results are obtained based on some simple and especial conditions, 
such as unitary demand for every bidder’s valuation follows uniform distribution, the 
bid price of bidders are discrete, and so on. When these conditions are changed, the 
corresponding conclusions need to be reconsidered. 

Based on these existing studies, an optimal auction mechanism and model that 
maximize the seller’s expected utility are studied in this paper. In this model, the 
correlation of bidders’ valuations are considered, and the bidders are unsymmetrical, 
and the probability is used to describe the optimal auction mechanism. 

2   The Assumptions 

Without loss of generality, we give the following assumptions. 

Assumption 1. There is only one seller, and he is risk neutral. 

Assumption 2. There are m  units of indivisible goods to be sold. 
Assumptions 1 and 2 describe the supply side of the model. The following assump-

tions describe the demand side and the information structure. 

Assumption 3. There are ( 1)n n >  bidders, and they are all risk neutral. They all 

want to maximize their expected profit.  

Assumption 4. Each potential bidder has his own private information about the value 
of the good, iT , and any two variables iT  and jT  with i j≠  are independent. 

Assumption 5. The value of iT  is only known by bidder i , other bidders do not ob-

serve the realization of iT  and treat it as a draw from a cumulative distribution ( )
iTF ⋅ , 

with support [ , ]iii t t=H . The density function of ( )
iTF ⋅  is denoted as ( )

iTf ⋅ . 

Assumption 6. The value of the k-th unit of the good to potential bidder i , ( )ikV T , 

satisfies 
1

{ ( ) } ( )ikj

n

ik ikj j
j

E V V tγ
=

| = =∑T T t , where the function ( )ikj jV t  is the expected 

effect of bidder j ’s information on bidder i ’s marginal valuation of the k-th unit, and 

the functions ( )ikjV ⋅  are differentiable and increasing. The parameter ikjγ ( j i≠ ) is a 

influence coefficient that the bidder j ’s information will affect bidder i , and they are 

nonnegative. ikiγ  is positive.  

In a multi-unit auction model, the relationship between the valuations for the sev-
eral units needs to specify. The following assumption 7 gives the downward sloped 
demand function condition. 
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Assumption 7.  The expected valuation for additional units is nonincreasing, i.e., for 

all jt , , 1,, 1,
1 1

( ) ( )
n n

ikj i k jikj j i k j j
j j

V t V tγ γ ++
= =

≥∑ ∑ , { }1, , 1k m∈ −" . 

The last two assumptions are given to guarantee that in the optimal auction the 
seller will not want to use stochastic allocation rules.  

3   Optimal Auction Mechanism 

Based on above Assumptions and conditions, we discussed the optimal auction of 
indivisible goods. 

Definition 1. An allocation is a vector ( )1, , nk k" , such that each element ik , the 

number of units allocated to bidder i , is a nonnegative integer and satisfies 

1

n

i
i

k m
=

≤∑ . The set of all allocations is denoted by ( , )A m n . 

A multi-unit auction is defined as follows. 

Definition 2. An auction is any pair of functions ( , )p c  with ic ： iT R→ , and such 

that there exists a function ( ) [ ]: , 0,1P m n × →A T . For all i, k, ( )1, , nk k" and t , 

satisfy the following conditions[11]. 

( )1

1
, , ( , )

( ) ( , , ; )
n

i

ik n
k k m n

k k

p t p k k
∈Α

≥

= ∑
"

" t ;                                       (1) 

( )1

1
, , ( , )

( , , ; ) 1
n

n
k k m n

p k k
∈Α

≤∑
"

" t ;                                      (2) 

  1( , , ; ) 0np k k ≥" t .                                          (3) 

In an auction ( , )p c , given all announcements t , ( )ikp t  denotes the probability that 

bidder i  will receive at least k  units, and ( )ic t  is bidder i's expected pay-

ment; 1( , , ; )np k k" t  is the probability that the allocation 1( , , )nk k"  is implemented.  

The seller’s utility from any auction ( , )p c  is determined by the expected payments 

of the bidders, and can be denoted as 0
1

( , ) ( )
n

i i
i

U p c E c T
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑ . 

In addition, the bidders pay attention to not only about their expected payments but 
also about the number of units they will receive as well, and bidder i's utility (Weber, 

1983) [12] can be written as 
1

( , , ) { ( ) ( ) | } ( )
m

i i ik ik i i i i
k

U p c t E V p T t c t
=

= = −∑ T T , where 

( )ikp t  is the probability that bidder i  receives at least k  units. To simplify the char-

acterization of feasible auctions, we denote bidder i ’s expected probability of getting 
at least k units by ( , ) { ( ) | }ik i ik i iQ p t E p T t= =T . 

Next we discuss the incentive compatible of auction ( , )p c .  
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Definition 3. If for all i , it  and it� , the following condition satisfies, i.e.,  

1

( , , ) ( ) ( , ) | ( )
m

i ii i ik ik i i i i
k

U p c t E V p t T T t c t−
=

⎧ ⎫≥ = −⎨ ⎬
⎩ ⎭
∑ � �T ,               (4) 

then we say the auction ( , )p c  is incentive compatible.  
 

The right hand side of condition (4) is the expected utility of a bidder with type it  

who announces type it� . Therefore, condition (4) states that a truthful report maxi-
mizes the utility of any bidder. Condition (4) is equivalent to the following Proposi-
tion 1. 
 

Proposition 1. An auction ( , )p c  is incentive compatibility if and only if, for all i , 

it  and it� , the following condition satisfied:  

1

( , , ) ( , , ) ( ( ) ( )) ( , )iki iki

m

i i ii i i iki i ik
k

U p c t U p c t V t V t Q p tγ
=

≥ + −∑� � � .        (5)                 

Proof.  By Assumption 6, the right hand side of condition (4) can be written as  

1

{ ( ) ( , ) | } ( )
m

i iik ik i i i i
k

E V p t T T t c t−
=

= −∑ � �T  

1 1

{ ( ) ( ) | } ( ) { ( ( ) ( )) ( , )}
m m

i i iki iki i iik i ik i i i iki i ik i
k k

E V T p T T t c t E V t V t p t Tγ −
= =

= = − + −∑ ∑� � � �  

1

( , , ) ( ( ) ( )) ( , )
m

i iki iki i ii iki i ik
k

U p c t V t V t Q p tγ
=

= + −∑� � � . 

So the right hand side of condition (4) is equal to the right hand side of condition (5). 
Therefore, condition (4) is equivalent to condition (5). 

In addition, the auction mechanism must satisfy the second constraint, i.e., any bid-
der may participate the auction freely. When he participate the auction, his expected 
utility is equal or greater than the expected utility when he didn’t participate the  
auction.   
 

Definition 4. If for all i  and it , ( , , ) 0i iU p c t ≥ . Then we call auction ( , )p c  is indi-

vidually rational. 
 

Definition 5. The auction ( , )p c  is a feasible mechanism if and only if ( , )p c  satis-

fies the conditions of incentive compatibility and individual rationality.                
Next we discuss the properties of feasible auction. 

 

Lemma 1. Suppose ( , )p c  is a auction, then for all i , k  and t , the following condi-

tions must be satisfied: 

(i) 
1 1

( )
n m

ik
i k

p m
= =

≤∑∑ t ;  (ii) , 1( ) ( )ik i kp p +≥t t ;  (iii) 0 ( ) 1ikp≤ ≤t . 

The proof of Lemma 1 can be seen in [11].  
In order to find the optimal auction, we must pay some attention to feasible auction. 

Based on Lemma 1, the following Proposition 2 provides a set of necessary condi-
tions for feasible auctions. 
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Proposition 2. If an auction ( , )p c  is feasible, then, for all i , k , it  and it� , we have 

 
1

( ( ) ( )) ( , )
m

iki iki iiki i ik i
k

V t V t Q p tγ
=

−∑ � ≥
1

( ( ) ( )) ( , )
m

iki iki i iiki i ik
k

V t V t Q p tγ
=

−∑ � �            (6) 

'

1

( , , ) ( , )
m

i i ikiiki ik i
i k

U p c t V Q p tt γ
=

∂ =∂ ∑                                       (7) 

( , , ) 0i iU p c t ≥                                                         (8) 

1 1

( )
n m

ik
i k

p m
= =

≤∑∑ t                                                       (9) 

                  , 1( ) ( )ik i kp p +≥t t                                                   (10) 

0 ( ) 1ikp≤ ≤t  .                                                 (11) 

Proof. First of all, we prove (6). By (5), we have 

1

( ( ) ( )) ( , ) ( , , ) ( , , )
m

iki iki i i iiki i ik i i i
k

V t V t Q p t U p c t U p c tγ
=

− ≤ −∑ � � �  

and  

1

( , , ) ( , , ) ( ( ) ( )) ( , )iki iki

m

i ii i i iki i ik i
k

U p c t U p c t V t V t Q p tγ
=

≥ + −∑� � , 

Therefore 

1

( ( ) ( )) ( , ) ( , , ) ( , , )
m

iki iki i i iiki i ik i i i
k

V t V t Q p t U p c t U p c tγ
=

− ≤ −∑ � � �  

1

( ( ) ( )) ( , )
m

iki iki iiki i ik i
k

V t V t Q p tγ
=

≤ −∑ � . 

Divide the terms in this inequality by ( )iit t− � , and take limits as i it t→� . The result in 

the center is ( , , )i i

i

U p c t
t

∂
∂ ,  while both bounds converge to 

'

1

( , )
m

ikiiki ik i
k

V Q p tγ
=
∑ , and 

(7) follows. Expression (8) follows directly from individual rationality, and (9)-(11) 
from Lemma 1. 

Based on Proposition 2, we analyze the optimal auction.  
 

Proposition 3. Suppose * *( , )p c  is an optimal auction. Then a bidder reporting the 

lowest possible private signal has zero utility, i.e., * *( , , ) 0i iU p c t = , where it  denotes 

the lowest possible private signal, and, for all i  and it , the expected payment satisfies  

'* * *

1

( ) ( ( ) ( ) ( ) ( , ) ) |
i

i

m T

ikii i ik ik iki ik i i it
k

c t E V p V x p x dx T tγ −
=

⎧ ⎫= − =⎨ ⎬
⎩ ⎭
∑ ∫T T T  .     (12) 

 

Proof. The proof process can be seen in [11]. 
The characterization of optimal auctions is completed with a description of the op-

timal allocation probabilities, ( )p ⋅ . If the optimal ( )p ⋅ corresponds to a deterministic 

auction, it must solve the problem specified in the following proposition 4. 
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Proposition 4. Consider an auction * *( , )p c  satisfying (12). Let *p solve  

( 1D ):  
'

( )
1 1

1 ( )
max ( ) ( ) ( )

( )
i

i

n m
T i

ikiik iki i ik
p

i k T i

F T
E V V T p

f T
γ

⋅ = =

⎧ ⎫⎛ ⎞−⎪ ⎪−⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑∑ T T  

1 1

1 1

, 1

( ( ) ( )) ( , ) ( ( ) ( )) ( , )

( ).

( ) ( )

0 ( ) 1

m m

i i iiki i ik i iki i ikiki iki iki iki
k k

n m

ik
i k

ik i k

ik

V t V t Q p t V t V t Q p t

p ms t

p p

p

γ γ
= =

= =

+

⎧ − ≥ −⎪
⎪
⎪⎪ ≤⎨
⎪
⎪ ≥
⎪

≤ ≤⎪⎩

∑ ∑

∑∑

� � �

t

t t

t

(13) 

then * *( , )p c  is an optimal auction.  

Proof. Because * *( , )p c  satisfies (12), by the derivation process of (12), we can ob-

tain (7) and (8) in Proposition 2 are satisfied. In addition, combine the constraint con-
ditions of problem ( 1D ) and equation (13), we can conclude * *( , )p c  is an optimal 

auction.  
In the objective function of problem ( 1D ), we set 

' 1 ( )
{ ( ) } ( ) ( )

( )
i

i

T i
ikiik iki i ik i

T i

F t
E V V t G t

f t
γ

−
= − ∆T T t  .                    (14)                    

Obviously, when the value of ( )ikp T  is determined, the greater the value of ( )ikG ⋅  is, 

the greater the value of 0 ( , )U p c  is. In the optimal auction, the seller will want to 

allocate the units that are associated with the highest contributions to his utility[11]. 

Thus, the ordering of the ( )ikG ⋅  will be important for to characterize the optimal 

auction. 

Therefore, in an optimal auction, the seller can compute the values of ( )ikG ⋅  and 

rank them by gathering the bidder’s information. The seller allocates m  units to m  

bidders who have the highest positive value of ( )ikG ⋅  according to the order. If the 

numbers of positive ( )ikG ⋅  is less than m , then the seller will keep the remaining 

units. 

4   A Mechanism Design for Auction of Indivisible Goods 

4.1   Problem Analysis 

Consider a private values model with two units and two bidders. Conditional on the 
individual signals, the expected valuations are given by 

{ }1( ) |i iE V t= =T T t  ,                                                (15) 

{ }2( ) |i iE V t= =T T t  .                                                  (16) 
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Obviously, (15) and (16) satisfy Assumption 4. Suppose the private signals are inde-
pendently drawn from a uniform distribution on [0,1], so (15) and (16) satisfy the 
Assumptions 5, 6 and 7. 

By the assumption of private signals are independently drawn from an uniform dis-
tribution on [0,1], and from (14), (15) and (16), we can calculate the values of  

( )ik iG t ： 1

1
( )

2
i

i i i

i

t
G t t

t

−
= − , 2 ( ) 2 1i i iG t t= − . 

For bidder i to receive at least one unit his private signal must be such that 

{ }1 2( ) max 0, ( )i i j jG t G t> ; otherwise, the good is not allocated or it is allocated to 

the other bidder. But, for 1( ) 0i iG t > it must be satisfied 1 3it > ; similarly, for 

1 2( ) ( )i i j jG t G t> , it must be satisfied 

2
22 1 2 1

3

j j j

i

t t t
t

⎛ ⎞− + − +
⎜ ⎟>
⎜ ⎟
⎝ ⎠

( )i j≠ . Thus, when 

bidder i receives at least one unit, his private signal must be such that 
2

22 1 2 11
max ,

3 3

j j j

i

t t t
t

⎧ ⎫⎛ ⎞− + − +⎪ ⎪⎜ ⎟> ⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

. 

Similarly, If the bidder i receives two units, his private signal must be such that 

{ }2 1( ) max 0, ( ) ,i i j jG t G t> then we can obtain 
3 2 11

max ,
2 4

j j

i

j

t t
t

t

⎧ ⎫+ −⎪ ⎪> ⎨ ⎬
⎪ ⎪⎩ ⎭

. Therefore, 

we define two functions, 1( )β ⋅  and 2 ( )β ⋅ , which will be interpreted as the minimum 

winning announcement given the other bidder's announcement: 
2

2

1

1 2 1 2 1
( ) max ,

3 3

x x x
xβ

⎧ ⎫⎛ ⎞− + − +⎪ ⎪⎜ ⎟= ⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

,   2

1 3 2 1
( ) max ,

2 4

x x
x

x
β

⎧ ⎫+ −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

. 

Let * *( , )p c  be an optimal auction. When 1( )i jt tβ> , the optimal auction will allo-

cate one unit to bidder i  if 1( ) 0i iG t >
 
and greater than 2 ( )j jG t , so we have 

1*
1

1 ( )
( )

0
i j

i

t t
p t

otherwise

β>⎧⎪= ⎨
⎪⎩

 .                                         (17) 

Similarly, when the bidder i receives two units, it satisfies  

2*
2

1 ( )
( )

0
i j

i

t t
p t

otherwise

β>⎧⎪= ⎨
⎪⎩

  .                                        (18)  

Substitute (17) and (18) in (12), we have 
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β β
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β β

⎧ ≤⎪
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⎪
⎪ + >⎩

∫
∫ ∫

 .               (19) 
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In Figure 1, we can get the optimal allocations for the possible vectors of private 
signals. The ordered pairs in each subset of the signals’ space corresponds to the 
number of units allocated to the bidders: the first number is the number of units allo-
cated to bidder 1, and the second number is the number of units allocated to bidder 2. 
If bidders have very low private signals, then they get no unit; with intermediate val-
ues they get one unit, and with high values they get two units. However, this is a pri-
vate values model, the boundaries among low, intermediate and high signals, depend 
on the other bidder's signals. So these factors will bring some uncertainty to the allo-
cated results. Therefore, the optimal mechanism cannot be implemented through a 
generalized standard auction. However, we can construct a modified discriminatory 
price auction that implements the optimal mechanism. 

 
Fig. 1. Optimal allocations in an example of a two unit auction 

4.2   Feasible Mechanism Design  

In order to describe the modified discriminatory price auction, we suppose the bid-
ders’ expected valuations are as follows: 

{ }1 1 1 1( ) ( ( ), ) | ( )i i j j j iV t E V T T T tβ β= < ,  { }2 2 2 2( ) ( ( ), ) | ( )i i j j j iV t E V T T T tβ β= < . 

Each bidder i submits bids for the two units, 1id  and 2id . From the submitted bids the 

seller calculates the modified bids i ikd  as： i 1( ( ))ik ik k ikd G V d−= , 1, 2k = , where 
1( )kV − ⋅  is the inverse function of ( )kV ⋅ . For each unit received a bidder pays the value 

of the winning original bid; a bidder that receives no unit pays nothing. 
To show that this modified discriminatory price auction implements the optimal 

mechanism, we show that if each bidder bids 

( ) ( )k i k id t V t=
.
                                                  (20)                                
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Which means the bids are 1 2 1 2( ) ( ( ), ( )) ( ( ), ( ))i i i i id t d t d t V t V t= = , then 1 2( ( ), ( ))d t d t
 

is an equilibrium of the auction and generates expected payments as in (19). Next we 
prove this conclusion. 

Suppose that bidder j uses bids ( )jd t . Bidder i chooses bids 1id  and 2id to maxi-

mize the objective 

{ } { }2 1 1 1 1 2 2 21 1 ( ) ( ( )) 2 2 ( ) ( ( ))( ( ) ) | ( ( ) ) |
j j i i j j i ii i G T G V d i i i i G T G V d i iE V d P T t E V d P T t≤ ≤− = + − =T T  (21) 

The objective function is separable in (21), so the optimization can be performed 
for each bid independently. The optimal bid for the first unit will solve the following 

problem 
1

2 1 1

1

( ( ))

10
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i

i

V d

i i
d

Max t d dx
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−∫ . 

Thus, the first order necessary condition for an optimal bid is 
' 1

12 1 1
1 2 1 1' 1

1 1 1

( ( ))
( ) ( ( )) 0.

( ( ))
i

i i i
i i

V d
t b V d

d V d

β β
−

−
− − − =

                         

(22) 

If 11 ( )i id d t= , then the condition (22) becomes 

'
' 2
1 1
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i i i
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d t t d
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= − .                                      (23) 

Compare the Equation (23) to 
'

' 2
1 1

2
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( ) ( ( ))

( )
i

i i i
i

t
d t t d t

t

β
β

= − , which follows from 

(20). So in (23), we have 1id = 1( )id t . Similarly, it can be shown that 2 ( )id t  is a 

bidder i's optimal bid for the second unit. By the symmetry, we conclude that 

1 2( ( ), ( ))d t d t is an equilibrium of the modified discriminatory price auction.  

Furthermore, to check that the modified discriminatory price auction implements 
the optimal mechanism, we must prove that it allocates the goods optimally and that it 
yields the optimal expected payments.  

By above proof, we know 1 2( ( ), ( ))d t d t
 
is an equilibrium of the modified dis-

criminatory price auction, then the modified bids are i 1( ( ))ik ik k ikd G V d−=  
1 1( ( ( ))) ( ( ( ))) ( )kik k i ik k k i ik iG V d t G V V t G t− −= = = . Hence, the units are optimally allo-

cated. The expected payments are 

1 2
1 2( ) ( )( ) { ( ) ( ) | }

j i j ii i i T T i T T i ic t E d T P d T P T tβ β< <= + =  

     
2 1 1 1

2 1
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i i

i j j T T i i i j j T T i i

t t
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x dx x dx

β β

β β

β β

β β
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which is equal to the optimal expected payments given in (19). 
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5   Conclusions 

This paper proposed an optimal auction mechanism for a kind of indivisible goods. 
Under the private signal and regularity conditions, the feasibility of optimal auction 
mechanism, i.e., incentive compatibility and individual rationality are analyzed, and 
the properties of the optimal auction are given. Finally, a private values model with 
two units and two bidders is considered to show how to apply the discriminatory 
auction to realize the optimal auction mechanism. Therefore, this paper generalizes 
the auction models with single-unit well, and it is significant in both theory and appli-
cation. 
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Abstract. The Grid-based Urban Public Transport Decision Support System 
(GUPTDSS) is developed to establish an open high-level information environ-
ment to support transport information management and decision-making for 
solving traffic problems. GUPTDSS is characterized with stronger computing 
and resource sharing abilities to cope with the problems that the traditional 
Advanced Public Transport Systems could hardly resolve, such as large-scale 
transport data storage, high-performance transport simulation, and cross-domain 
cooperation etc. This paper presents an overview of services provided by the 
developed GUPTDSS and the architecture in which they fit. A set of system 
methods are discussed as well, including semantic representation of metadata 
model, distributed data management, and safety strategy etc. A case study is 
conducted to validate this architecture. 

Keywords: GUPTDSS, Grid service, Traffic metadata, Data access, Security. 

1   Introduction 

The conflict between the continuous growth of urban economy and the effective 
utilization of limited urban space makes urban public transport system becoming more 
and more significant. It is reported that China lost 31.25 billion US dollars due to traffic 
congestion in 2003, which is 2 percent of the year's GDP and enough to build 500 
kilometers of subway.  

Currently new technologies have been utilized to improve the information gathering 
abilities of advanced public transport system (APTS) [1], including Geographic In-
formation Service (GIS), Global Position System (GPS), monitors, and sensors etc. 
However, it is hard for them to provide effective problem-solving ability for high-level 
traffic decision support, since their architectures and standards can hardly solve some 
important APTS problems, such as how to store and share massive traffic data among 
different systems and organizations, integrate heterogeneous data to offer high-level 
information retrieval on the semantic level, and cooperate workflows among different 
domains [2]. 

                                                           
∗ Corresponding author. 
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The emergence of Grid may effectively solve the problems mentioned above. The 
Grid [3] is an aggregation of geographically dispersed computing, storage and network 
resources, coordinated to deliver improved performance, higher quality of service, 
better utilization and easier access to data. It seems to be a suitable platform of 
GUPTDSS for the following reasons: 

1. Large-scope data storage: The Grid provides a powerful infrastructure to store and 
manage massive traffic data through distributed storage resources. 

2. Heterogeneous data integration: The Grid provides a series standard protocol 
groups to represent, access, transport and integrate data resources, which makes it 
possible for users to utilize heterogeneous, distributed and non-integrated transport data 
through a direct unique standard interface. 

3. Large-scale computing: The Grid uses hundreds of computers distributed over 
wide regions as a single unified virtual computing environment. It allows users be-
longing to different traffic organizations to acquire right amount of computational 
power for computing-intensive traffic simulation and analysis. 

4. Effective Cooperation: The Grid encapsulates all resources into services. It breaks 
the barrier amongst traditional close APTSs and makes these APTSs become a con-
tinuum to solve cross-domain traffic problems in cooperation. 

The GUPTDSS proposed here aims to crash the bottlenecks of traditional APTS by 
exploiting Grid, GIS, GPS and General Packet Radio Service (GPRS) technologies to 
establish an open standard infrastructure for upper-layer transport decision-making 
support. The rest of this paper is organized as follows. Section 2 gives an overview of 
the infrastructure and architecture of GUPTDSS. Section 3 discusses some key meth-
ods used in GUPTDSS. Section 4 describes a typical service implemented on 
GUPTDSS. And finally, section 5 presents conclusions and outlines the future work. 

2   The Infrastructure and Architecture of GUPTDSS 

2.1   Infrastructure 

The infrastructure of GUPTDSS is composed of four parts including data acquisition, 
data transfer, Grid service system, and information presentation. Fig.1 illustrates the 
GUPTDSS infrastructure. 

Data acquisition system includes: GPS, in-vehicle terminals, on-board cameras, 
traffic webcam monitors, and sensors. To obtain real-time bus running information, 
in-vehicle terminals in the running bus get the GPS data through GPS satellite signal 
once in every 10 seconds, and transmit it simultaneously to the Grid storage nodes 
through GPRS/CDMA wireless communication network. Due to its large amounts and 
low real-time demands, video data acquired from on-board cameras is transmitted to 
the Grid storage nodes through wireless Access Point (AP) while bus arriving at final 
stations. Traffic data acquired from webcam monitors and sensors is transported to Grid 
storage nodes through cable networks for real-time analysis and control. 

Grid service system includes four parts: computing cluster, storage cluster, global 
information server, and global schedule server. Both clusters are composed of  
a Dawn3000 supercomputer, a mini server and plenty of PCs. As a domain information 
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center, the mini server is responsible for domain information registry and communi-
cation between domain and global information server. PCs are responsible for the real 
implementation of requested services. Meanwhile, all services and resources in clusters 
are scheduled by Dawn3000 supercomputer. Global information server and global 
schedule server are mini servers that the front is in charge of global information request 
and consistency mapping, and the later is responsible for global job scheduling, 
monitoring and management. 

Information presentation equipments includes:PDA, in-vehicle terminals, PC, 
Notebook PC, E-Stop. These equipments access a unique standard Grid portal to ex-
change messages through GPRS/CDMA wireless networks and Internet/Intranet. 

 

Fig. 1. The infrastructure of GUPTDSS 

2.2   Architecture and Services 

The architecture of GUPTDSS is a service oriented model based on Open Grid Service 
Architecture (OGSA) [4] which makes it a generic infrastructure for system integration. Its 
software components are classified into several hierarchical layers as shown in Fig.2: 

1) User Layer falls into five categories, including urban transport managers, cus-
tomers, decision-makers, researchers and other users; 

2) Grid Portal is the access gateway to GUPTDSS Grid environment. There are two 
types of Grid Portal: application-based portal and user-based portal. The former one 
provides a workbench for users to submit and execute their own application programs; 
and the late one provides a uniform single access for users to seamlessly call the 
pre-developed transport Grid services. In the perspective of GUPTDSS users, user 
space is created as a virtual operation system. One can execute operations on user space 
as he/she can do on local systems. 

3) Transport Services Library is the development layer of actual transport applica-
tions which provides outstanding transport Grid services to support transport deci-
sion-making. Its basic services include Dynamic Route Guidance (DRG) Service, 
Electronic Map Information (EMI) Service, Auto Vehicle Tracking (AVT) Service, 
and Real-time Road Status (RTRS) Service. These basic services respectively utilize 
some single transport data to help users find out the real-time public transport status. 
Meanwhile, by integrating the basic services, Transport Services Library offers some 
more advanced transport services including Operation Planning (OP) Service, Bus  
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Fig. 2. The architecture and services of GUPTDSS 

Route Optimization (BRO) Service, and Bus Schedule (BS) Service. These advanced 
services help users dynamically adjust the plan and enforcement of public transport 
operations through real-time Grid computing, resource sharing and cross-domain co-
operation. 

4) The security framework of GUPTDSS is based on Grid Security Infrastructure 
(GSI) [5] and MyProxy [6]. Based on Public Key Infrastructure (PKI), GSI provides a 
set of protocols, information bases and tools which enables users to access grid re-
sources smoothly. MyProxy allows credential transferring among users, resource 
management and services so that it is no need to store the certificate and private key of 
users in the same machine.  

5) Advanced Services Layer and Basic Services Layer are the key compositions of 
GUPTDSS. They provides a set of Grid services to support open, transparent, secure, 
and semantic data access, information sharing and job management. These services fall 
into four categories: services that enhance the semantic service registry and discovery, 
which are ontology service, information service, semantic discovery, syntactic dis-
covery and registry service; services for resource access and management including 
resource management, data management, and data access service; services that manage 
the establishment and execution of application, which are workflow enactment, job 
scheduling, job management, and job execution service; services for Grid monitor and 
security, such as authorization and access control, monitor service, global monitor and 
logging service. 

6) The two bottom layers of GUPTDSS can be considered as the Grid infrastructure 
that provides running environment and resources.  
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3   Methods 

3.1   Metadata Model and Semantic Representation 

A transport application requires plentiful background knowledge to establish work-
flows or query distributed resource efficiently and effectively from appropriate trans-
port data and services. Unfortunately, many GUPTDSS users are devoid of enough 
background knowledge of both transport and Grid. One way to improve this kind of 
situation is to describe data and services in a formal manner that is interpretable both by 
humans and computer. In GUPTDSS we propose the transport metadata models to 
describe the structure of GUPTDSS resources. Besides, a hierarchical transportation 
ontology model is introduced to represent the semantic concepts and relationships of 
metadata. 

At present the metadata models in GUPTDSS are divided into seven categories that 
are metadata of Grid node, network, video, database, replica, service and user. These 
metadata models are defined by RDF/XML and store in a Schema Repository Service 
(SRS) [7]. The resources registered to information server should follow a schema in 
SRS according to its category. And each information server in GUPTDSS manages a 
LADP-based XML document to store the metadata information of its own resources. 
Users can make an XPath query to information server according to these schemas to 
request the required resources through a single unified query interface.  

Metadata crashes the bottleneck of low-level syntactic description and discovery of 
GUPTDSS resources. However, the discovery progress requires a much more 
high-level conceptual description of data and services to across the following gaps such 
as ambiguous semantics, insufficient relationships, and inconsistent descriptions of 
information. Therefore, for enabling more sophisticated semantic representation and 
discovery of transport data and services, and enhancing the collaboration, openness, 
and intelligence of GUPTDSS, we propose a hierarchical ontology model described by 
OWL [8] as shown in Fig.3.  
Syntactic Layer is composed of Wordnet [9] and Sinica BOW [10] which prepare the 
English and Chinese lexical vocabulary for the ontology. As a large open formal ontology 
stated in first-order logic, SUMO [11] is used here to mapping the domain ontologies so as 
to improve search, communication and interoperation of different organizations. 

 

Fig. 3. The ontology model of GUPTDSS  
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We have defined lots of domain ontologies as shown in Fig3 for data, service and 
knowledge representation and reasoning. Since video is a particular and pivotal re-
source in GUPTDSS, we adopt a video ontology based upon MPEG-7 [12] to represent 
its complicated semantic relations at different levels of abstraction. According to the 
proposed ontology, a video can be represented as a set of objects, relations among 
object, relevant events occurring among these objects, and some temporal and spatial 
properties to describe these objects and events. 

By utilizing ontologies, GUPTDSS services (e.g. ontology service, registry service, 
information service, workflow enactment, etc.) are semantic-aware and beneficial for 
resource description, information integration, knowledge sharing, and workflow or-
chestration.  

3.2   Distributed Heterogeneous Data Access 

All decision support services of GUPTDSS are based on the access, retrieval, proc-
essing, integration and analysis of large, heterogeneous and distributed traffic data. 
Therefore, CGSP Heterogeneous Database (CGSPHD) Service [7] is placed in 
GUPTDSS to provide Grid Data Service (GDS). Besides, Database Connection Pool 
and Data Cache [13] are used to meliorate the efficiency of data access. 

CGSPHDB Service aims to enable Grid users for acquiring and processing distrib-
uted data stored in various heterogeneous database more efficiently and conveniently. 
CGSPDB Service encapsulates an extended OGSA-DAI [14] service to provide a 
unified data access. This access makes the data integration possible and brings het-
erogeneity transparency, naming transparency and distribution transparency [7]. As the 
GUPTDSS documents are transmitted by GridFTP, in the narrow sense, the physical 
data resources accessed by CGSPHDB Service are heterogeneous database manage-
ment systems. In GUPTDSS, GIS data is restored in PostgreSQL, while GPS and traffic 
operation data are stored in SQLServer. In particular, video is stored as files and 
SQLServer is used to store its physical address for index. Fig4 and fig5 show the ar-
chitecture and workflow details of CGSPHDB. 

       

  Fig. 4. (Left) The architecture of CGSPHDB      Fig. 5. (Right) The workflow of CGSPHDB 
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In GUPTDSS, users usually invoke the same transport service at a continuous time 
to access the same data. These frequent service invocations may continually establish 
plenty of database connections and seriously reduce the system performance. There-
fore, connection pool is introduced in GUPTDSS to enhance the efficiency of data 
query. It takes following contents into account: 1) creates a special thread in charge of 
the creation, management and release of connection pool; 2) sets a connection queue to 
ensure that a connection can only be allocated to one thread at one time; 3) sets a 
overtime sign to prevent the over occupation of connection; 4) provides a unified in-
terface to shield the concrete implementation of internal mechanism.  

Data access in a distributed and dynamic environment can usually be efficiently 
optimized by implementing cache facilities. In GUPTDSS, domain information server 
maintains a recent data access queue in its memory for cache index, and clients can 
access the cache data through NFS [15] protocol. Cache stores the information of recent 
access data, including ID, logical name, size, last response time, average response time, 
last request times, priority, busy etc. In order to offer real-time data for applications, 
cache should be updated from time to time. When the cache queue is full-capacity, 
oldest and least-query data will be removed according to data priority. Hence, this 
mechanism could guarantee cache to store the most active data for usage. 

3.3   Security Strategies 

GUPTDSS contains potentially business-sensitive data and hence access to data and 
services should be restricted to authorized users. Therefore, all users have a certificate 
signed from a trusted Certificate Authority to identify his/her authentication. 
GUPTDSS offers two types of resource access control strategies to manage the access 
security: the default type and the defined type. In the case of the default type, resource 
provider defines a specific access list of allowed users to void illegal resource access. 
This simple strategy is suit for the access control of confidential resources. In the de-
fined strategy, Community Authorization Service (CAS) [16] is introduced. CAS 
proposes a widely used set of group authentication and authorization mechanisms that 
address single login, delegation, and credential mapping issues arising in Virtual Or-
ganizations (VOs). Since GUPTDSS users of the same type often need to access to the 
same resources to meet the similar application demand, CAS is proved to be extraor-
dinary suit for our system.  

We also propose an improved Role Based Access Control (RBAC) [17] model as-
sociated with CAS to predigest the authorization management. RBAC model distrib-
utes users into different roles which have different permissions, and hence users can 
obtain suitable access control permissions indirectly by granted appropriate role. 
However, due to its static authorization mode, standard RBAC does not take the service 
lifecycle into account. It makes GUPTDSS unsafe since services can be invoked and 
changed no matter what life point it is at. In our extensible RBAC model, the permis-
sion of users is restricted to not only the delegated role of users but also the real-time 
status of applications. Its status properties include service time, location, and network 
condition etc. These properties are defined by eXtensible Access Control Markup 
Language (XACML) [18] while the application workflow is designed and will be set to 
the local resource provider while the workflow is executed. The user can access the 
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request resource using Security Assertion Markup Language (SAML) [19] only when 
he has the corresponding permission and the application status is enabled.  

4   A Case Study: OP Service 

Operation Planning (OP) Service aims to solve the typical problem for intelligent bus 
dispatch. It can be described as finding the best or approximate best alternative among 
all planning methods that can meet the restricted condition through a certain intelligent 
algorithm with limited calculation processes.  

In GUPTDSS, Genetic Algorithm-based OP Service is coded by MPI and encap-
sulated as Grid service for high-performance parallel computing. It is deployed in 
CGSP Service Container [7] at each computing node. Meanwhile, its corresponding 
interface description in the form of a WSDL document is generated and annotated 
according to the ontology-based metadata schema and published in the cluster infor-
mation center.  

While invoking service, GUPTDSS offers two-layered job schedulers to manage the 
application implement: one is Grid scheduler and the other is local scheduler. Grid 
scheduler uses user specified requirements defined by GJDL to select satisfying ser-
vices and resources from information center by Ontology Service and Information 
Service, and sends the sub service query to corresponding computing node. Local 
scheduler PBS manages the service implement at autonomous computing node, collects 
and distributes the corresponding data as service input from specified storage node by 
Data Management and Access Service, notifies the services status of execution proc-
esses by Monitor Service, and sends the sub results to Grid scheduler.  

The separate sub results will be collected and transmitted to the final result database 
by GridFTP. As the application presentation layer is coded by C#.NET, GUPTDSS 
adopts SQLSERVER to store the final results. Grid Portal accesses SQLSERVER 
through ADO.NET interface, and presents the results to users by their user views. 

 

Fig. 6. The job executing flow of GUPTDSS 
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Fig. 7. OP Service in GUPTDSS accessed via a Web browser connected to the Internet 

All activities of OP Service implement process are controlled by GUPTDSS secu-
rity. Hence, users need to get the certificate signed from CA when he logins the Grid 
portal through a certain security protocol. While invoking OP Service, it is clear that 
users are only allowed to access the Grid resources and services if their verified cre-
dentials are accepted by the providers. 

5   Conclusions and Future Work 

In this paper we proposed an overview of the GUPTDSS infrastructure and its under-
lying service-oriented architecture. By making use of Grid Services, advanced seman-
tic resource description and discovery technologies, novel heterogeneous data access 
mechanism and sophisticated security strategies, the developed GUPTDSS provides 
traffic organizations and users a suitable platform to manage urban transport much 
more easily and support the upper-level transport decision-making. We showed how 
the process takes place from the users' perspective and presented the underlying pro-
tocol implement. 

In our early research, we recognized that the implement effect of GUPTDSS 
transport services is especially influenced by the efficiency of data access and proc-
essing. Therefore, future work will concentrate on the division of data domains, the 
strategy of data distribution and collection, and the creation and selection of data rep-
licas. Besides, the design of workflow engine and algorithms of job scheduling will be 
discussed in future research papers as well. 
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Abstract. Decision making based on emergency plans is the main mechanism 
of problem solving in emergency management. According to characteristics of 
emergency plan texts, this paper extracts four main components and describes 
them with formal models. Based on emergency plan templates, we develop a 
dynamic decision making model to support the normative problem-solving 
process during emergencies. It provides foundation to develop decision support 
system for emergency managerst. 

Keywords:  Emergency plan template, Decision making. 

1   Introduction 

Emergencies, including planned events and unexpected incidents, are rare, uncertain, 
but create sudden and disastrous effects for natural environment and human society, 
presenting challenges to effective decision making. This makes multiple jurisdictions 
and disciplines work together for common goals of reducing damages. As an impor-
tant part of emergency management, emergency managers must make decisions 
quickly with limited information and great loads under stress. To overcome these 
challenges, jurisdictions develop emergency plans, which describe purposes, possible 
situations, organization and assignment of responsibilities, tactic operations, resources 
for planned events based on experiences learned before [1]. When emergencies hap-
pen, critical and time-sensitive decision making based on emergency plans provide a 
standard problem-solving model to ensure rational and logical decisions. 

Developing emergency plans before incidents happening have several key benefits. 
Firstly, they define possible states and provide probable actions. Therefore, it reduces 
uncertainty. Secondly, they facilitate us to use default activities rather than reason 
every time from the beginning, which decreases complexity and load of making deci-
sions [2, 3]. Furthermore, it reduces errors induced by high stress on emergency man-
agers. Finally, as a common knowledge of all responders involved, it make them 
coordinate with each other and provide them an explicit model to monitor teammates’ 
activities in the response process.  

Unfortunately, emergency plans are textual and unstructured documents. Com-
puters cannot extract information and reason action plans based on them to adapt to 
dynamic emergency situations automatically. To account for that, Adriaan [4] devel-
oped an event-based task framework for them, which specifies events, tasks, and 
dependencies between them explicitly. Mark [5] formally specified emergency plans 
and compared those using tools from logic languages. Grathwohl [6] used description 
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logic to model the flood emergency plan and reasoned action plans based on these 
formal models. Wenjun [7] constructed the emergency plan template ontology model 
based on ABC ontology, and store them using XML schema. Hongchen [8] proposed 
an entity and relationship model of organizations, resources and emergency response 
processes. However, these researchers mainly discussed how to extract components 
from these texts, formalize and store them in computers. They didn’t discuss charac-
teristics and requirements of dynamic decision making procedure based on emergency 
plans, and how to develop templates to support it. However, it is the goal of formaliz-
ing emergency plans indeed. 

This paper extracts four components from emergency plan text, including inci-
dents, organizations, tactic plans and resources, and formalizes them using logic 
frameworks respectively in section 2. Based on these models, we develop a normative 
decision making procedure to support the problem-solving processes in the complex 
and violate emergency situations in section 3. Finally, we conclude the paper and 
discuss the future work.  

2   Modeling Emergency Plans  

Jurisdictions and disciplines involving responsibilities of emergency management de-
velop Emergency Operations Plans (EOP), Standard Operating Procedures (SOPs), and 
other procedural documents, which constitute a hierarchical and integrated document 
system, to support decision making during emergencies. These documents called emer-
gency plans provide mechanisms to integrate multiple entities and functions, establish 
collaborative relationships, and ensure coordination of emergency response operations 
[9]. Decisions, which are made during development of them rather than after emergen-
cies happening, can be deliberated, comprehensive and optimal. 

 

Fig. 1. Emergency plan template 
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Modeling emergency plans is to analyze the structural characteristics of paper-
based documents, extract critical components and represent them with standard mod-
els, which are called emergency plan templates. Different kinds of emergency plans 
abstract multiple levels of emergency management businesses, which compliment 
with each other. Generally, emergency plan specifies incidents and assumed situa-
tions, organization structure and assignment of responsibilities, incident objectives, 
strategies and action plans to accomplish these objectives, available resources and 
other pertinent data. These characteristics make that it is possible to represent them 
with common templates. This is shown in fig. 1.  

We extract four components, including specifications for incidents, emergency or-
ganizations, tactic plans and available resources respectively.  

Emergencyplantemplate= {Incidents, EO, TacticPlans, Resources} (1) 

Incidents are models of planned events and relationships between them. EO speci-
fies the organization structure and assigned responsibilities of responders. TacticPlans 
defines team plans to accomplish incident objectives for involved parties. Finally, 
pertinent data of available resources are defined in Resources. Based on Emergency-
plantemplate, responders work as a team to communicate information, deploy re-
sources, execute and modify operation plans for adapting to emergency situations 
rapidly and reducing damages effectively during emergencies. 

2.1   Modeling Incidents 

Incidents, which occur due to uncontrolled changes in the environment, always 
breakout unpredicted and evolve rapidly. Emergency managers must assess them 
accurately based on pertinent information and identify possible situations. While 
developing emergency plans, they analyze characteristics of incidents and assume 
possible situations. Formalizing and organizing information about them with common 
templates provide a simple and general representation to support information commu-
nicating in the response process [10]. They consist of a set of problem parameters 
delineating incidents, which are needed to access situations and predict probable 
courses. Furthermore, when an incident happens, there are usually several other inci-
dents caused by it. We usually call it “incident chains”. 

Generally, incidents and assumed situations are specified by a set of attributes and 
assigned reference values according to definitions in objection oriented programming 
language. 

iIncidents = {incident (attribute, referValue)}  (2) 

jIncidentsRelationships ={incidentsRelationship =(incidentA,incidentB)}

i, j =1 n;incidentA,incidentB Incidents∈L  
(3) 

Attributes of incidents are the type, the occurring time, involved people, the impact 
area, and physical parameters, which is specified for different incidents. IncidentsRe-
lationships define causalities among them. For example, the physical attributes of 
flood are the water level, the flux, and so on. The referValue are the maximal value, 
minimal value, and other possible values assigned to them. 
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2.2   Modeling the Emergency Organization 

During emergencies, personals from multiple parties assemble an organization to 
achieve the common goal of minimizing damages. Emergency plans provide an ex-
plicit organization model for them to establish, expand, and contract the emergency 
team rapidly and improve coordination effectively in the complex and dynamic task 
environment. It specifies organization members, relationships among them, and as-
signed responsibilities, which provides information about the organization awareness 
for responders to improve team coherence and effectiveness under assumed situations. 
Generally, emergency organization model specifies a set of roles and relationships 
between them.  

EO = {Roles, RoleRelationships}  (4) 

Roles in Roles are abstracted from emergency response operations, and represent a 
set of tasks and responsibilities. They are fundamental elements of the organization 
model and must be staffed once they’re activated.  RoleRelationships consists of two 
types of relationships between roles, which define the social structure of these roles, 
including CommandandControlRelationship and CommunicationRelationship. 

iCommandandControlRelationship={CmdCtrl (roleA, roleB, )},i =1 n;φ L  (5) 

Responders assigned to roleA can delegate authority to other responders assigned 
to roleB for executing the command described inφ . It defines orderly line of author-

ity with ranks in the organization, which is used to communicate directions and main-
tain management control.  

{ ( ,  , , )}iCommunicationRelationship Commu Rolesender Rolereceiver ,i=1 n;φ ϕ= L  (6) 

It describes reporting relationships between responders assigned to roles in Roles. 
Rolesender sends a message φ  to Rolereceiver under given conditionsϕ . The mes-

sage φ  is real-time information about incidents, environment and response process. 

Executing communicating activities under conditions ϕ  avoid information over-

whelming.  
Previous works, particularly in Incident Command System (ICS) [10], define a 

common organization structure designed for emergency management activities from 
small to complex incidents. Incident commander, operation section chief, planning 
section chief, logistics section chief, and finance section chief, consisting of the inci-
dent management team, are the most important roles. Each of them takes on specific 
incident response activities and commands his/her subordinators. The incident  
commanders at the highest rank position within ICS, is responsible for determining 
objectives, activating the organization models, ordering and coordinating responding 
agencies based on situations assessment. The planning section chief, assisting the 
incident commander in the tactic level, collects, evaluates, and disseminates informa-
tion about incidents, develops action plans and monitors the implementing process to 
accomplish those incident objectives. The other roles at the operation level, account 
for executing assigned tasks, providing facilities and services, managing the cost, and 
so on.  
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2.3   Modeling Tactic Plans 

Based on the organization model, emergency plans define standardized routines,  
policies and instructions for organization members, which are called tactic plans. 
Abstracted from experiences learned from previous disaster relief operations, they 
specify the determined action plans for emergency response. Due to critical time con-
straints, responders don’t have enough time to communicate and negotiate exten-
sively. Fortunately, explicit models of tactic plans improve implicit coordination 
effectively, and make operations robust and reliable for flexible organization and 
complex environment.  

While developing tactic plans, emergency managers must analyze incident  
objectives based on evaluation of assumed situations, and define alternative 
strategies conformed to them under different constraints. Finally, they continue to 
program a list of action plans to accomplish these strategies until concise and 
simple actions for each organization unit are got. Therefore, tactic plans consist of 
incident objectives, strategies, actions, relevant contexts and constraints to take 
on them. 

As the key work of formalizing emergency plans, there are several requirements 
of developing the logic framework for tactic plans. Firstly, it is multiple levels of 
response operations for each organization units defined in EO. Secondly, because of 
the complexity, tacticPlans can’t specify all the details. It should provide the stan-
dard fields for determined characteristics of tasks and relationships, and custom 
fields for specified information, which will be instantiated by the real time informa-
tion. Finally, it should provide alternative strategies to accomplish a task to  
overcome contingencies. Therefore, the overall task structure of tactic plans is top-
down, contingent and partial structuring. Nodes in the structure are complex tasks 
and simple tasks, which are formalized based on joint intension model and parallel 
the SharedPlans theory [11]. 

Generally, incident objectives, strategies and actions, which have alternative 
solution methods to accomplish them, are represented by complex tasks. Actions 
performed in a straightforward, prescriptive manner by executing a direct action, 
are formalized using simple tasks. Complex task is specified by: (a) name; 
(b)role, having the responsibility to execute it; (c)priority; (d) preconditions, un-
der which the node can be spitted; (e) {AND,OR}Connector∈ ,specifying relationships 

between the node and its sub nodes;(f)sub nodes and (g) end time. In the same 
way, simple task is defined by: (a) name; (b) role; (c) a list of input parameters 
and (d) a list of output parameters, specifying its effects. Additionally, these are 
precedence constraints between these nodes described in Constraints. For exam-
ple, nodeB can’t be executed until nodeA is finished.  

 

i j kTacticPlans = {complexTask ,simpleTask ,constraints }  

( , , , , , , )i i i i i i i iComplexTask name role priority precondition connector subnodes endTime=
( , , , )j j j j jSimpleTask name role inputParas outParas=  

( , ), , ,kConstraits nodeA nodeB i j k 1 n= = L  

(7) 
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2.4   Modeling Resources 

Emergency plans and mutual aid agreements list available resources, including per-
sonals, teams, facilities, equipments, and supplies. Modeling resources is to establish 
common terminology to categorize them and describe capabilities of them within and 
across multiple jurisdictions and disciplines. Standard and uniform methods of de-
scribing resources provide the foundation of identifying, acquiring, allocating, and 
tracking them. Based on the model, emergency manager can order and allocate avail-
able resources to support response operations effectively. 

The descriptions of resources in NIMS include category, kind, components, met-
rics, and type, which define standardized mechanisms for describing resources re-
quired over the life cycle of incidents [9]. Base on this theory and characteristics of 
resources listed in emergency plans, we define descriptions of resources with Re-
sources, including name, category, kind, components, metric, types, capabilities, input 
parameters, output parameters, address, and phone numbers. 

, , , , , ,

, ,
iResources ={resources =(name category,kind components metric types capabilities

inputParas outputParas address, phoneNumeber)},i = 1 nL

 (7) 

The typing of Resources is specified by category and kind. Components describe 
units consisting of it. Metric is the measurement standard. Types refer to the level of 
resource capability. Capabilities refer to tasks it can execute alone. InputParas refers 
to parameters which are needed to perform relevant capabilities. OutpuParas is ob-
jects created by relevant capabilities. All of them will be used to avoid confusion and 
enhance interoperability during the emergency resource management process. 

3   Decision Making Based on Emergency Plan Templates 

Emergency response involves responsibilities of multiple jurisdictions and disciplines, 
and requires massive services and resources from them. Due to high consequence and 
time pressure, responders need to make decisions quickly on inadequate information 
to address these complex, ill structured problems. Emergency plans templates provide 
basis to analyze situations systematically, reason, implement and evaluate solutions 
during the process of decision making. 

When incidents happen, responders at strategic, operational and tactical levels 
make interrelated and complementary decisions rationally and logically to ensure 
working coordinately. Generally, they make decisions based on the common proce-
dure, including: (a) understanding the situation, (b) establishing and prioritizing inci-
dent objectives, (c) developing tactic plans to achieve adopted strategies, (d) estab-
lishing organization to implement these plans, (e) evaluating and revising plans to 
overcome contingencies and improve effectiveness. Each phase should be followed in 
sequence to ensure coordinated operations to achieve those incident objectives. It is a 
typical team decision problem, which involve a team G that has decided to perform a 
set of actions A. During the process of decision making, effective coordination is an 
essential ingredient. However, two sources of difficulties, including poorly shared 
mental models and possible conflicts of distributed decision-making [12], prohibit 
coordination and reduce effectiveness. 
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Emergency Plan Templates

Incidents Emergency 
Organizations TacticPlans Resources 

Understanding situations Structuring 
Organization Collaborative planning  Executing and 

supervising Plans

Emergency Environment
(organization and incidents)

ActionsInformation

 

Fig. 2. Decision making procedure based on emergency plan templates 

To overcome these challenges, we propose a dynamic and coordinated decision 
making procedure based on emergency plan templates modeled in section 2. It con-
sists of four sub processes, consisting of understanding situations, structuring organi-
zation, developing tactic plans collaboratively, executing and supervising these plans, 
which is shown in fig 2. 

3.1   Understanding Situations 

When incident happen, personals should identify the organization and environment 
information, construct and maintain flexible and changing operational representations  
as incidents unfolds and evolves [13]. Acquiring critical information about situations 
accurately by observing the environment and communicating is the precondition of 
effective decision making. All operational representations are limited and hierarchical 
in term of scope and detail, which are different levels of abstraction of information 
about situations and are consistent with the lines of authority and responsibility. 

Incidents delineate parameters of decision making problems. Based on pertinent in-
formation and evaluations, responders bind constants to these parameters, instantiate 
these models and formulate the specific decision making problem finally. 

3.2   Structuring Organizations 

Establishing emergency organization is an effective method to control large scale 
disaster. The number of responders and the organizational structure are totally de-
pendent on the size of incidents and specifics of hazardous environment created by 
them. After incidents happen, first responders are loose, chaotic, and confusions about 
their roles and responsibilities, which can result disastrous outcomes. Subsequently, 
based on the identified incident objectives, they settle into the formal organization 
model defined in section 2.2 under severe time constraints according to procedures 
defined by emergency plans. While emergency situations change unpredictably and 
drastically, the organization should expand and contract flexibly.  

EO provides a modular organization model to plot the control lines and establish 
organization for incidents from small routine events to large disasters. Structuring 
organizations is to formulate the organization and alter its structure to ensure effective 
response capability on scene. It consists of at least four basic processes to support the 
flexibility, including structure elaborating, role switching, authority migrating, and 
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system resetting [13], which are compliment and interrelated during emergencies. We 
abstract two mechanisms to support these processes. 

(1)Establishing the organization structure. During multiple operational periods, or-
ganization structures are different. When incidents changes greatly, responders recon-
figured the organization to get better performance. The process is to evaluate whether 
conditions of activating roles defined in Roles are activated according to real-time 
emergency situations.  

(2)Roles assignment. The assignment of roles is the process of staffing positions of 
EO. Responders assigned to the roles require specific expertise and training.  Avail-
able resources defined in Resoures have a continuum level of skills, which is range 
from rudimentary to highly specific according to types. Further more, boundaries of 
the organization structure fluctuate, and the task environment is volatile. Therefore, 
roles assignment is a sequence of decisions, which locate the best resources based on 
requirements of them. 

3.3   Collaborative Planning 

Structuring organizations is the process of coordination in the level of organization 
structure. Organization processes in operational periods should be modeled as team-
work to improve the coordination in the level of actions. This requires scenario-based 
planning and exercises with constant communications and coordination among re-
sponders, which is support by collaborative planning. 

Collaborative planning is an ongoing, cyclical and directed process toward incident 
objectives. Generally, it consists of binding parameters of tasks, and selecting the 
optimal method to decompose complex tasks, which requires high level decisions. 
Based on determined objectives and priorities of them, staffs involving responsibili-
ties of commanding should take on collaborative planning to develop action plans. 
During the process, incident management team select proper strategies, and decide 
which resources should be ordered and how to use them effectively. The result is an 
Incident Action Plan (IAP), which prioritizes incident objectives and provides tactical 
operations and resource assignments for unified efforts. Conducting activities based 
on it resolves interagency policy and procedural conflicts. As a distributed decision 
making process, it provides timely commitment and resource for critical emergency 
operations to ensure coordination among responders.  

When planned events happen, incident commanders select nodes defined in Tac-
ticPlans to determine objectives, and binds parameters such as endTime and priority 
to refine them. Then, they evaluate situations, split it into sub nodes, and propagate 
constraints on parameters of them to parameters of those sub nodes. Then, they dele-
gate these tasks to their subordinators. In the same way, they evaluate the task model, 
and continue the process of decomposition, until a set of simple tasks is got. Finally, 
they add and propagate constraints to these simple tasks.  

When finding a method of splitting the delegated task with lower cost or a problem 
prevents them from achieving it, they try to re-decompose it. At the end of the “means 
end analysis” process, a full and concise IAP consisting of simple tasks and con-
straints among them will be finished and assigned to relevant responders.  
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3.4   Executing and Supervising Plans 

After formulating the IAP, the process of decision making continues with the imple-
mentation of formalized steps defined in it. A concise and full IAP is essential to 
execute emergency management activities during the initial process. Executing and 
supervising plans is the process of directing and controlling efforts of resources to 
achieve specified incident objectives. In the process, contingencies can cause disrup-
tions, which may result in additional control problems, greater loss, and increased 
expense and risk. Therefore, emergency managers should regularly compare planned 
progress with actual progress. When deviations occur and new information emerges, 
they evaluate them and decide whether to modify the current plan and develop a new 
one for subsequent operational periods by executing this decision making model from 
the first step.  

4   Conclusion and Future Work 

Decision making in emergency management is complex, distributed, and time critical 
problems, which requires geographically and temporally dispersed responders take on 
operations coordinately and rapidly.  Emergency plan templates provide basis for the 
problem solving process. It is not only used for solving planed problems, but also as a 
starting point for solving novel problems during emergencies. This paper describes 
the initial PhD research work for developing decision making model and technology 
based on emergency plan templates.  

Our future work is on studying task decomposition and task allocation algorithms 
to support decision making in the emergency response process. As a team decision 
making problem, it is about how to decompose received complex tasks into a set of 
subtasks with constraints by multiple responders and allocate available resources to 
execute them in the complex and volatile task environment. This theory will support 
the high-level decisions to improve effectiveness during emergencies. 
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Abstract. The electric grid of the future is required to become smarter so as to 
provide an affordable, reliable, and sustainable supply of electricity. Under such 
circumstances, considerable research activities have been carried out in the U.S. 
and Europe to formulate and promote a vision for the development of the future 
smart electric grid. However, how to achieve those smart features has been less 
reported. This article aims at identifying several specific areas of application of 
computational intelligence techniques in the smart electric grid of the future. 
The computational intelligence techniques that are capable of achieving certain 
favorable features of various components in a smart electric grid are elaborated.  
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1   Introduction 

The U.S. electric grid, which has been progressively developed for over a century, is 
aging, inefficient, and congested, and incapable of meeting the future energy and 
security needs of the digital economy [1]. The driving forces towards lower-carbon 
generation technologies, improved efficiency on the power delivery grid [2],[3], and 
demand response, which will enable customers to become much more interactive with 
the grid, present great challenges to the grid. This will demand fundamental changes 
on both the supply and demand sides of electric energy. In addition, with centralized 
control techniques and traditional communication technologies, the present electric 
grid is no longer able to meet the new customer-centric network needs. Recent ad-
vances in the areas of power electronics, sensing, communications, control, data man-
agement, and computational intelligence will make it possible to modernize the power 
industry and make the power delivery system smarter [4]-[7].  

There have been a variety of large research programs that attempt to define a smart 
electric grid for the 21 century’s power delivery. Electric Power Research Institute, 
Inc. (EPRI) initiated IntelliGridSM program to create the technical foundation for a 
smart power grid that employs an open-standard, requirements-based approach to link 
electricity with communications and computer control to achieve tremendous gains in 
reliability, capacity, and customer services [8]-[9]. The U.S. Department of Energy 
recently established a Federal Smart Grid Task Force under Title XIII of the Energy 
Independence and Security Act of 2007 to coordinate the activities in the nationwide 
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Grid 2030 program, which calls for the construction of a smart grid that would inte-
grate advanced functions into the nation's electric grid to enhance reliability, effi-
ciency, and security, and would also contribute to the climate change strategic goal of 
reducing carbon emissions [1]. The European Technology Platform (ETP) SmartGrids 
program was set up in 2005 to create a joint vision for the European networks of 2020 
and beyond [10]-[11]. 

In addition, there are considerable research and development activities undergoing 
in both the industry and academia [12]-[20]. References [12] and [13] present some 
features of the smart grid for future power delivery. Roncero discusses the integration 
issue in the smart grid in [14]. Tsoukalas presents in [15] some interesting and prom-
ising concepts such as energy Internet. In [16], Hart presents some specific technolo-
gies such as smart metering infrastructure that help realize a smart grid. 

A majority of previous work placed great emphasis on identifying the features and 
functions of a smart electric grid. However, how to achieve all of these smart features 
using intelligent technologies has been less reported. This paper aims at identifying 
specific application areas of computational intelligence techniques in the future smart 
electric grid. A vision of smart electric grid is given in Section 2. The computational 
intelligence techniques that are potentially capable of achieving certain favorable 
features of a variety of components in a smart electric grid are discussed in detail in 
Sections 3 through 7. Conclusions will be drawn in Section 8. 

2   A Vision of Smart Electric Grid 

The smart electric grid is a networked delivery system that provides customers with 
an affordable, reliable, and sustainable supply of electric energy. A set of intelligent 
technologies will smartly control a variety of components in the vast complex system, 
which must interconnect hundreds of millions of asynchronous houses and businesses 
through regional generation, transmission, distribution and storage systems. The new 
smart electric grid must improve efficiency by 50% or more in order for this power 
technology revolution to be affordable. In addition, it must be far more sophisticated 
from a computerized control standpoint in order to deal with unpredictable and time-
varying green power sources, such as giant wind and solar farms located thousands of 
miles from metropolitan users, and mobile energy resources situated in moving plug-
in hybrid vehicles. Distributed generation and local energy storage at consumer and 
manufacturing sites must be designed and tested to further fortify grid stability and 
safety from terrorism, as well as better defend it from unusual weather conditions. To 
achieve these, the smart electric grid must have the following features.  

The smart electric grid provides a consistent, digital platform that allows for rapid 
and reliable sensing, measurement, communication, computation, control, protection, 
visualization, maintenance, and enterprise management of the entire system. This is a 
fundamental feature that facilitates the realization of other smart features.  

The smart electric grid operates resiliently. It should be invulnerable to component 
failures, physical and cyber attacks, security breaches, and natural disasters such as 
hurricanes and snowstorms. A fast self-healing capability enables the electric grid to 
dynamically reconfigure itself and rapidly recover from power disturbances, which 
can be achieved through a combination of coordinated protection and control 
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schemes, embedded intelligence and human being’s expertise, and self-awareness of 
the system operation state. In addition, the smart electric grid ensures high power 
quality. 

The smart electric grid is flexible. The flexibility can be manifested in four aspects: 
accommodating all generation and storage options; enabling active participation by 
consumers in demand response; enabling new products, services, and plug-and-play 
capabilities that accommodate progressive technology upgrades of hardware and 
software components; and enabling seamless compatibility with various market op-
eration styles. In addition, the design of the smart electric grid will be client-tailored 
for operators’ convenience without loss of functions and interoperability, and cater to 
customers with more energy consumption options for high quality/price ratio.  

The smart electric grid fosters sustainability. The growth of electricity demand 
should be sufficiently satisfied by deploying alternative and renewable energy 
sources, promoting energy-saving technologies, mitigating network congestion, opti-
mizing assets and operating efficiently. 

3   Smart Sensing, Metering and Communication Infrastructures  

In a smart electric grid, computational intelligence technology will be incorporated in 
the sensing, measuring and metering circuits to reduce the burden of communications. 
Traditional electromechanical CT (current transducers) and PT (potential transducers) 
will be replaced by optical or electronic CT and PT whose advantages include wide 
bandwidth, high accuracy, and low maintenance costs. Khorashadi-Zadeh proposes in 
[21] an intelligence based data acquisition system to correct CT and CVT (capacitive 
voltage transducer) secondary waveform distortions. The key is to use artificial neural 
network to achieve the inverse transfer functions of CTs and CVTs. 

All measurement signals are attached with a high-accuracy time stamp by using a 
GPS (global positioning system) signal. With this in hand, the RTU (remote terminal 
unit) function will be replaced by high-speed PMUs (phasor measurement units), 
which are distributed throughout the power network and used to monitor the power 
quality and in some cases respond automatically to them. The PMU's ability to rapidly 
sense system conditions supports the kind of automated self-healing of anomalies in 
the network needed to not only deliver lower cost power with fewer blackouts, but to 
support more complex power generation scenarios required by alternative energy 
resources. A Wide-Area Measurement System (WAMS), which is a network of 
PMUs, can provide real-time monitoring on a regional or national scale. Paper [22] 
discusses measurement approaches for adaptive protection and control in a competi-
tive market. 

A smart electric grid uses advanced digital electronic metering techniques instead 
of analog mechanical meters to capture the electricity use and the enables time-of-use 
pricing. Smart meters provide a communication path extending from generation plants 
to electrical outlets (smart sockets) and other smart grid enabled devices attached to 
the grid. Intelligence will be embedded in the digital meters. Core technologies of this 
metering platform include advanced microprocessor based meters, time-of-use pricing 
tools, electromagnetic signature measurement, wide-area monitoring systems, ad-
vanced switches and cables, backscatter radio technology, and digital relays.  
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A smart electric grid should be based on a self-healing communication network to 
significantly improve the reliability of monitoring and control of substations and con-
trol centers. Integrated power and communication networks will allow for real-time 
control, information and data exchange to optimize the system reliability, asset utili-
zation, and security. The communication protocol of a smart electric grid should be 
standardized and open. A good option is the IEC 61850 standard [23], which provides 
an open interface not only among the intelligent electronic devices (IED) inside a 
substation but also between substations and between substations and control centers. 
This improves the interoperability of communication networks significantly.  

In addition, with artificial intelligence embedded in a variety of equipment items, it 
is possible to develop intelligent transformers, transmission lines, circuit breakers, etc. 
Reference [24] uses a combination of a learning method with a fuzzy interference 
system to predict the position of an energy meter adjuster to fit in with the errors of 
the energy meter under calibration. 

4   Autonomous Control and Adaptive Protection 

Control and protective actions are critical for reliable operation of an electric grid. A 
smart electric grid employs autonomous distributed control schemes with multiagent 
technology and adaptive protection with embedded intelligence. 

4.1   Multiagent Based Control Paradigm 

A smart electric grid contains a large number of intelligent agent based decentralized 
controllers for normal operation, auto-restoration, remedial or predictive actions, and 
optimization. A smart electric grid, although complex and dynamic, can be viewed as 
a collection of individual intelligent agents that adapt to events and surroundings, 
acting both competitively and cooperatively for the good of the entire system. If the 
agents sense any anomalies in their surroundings, they can work together, essentially 
reconfiguring the system, to keep the problem local. Thus, the agents would prevent 
the cascading effect, the main source of vulnerability in critical infrastructure systems. 
An agent can be either a physical entity that acts in the environment such as a control-
ler that controls a piece of equipment, or a virtual one such as a piece of software that 
makes bids to the energy market or stores data in a distributed database.  

A multiagent based smart electric grid may use two types of agents: cognitive and 
reactive agents. Each cognitive agent has a knowledge base that comprises all the data 
and know-how required to carry out its task and to handle interactions with the other 
agents and its environment. Cognitive agents are also intentional, in that they have 
goals and explicit plans that let them achieve their goals. The reactive agent, in con-
trast, claims that it is not necessary that agents are individually intelligent for the 
system to exhibit intelligent behavior overall. The reactive agents work in a hard-
wired, stimulus-response manner. The reactive agent’s goals are only implicitly repre-
sented by rules, so it must consider every situation in advance. The reactive agent’s 
advantage lies in its ability to react fast. In addition, collaborative agent societies with 
intelligent user interfaces provide a complementary style of human-computer interac-
tion, where the computer becomes an intelligent, active and personalized collaborator. 
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Interface agents are computer programs that employ artificial intelligence methods to 
provide active assistance to a user of a particular computer application. Underlying 
software has characteristics that learn from data and then adjust themselves to better 
handle those types of data. 

A variety of efforts have been given to study agent-based control frameworks for 
infrastructure operations. Amin explains in [25] that agents have the appropriate ca-
pabilities to operate the national power grid and presents in [26] a fairly detailed view 
of a multi-layered, multi-species multiagent system that includes, among others, fault 
isolation agents, command interpretation agents, and event identification agents. Ref-
erences [27] and [28] together present a relatively complete picture of the agent oper-
ated microgrid. They recognize and address the impossibility of centralized control 
among several owners and present the operation of a multi-agent system that uses 
agents advantageously to execute a classical distributed algorithm. The agents are 
developed on the JADE framework and interact with a small operating microgrid 
connected to the main power grid. In [29], Tolbert presents a scalable multi-agent 
paradigm to control distributed energy resources with the intent of achieving higher 
reliability, better power quality, and more efficient generation and consumption.  

4.2   Adaptive Protection 

In a smart electric grid, a great improvement is that the settings of protective relays 
can be remotely modified in real time to adapt to the changes in the grid configura-
tion. A variety of computational intelligence techniques can be used to make substa-
tions smarter. As such, a smart substation will serve as an intelligent unit of some 
special protective schemes to improve the reliability of power grid. 

In [30], Song proposes an adaptive protection scheme, based on neural networks, 
for controllable series-compensated EHV transmission lines. The main idea is to em-
ploy an artificial neural network (ANN) to make a decision based on extracting useful 
features in the desired spectra within a certain frequency range under fault conditions. 
Paper [31] presents new strategies for adaptive out-of-step protection of synchronous 
generators based on neural networks. A feed forward model of the neural network 
based on the stochastic back propagation training algorithm is used to predict the out-
of-step conditions. Thorp presents in [32] simulation results of “protection agents” 
engaged in realistic protection and control scenarios using a multiagent technology. 
The agents increase system protection performance by exchanging basic information, 
primarily contributing to fault identification and isolation. 

5   Advanced Data Management and Visualization 

In a smart electric gird, widely-deployed decentralized applications require a strong 
distributed database management system, which will manage and share all the data in 
the substations and control centers and communicate with other substations or control 
centers by publishing those data to the communication network. All these data from 
PMU units, relays, fault recorders, power quality monitors, equipment monitors, etc., 
should be efficiently managed and displayed. Real-time data visualization gives the 
operators a clear picture of the current operation status of the gird. 
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A real-time model of the grid should be built for better control inside and outside a 
control center or substation. In order to get a reliable and consistent real-time model, 
the substation level topology processor will build the substation topology while the 
substation level state estimator will estimate the substation states to provide a more 
reliable and full view of the substation. Some previous work focusing on distributed 
state estimation has already provided the idea of building the substation-level state 
estimator and the related filter technology. Whenever changes happen in the power 
system, such as the substation topology changes or addition of a new substation into 
the power grid, the system-wide model can be rebuilt automatically in the control 
center by merging the substation models. It is easy to build a backup control center 
model or even rebuild a new control center model under emergency to significantly 
improve the operating resilience of control centers against physical and cyber attacks 
and natural disasters. 

Information technology will be used to reduce complexity of data management so 
that the operators and managers have tools to effectively and efficiently operate a grid 
with an increasing number of variables. Technologies include visualization techniques 
that reduce a large amount of data into easily understood visual formats, software 
systems that provide multiple options when systems operator actions are required, and 
simulators for operational training and “what-if” analyses. 

Schreiner presents in [33] innovative techniques for intelligent power system mo-
bile data management, which include a solution to documentation optimization with 
automatic synchronization of the mobile data throughout the enterprise. In [34], 
McDonald addresses a standard intelligent electronic device (IED) protocol, as well 
as a standard substation local area network (LAN) technology. The efforts also in-
clude a framework to integrate the substation information into the utility enterprise 
system. Reference [35] proposes a model of an intelligent short-term demand side 
management system (DSM) based on a distributed measurement and management 
data system. The system is designed to avoid peaks of power request greater than a 
given threshold and to give maximum comfort to users.  

Traditional real-time monitoring tools, real-time hardware-software architectures, 
and user interfaces developed for vertical integrated environments have proven to be 
inadequate for the new wide-area intelligent management of the deregulated electric 
grid. Paper [36] describes new reliability management needs, hardware-software user-
interface configurations; intelligent alerts and alarming, and geographic multi-view 
visualization technologies for wide-area real-time monitoring. This paper also focuses 
on how these new wide-area technologies are helping to create wide-area real-time 
intelligent tools which can be adapted to the reliability management needs of the 
North American Electricity Reliability Corporation (NERC) Reliability Coordinators 
and regulatory and reliability standards compliance monitoring organizations. 

6   Intelligent Interfaces with Distributed Resources and Market 

Given the increasing interest in utilizing renewable energy and distributed generation 
and storage to meet future demand, the smart electric grid should provide advanced 
power electronics and control interfaces for these distributed resources so that they 
can be integrated into the grid in a large scale at the transmission and distribution 
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levels. The central clearing algorithms should be robust enough to accommodate the 
volatile nature of certain renewables such as wind generators with finer forecasting 
and scheduling methods. Demand-side participants should have access to the market 
through certain communications, control and information channels. Congestion man-
agement is an important feature of the control centers. The control centers should 
forecast and identify the potential congestions in the network and alleviate it with the 
help from wide-area GIS systems. By incorporating microgrids, the electric grid can 
deliver quality power to the customers in a manner that the power supply degrades 
gracefully after a major commercial outage, as opposed to a catastrophic loss of 
power, allowing more of the installations to continue operations. Microgrids should 
have a capability to operate in the islanding mode taking into account the transmission 
capacity, load demand, and stability limit, and provide mechanisms for a seamlessly 
transition to islanding operation.  

Reference [37] presents an agent-based control framework for distributed energy 
resources microgrids. Each energy resource unit, including any controllable load, is 
represented by an agent and all the agents will collaborate and cooperate to achieve 
some global objectives. In [38], Hutson proposes an intelligent method for scheduling 
usage of available energy storage capacity in plug-in hybrid electric vehicles (PHEV) 
and electric vehicles (EV). The batteries on these vehicles can either provide power to 
the grid when parked, known as vehicle-to-grid (V2G) concept or take power from 
the grid to charge the batteries on the vehicles. To study algorithms for the interfaces, 
a scalable parking lot model is developed with different parameters assigned to fleets 
of vehicles.  

In [39], Praca proposes an improved multi-agent simulation tool to study the nego-
tiations in electricity spot markets based on different market mechanisms and behav-
ior strategies, in order to take account of decentralized players such as virtual power 
plants. Paper [40] aims at assessing the economic benefits achievable by a group of 
industrial and commercial customers aggregated in a microgrid controlled with a 
central controller that uses a neural network to optimize the schedule of generators 
and responsive loads. The central controller receives market signals, load and genera-
tion bids, load and weather forecasts and determines hour by hour the correct dispatch 
of generators to maximize the value of the microgrid by minimizing the energy costs. 

7   Decision Support Systems for System Operation and Planning 

Real-time, intelligent decision support systems for grid operation, planning, economic 
dispatching, contingency analysis, and restoration from blackouts are part of the smart 
electric grid. Operation of smart electric grid will be supported by a series of online 
analyses such as voltage stability, transient angular stability, small-signal stability 
analysis, N-x contingence analysis, cascading failure analysis and probabilistic risk 
analysis. These online analyses shall perform dynamic model update and validation.  

In addition, fast diagnosis and prognosis are necessary in a smart electric grid. Ex-
pert system based fault diagnosis technology provides intelligent maintenance and 
management of devices in a substation. While an increasing amount of data about 
fault conditions are gathered in a substation, an intelligent alarm management and 
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processing system should be developed to find the root cause of the fault based on 
artificial intelligent technologies such as expert system.  

In [41], Fujiwara describes the detail of an intelligent load flow engine is an expert 
system embedded in the personal workstation that is used by the power system plan-
ners. The objective of the engine is to provide both an expert and novice user with a 
friendly working environment, aiming at enhancing a user's creativity in making op-
erational plans. To this end, the personal scientific workstation that was developed for 
power system planning is equipped with an expert system whose knowledge is ac-
quired from the experienced power system planners.  

Paper [42] discusses the applications of machine learning approaches in security 
assessment of power systems. This paper also describes a framework that integrates 
several of these techniques so that users can extract relevant information tailored to 
their decision-making needs.  

Reference [43] proposes a hierarchical case-based reasoning method for decision-
making in power system restoration. In contrast to conventional case-based reasoning 
methods, the restoration problem is not represented by single cases, but instead by 
collections of cases at different levels. A flexible combinatorial strategy makes the 
hierarchical case-based reasoning possible to solve a wide range of restoration prob-
lems without the need for huge case bases of complex adaptation mechanisms.  

In [44], Mellit introduces an approach based on an adaptive neuro-fuzzy inference 
scheme for the optimal sizing of standalone photovoltaic power systems especially in 
isolated sites where meteorological data are not available. In addition, several artifi-
cial intelligence based techniques such as feed-forward, radial basis function network, 
recurrent network, modular network, and the adaptive wavelet-network, are studied 
and compared.  

8   Conclusion 

This paper has identified several areas of application of computational intelligence 
techniques in a smart electric grid of the future. With a common digitalized platform, 
the smart electric grid will enable increased flexibility in control, operation and ex-
pansion, allow for embedded intelligence, essentially foster the resilience and sustain-
ability of the electric grid, and eventually benefit the customers with lower costs, 
improved services and increased convenience. Implementation of such a vision de-
mands a concerted effort to apply the intelligent technologies in a variety of aspects of 
the grid, including smart sensing, measurement and metering, distributed control and 
adaptive protection, advanced data management and visualization, intelligent inter-
faces with distributed energy resources and markets, and real-time decision support 
system for system operation and planning. Given the scale of the effort required and 
the enormity of the challenges ahead, collaboration among researchers from different 
fields is essential and should be developed through various channels in order to ensure 
and accelerate the success of realizing the smart electric grid. 
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Abstract. The uncertainty factors of real-time tasks during runtime affect the 
control performance owing to system resources and processor utilization restric-
tion. The impact of non-schedulability on embedded system performance is 
deeply researched in this paper. First, the time characteristics such as sampling 
jitter, input-output jitter and non-schedulability are discussed. Then the sched-
ulability analyses of the rate monotonic (RM) algorithm and the earliest  
deadline first (EDF) algorithm are introduced. Finally, using RM algorithm, an  
example, DC servo motor controller, is use to illuminate the impact of non-
schedulable jobs on system performance. The experiment results indicate that it 
is extremely important to reduce, even eliminate the non-schedulable jobs for 
improving embedded system performance. 

Keywords: Embedded system, Time characteristic, Schedulability. 

1   Introduction  

Nowadays, embedded computing is playing an increasingly important role in the 
embedded control system [1]. More and more real-time applications are built on em-
bedded systems. In this system where the workload displays large fluctuations due to 
resource competition, a traditional real-time design, based on worst-case assumptions, 
may be infeasible. On one hand, assuming that all tasks execute at their maximum 
rates and according to their worst-case execution times (WCETs), the developer may 
be forced to choose a very powerful CPU, which will be under-utilized most of the 
time. On the other hand, basing the design on average-case conditions may give rise 
to temporary CPU overloads which degrades system performance. Besides, for tradi-
tional design method, the WCETs of tasks are assumed. In practice, it is very difficult 
for WCET estimation. An under-estimation or over-estimation may lead to CPU over-
loads or resource wastes respectively. Therefore, in order to provide the valuable 
reference for embedded system design, the impact of non-schedulability on embedded 
system performance is deeply researched.  

The impact of jitter on stepper motor control is analyzed in [2]. Jitter will contrib-
ute additional torque load to the motor that has the potential to exceed the available 
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torque at high speeds and cause a loss of position steps. The magnitude of the addi-
tional torque is determined for several typical stepper motors at moderate to high 
speeds. For motion control system, Feng [3] uses a model based on simulation to 
quantify the relationship between sampling jitter and controller performance. In [4], 
for analyzing the relationship between uncertainties of software CNC real-time tasks 
and manufacturing accuracy, a mismachining tolerance analysis method based on 
simulation model is presented. 

The rest of this paper is outlined as follows. The time characteristic we consider 
here is described in Section 2. The schedulability analyses for the rate-monotonic 
(RM) algorithm and the earliest deadline first (EDF) algorithm are introduced in Sec-
tion 3. Section 4 evaluates the impact of non-schedulability on embedded system 
performance. And section 5 concludes this paper.    

2   Time Characteristics  

Timing uncertainties during task executions owing to resource competition lead to 
input-output jitter, sampling jitter and even non-schedulability. In this section, the 
causes of jitter and non-schedulability are deeply researched on the basis of analyzing 
the related parameters.  

2.1   Jitter 

Generally, a control task consists of three distinct operations: input data collection, 
control algorithm computation, and output signal transmission, see Fig.1[1]. The tim-
ing of the operations is crucial to the performance of the controller. Ideally, the con-
trol algorithm should be executed with perfect periodicity, and there should be zero 
delay between the reading of the inputs and the writing of the outputs. This will not be 
the case in a real implementation, where the execution and scheduling of tasks intro-
duce latencies. 

The basic timing parameters of a control task are shown in Fig.2. It is assumed that 
the control task is released periodically at times given by rk = kT, where T is the sam-
pling interval of the controller, . Due to preemption from other tasks in the system, the 
actual start of the task may be delayed for some time Ls. This is called the sampling 
latency of the controller. A dynamic scheduling policy will introduce variations in this 
interval. The sampling jitter is quantified by the difference between the maximum and 
minimum sampling latencies in all task instances, 

Control task 1 Control task n

Object 1 Object n

Embedded CPU kernel

⋅⋅⋅

 

Fig. 1. Sampling control system 
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minmax
ss

def

s LLJ −= .                                                 (1) 

Normally, it can be assumed that the minimum sampling latency of a task is zero, 
in which case we have Js = Ls

max. Jitter in the sampling latency will of course also 
introduce jitter in the sampling interval T. It is obvious that T is only a nominal sam-
pling period. From Fig.2, it is seen that the actual sampling interval Tk in period k is 
given by 

1−−+= k
s

k
sk LLTT .                                              (2) 

The sampling interval jitter JT is quantified by 

minmax TTJ
def

T −= .                                               (3) 

We can see that the sampling interval jitter is upper bounded by 

sh JJ 2≤ ,                                                       (4) 

where Jh is the maximum sampling jitter. 
After some computation time and possibly further preemption from other tasks, the 

controller will actuate the control signal. The delay from the sampling to the actuation 
is the input-output latency, denoted Lio. Varying execution times or task scheduling 
will lead to variations in this interval. The input-output jitter Jio is quantified by 

minmax
ioio

def

io LLJ −=                                               (5) 

According to the definitions of sampling jitter and input-output jitter, combined 
with timing parameters of hybrid tasks, sampling jitter and input-output jitter display 
varieties of nominal sampling period and task executions respectively. Additionally, 
in order to review the relation between jitter and control performance, and describe 
that jitter variation leads to system performance degradation, percent of nominal sam-
pling period is used to denote jitter variation, named jitter range. 

Tk -1 Tk

T T

 rk+ 1rkrk-1 I I OO I

1−k
ioL k

sL k
ioL1−k

sL

 

Fig. 2. The basic timing parameters of a control task 
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A   Input-output jitter 

In an embedded control system, the control task during the very execution period can 
be divided into three parts, namely: data sampling, control algorithm execution and 
signal output. In a general way, assuming that scheduling policy is based on priority, 
threads at a lower priority do not run until all threads with a higher priority have ei-
ther finished or have been blocked. If one thread is running and a thread of higher 
priority is unblocked, the lower-priority thread is immediately suspended and the 
higher-priority thread is scheduled. Therefore, the control task may possibly be inter-
rupted so that latency τc may be caused between sampling start and control signal 
output. If latency is variable value, then input-output jitter is introduced.  

In the view of task implementation, whether it's a system task or an application 
task, at any time each task exists in one of a small number of states, including ready, 
running, or blocked. The relationship between state transitions and input-output jitter 
is shown in Fig.3. It can be seen that latency τc is the interval of state transitions. 

 

T T

rkrk-1

Ready

Running Blocked

a b

Sampling
Output

Control algorithm

c

 

Fig. 3.  Input-output jitter and task state 

B   Sampling jitter 

To some extent, sampling jitter and task period are extremely interrelated. From the view 
of real-time scheduling, sampling period is namely task period. Short sampling period 
leads to probability increase of system resource competition, which results in some jobs 
that can not execute in the desired time point. On the other hand, in the control field, sam-
pling period can generically be decided by dynamic characteristic, closed loop perform-
ance, etc. An experience theorem for determining sampling period is given by 

104 ≤≤
T

Tr  ,                                                     (6) 

where Tr is rise time. 
Obviously, due to Eq.(6), the factor of embedded system implementation is ne-

glected. In order to design high-performance system, we should further consider non-
determinacy of task timing characteristic. As shown in Fig.4, τs is the latency from 
sampling execution start to control signal output, the starting point of signal output is 
that the corresponding task becomes running state. Objectively speaking, the impact 
of τs on system performance is non-neglectable. 
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Fig. 4. Sampling jitter and task state 

2.2   Non-schedulability 

In the resource-constrained embedded system, the noticeable input-output jitter and 
sampling jitter are introduced if the period of key real-time task is selected irrationally 
and there are not special schedulers for management and control of tasks. In the ex-
treme situation, some jobs can’t be finished before the desired time point thus to de-
grade system performance. Fig.5 shows non-schedulable jobs during runtime. The 
non-schedulable job is given by 

TLL k
io

k
s >+ −− 11 .                                               (7) 

k
sL k

ioL1k
sL

 

Fig. 5.  Non-schedulable jobs  

3   Schedulability Analysis 

The best known examples of static- and dynamic-priority algorithms are RM algo-
rithm and EDF algorithm, respectively. In this section, we will discuss schedulability 
of each algorithm. 

  For traditional RM algorithm, the task set consists of periodic, preemptible tasks 
whose deadlines equal the task period. RM is an optimal static-priority uniprocessor 
scheduling algorithm and is very popular. A task set of n tasks is schedulable under 
RM if its total processor utilization is no greater than n (21/n-1) [5].  

  For EDF algorithm, tasks are preemptible and the task with the earliest deadline 
has the highest priority. EDF is an optimal uniprocessor algorithm. If a task set is not 
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schedulable on a single processor by EDF, there is no other processor that can suc-
cessfully schedule that task set [5]. 

  Define )/(
1

i

n

i
i Peu ∑

=

= , }{max
1

max i
ni

dd
≤≤

= and ),,,( 21 nPPPlcmP L= (Here 

“lcm” stands for least common multiple). Define hT(t) to be the sum of the execution 
times of all tasks in set T whose absolute deadlines are less than t. A task set of n 
tasks is not EDF-feasible if  

 u >1 or  
 There exists 

 )}(max
1

,min{
1

max ii
ni

dP
u

u
dPt −

−
+<

≤≤
                    (8) 

such that hT(t) > 1. 

4   Example  

The following is used to illuminate the impact of non-schedulable jobs on control 
system performance. Assume that all control loops in this system are independent of 
each other. The controlled processes are the DC servo motor modeled as [6]:  

ss
sG

+
= 2

1000
)(  .                (9) 

The timing parameters, i.e. sampling period T and execution time c, of each control 
task are given in Table 1.  

Table 1. Timing parameters for simulations  

Task Sampling period T t/ms c t/ms 
Task 1 6 2 
Task 2 5 2 
Task 3 4 2 

 
Using RM algorithm, we can get the results for system step response and task exe-

cution in Fig.6 It can clearly be seen that task 2 and task 3 are stable, but task 1 is not 
stable. The reason for this is that the period of task 1 is longer than the others. So the 
priority of task 1 is the lowest among all tasks. According to table 1, the CPU utiliza-
tion can be quantified by 2/6+2/5+2/4≈1.23>1, which means that the system is over-
loaded and some jobs can not be finished before their deadlines. As we can see from 
Fig.6, in many situations, task 1 is preempted by task 2 and task 3, which leads to the 
high ratio of non-schedulable jobs and affects the system balance. In contrast, the 
execution of Task 3 will not be affected by Task1 and Task 2 as its highest priority. 
However Task 2 is still possible to be preempted by Task 3. 
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Fig. 6. Impact of non-schedulable jobs on embedded system performance  

Based on above analysis, we can draw the conclusion that it is extremely important 
to reduce, even eliminate the non-schedulable jobs for improving control system per-
formance. 

5   Conclusions 

According to the analysis of embedded system implementation, the reasons of leading 
to sampling jitter and input-output jitter are deeply researched. The schedulability 
analyses for RM algorithm and EDF algorithm are introduced. For non- schedulable 
jobs, an example of DC servo system is employed to testify that it is extremely impor-
tant to reduce, even eliminate the non-schedulable jobs for improving system per-
formance. This is an important reference for embedded system design. 
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