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The power quality affects the power stability of power company and customers. In order to avoid eco-
nomic losses caused by the power disturbances, it is necessary to monitor power parameters. This paper
aimed at power quality analyses by wavelet transform and proposed a novel algorithm called extension
genetic algorithm (EGA). The paper introduced the fundamental theory of wavelet transform, current
applications and the theoretical framework of EGA. Then, it described the definition of power quality
problems and the characteristics of power waves. Finally, this paper compared the analysis results of
EGA and other methods. As the results of simulation, this paper mentioned of methods has a very high
accuracy. It can also provide an application tool on power quality and data classification for future
researchers.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The power quality analysis is an important factor in the modern
power systems. The electrical engineer must understand a certain
statistical data and system when they analyze the electric power
quality issues. Various kinds of electric power quality event used
long-term monitoring of voltage to calculate the value rms. And
then, we observing the values in a certain unit time of value change
value to judgment the voltage were lower, rise or the electricity cut
off (Chen, 2007). By the peak voltage and frequency changes, deter-
mine whether such problems as voltage flicker or harmonic power.
In order to accurate analyze of the various electric power quality
problems, usually measure many kinds of the electric power char-
acteristics. Therefore, this paper utilized the wavelet transform to
deal with the disturbance waveform of electric power quality
and expect to reduce the number of characteristics of pick wave-
form to maintain the accuracy of the identification (Galli & Heydt,
1997).

In recent years, the research pointed out the wavelet transform
had Multi-Resolution Analysis (MIRA) of characteristics and in
accordance with different frequencies of analyzing degree to pro-
vide different frame width that the transient change will leave
obvious signal.

Therefore, some scholars used wavelet transform to monitoring
the location of the power system transient and classify different
power system accident (Santoso, 1996). When the electric power
quality perturbation signal continuous wavelet transform because
ll rights reserved.
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different input signal, it will show the corresponding wavelet coef-
ficient in the low frequency. If the wave of the signal has high fre-
quency ingredient, it will also produce a bigger wavelet coefficient
in the part of high frequency. Therefore, according to the different
high and low frequency coefficient, it can be used as recognize of
electric power quality perturbation wave.

The extension of matter-element theory established the fail-
ure of the matter-element model can save a lot of modeling
space and the advantages of rapid classification. Some of diagno-
sis case has been successfully (Wang & Ho, 2005; Wang, 2002).
This method needs to adjust the weight and set up the mat-
ter-element model by experience rule, which can achieve the
highest accuracy rate.

Therefore, if we can reduce the extension method to the expe-
rience rule, this method will increase the universality and the prac-
ticality. In view of this, this paper puts forth the EGA and wavelet
transform to extract the characteristic value and carry on a classi-
fication and identification to the electric power quality of distur-
bance wave. In this paper, the methods to propose its very
innovation and the highest accuracy rate have 97%. So it has a very
high practical value to provide a new reference for scholarly
research.

2. Synopsis of wavelet theory

The wavelet transform utilize wavelet conversion of the zoom
and translation two characteristic to sample time-shifting and scal-
ing as show by Eq. (1). W(j, k) is the discrete wavelet transform in x
(k), and w(t) is a finite energy and quickly constringency of time-
function (Wang & Wang, 2007)
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Fig. 1. The signal filters and reduces the sampling points.

Table 1
Three different sorts of mathematical sets.

Compared item Cantor set Fuzzy set Extension set

Objects Data variables Linguistic variables Contradictory
problems

Model Mathematics
model

Fuzzy mathematics
model

Matter-element
model

Descriptive
function

Transfer
function

Membership
function

Correlation
function

Descriptive
property

Precision Ambiguity Extension

Range of set {0, 1} [0, 1] [�1,1]
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Wðj; kÞ ¼
X

j

X
k

xðkÞ2�j=2wð2�jn� kÞ ð1Þ

The angle of observation is picked from the characteristic value
therefore the continuous wavelet functions can carry the wavelet
function on all times and scales. However, the obtained scale is
huge. If only a part of the scale is used, a great deal of current factor
can be reduced without losing accuracy. The wavelet transform can
also use a similar carrier signal. For most signals the low-frequency
is usually an approximate original signal. The high-frequency sig-
nal carries the detailed changes or partial perturbation. A signal fil-
ter is based on the wavelet transform concept. The signal after
filtering is divided into two parts: high-frequency and low-
frequency. If the original signal is described as having 1000 points,
there will be 1000 signals of 2 after the high, low-frequency filter.
This will make the signal data become longer, so we usually reduce
the data to a sampling point as shown by Fig. 1.
3. Summary of extension theory

The extension theory was first introduced in 1983 by a China
scholar Cai, W. There are two main points in extension theory that
are matter-element model and extension set (Cai, 1998). The mat-
ter-element model can describe the data that can analyze the
quantitative change and the qualitative change. The extension set
is built by matter-element model. It can solve contradictory prob-
lems which cannot solve by classical methods and fuzzy methods.
The extension sets extent the fuzzy set from [0, 1] to [�1,1] (Das,
2006). The distance of extension describes the value from the
interval in the region. The interval is called classical field, and
the region is called joint field. This value could calculate by corre-
lation function that can describe the element to be positive field,
negative field or zero boundary (Wang, Chung, & Sung, 2011).
Table 1 shows three different sorts of mathematical sets.

3.1. Definition of matter-element

In the extension theory, the element is R, and N is the name of
element. The characteristic is c, and v is characteristic of value. The
matter-element in ET can be described as follows (Cai, 1999):

R ¼ ðN; c; vÞ ð2Þ

Assuming R = (N, c, v) a multidimensional matter-element,
C = [c1 c2 � � � cn]T a characteristic vector and V = [v1 v2 � � � vn]T, a va-
lue vector of then a multidimensional matter-element is defined as

R ¼ ðN;C;VÞ ¼

N; c1; v1

c2; v2

..

. ..
.

cn; vn

2
66664

3
77775 ð3Þ
3.2. Definition of extension set

U is universe of discourse and u is a generic element of U. The u
belongs U(u e U), then an extension set A in U is defined as a set of
ordered pairs (4):

A ¼ fðu; yÞju 2 U; y ¼ KðuÞ 2 ð�1;1Þg ð4Þ

y = K(u) is correlation function of extension set A. The extension set
A and the universe of discourse U are defined as follows:

A ¼ Aþ [ A0 [ A� ð5Þ
Aþ ¼ fðu; yÞju 2 U; y ¼ KðuÞ > 0g ð6Þ
A0 ¼ fðu; yÞju 2 U; y ¼ KðuÞ ¼ 0g ð7Þ
A� ¼ fðu; yÞju 2 U; y ¼ KðuÞ < 0g ð8Þ
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Fig. 2. The graphic relationship of extension sets.
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A+ is called positive field, and A� is called negative field. A0 is
called zero boundary. Fig. 2 is the graphic relationship of extension.
4. The basic theory of genetic algorithm

The best-known evolutionary algorithm (EA) is the genetic algo-
rithm (GA), which transposed the notion of evolution in nature to
computers and imitates natural evolution and selection. Basically,
they find solution to a problem by maintaining a population of pos-
sible solutions according to the ‘‘survival of the fittest’’ principle.
The genetic algorithm constitutes a class of search algorithms
especially suited to solving complex optimization problems. In
addition to parameter optimization, the genetic algorithm is also
suggested for solving problems in creative design, such as combin-
ing components in a novel creative way. In general, the major
advantage of using the GA is that the optimal solution is obtained
globally (Hwang & He, 2006). The genetic algorithm generally in-
cludes the following five parts:

(1) Gene coding: Combining all genes into a chromosome of
sequence 0 and 1.

(2) Fitness function: It describes the capability of a certain indi-
vidual gene to reproduce and is usually equal to the propor-
tion of the individual’s genes in all genes of the next
generation.

(3) Selection mechanism: It is the intentional manipulation by
chromosome of the fitness of individuals in a population to
produce a desired evolutionary response.

(4) Crossover: A process in which chromosomes exchange genes
through the breakage and reunion of two chromosomes.

(5) Mutation: A change in a gene resulting in new or rearranged

hereditary determinants. Mutations are rare, random events
in which the base sequence of the gene is changed.

5. The proposed extension genetic algorithm

In this paper, the proposed clustering method involves a combi-
nation of the extension theory and genetic algorithm. The exten-
sion theory provides a means for distance measurement in the
classification process. The genetic algorithm has the ability to
search for an optimal solution within a wide space. The EGA is a
kind of supervised learning that finds the best classical domain
and gets better accuracy without adjusting the weight (Wang,
Tseng, Chen, & Chao, 2009).

This section will present a mathematical description of the EGA.
The extension method can be found in out at the paper by (Wang,
2004), so it is not necessary to explain here. We define several vari-
ables before using the algorithm.

5.1. The training stage

The chromosomes propagate next generation of chromosomes
to combine the matter-element models in the EGA. Setting Pat-
terns = {p1, p2, . . . , pn} with ith as follows: pj

i ¼ fc1; c2; . . . ; ckg. In
the patterns, i is the total number of genes, and j is the type of pat-
tern. Using the proposed EGA can be simply described as follows:

Step 1. Set the epoch, the crossover rate Cr, the mutation rate
mu, the tolerance of error rate Er, and the chromosome rate Ra.
Step 2. Find the gene of lower limit and upper limit value
v j
a ¼ minðcj

knÞ ð9Þ
v j

b ¼ minðcj
knÞ ð10Þ

v j ¼ hv j
a;v

j
bi ð11Þ

k is number of characteristic. va is the upper limit, and vb

is lower limit.
Step 3. Produce new gene of lower limit and upper limit value
with chromosome rate. The chromosome rate is produced with
random generator.
v j
a � Ra 6 Gj

L 6 v j
a þ Ra ð12Þ

v j
b � Ra 6 Gj

L 6 v j
b þ Ra ð13Þ
Step 4. The genes make up the chromosome.
chrom ¼ fG11
L ;G

11
L ;G

12
L ;G

12
L ; :::;G

jk
L g ð14Þ

The amount of gene in a chromosome is calculated by the
function 2 � k � j.
Step 5. Building the matter-element model from gene.2 3

Rj ¼

N; c1; hG1
L ;G

1
Ui

c2; hG2
L ;G

2
Ui

. . . . . .

cn; hGk
L ;G

k
Ui

66664
77775 j ¼ 1;2; . . . ;m ð15Þ
Step 6. Input the training of data that is the value of gene.
xj ¼ fc1; c2; . . . ; ckg ð16Þ
Step 7. Calculate the correlation function.
zk ¼ ðGk
L þ Gk

UÞ ð17Þ

Knk ¼
Xn

i¼1

jxj
nk � zjkj � ðGjk

U � Gjk
L Þ=2

jðGjk
U � Gjk

L Þ=2j
þ 1

" #
ð18Þ
Step 8. Normalizing the value of correlation function for the
matter-element model to be between 1 and �1.

Step 9. Input the next training of data to repeat Step 6 to Step 8.
Step 10. Input the next matter-element model, and repeat Step

5 to Step 9.
Step 11. Calculate the fitness function.
Fitness ¼ Nr

Na
ð19Þ

Nr is the right amounts, and Na is the total mounts.

Step 12. The selection of the parental chromosomes put into the

mating pool, and the genes implement crossover
mechanism.
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Fig. 3. The EGA of analysis pattern.

Table 2
The extension with experience rule result.

The type of parameter
adjustment

1st 2nd 3rd 4th 5th

The ratio of
training

Normal 34/40 33/40 35/40 35/40 34/40
Power failure 37/40 33/40 34/40 30/40 37/40
voltage swell 36/40 32/40 33/40 32/40 35/40
Voltage dip 30/40 36/40 31/40 35/40 34/40
Harmonic
voltage

40/40 38/40 40/40 38/40 40/40

Transient
voltage

37/40 36/40 39/40 33/40 38/40

The ratio of accuracy 214/
240

208/
240

212/
240

203/
240

218/
240

Accuracy rate (%) 89 87 88 85 91
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Step 13. Let the next generation of chromosomes to replace the
chromosomes, and implement mutation mechanism.

Step 14. Calculate the correct rate.
Layer
Er ¼ ð1� FitnessÞ � 100% ð20Þ

(b)

Fig. 4. The power harmonic wave and the energy layers with the fundamental
frequency removed.
Step 15. Until the training is finished. If training process is not
finished; otherwise go to Step 3.

5.2. The recognizing stage

Step 1. Build the matter-element model by optimization
solution.
 2 3
Rj ¼

N; c1; hG1
L ;G

1
Ui

c2; hG2
L ;G

2
Ui

. . . . . .

cn; hGk
L ;G

k
Ui

66664
77775 j ¼ 1;2; . . . ;m ð21Þ
Step 2. Input the data that is recognize.
xj ¼ fc1; c2; . . . ; ckg ð22Þ
Step 3. Calculate the correlation function.
zk ¼ ðGk
L þ Gk

UÞ=2 ð23Þ

Knk ¼
Xn

i¼1

jxj
nk � zjkj � ðGjk

U � Gjk
L Þ=2

jðGjk
U � Gjk

L Þ=2j
þ 1

" #
ð24Þ
Step 4. Find min(Knk). If the Knt is bigger than k, then the data
does not belong to any.

Step 5. Until recognizing is finished; otherwise go to Step 2.
6. Result and analysis

This text compliant IEEE STD 1159-1995 (IEEE recommended
practice for monitoring electric power quality) to build the infor-
mation for simulating a power failure, voltage dip, voltage swell,
power harmonic, and transient voltage for the power quality prob-
lem (Bhattacharyya, 2007; Dash, 2003; Kwang, 2008). The simula-
tion cycle is set to six cycles, describing 128 points for a cycle. This
paper presents a method that utilizes the wavelet transform to
deal with the disturbance waveform in electric power quality.
The EGA needs the parameter characteristics for system training
including the max value and min value windows, 5th, 6th and
7th wavelet transform. Fig. 3 shows the EGA analysis pattern.

6.1. Testing the ability to training

There are numerous problems maintaining power quality.
Power quality maintenance problems include vibration amplitude
issues, random changes in frequency and timing. In the training
stage 40 samples of every type of power quality problem are
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Fig. 5. The voltage dip wave and the energy layers with the fundamental frequency
removed.

Table 3
The training times of accuracy rate.

training times
(epoch 1000)

The ratio of
accuracy

Accuracy
rate (%)

Average accuracy
rate (%)

1 230/240 96 96
2 228/240 95
3 231/240 96
4 229/240 95
5 231/240 96
6 229/240 95
1 230/240 96
2 228/240 95
3 231/240 96
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Fig. 6. The highest accuracy rate of convergence curve.

Table 4
The matter-element model.

R1 ¼

Har; c1; h0:000003;39:846i
c2; h�0:23328;0:3924i
c3; h�7:5126;�2:4913i
c4; h0:077703;1:6189i
c5; h1:1198;1:5632i

8>>>><
>>>>:

R2 ¼

Intt; c1; h0:0000002;37:667i
c2; h�4:3416;0:54634i
c3; h3:0461;41:274i
c4; h0:000003;1:343i
c5h1:3119;1:6361i

8>>>><
>>>>:

R3 ¼

Sag; c1; h0:00144;31:787i
c2; h�4:6065;0:7138i
c3; h1:3537;40:614i
c4; h0:24499;1:2107i
c5; h1:3524;1:5198i

8>>>><
>>>>:

R4 ¼

Swell; c1; h�19:05;�1:1995i
c2; h�1:6369;�0:0588i
c3; h�27:01;�2:1059i
c4; h1:328;1:7938i
c5; h0:66809;4:3545i

8>>>><
>>>>:

R5 ¼

Norm; c1h�2:3726;2:9789i
c2; h�0:25736;0:1746i
c3; h�2:2624;4:1231i
c4; h1:1768;1:5236i
c5; h1:3085;1:7008i

8>>>><
>>>>:

R6 ¼

Osci; c1; h0:004125;77:752i
c2; h�3:0257;0:24934i
c3; h�3:8565;1:4996i
c4; h0:44524;1:5328i
c5; h2:6703;7:466i

8>>>><
>>>>:
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randomly produced. Two hundred and forty pieces of training data
are produced in total. The training is divided into two parts. The
first part is the extension rule of thumb. The second part is the
training EGA. Table 2 shows the extension with experience rule re-
sult. In the test stage a sample of every type of acceptable power
quality is produced. The total training data is 240 pieces. Fig. 4(a)
shows the power harmonic wave, and Fig. 4(b) shows the layers
of power harmonic energy difference without the fundamental fre-
quency. Fig. 5(a) shows the voltage dip wave, and Fig. 5(b) shows
the layers of voltage dip energy difference without the fundamen-
tal frequency. When the voltage is normal, the energy layers are
under the zero form 1st to 7th layers. Fig. 4(b) shows when the
fault is harmonic voltage, the 4th layer and the 5th layer of energy
is over zero. Fig. 5(b) shows the layers of energy are over zero.
Therefore, the wavelet transform can be reasoned to explain the
power efficiency problem in many cases.

The EGA parameter sets the error rate tolerance to 0.1, the
crossover rate at 0.2, and the mutation rate at 0.005. The number
of epochs is 1000. The EGA promotes non-progressive convergence.
Two hundred and forty pieces of data produce 1000 epochs at a
training iteration of 10. The training convergence result is re-
corded. Table 3 shows the training accuracy rate. The average accu-
racy rate is 96% after 10 iterations. The highest training accuracy
rate is 97%. Fig. 6 shows the highest convergence curve accuracy
rate for each epoch. The error rate is 0.033. Table 4 shows the mat-
ter-element model. This model is obtained after training.

6.2. Testing the ability to analysis

By the result, the matter-element model is built by the highest
accuracy rate of chromosome in the testing stage. The data of test-
ing are 240 pieces. In the text, there are 6 types of fault. Type 1 is
meaning the problem of harmonic voltage. Type 2 is power failure.
Type 3 is power dip. Type 4 is voltage swell. Type 5 is the voltage is
normal. And type 6 is transient voltage (Dugan, 2002). Table 5 is
the value of correlation function that is normalizing between �1
and 1. The value of correlation function is 1. That is belonged to
which type. If the value of correlation function is close to �1. That
means the data is not belonged to this type. At the result, it shows
which type is. In Table 5, when the result is 1, the diagnosis is prob-
lem of harmonic voltage. And the result of value is conforming to
each type in Table 5. Table 6 is comparing the different sorts of
clustering with 240 pieces of testing data. The K-means clustering
of accuracy rate is 85%. The fuzzy c-means clustering of accuracy
rate is 70%. And the EGA of accuracy rate is 92%. By the testing,
Table 6 is showing that the EGA of accuracy is batter then the
extension, K-mean, and fuzzy c-means of accuracy rate. And the
EGA has an advantage that is sloughing off the extension of expe-
rience rule.



Table 5
The value of correlation function.

The
data of
number

The value of correlation function type Result

Harmonic
voltage

Power
failure

Voltage
dip

voltage
swell

Normal Transient
voltage

11 1 0.45 0.17 �0.05 �1 0.49 1
45 �0.21 1 0.96 0.07 �1 0.11 2
93 �0.88 0.89 1 �1 �0.66 0.14 3

130 �0.37 0.2 �0.56 1 �1 0.78 4
182 �0.48 �0.07 �1 0.58 1 �0.19 5
211 �0.38 �0.02 �1 0.75 �0.83 1 6

Table 6
The comparing the different sorts of clustering.

Compared
methods

The training of
accuracy rate
(%)

The testing of
accuracy rate
(%)

K-means
clustering

63 59

Fuzzy c-
means
clustering

64 61

The extension
theory

91 85

The extension
genetic
algorithm

96 92
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7. Conclusion

This paper supports a method which can advantage accuracy
and conveniently with power quality analysis. It uses the wavelet
transform to extract characteristic value and to build various types
of electric power quality problems with EGA. In the matter-
element model of space, the method of using notion of genetic
algorithm’s space in search is implemented to enhance the
accuracy and to select a best matter-element. From the result,
the simulate system showed the accuracy rate that is better than
before. In this research, EGA is compared extension theory,
K-means and c-means. This theory has proved a 96% accuracy rate
with proper training. If it is not trained, the accuracy rate would be
92%. This fact has proved that the wavelet transform and EGA is an
outstanding system for power quality analysis. In the future, the
EGA to power quality analysis can be the foundation of further re-
search that might lead to other perspective or other problems.
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