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a b s t r a c t

The AFM (atomic force microscope) has become a popular and useful instrument for
measuring intermolecular forces with atomic resolution, that can be applied in electronics,
biological analysis, and studying materials, semiconductors etc. This paper conducts a
systematic investigation into the bifurcation and chaotic behavior of the probe tip of
an AFM using the differential transformation (DT) method. The validity of the analytical
method is confirmed by comparing the DT solutions for the displacement and velocity of
the probe tip at various values of the vibrational amplitude with those obtained using the
Runge–Kutta (RK) method. The behavior of the probe tip is then characterized utilizing
bifurcation diagrams, phase portraits, power spectra, Poincaré maps, and maximum
Lyapunov exponent plots. The results indicate that the probe tip behavior is significantly
dependent on the magnitude of the vibrational amplitude. Specifically, the tip motion
changes first from subharmonic to chaotic motion, then from chaotic to multi-periodic
motion, and finally from multi-periodic motion to subharmonic motion with windows of
chaotic behavior as the non-dimensional vibrational amplitude is increased from1.0 to 5.0.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, many significant researches have been carried out to design, analyze, and implement microsystems and
nanosystems. The AFM enables the measurement of intermolecular forces at the atomic scale and is used extensively for
imaging andmeasuring applications in the nanoelectronics, biological analysis,materials science, and semiconductors fields.
Compared to the STM (scanning tunnel microscope), which is applicable only for conducting or semiconducting surfaces,
the AFM can image virtually any type of surface, including glass, biological samples, polymers, ceramics, and so forth [1].

Analyzing the dynamic behavior of the AFMprobe tip as it scans the surface of interest is a fundamental concern since any
irregular motion during the scanning process inevitably degrades the precision of the measurement results. Consequently,
the dynamic properties of the AFM tip–sample interaction have attracted extensive attention in the literature in recent
years. Burnham et al. [2] showed experimentally that an AFM microcantilever performed chaotic motion under certain
physical conditions. Ashhab et al. [3,4] analyzed the chaotic dynamics of the AFM cantilever–sample system using the
Melnikov method and a single-frequency mode approximation. Sebastian et al. [5] predicted the dynamic behavior of an
AFM cantilever in a tapping mode operation using a harmonic balancing and averaging technique. Lee et al. [6] analyzed the
effects of van derWaals and Derjaguin–Muller–Toporov forces on the tip–sample interactions in dynamic force microscopy
(DFM). Ruetzel et al. [7] applied the Galerkin method to investigate the nonlinear dynamics of an AFM probe tip under the
assumption that the tip–surface interactions were governed by Lennard-Jones potentials.
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The present study performs a systematic investigation into the dynamic behavior of an AFM probe tip using the DT
method [8]. The validity of the analytical approach is confirmed by comparing the DT-based solutions for the displacement
and velocity of the probe tip at various values of the vibrational amplitude with those obtained using the Runge–Kutta
method. The dynamic response of the probe tip is then characterized using phase portraits, power spectra, Poincaré maps,
and maximum Lyapunov exponent plots constructed using the time-series data obtained from the DT method. Finally, the
onset of chaotic behavior in the AFM system is identified using bifurcation diagrams of the tip displacement and tip velocity,
respectively.

2. The mathematical model of the cantilever tip–sample interaction

In the analysis performed in this study, the cantilever tip is modeled as a single spring–mass system comprising a sphere
of radius Rs and an equivalent mass ms suspended by a spring of stiffness ks. The potential of the tip–sample assembly is
given by [4]

P(X, Z) = −
HcRS

6 (Zb + X)
+

1
2
ksX2, (1)

where Zb is the equilibrium position of the tip, X is the tip displacement, Hc = 2πρ1ρ2Ic is the Hamaker constant, and Ic
is the interaction constant. In other words, the potential is modeled as the attraction force between a tip of radius Rs and
density ρ1 and a sample of density ρ2.

The net energy of the system scaled by the massms of the cantilever is given by

E(X, Ẋ, Z) =
1
2
Ẋ2

+
1
2
ω2

s X
2
−

ξω2
s

(Zb + X)
, (2)

where ωs =
√
ks/ms is the first modal frequency of the system and ξ = HcRs/6ks. Let X1 = X and X2 = Ẋ . The dynamics of

the tip–sample system, i.e. Ẋ1 = ∂E/∂X2 and Ẋ2 = −(∂E/∂X1), can be expressed as

Ẋ1 = X2, (3)

Ẋ2 = −ω2
s X1 −

ξω2
s

(Zb + X1)
2 . (4)

In general, the cantilever beam of an AFM is forced by a small sinusoidal signal mf cosωt , where ω takes values around
the natural frequency ωs of the system. Furthermore, in most AFMs, the motion of the cantilever beam is damped by the
surrounding air. Thus, the differential equations of the AFM system can be written as

Ẋ1 = X2, (5)

Ẋ2 = −ω2
s X1 −

ξω2
s

(Zb + X1)
2 − f cosφ − µX2, (6)

where µX2 is the damping force per unit mass.
Introducing parameters Y1 =

X1
Ys

, Y2 =
X2

ωsYs
, Z =

Zb
Ys

, A1 =
4
27 , A2 = 1.2, A3 = 1, A4 = −2.9, A5 = 0.1, and Ω =

ω
ωs
, the

system equations can be rewritten in non-dimensional form as

Y1 = Y2, (7)

Y ′

2 = −A1Y1 −
A1A2

(Z + Y1)
2 + A3(A4 cosφ − A5Y2), (8)

with initial conditions of Y1 = 0, and Y2 = 0. Y1 is the displacement of the probe tip (where a positive value indicates
a displacement toward the sample), Y2 is the velocity of the probe tip, and Z is the vibrational amplitude of the dither
piezoelectric actuator which drives the tip. Note that both Y1 and Z are non-dimensionalized by the gap between the tip and
the sample under equilibrium conditions.

In solving Eqs. (7) and (8) using the DT method, the AFM system model is transformed with respect to the time domain,
and thus the two equations become

k + 1
H

Ȳ1(k + 1) = Ȳ2(k), (9)

and
k + 1
H

Ȳ2(k + 1) = −A1Ȳ1(k) −
A1A2

Z + Ȳ1(k)
2 + A3


A4Ω

(ΩH)k

k!
cos


πk
2


− A5Ȳ2(k)


, (10)

respectively.
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Fig. 1. Phase portraits of the probe tip displacement at vibrational amplitudes (Z) of (a) 1.10, (b) 1.12, (c) 1.19, (d) 1.58, (e) 2.19, (f) 2.40, (g) 2.97 and (h)
3.48.

3. Results and discussion

3.1. Numerical simulation results

Table 1 compares the results obtained by the DTmethod (DTM) and the Runge–Kuttamethod (RKM) for the displacement
and velocity of the probe tip as a function of the vibrational amplitude of the dither piezoelectric actuator. It can be seen
that for a time step of H = 0.01, the tip displacement and velocity values calculated by the DT method are in agreement to
approximately 3–4 decimal places with those computed by the Runge–Kutta method. Moreover, at a shorter time step of
H = 0.001, the two sets of results are in agreement to around 1–3 decimal places. Thus, the overall validity of the DT-based
analytical approach is confirmed. Consequently, it can be inferred that the DT-based analyticalmethod has a better precision
than the Runge–Kutta scheme.

3.2. Phase portraits, power spectra and the maximum Lyapunov exponent

Fig. 1 presents the phase portraits of the tip displacement at various values of the vibrational amplitude, Z . In every case,
the phase portrait has a non-symmetrical characteristic, i.e. the tip exhibits a nonlinear dynamic response. It is observed
that the tip orbit is regular for vibrational amplitudes of Z = 1.10, 1.58, 2.40, 2.97 and 3.48, but irregular for Z = 1.12,
1.19 and 2.19. Figs. 2 and 3 present the power spectra and maximum Lyapunov exponents of the dynamic displacement
for vibrational amplitudes ranging from Z = 1.10–3.48, respectively. The results show that at a vibrational amplitude of
Z = 1.10, the tip performs 6T subharmonic motion. However, when the vibrational amplitude is increased to Z = 1.12,
the tip response transits to one of chaotic motion proved by a positive value of the maximum Lyapunov exponent (see
Fig. 3(b)). As Z is increased further to 1.19 and 1.58, the chaotic behavior is replaced by a subharmonic response. At a higher
vibrational amplitude of Z = 2.19, the subharmonic behavior is replaced by chaoticmotion once again (see Fig. 3(e)). Finally,
at Z = 2.40, 2.97 and 3.48, the tip reverts to subharmonic motion.

3.3. Bifurcation diagrams and Poincaré maps

Fig. 4(a) and (b) plot the bifurcation diagrams of the tip displacement and tip velocity, respectively, for vibrational
amplitudes ranging over Z = 1–5. Meanwhile, Fig. 5(a)–(h) present the Poincaré maps of the tip trajectory at Z = 1.10,
1.12, 1.19, 1.58, 2.19, 2.40, 2.97 and 3.48, respectively.

Fig. 4 shows that at lower values of the vibrational amplitude, i.e. Z < 1.12, both the displacement (Y1) and the velocity
(Y2) of the tip exhibit a 6T periodic response. The existence of this 6T periodic motion is confirmed by the six discrete points
in the Poincaré map shown in Fig. 5(a) for Z = 1.10. For values of the vibrational amplitude in the range 1.12 ≤ Z < 1.19,
Figs. 4 and 5(b) show that the tip displacement and tip velocity exhibit a chaotic response. However, at Z = 1.19, the chaotic
motion is replaced bymulti-periodic motion (see Figs. 4 and 5(c)). Table 2 summarizes the changes in the dynamic response
of the probe tip as the vibrational amplitude is increased toward a value of Z = 5.0. Over the range 1.19 ≤ Z < 1.45, the
tip response alternates between multi-periodic and chaotic motion. At Z = 1.58, the multi-periodic response is replaced
by 3T periodic motion (see Fig. 5(d)). Thereafter, Table 2 shows that chaotic behavior occurs at four different intervals of
the vibrational amplitude (see Fig. 5(e), for example), while 5T , 8T and 4T periodic motions occur at Z = 2.40, 2.97, 3.48,
respectively (see Fig. 5(f)–(h)).
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Fig. 2. Power spectra of the probe tip displacement (Y1) at vibrational amplitudes (Z) of (a) 1.10, (b) 1.12, (c) 1.19, (d) 1.58, (e) 2.19, (f) 2.40, (g) 2.97 and
(h) 3.48.
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Fig. 3. Maximum Lyapunov exponents of the probe tip response at vibrational amplitudes (Z) of (a) 1.10, (b) 1.12, (c) 1.19, (d) 1.58, (e) 2.19, (f) 2.40, (g)
2.97 and (h) 3.48.
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Fig. 4. Bifurcation diagrams for the probe tip displacement (a) and tip velocity (b) using vibrational amplitude (Z) as the bifurcation parameter.

Overall, the results presented in Table 2 show that depending on the value of the vibrational amplitude, the AFMprobe tip
may exhibit a periodic behavior, a multi-periodic behavior, or a chaotic response. It is also noted that the chaotic response
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Fig. 5. Poincaré maps of the probe tip trajectory at vibrational amplitudes (Z) of (a) 1.10, (b) 1.12, (c) 1.19, (d) 1.58, (e) 2.19, (f) 2.40, (g) 2.97, and (h) 3.48.

Table 1
Comparison of results obtained by DT method (DTM) and Runge–Kutta method (RKM) for the tip displacement and tip velocity as a function of the
vibrational amplitude.

Numerical method Tip displacement Y1 (nT) Tip velocity Y2 (nT)
H = 0.001 H = 0.01 H = 0.001 H = 0.01
DTM RKM DTM RKM DTM RKM DTM RKM

Z = 1.91 (3T , three separated
points)

−0.030921 −0.030934 −0.030945 −0.030978 −2.254711 −2.254721 −2.254701 −2.254755
0.636085 0.636055 0.636067 0.636000 −0.413441 −0.413488 −0.413455 −0.413487
0.681912 0.681932 0.681904 0.681989 −2.235571 −2.235556 −2.235578 −2.235576

Z = 3.48 (4T , four separated
points)

−0.122130 −0.122109 −0.122134 −0.122166 −1.592627 −1.592601 −1.592673 −1.592671
−0.141945 −0.141960 −0.141911 −0.141978 −1.537022 −1.537032 −1.537090 −1.537046
0.6894491 0.6894431 0.6894054 0.6894451 −1.518728 −1.518744 −1.518780 −1.518719
0.7478257 0.7478267 0.7478611 0.7478344 −1.672723 −1.672756 −1.672743 −1.672737

Table 2
Variation of the probe tip response with the vibrational amplitude over interval 1.0 ≤ Z ≤ 5.0.

Z [1.0, 1.12) [1.12, 1.19) [1.19, 1.23) [1.23, 1.28) [1.28, 1.29) [1.29, 1.32)
Dynamic behavior 6T Chaos Multi-periodic Chaos Multi-periodic Chaos
Z [1.32, 1.33) [1.33, 1.35) [1.35, 1.36) [1.36, 1.45) [1.45, 2.19) [2.19, 2.40)
Dynamic behavior Multi-periodic Chaos Multi-periodic Chaos Multi-periodic, 6T ,

3T
Chaos

Z [2.40, 2.41) [2.41, 2.57) [2.57, 2.60) [2.60, 2.97) [2.97, 3.02) [3.02, 3.03)
Dynamic behavior 5T Chaos Multi-periodic Chaos 8T , 4T Chaos
Z [3.03, 5.0]
Dynamic behavior 2T , 4T

always follows a subharmonic motion of the probe tip. Finally, the results presented in Fig. 1 reveal that the size of the
chaotic attractor increases discontinuously as the vibrational amplitude is increased.

4. Conclusion

This study has analyzed the bifurcation characteristics of an AFM cantilever system utilizing the DTmethod. The validity
of the proposed approach has been confirmed by comparing the results obtained for the tip displacement and tip velocity at
various values of the vibrational amplitudewith the solutions obtainedusing theRunge–Kuttamethod. In general, the results
have shown that as the vibrational amplitude is increased from 1.0 to 5.0, the tip motion changes first from subharmonic to
chaotic motion, then from chaotic to multi-periodic motion, and finally frommulti-periodic motion to subharmonic motion
with windows of chaotic behavior.

Acknowledgement

The financial support provided to this study by the National Science Council of the ROC under Grant Nos. NSC-98-2221-
E-269-016 and NSC-99-2221-E-269-008 is greatly appreciated.



1962 C.-C. Wang, H.-T. Yau / Computers and Mathematics with Applications 61 (2011) 1957–1962

References

[1] N. Nagashima, S.Matsuoka, K.Miyahara, Nanoscopic hardnessmeasurement by atomic forcemicroscope, JSME Int. J. Ser. A:Mech.Mater. Eng. 39 (1996)
456–462.

[2] N.A. Burnham, A.J. Kulik, G. Germaud, G.A.D. Briggs, Nanosubharmonics: the dynamics of small nonlinear contacts, Phys. Rev. Lett. 74 (1995) 5092–5095.
[3] M. Ashhab, M. Salapaka, M. Dahleh, I. Mezic, Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy, Nonlinear Dynam.

20 (1999) 197–220.
[4] M. Ashhab, M. Salapaka, M. Dahleh, I. Mezic, Dynamical analysis and control of microcantilevers, Automatica 35 (1999) 1663–1670.
[5] A. Sebastian, M. Salapaka, D. Chen, J. Cleveland, Harmonic analysis based modeling of tapping-mode AFM, in: Proceeding of the American Control

Conference, 1999, pp. 232–236.
[6] S.I. Lee, S.W. Howell, A. Raman, R. Reifenberger, Nonlinear dynamic perspectives on dynamic force microscopy, Ultramicroscopy 97 (2003) 185–198.
[7] S. Ruetzel, S.I. Lee, A. Raman, Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials, Proc. R. Soc. Lond. Ser. A 459

(2003) 1925–1948.
[8] C.C. Wang, H.T. Yau, Application of a hybrid numerical method to the bifurcation analysis of a rigid rotor supported by a spherical gas journal bearing

system, Nonlinear Dynam. 51 (2008) 515–528.


	Application of the differential transformation method to bifurcation and chaotic analysis of an AFM probe tip
	Introduction
	The mathematical model of the cantilever tip--sample interaction
	Results and discussion
	Numerical simulation results
	Phase portraits, power spectra and the maximum Lyapunov exponent
	Bifurcation diagrams and Poincaré maps

	Conclusion
	Acknowledgement
	References


