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Abstract: This study present a robust algorithm to synchronize, under the master/slave configuration, a class
of piecewise linear chaotic circuits based on sliding mode control. The synchronization objective is to obtain
identical synchronization between the master and slave systems in spite of the existence of external
disturbances and structural variations. A switching surface is adopted such that it becomes easy to ensure the
stability of the error dynamics in the sliding mode. Then a Sliding Mode Controller (SMC) is derived to
guarantee the occurrence of the sliding motion, even when the system is undergoing external disturbance and
structural varations. This controller renders the closed loop system robust with respect to matched bounded
disturbances and to terms produced by structural variations, The advantages of this method can be summarized
as: (1) it is a systematic procedure for chaos suppression, (2) it can be applied to a variety of chaotic systems
whether 1t contains uncertainties or not, (3) this controller is robust to external disturbance and (4) there 15 no
chattering in controller, so it 15 easy to implement. Numerical simulations have verified the effectiveness of this

method.
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INTRODUCTION

In the recent years, chaos synchronization problems
have attracted increasing attention since the pioneering
work of Carroll and Pecora ( 1990), Synchromization can be
defined as a phenomenon where two or more
appropriately coupled systems undergo resembling
evolution in time. Chaos synchronization can be apphied
in the vast areas of physics and engineering systems; for
example, many techniques of controlled synchronization
have been applied to synchronize chaotic circuits to
develop private communication systems. In  this
application, the objective i1s to encode or encrypt
information through a chaotic signal that will be sent to
a receiver, where a chaotic system is synchronized o
re-create the information. Many deep theories and control
methods  have been developed to achieve chaos
synchronization. For example, adaptive control (Liao and
Tsai, 2000; Feki, 2003), wvariable structure control
(Zhang et al., 2004; Yau, 2004), optimal control (Tian and
Yu, 2000), digital redesign control (Guo er al., 2000),
backstepping control (Zhang et al., 2004), fuzzy control
(Yau and Shieh, 2008) etc.

On the other hand, simplicity is always a desirable
characteristic to consider in a practical implementation. As
shown by Sprott (2000), a practical chaos generator can

be constructed with a very simple circuit where the
nonlinear term 1s a piecewise linear function. At the same
time, the piecewise linear nature of the system simplifies
the analysis because in this case the nonlinear system can
be reformulated as a variable structure system consisting
of linear parts with a given switching logic. There are
some proposals o synchronize this kind of chaotic
systems, see for example (Bai er al., 2002), where two
Sprott circuits are synchronized using a feedback
lingarization and the Open-Plus-Closed-Loop (OPCL)
control techniques, respectively. In these works, the
synchronization 18 achieved provided no external
disturbances or structural perturbations are present.
These conditions are not realistic in practice due to the
tolerance in electronic components and devices;
therefore, a robustness analysis to ensure stability and
convergence to zero of the error dynamics must be
performed.

The purpose of this study lies in the development of
a SMC for synchronizing the state trajectories of two
identical chaotic sprott circuits. A switching surface,
which makes it easy to guarantee the stability of the error
dynamics in the sliding mode, is first proposed. And then,
based on this switching surface, a SMC is derived to
guarantee the occurrence of the sliding motion, even
when the system i1s undergoing external disturbance and
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system structural variations. Finally, we present the
numerical simulation results to illustrate the effectiveness
of the proposed control scheme. In theory, we can attain
asymptotic identical synchronization in spite of the
existence of this kind of disturbances. However. in
practice, as a result of a discontinuous coupling signal,
there will be a small chattering component in the
synchronization  errors.  Nevertheless, in many
applications this error may be negligible.
Throughout this study, it 15 noted that,
represents the absolute value of w and sign(s) 1s the sign
function of s, if s = 0, sign(s) = 1; it s =0, sign(s) = 0; if

s<l), sign(s) = -1.

lw

SYNCHRONIZATION PROBLEM FORMULATION

In this study, the Sprott circuits (Sprott, 2000} are
defines by:

(1)

V4+aki+i="1fix)

where, ( » ) means tume derivatives of the variable x and
f,(x) can take one of the following forms:

fiix)=|x|-2,
[(x)=—6-max(x.0)+ 0.5, (2)
fixy=1.2x—4.35 sign(x),
f(x)=—-12x+2-sign(x).
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Let, the system states X, X, X, =% and x; = *. the system
Eq. I can be transformed to a nominal form as follows:

K| =%,
(3)

X, =X,

Ky ==X, —ax, +f(x)

If f,ix) 15 selected and the value of a 1s 0.6, then the Sprott
system exists chaotic behavior (Sprott, 2000) with initial
conditions of [x,(0), x,(0), x,(0)] =1, 0, 2]. The complex
time responses and phase plane trajectory are shown in
Fig. la-d.

Consider two coupled chaotic circuits as follows:
Master circuit system:

X, =X,
— 4)
K, ==X, —ax, +f(x,)
Slave circuit system:
j"| :}':
¥: =¥, {‘5}

Vo ==y, —ay, +dit)+ ALy )+ (v ) +u

where, d(t) is a external disturbances and AE(y,) is the
structural variation of fi(y,). In general, the uncertain term
AE and the disturbance term are assumed bounded, i.e.:

20 44} Ll Ll (LU

Timme (sec)

Fig. 1: (a-d) The time responses and chaotic attractor of the master Sprott circuit
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IAE(y, < o and Idin)l<[3 (6)
where, ¢, P are positive.

In the following, we will consider the synchronization
of two identical Sprott systems and give an explicit and
simple procedure to establish a robust sliding mode
controller to cope with the external disturbance and
structural variations appearing in the slave system such
that:

(7)

!in_‘:"x[t} —yit)| =0

where, || + | is the Euclidean norm of a vector.
SLIDING MODE CONTROLLER DESIGN

Let us define the synchronization errors between the
master system Eq. 4 and the slave system Eq. 5 as follows:

(8)

B =Y, X B TY, oK, BTN, 7K,
then the dynamics of the error system is determined,
directly from subtracting Eq. 4 from 5, as follows:

()

&, =—¢, —ae, + f{y ) - f(x )+ d(t)+ ALy, ) +u

The considered goal of this study is that for any
given chaotic circuits as Eq. 4 and 5, a SMC is designed
in spite of the external disturbance and structural
variations, such that the asymptotical stability of the
resulting error system Eq. 9 can be achieved in the sense
that:

lle(tll = D ast —+ o (109
where, e(t) = |e,, €., e5].

As a sequence, using the sliding mode control
method to control the chaotic circuits involves two basic
steps: (1) selecting an appropriate switching surface such
that the sliding motion on the sliding mode is stable and
ensures lim e()f =0 and (2) establishing a robust control
law which guarantees the existence of the sliding mode
s(1) =10,

To ensure the asymptotical stability of the sliding
mode, a switching surface s(t) in the error space 1s defined
as follows:

(1)

sith=e,(th+c.e,(tj+ce (th=e, + KEt)
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where, st e R, E=e,e.]'e R and K = |c,c.] e R is a
design parameter vector which can be easily determined
later. For the existence of the sliding mode, it is necessary
and sufficient that:

sih=e;, +KE=10 (12)

and

i) =8, +KE=0 (13)

Therefore, by Eq. 9 and 12, the following sliding
mode dynamics can be obtained in a matrix form of:

E=(A-BKIE=AE (14)

]
|

It is so easy to check that Rank|[B:AB] = 2.
Therefore, (A, B) 1s controllable which means that there
always exists a parameter vector K such that the maximum
real part eigenvalue of (A-AK) is negative, that is,
Max|Re(A(A))]<0. Furthermore, we can easily assign the
system performance in the sliding mode just by selecting
an appropriate matrix K using any pole assignment
method. Meanwhile, it is worthy of note that these

eigenvalues of matrix A are also relative to the speed of
system response.

0 1
where A= and B
0o

Having established an appropriate switching surface,
the next step is to design a SMC scheme to drive the error
system trajectories onto the switching surface s(t) = ().
Before stating the scheme of the controller, the hitting
condition of the sliding mode is given below (Slotine and

Li, 1991},

Lemma 1: The motion of the sliding mode Eq. 11 is
asymptotically stable, if the following hitting condition is
held:

S(08(L) <0 (15)
Proof: Let V(t) = (.5s%(t) be the Lyapunov function.
According to Lyapunov stability theory, condition Eq. 11
ensures that:

(16)

Vit) =s{t)s(t) <0

Then, sit) 1s toward the shding surface and the
sliding mode Eq. 11 1s asymptotically stable.
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Fig. 2: Diagram of the SMC scheme

The current SMC design is stated in the following
theorem.

Theorem 1: For the controlled Sprott circut given in
Eq. 5. if the control input u(t) is suitably designed as:

ulth =pix .v,.e,.eb—rio+ ) signs(t)r =1 (17)

where, p=—(c,— le, — (e, —ade; —fily, ) +(x,). then the hiiT.iIlg
condition Eq. 15 of the sliding mode is satisfied, i.e., the
trajectory of the error dynamics system converges to the
switching surface s(t).

Remark: The controllers i Eq. 17 demonstrate
discontinuous control laws and the phenomenon of
chattering will appear. In order to eliminate the chattering,
the controller is modified as:

ls| +8

uit) =pix,.y,.e;.e;) —ria+f)- r>1

where, & is a sufficiently small design constant. Therefore,
the controllers can be implemented in real word system
and the SMC control scheme is shown in Fig. 2. We
further to show that the sliding condition can be achieved
in the following theorem,

Proof: Substituting Eq. 9, 11 and 17 into the derivative
s(ts(t), we get the following result:

V=s-d=slé, +cb, +cé |
=s[—e, —ae, +F iy, =iz ) +dit)+ AS(y, 1+ u+ce, +ce, ]
=s[{g, = lle, +ic, —ade, + (v, ) =Fix, b+ dith+ AS(y, ) +p = rle+ P} - signis)]
= [s] - el )| + | AZCy, ) — rice+ - |s|
<il=r)-{a+ B |5

(18)

Since, ¢ and [ are positive and r=1 has been
specified in Eq. 17, it can be concluded that ss<0O.
Furthermore, according to Lemma 1, s(t) will converge to
zero finally, Hence, the proof is completed,

The following theorem is introduced to guarantee the
stability of the closed-loop error system.
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Theorem 2: The closed-loop error system Eq. 9 driven by
the controller ui(t) expressed in Eq. 17 is asymptotically
stable in the large.

Proof: When the error system Eq. 9 is driven by the
control input u(t) given in Eq. 17, the trajectory of the
error dynamics system converges to the sliding mode
s = (), as previously discussed in Theorem 1. Thus, the
equivalent error dynamics system in the shiding mode is
obtained as shown in Eq. 14. As discussed previously, in
Eq. 14, the values of Max|[Re(A(A))]<0 is specified to
cuarantee the asymptotical stability of the error system.
Consequently, the asymptotical stability of the closed-
loop error system is also ensured. The theorem is
therefore proved.

NUMERICAL SIMULATIONS

Here, simulation results are presented to demonstrate
and verify the performance of the present design. The 4th
order Runge-Kutta algorithm was used to obtain the
numerical solutions of systems Eq. 4 and 5 with a time grid
of 0.0001. The parameters a = 0.6 and f,(x) are chosen in
the simulation to ensure the existence of chaos for the
derive system Eq. 4. The initial states of the derive system
Eq. 4 are [x,(0),%,(0), x,(0)] = [1 0 2] and initial states of the
response system Eq. 5 are [y,(0), v,(0), y.(0)] = [-1 2 1].
The external disturbance and structural variation term in
response system Eq. 5 are defined as d(t) = (0.5 - cist and
AE(y,) = (0.1xsin 1), respectively. Thus [d{0)l<0.5 = ¢« can
be obtammed. The time responses and phase plane
trajectory of slave system are shown in Fig. 3a-d. It can be
seen that the absolute value of vy, 1s less than 4, that is
JAE(w )l = I{0. Ixsin Oy |<0.4 = B. As mentioned in sliding
mode controller design. the proposed design procedure
may be obtained as follows:

Step 1: According to Egq. 14, we select K = [c,, ¢
[10, 10] to result in a stable sliding mode.
Therefore, the switching surface equation is:

sty =e, +10¢, +10¢, (19)

Step 2: According to Eg. 17, we select 1 = 2>1 to
guarantee the existence of the sliding motion.
Therefore, the control input 1s;

(20)

ult) =pix .y .e, e b—rict+ [} sign(s(t))r=2=1

In order to eliminate the chattering, the controller is
modified as:
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Fig. 3: {a-d) The time responses and chaotic attractor of the uncontrolled slave Sprott circuit (with u = (0)
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The simulation results are shown in Fig. 4-6 under the
proposed SMC Eq. 21. Figure 4a-¢ show the state
responses for the controlled master-slave chaotic Sprott
circuits. Figure 5 and 6 show, respectively, the error state
time responses and control input of the controlled master-
slave Sprott circuits. From the simulation result, it shows
that the trajectories of master system states synchronize
to slave system states and the synchronization error
converges to zero after the control is activated. Thus, the
proposed SMC works well and two chaotic Sprott circuits
from different initial values are indeed achieving chaos
synchronization even when external disturbance and
structural variation are present.

CONCLUSION

In this study, we have proposed an algorithm
to synchronize two piecewise linear chaotic systems

called Sprott systems. The condition to apply this
algorithm is  that the  perturbations  satisfy the
matching  conditions. In theory, this algorithm
guarantees a zero steady-state synchronization error;
however, due to sign function in the control input
signal, in practice the chattering in control force is
impracticable to implement. In order to eliminate the
chattering, the controller is modified to a continuous
function. The simulation results show that the
proposed nonlinear control enables stabilization of
synchronization error dynamics to zeros asymptotically in
spit of external disturbance and structural variation. This
method can also be easily extended to a general class of
chaotic systems.
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