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This study demonstrates the modified projective synchronization in Chen-Lee chaotic system.
The variable structure control technology is used to design the synchronization controller with
input nonlinearity. Based on Lyapunov stability theory, a nonlinear controller and some generic
sufficient conditions can be obtained to guarantee the modified projective synchronization,
including synchronization, antisynchronization, and projective synchronization in spite of
the input nonlinearity. The numerical simulation results show that the synchronization and
antisynchronization can coexist in Chen-Lee chaotic systems. It demonstrates the validity and
feasibility of the proposed controller.
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1. Introduction

Chaos is very interesting nonlinear phenomenon and has been intensively studied in the last
three decades [1–3]. A fundamental characteristic of a chaotic system is its extreme sensitivity
to initial conditions; that is, small differences in the initial state can lead to extraordinary
differences in the system state. Since the ideal of synchronizing two identical chaotic systems
from different initial conditions was introduced by Carroll and Pecora in 1990, chaos synchro-
nization has received increasing attention, especially in secure communication [4, 5]. Many
methods have been presented for the synchronization of chaotic system [6–11]. However
most of these methods are concentrated on studying complete synchronization (CS). In the
practical applications, CS only occurs at a certain point in the parameter space, and it is
difficult to achieve CS except under ideal conditions. Recently, thus a more general form
of synchronization scheme, called generalized synchronization (GS), has been extensively
investigated [12–16], where the drive and response system could be synchronized up to a
scaling factor α. More recently, Li [17] considers a new GS method, called modified projective
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synchronization (MPS), where the responses of the synchronized dynamical states synchro-
nize up to a constant scaling matrix. However, most of research efforts mentioned above have
concentrated on the linear control input. Moreover, when the controller is realized in practical
physical systems, due to physical limitations of actuators, the nonlinearities in control input
do exist. The presence of nonlinearities in control input may cause serious influence of system
performance and decrease the system response. Besides, the nonlinearity in control input
may cause the chaotic system perturbed to unpredictable results because the chaotic system
is very sensitive to any system parameters. Therefore, its effect cannot be ignored in analysis
of control design and realization for chaos synchronization. Thus the derivation of controller
with input nonlinearity for chaos synchronization is an important problem.

In this paper, the problem of chaos synchronization to Chen-Lee system with input
nonlinearity is considered. For MPS of the system, a variable structure control scheme has
been proposed. The technique requires two stages. The first stage is to select stable sliding
surfaces for the desired dynamics, and the second stage is to design a switching control law
to achieve the stable sliding surfaces. Then, the chaos synchronization of the system is proved
by the Lypapunov stability theory. Finally, numerical simulation is carried to confirm the
validity of the proposed theoretical approach.

2. Description of the Problem

Consider two chaotic systems given by

dxm
dt

= f(xm, t), (2.1)

dxs
dt

= g(xs, t) + φ(u(xm, xs, t)), (2.2)

where xm = [x1 y1 z1 · · · ]T ∈ Rn, xs = [x2 y2 z2 · · · ] ∈ Rn, f, g ∈ Cr[R+ ×
Rn, Rn], u ∈ Cr[R+ × Rn × Rn, Rn], and r ≥ 1, R+ is the set of nonnegative numbers.
Assume that (2.1) is the drive system (master system), (2.2) is the response system (slave
system), and φ(u(xm, xs, t)) is the nonlinear control input attached in the response system.
If for all xm(t0), xs(t0) ∈ Rn, limt→∞|xsi(t) − αixmi(t)| = 0, for i = 1, 2, . . . , n, then the
response and drive systems are said to be in modified projective synchronization (MPS).
In particular, the drive-response systems achieve complete synchronization when all values
of αi are equal to 1. Further, if all values αi are equal to −1, then two systems are said to be
anti-synchronization.

In this paper, our purpose is to achieve the MPS of two identical Chen-Lee chaotic
systems by using variable structure control with input nonlinearity. Chen and Lee reported
a new chaotic system [18] in 2004, which now called the Chen-Lee system. The system is
described by the following nonlinear differential equations and is denoted as the following
system:

dx

dt
= −yz + ax,

dy

dt
= xz + by,

dz

dt
=
(

1
3

)
xy + cz,

(2.3)
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Figure 1: The phase plane trajectories of Chen-Lee chaotic system with a = 5, b = −10, c = −3.8.
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Figure 2: The maximum Lyapunov exponent of Chen-Lee chaotic system plotted as a function of the
number of driving cycles with a = 5, b = −10, c = −3.8.

where x, y, and z are state variables, and a, b, and c are three system parameters.
When (a, b, c) = (5,−10,−3.8), system (2.3) demonstrates a complex attractor as shown
in Figure 1. A positive maximum Lyapunov exponent is shown in Figure 2. It shows that the
Chen-Lee system is in the state of chaotic motion at this condition.
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For the Chen-Lee chaotic system, the drive and response systems are defined as
follows.

Drive system is

dx1

dt
= −y1z1 + ax1,

dy1

dt
= x1z1 + by1,

dz1

dt
=
(

1
3

)
x1y1 + cz1.

(2.4)

Response system is

dx2

dt
= −y2z2 + ax2 + φ1(u1),

dy2

dt
= x2z2 + by2 + φ2(u2),

dz2

dt
=
(

1
3

)
x2y2 + cz2 + φ3(u3).

(2.5)

where φ1(u1), φ2(u2), and φ3(u3) are the nonlinear control inputs attached in the slave
system. Let the synchronization error vector state be e = [e1 e2 e3]

T = [x2 − α1x1 y2 −
α2y1 z2 −α3z1]. Substitution (2.4) and (2.5) into the error state, the error dynamic equations
can be obtained as follows:

de1

dt
= −e2e3 − α3e2z1 − α2e3y1 + (α1 − α2α3)y1z1 + ae1 + φ(u1),

de2

dt
= e1e3 + α3e1z1 + α1e3x1 + (α1α3 − α2)x1z1 + be2 + φ2(u2),

de3

dt
=

1
3
(
e1e2 + α2e1y1 + α1e2x1

)
+

1
3
(α1α2 − α3)x1y1 + ce3 + φ3(u3).

(2.6)

The φi(ui(t)) ∈ C1(Rn → R) is a continues nonlinear function with φi(0) = 0, and ui(t) →
φi(ui(t)) is inside sector [ςi, ρi] (i = 1, 2, 3), that is,

ςiu
2
i ≤ uiφi(ui) ≤ ρiu

2
i , (2.7)
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φi(ui(t))

ui(t)

Figure 3: A scalar nonlinear function φi(ui(t)) inside sector [ςi, ρi].

where ςi and ρi are nonzero positive constants. A nonlinear function φi(ui(t)) is shown in
Figure 3.

Now, the sliding surfaces suitable for the application can be defined as

Si = ei +
∫ t

0
λiei(τ)dτ, i = 1, 2, 3, (2.8)

where Si(t) ∈ R and λi is the design parameters which can be determined later. For the
existence of the sliding mode [19], it is necessary and sufficient that

Si = ei +
∫ t

0
λiei(τ)dτ = 0, i = 1, 2, 3,

dSi
dt

=
dei
dt

+ λiei = 0, i = 1, 2, 3.

(2.9)

Therefore, the following sliding mode dynamics can be obtained as

dei
dt

= −λiei, i = 1, 2, 3. (2.10)

Obviously, if the design parameters λi > 0, i = 1, 2, 3, the stability of (2.10) is surely
guaranteed, that is limt→∞ei(t) → 0. Thus, the response system will be derived to drive
system by designing the appropriate signal control inputs ui(t), i = 1, 2, 3.
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3. Description of Variable Structure Control Law
with Input Nonlinearity

We choose a control law of the form

ui = −γiηi sign(Si), γi >
1
ςi
, i = 1, 2, 3, (3.1)

where

η1 =
∣∣−e2e3 − α3e2z1 − α2e3y1 + (α1 − α2α3)y1z1 + ae1 + λ1e1

∣∣,
η2 = |e1e3 + α3e1z1 + α1e3x1 + (α1α3 − α2)x1z1 + be2 + λ2e2|,

η3 =
∣∣∣∣1

3
(
e1e2 + α2e1y1 + α1e2x1

)
+

1
3
(α1α2 − α3)x1y1 + ce3 + λ3e3

∣∣∣∣.
(3.2)

Based on the control law (3.1), the reaching condition s(t)(ds(t)/dt) < 0 is guaranteed in
the following theorem; that is, the proposed scheme (3.1) will derive the system (2.6) with
nonlinear inputs onto the sliding mode s(t) = 0.

Theorem 3.1. Consider the error dynamics system (2.6) with input nonlinearities. The hitting
condition of the sliding mode is satisfied, if the control ui(t) is given by (3.1) for i = 1, 2, 3, 4.

Proof. Letting the Lyapunov function of the system be V = (1/2)(S1
2 + S2

2 + S3
2), then its

derivative with respect to time is

dV

dt
= S1

dS1

dt
+ S2

dS2

dt
+ S3

dS3

dt

= S1

(
de1

dt
+ λ1e1

)
+ S2

(
de2

dt
+ λ2e2

)
+ S3

(
de3

dt
+ λ3e3

)

= S1
(
−e2e3 − α3e2z1 − α2e3y1 + (α1 − α2α3)y1z1 + ae1 + φ(u1) + λ1e1

)
+ S2

(
e1e3 + α3e1z1 + α1e3x1 + (α1α3 − α2)x1z1 + be2 + φ2(u2) + λ2e2

)

+ S3

(
1
3
(
e1e2 + α2e1y1 + α1e2x1

)
+

1
3
(α1α2 − α3)x1y1 + ce3 + φ3(u3) + λ3e3

)

≤ |S1|
∣∣−e2e3 − α3e2z1 − α2e3y1 + (α1 − α2α3)y1z1 + ae1 + λ1e1

∣∣ + S1φ1(u1)

+ |S2||e1e3 + α3e1z1 + α1e3x1 + (α1α3 − α2)x1z1 + be2 + λ2e2| + S2φ2(u2)

+ |S3|
∣∣∣∣1

3
(
e1e2 + α2e1y1 + α1e2x1

)
+

1
3
(α1α2 − α3)x1y1 + ce3 + λ3e3

∣∣∣∣ + S3φ3(u3)

≤ η1|S1| − ς1γ1η1|S1| + η2|S2| − ς2γ2η2|S2|η2|S2| − ς3γ3η3|S3|

≤
(
1 − γ1ς1

)
η1|S1| +

(
1 − γ2ς2

)
η2|S2| +

(
1 − γ3ς3

)
η3|S3|,

(3.3)
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Figure 4: The time history of MPS of controlled drive (x1, x2, x3) and response (y1, y2, y3) Chen-Lee chaotic
systems: (a) x1, y1 versus time t; (b) x2, y2 versus time t; (c) x3, y3 versus time t. The control is active at
t = 10 seconds.

where

uiφi(ui) ≥ ςiu2
i

=⇒ −γηi sigu(Si)φ(ui) ≥ ςiγ2η2
i sign2(Si)

=⇒ −γηi|Si|Siφ(ui) ≥ ςiγηi|Si||Si|, for i = 1, 2, 3.

=⇒ −Siφ(ui) ≥ ςiγiηi|Si|
=⇒ Siφ(ui) ≤ −ςiγiηi|Si|.

(3.4)

Therefore, if

γi >
1
ςi
, for i = 1, 2, 3, (3.5)
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Figure 5: Synchronization errors e1, e2, e3 versus time t. The control is active at t = 10 seconds.

then dV/dt < 0, confirming the presence of reaching condition. Thus the proof is achieved
completely.

4. Numerical Studies

In this simulation, the 4th-order Runge-Kutta algorithm was used to solve the sets of
differential equations related to the drive and response systems with a time grid of 0.0001.
The initial values of drive and response Chen-Lee chaotic system are [x1(0) y1(0) z1(0)] =
[0.2 0.2 0.2], [x2(0) y2(0) z2(0)] = [10 10 10]. In the synchronization example, we
selected λ1 = λ2 = λ3 = 3 to result in stable sliding modes and the nonlinear inputs are
defined as

φi(ui(t)) = [0.7 + 0.2 · sin(ui(t))]ui(t), i = 1, 2, 3. (4.1)

Furthermore, it is assumed that the slope of nonlinear sectors in these three synchronization
examples is ς1 = ς2 = ς3 = 0.5 and ρ1 = ρ2 = ρ3 = 0.9, and the parameters γ1 = γ2 =
γ3 = 5 are selected to satisfy the condition (3.1). The time responses of controlled drive-
response Chen-Lee systems are shown in Figures 4(a)–4(c). It can be see that the response
system synchronizes with the drive system in spite of input nonlinearity. Obviously, the
synchronization errors converge asymptotically to zero after the control is active at time
t = 10 seconds in Figure 5.
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5. Conclusions

In this paper, we investigate the hybrid projective synchronization of controlled Chen-Lee
chaotic system with input nonlinearity. Based on Lyapunov stability theorem, an effective
control method for synchronizing two identical Chen-Lee chaotic systems with different
initial conditions has been proposed using variable structure design. The proposed nonlinear
control enables stabilization of synchronization error dynamics to zeros asymptotically in
spite of input nonlinearity. Numerical simulation results are presented to show that the
synchronization and antisynchronization coexist by the proposed synchronization technique.
The main feature of this approach is that it gives the flexibility to construct a control law so
that the control strategy can be easily extended to any other types of chaotic systems.
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