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Abstract

High-precision position control has been widely used in scientific instruments and semiconductor fabrication equipment.
Traditionally, controllable displacements with sub-micron and nano-level resolution are usually achieved by piezoelectric actuators
because of their high bandwidth and ease of control. However, the travel range of piezoelectric actuator is usually small. In this
paper, the ball-screw-driven system is studied to provide long-range and high-precision performance for positioning and tracking
control. In such a system, the friction dynamics are divided into the static and the dynamic regimes to describe the dynamic behavior
of a conventional ball-screw-driven x-y stage. The same form of adaptive sliding mode controllers are designed in the static and
dynamic regimes to obtain the precision performance for controlled stage. A proportional-integral switching surface is proposed to
make it easy to assign the performance of the systems in the sliding mode motion and the controller is robust without knowing the
bound of disturbance in advance. An illustrative example is included to demonstrate that the system achieves high precision (10
nm) and long-range (10 cm) positioning performance with repeatability and robustness by the proposed control approach.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, due to the rapid progress in biochemistry, semiconductor and optronics, extremely high-precision
positioning control technique has become an important part of the development of precision machines. Many
researches have been conducted to characterize and control system behavior under micro/nano-scales in mechanics
system. Among others, the ball-screw-driven mechanism actuated by servo drives has widely been used in many
applications due to its low cost and generality. However, the main difficulties dealing with positioning problems
in a ball-screw-driven mechanism with extremely high precision are the friction behavior. Conventionally, friction
behavior can be divided into two regimes: static friction and dynamic friction. Many researches have been done
to investigate and model friction dynamics [1–5]. It shows that the dynamic behavior of friction in microscopic
displacement is more complex than the traditional macroscopic Coulomb description. Many different phenomena
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Fig. 1. The schematic diagram of the single-axis ball-screw-driven stage.

such as hysteresis, Stribeck effect, and plasticity have been reported. It deepens the difficulties of high-precision
positioning control.

In control applications, compensation for friction is the paradigm to achieve high-precision performance. It is
worth to notice that the steady-state positioning error or tracking lag will exist if friction is not well compensated.
In the recent researches, Yang and Tomizuka [6] compensated for friction by adaptively changing the control pulse
width to cancel out the influence of stiction and coulomb friction. Tung et al. [7] compensated for friction with a
repetitive control law. Ro et al. [8] proposed a controller based on the friction observer and a disturbance observer
and implemented for sub-micrometer motion. Pan used a PID controller design on a model [9] for angular positioning
control. Chen et al. [10] took two friction models to describe the ball-screw-system behavior according to the static
and dynamic friction regimes. The sliding mode controller is designed in that paper for positioning control with high
precision and long-rang requirements. Besides, the intelligent control schemes such as learning control and fuzzy
control have been proposed in [11,12].

In the above control literature, most researches did not divide the friction behavior into static and dynamic regimes
to design the controllers. It caused steady-state position error and tracking lag when the friction is not properly
compensated and the high-precision control cannot be arrived. In some research, the controllers design is divided
into static and dynamic regimes such as Chen et al. [10]. Nevertheless, the control design technique should know
the bound of external disturbance in advance. In this paper, positioning control based on the friction model [5] is
investigated. The major contribution of this work is that the same types of controllers are applied to the dynamics of
the static and the dynamic frictions to reduce the complex and inconvenient controller design scheme. The controller
designs are carried out by the adaptive sliding mode control (ASMC) method to obtain attractive advantages, e.g. fast
response, good transient performance and insensitive to variation in plant parameters or external disturbances. In
order to achieve this goal, proportional-integral switching surfaces for both dynamic and static friction regions are
newly proposed to make it easy to assign the performance of the systems in the sliding mode motion. Finally the
performances of the system are demonstrated by using a ball-screw-driven servo system to verify our results.

The notations are used throughout this report. λ(W ) denotes any eigenvalue of the matrix W.λmax(W ) represents
the maximum value of λi (W ), i = 1, . . . , n. |W | denote the absolute value of scale W.sgn(y) is the sign function of
y, if s > 0, sgn(y) = 1; if s = 0, sgn(y) = 0; if s < 0, sgn(y) = −1.

2. Overall system layout

The schematic diagram of single-axis ball-screw-driven stage considered in this paper is shown in Fig. 1 [10].
To design the control, we first introduce the friction models proposed by Hsieh and Pan [5].
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Fig. 2. The simple concept of static friction model.

2.1. Static friction model

Based on the model in [5], the static friction is modeled as the nonlinear spring module and the plastic module.
A simple conceptual model of static friction is shown in Fig. 2, where σ is a friction force and it will arise when an
external force F is applied. Firstly, the nonlinear spring module is considered and σS is the external force and xS be
the displacement of the spring. Therefore, the dynamics equation of the nonlinear spring is

dσs

dxs
= k1 + k2e−β|xs−xr | (1)

where k1, k2 and β are positive scalars and xS denotes the active reverse point state. The above equation resulted in
the hysteresis behavior. In the part of plastic module, the governing equation of the plastic deformation is represented
as: ẋh =

{
α [ f (|σ |)− xh] , if f (|σ |) > xh
0, otherwise

ẋ p = sgn(σ ) · ẋh,

(2)

where xh is the hardening state, σ be the applied force, x p be the plastic deformation, f (|σ |) = |σ
n |
λ

, and α, λ, n are
positive numbers.

The entire system governing equation of static friction is separated into two phases: one is the creep phase; the
other is the hardening phase. The state equation is stated as follows
The creep phase: ( |σ |

n

λ
> xh)

d
dt
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(
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. (3)

The hardening phase: ( |σ |
n

λ
≤ xh)

d
dt


xs
ẋs
xh
ẋh
x p
ẋ p

 =


ẋs
F − σ

m
0
0
0
0


. (4)
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Fig. 3. The schematic concept of bristle model [8].

where

σ = Cs ẋs + k1(xs − xr )+ sign(xs − xr )
k2

β
(1− e−β|xs−xr |)+ σr

q =
αn

λ
|σ |n−1 (k1 + k2e−β|xs−xr |)ẋs − sign(σ )α ẋh .

The displacement of system in static friction region is:

x = xs + x p. (5)

Combining the above equations, the response of static friction behavior can be obtained. The parameter values
presented in the equations can be identified from the experimental data, and it is quoted from [10] in this paper.

2.2. Dynamic friction model

To describe the dynamic friction behavior, a friction model proposed by Canudas et al. [13] is illustrated in Fig. 3.
The friction interface is modeled as elastic bristles. Under such friction load, the system dynamics can be described as

mẍ = F − F f . (6)

where x denotes the displacement of the system. The viscous friction F f is

F f = σ0 + σ1 ż + σ2v, (7)

where v and z are the relative velocity and bristle deformation, and σ0 denotes the bristle stiffness, σ1 and σ2 denote
the damping and the viscous coefficients, respectively. The governing equation of bristle deformation is stated as

ż = v −
|v|

(Fc + (Fs − Fc)e−(v/vs )2)
σ0z, (8)

where FC denotes the coulomb friction, FS is the maximum static friction, and vc denotes the Stribeck velocity defined
in [13]. The parameter values of Eqs. (6)–(8) can be determined from the experimental data and it is quoted from [10]
in this paper.

3. Adaptive sliding mode controller (ASMC) design

3.1. ASMC for static friction regime

For tracking control purpose, the error state is defined as

e = x − xd , (9)

where xd is the desired system displacement and assume it to be twice differentiable with respect to time. From Eqs.
(3)–(5), the following error dynamics equation is obtained:[

ė1
ė2

]
=

[
0 1

−
k1

m
−

Cs

m

][
e1
e2

]
+

[
0
1
m

]
F +

[
d1(xs, ẋs, xh, ẋh, x p, ẋ p, xr , σr )

d2(xs, ẋs, xr , σr )

]
, (10)
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where e1 = x − xd and e2 = ė1 = ẋ − ẋd . If the measure tolerance is considered as:

1m = m0 − mt , 1k1 = k1,0 − k1,t , 1k2 = k2,0 − k2,t , 1Cs = Cs,0 − Cs,t ,

1β ≡ β0 − βt , 1α ≡ α0 − αt , 1n ≡ n0 − nt , 1λ ≡ λ0 − λt ,

where the subscript ‘0’ denotes the value of nominal system and ‘t’ denotes the parameter value of real system. Then
the system (10) can be rewritten as[

ė1
ė2

]
=

[
0 1

−
k1

m
−

Cs

m

][
e1
e2

]
+

[
0
1
m

]
F +

[
d1 +1d1

d2 +1d2 +
∑

(xd , ẋd , ẍd)

]
, (11)

where 1d1 = 1d1(1m,1k1,1k2,1Cs,1β,1α1n,1λ)and 1d2 = 1d2(1m,1k1,1k2,1Cs,1β), and it can be
in a general form as

Ė =

[
ė1
ė2

]
= AE + B F + D, (12)

where

A =

[
0 1
−k1

m

−Cs

m

]
, B =

[
0
1
m

]
, D =

[
d̂1

d̂2

]
,

d̂1 = d1 +1d1, and d̂2 = d2 +1d2 +
∑

(xd , ẋd , ẍd). (13)

Firstly, the switching surface is defined as

s = C E −
∫ t

0
(C A + C BK )E(τ )dτ, (14)

where C, K ∈ R1×2 are selected to satisfy C B 6= 0, λmax(A + BK ) < 0. It is known [15–17] that as long as the
system operates in the sliding mode, it satisfies the equations

ṡ(t) = 0 and s(t) = 0. (15)

Therefore, the equivalent control Feq in the sliding manifold can be obtained. By differentiating (14) with respect to
time and substituting from (11), then

ṡ = 0 = C B Feq + C D − C BK E = 0 (16)

⇒ Feq = K E − (C B)−1C D. (17)

Substituting Feq into (12), the following sliding mode equation is obtained as

Ė = (A + BK )E + (I − B(C B)−1C)D

= (A + BK )E + P D. (18)

According to [5], the creep motion will finally vanish if the applied force is not monotonic increasing or decreasing.
Such a property could conclude that the controlled system will enter the hardened phase, i.e. the uncertain will turn
into matching condition and can be totally rejected by the adaptive sliding mode control.

Once a proper switching surface has been selected with the appropriate matrices C and K , it should do next is
to design an adaptive variable structure controller, which is not only derive the system trajectories onto the sliding
surface but also remove the limitation value of the knowing uncertainties in advance.

Before proceeding to the adaptive sliding mode control design, the Barbalat lemma is provided:

Lemma 1 ((Barbalat Lemma)[18]). If w̃ : R→ R is a uniformly continuous function for t ≥ 0 and if the limit of the
integral

lim
t→∞

∫ t

0
|w̃(λ)| dλ
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exists and is finite, then

lim
t→∞

w̃(t) = 0. (19)

To ensure the occurrence of the sliding motion in static friction region, an adaptive variable structure control is
proposed as

F = −(C B)−1
[|C BK E | + ηβ̂(t)]sign(s); η > 1. (20)

The adaptive law is

˙̂
β(t) = ξ−1

|s| ; β̂(0) = β̂0; ξ > 0 (21)

ywhere β̂0 is the bounded positive initial value of β̂(t). The adaptive law can be also rewritten in the integral form as

β̂(t) = β̂0 +

∫ t

0
ξ−1
|s(τ )| dτ. (22)

In the following, the proposed adaptive scheme (20) and (21) [14] will be proved to be able to derive the uncertain
system (12) in the static friction region onto the sliding surface s(t) = 0.

Theorem 1. Consider the dynamics of system (12) in the static friction region, this system is controlled by F(t) in
(20) with adaptation law (21). Then the system trajectory converges to the sliding surface s(t) = 0.

Proof. Select Lyapunov function candidate as

V (t) =
1
2
(s2
+ ξw2), (23)

where w(t) ∈ R denotes the adaptation error which will be well defined later.
Taking the derivative of V (t) with respect to time t , it has

V̇ (t) = sṡ + ξwẇ. (24)

By using Eqs. (12) and (14), we obtain

V̇ (t) = s(C B F + C D − C BK E)+ ξwẇ

≤ |s| (|C BK E | + |C D|)+ sC B F + ξwẇ. (25)

Assume there exists an upper bound β such that

|C D| ≤ β. (26)

Define the adaptation error as

w(t) = β̂(t)− β. (27)

Inserting (20), (26) and (27) into the right hand of inequality (25), this yields

V̇ (t) ≤ (β − β̂(t))︸ ︷︷ ︸
−w

|s| + (1− η)β̂(t) |s| + ξw ˙̂β(t) = −(η − 1)β̂ |s| . (28)

Now if we define w̃(t) = (η − 1)β̂ |s|, and integrating the above equation from zero to t , it yields

V (t) ≤ V (0)−
∫ t

0
w̃(λ)dλ

⇒ V (0) ≥ V (t)+
∫ t

0
w̃(λ)dλ ≥

∫ t

0
w̃(λ)dλ.

(29)



1486 H.-T. Yau, J.-J. Yan / Nonlinear Analysis: Real World Applications 10 (2009) 1480–1489

Table 1
Parameters of the dynamic friction [10]

k1 = 6.12× 106 (N/m) α = 1.64× 10−2

k2 = 2.88× 108 (N/m) Cs = 9.1× 104

β = 1.11× 108 λ = 9.15× 106

n = 2.283

Taking the limit as t →∞ on both sides of (29) gives

∞ > V (0) ≥ lim
t→∞

∫ t

0
w̃(λ)dλ. (30)

Thus according to Barbalat lemma (see Lemma 1), we obtain

lim
t→∞

w̃(t) = lim
t→∞

(η − 1)β̂ |s| → 0. (31)

Since η > 1, β̂ > 0, (29) implies s(t)→ 0 as t →∞. Hence the proof is achieved completely. �

3.2. ASMC for dynamic friction regime

From Eq. (6), the error dynamic in the dynamic friction region can be described as[
ė1
ė2

]
=

[
0 1
0 0

]
︸ ︷︷ ︸

A

[
e1
e2

]
+

[
0
1
m

]
︸ ︷︷ ︸

B

F −

[
0

F f

m
− ẍd

]
︸ ︷︷ ︸

D

. (32)

According to the design procedure in static friction regime, we define the switching function with the same form as
follows

s = C E −
∫ t

0
(C A + C BK )E(τ )dτ, (33)

where C, K ∈ R1×2 are selected to satisfy

C B 6= 0, λmax(A + BK ) < 0. (34)

In order to ensure the occurrence of the sliding motion in dynamic friction region, an adaptive variable structure
control is proposed as

F = −(C B)−1
[|C BK E | + ηβ̂(t)]sign(s); η > 1. (35)

The adaptive law is

˙̂
β(t) = ξ−1

|s| ; β̂(0) = β̂0; ξ > 0. (36)

Owing to the proofs for the stability and hitting of the dynamic friction regime in the sliding mode are similar to that
in the static regime, they are omitted here.

Remark 1. The controller in (20) and (35) demonstrate a discontinuous control laws and the phenomenon of
chattering will appear. In order to eliminate the chattering, the function of sign(s) in (20) and (35) are modified
as

sign(s) =
s

|s| + δ
, (37)

where δ is a sufficiently small design constant. Therefore, the controllers can be implemented in a real word system.
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Table 2
Parameter values of the static friction [10]

σ0 = 1× 105 (N/m) Fs = 10.8175 (N)
σ1 = 316 (N s/m) Fc = 7.5 (N)
σ2 = 350 (N s/m) vs = 0.001 (m/s)

Table 3
Parameter values of the controllers

Static friction controller Dynamic friction controller

C =
[
1 40.4

]
C =

[
1 40.4

]
K =

[
6.1× 106 9.079× 104

]
K =

[
24240 2020

]
ξ = 0.5 ξ = 0.5
η = 2 η = 2
β̂0 = 10 β̂0 = 10

Fig. 4. The positioning response to 6 µm command. (a) The transient time response. (b) The response of switching function. (c) The steady-state
error response.

4. Simulation results

In this section, the computer simulation results of a ball-screw-driven stage are given to demonstrate the feasibility
of the adaptive sliding mode controller design. Consider the ball-screw-driven stage described in Section 3 with
m = 40.4 kg, where all the parameters are shown in Tables 1 and 2. In digital control law implementation, there
exist system constraints such as sensor resolution and D/A resolution limit, which will restrict system performance.
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Fig. 5. The positioning response to 1 mm command. (a) The transient time response. (b) The steady-state error response.

Fig. 6. The positioning response to 10 cm command. (a) The transient time response. (b) The steady-state error response.

In our simulation the value 1 µm is used to switch the control type to static friction controller or dynamic friction
controller. To simulate real system response, we utilized a quantization function to specify such limits and the control
force is saturated when |u| ≥ 200Nt . The simulation results with reference command 6 µm, 1 mm and 10 cm with
controller parameters in Table 3 are shown in Figs. 4–6. It can be seen that the ball-screw stage is regulated to the
reference command successfully about in 1 s, without respect to short range (6 µm), or long range (10 cm). From
Figs. 4(c), 5(b), and 6(b), they also show that the steady-state error is less than 10 nm. Therefore, it concludes that the
high-precision position control of ball-screw stage can be reached by this controller in this paper.

5. Conclusions

In this paper, two friction models were used to describe the ball-screw-stage-system behavior according to the
static and dynamic friction regimes. The adaptive sliding mode control scheme is used to control the system to reach
the high-precision position control. Based on the variable structure control theory and Barbalat Lemma, it can be seen
that this controller is robust to external disturbance without knowing the bound of disturbance in advance and the
proposed controller also guarantees the occurrence of sliding motion for systems in both dynamic and static friction
regions. Simulation results show that the ball-screw x-y stage positioning control with high precision and long-range
requirements were achieved.
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