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This work presents an adaptive sliding mode control scheme to elucidate the robust chaos
suppression control of non-autonomous chaotic systems. The proposed control scheme uti-
lizes extended systems to ensure that continuous control input is obtained in order to
avoid chattering phenomenon as frequently in conventional sliding mode control systems.
A switching surface is adopted to ensure the relative ease in stabilizing the extended error
dynamics in the sliding mode. An adaptive sliding mode controller (ASMC) is then derived
to guarantee the occurrence of the sliding motion, even when the chaotic horizontal plat-
form system (HPS) is undergoing parametric uncertainties. Based on Lyapunov stability
theorem, control laws are derived. In addition to guaranteeing that uncertain horizontal
platform chaotic systems can be stabilized to a steady state, the proposed control scheme
ensures asymptotically tracking of any desired trajectory. Furthermore, the numerical sim-
ulations verify the accuracy of the proposed control scheme, which is applicable to another
chaotic system based on the same design scheme.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Chaos dynamics has received considerable attention in the recent decade owing to the promising attributes of chaotic
systems such as highly complex dynamics, broad-band Fourier power spectrum, sensitivity to initial conditions and strange
attractors [1,2]. Many theoretical and experimental chaos analyses-based methods have subsequently been thoroughly
investigated [3]. Moreover, several mechanical systems with chaotic phenomena have also been developed in recent years
[4,5]. Horizontal platform, i.e. a mechanical system with chaos behavior that can freely rotate around the horizontal axis, has
been extensively adopted in offshore and earthquake engineering [6].

Recently, a study on chaos control investigated its role in autonomous chaotic systems such as Chua’s circuit, Lorenz sys-
tem and Chen system [7]. An increasing number of non-autonomous chaotic systems have been developed in engineering
and physics, motivating the study of chaos control for various non-autonomous systems. In 2003, Ge et al. [8] studied a chaos
synchronization scheme consisting two non-autonomous horizontal platform systems that are unidirectionally coupled by
linear state error feedback control. Their numerical results verified that the scheme can achieve chaos synchronization
regardless of whether a phase mismatch occurs between two coupled systems, provided that the coupling strength is suf-
ficiently large. Wu et al. [9,10] later studied the robust synchronization of chaotic horizontal platform systems with phase
difference. However, as is known, if horizontal platform systems operate in a state of aperiodic motion, the subsequently
large broad-band vibration may increase the likelihood of fatigue failure and shorten the system lifetime. Therefore, design-
ing a controller to suppress the chaotic behavior in the horizontal platform systems is also a very important problem. How-
ever, suppressing the chaotic behavior of horizontal platform systems has seldom been studied.
. All rights reserved.
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Fig. 1. Horizontal platform system.
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This work presents an adaptive sliding mode control scheme for controlling the chaos in the state trajectories of uncertain
horizontal platform systems. The proposed control scheme utilizes extended systems to ensure that continuous control input
is obtained in order to prevent chattering that occurs frequently in conventional sliding mode control systems. A switching
surface is adopted to ensure the stability of the extended error dynamics in the sliding mode. Based on this switching surface,
a continuous adaptive sliding mode control (SMC) is derived not only to guarantee the sliding motion, but also to avoid the
chattering, even when the system is undergoing unknown system uncertainty. The proposed sliding mode controller scheme
can effectively suppress the chaotic behavior in horizontal platform systems even if parametric uncertainty occurs. The rest
of this paper is organized as follows. Section 2 describes the dynamics of horizontal platform systems. Section 3 then intro-
duces the design scheme of the switching surface and sliding mode controller. Next, Section 4 summarizes the simulation
results to demonstrate the effectiveness of the proposed adaptive control scheme for chaos control of horizontal platform
systems. Conclusions are finally drawn in Section 5, along with recommendations for future research. Notably, ki(A) denotes
the ith eigenvalue of the matrix A, kmaxðAÞ ¼maxiReðkiðAÞÞ represents the eigenvalue of matrix A with maximum real part and
jwj is the absolute value of w. Meanwhile, for w 2 Rn, kwk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwT wÞ

p
denotes the Euclidean norm and sign(s) represents the

sign function of s, if, sign(s) = 1; if s = 0, sign(s) = 0; if s < 0, sign(s) = �1.

2. Mathematical modelling

Figs. 1 and 2 show the nonlinear dynamics of horizontal platform system (HPS). The platform can freely rotate around the
horizontal axis, which penetrates its mass center. An accelerometer is located on the platform to detect the position. The
accelerometer produces an output signal to the actuator, subsequently generating a torque to inverse the rotation of the plat-
form to balance the HPS, when the platform deviates from horizon. The dynamics can be described as
A€xðtÞ þ D _xðtÞ þ rg sin xðtÞ � 3g
R
ðB� CÞ cos xðtÞ � sin xðtÞ ¼ F cos xt ð1Þ
where A, B and C are the inertia moment of the platform for axis 1, 2 and 3, respectively. Additionally, D denotes the damping
coefficient. R represents the radius of the earth, r is the proportional constant of the accelerometer, g denotes the constant of
gravity, x represents the rotation of the platform in relation to the earth and Fcoswt is the harmonic torque. A more detailed
analysis of this system can be found in [8]. By denoting x1(t) = x(t) and x2ðtÞ ¼ _xðtÞ as the state variables and defining param-
eters a ¼ D; rg ¼ b; l ¼ 3g

R ðB� CÞ and F = h, the HPS model (1) can be rewritten as follows:
_x1 ¼ x2

_x2 ¼ �ax2 � b sin x1 þ l cos x1 � sin x1 þ h cos xt
ð2Þ
Parameters of the horizontal platform systems are taken as a = 4/3, b = 3.776, l = 4.6 � 10�6, h = 34/3 and x = 1.8. As the
preliminary states (x1(0),x2(0)) = (�3.4,2.1), the trajectory of HPS is chaotic [10]. The trajectories display randomly and
remarkably in the course of time (Fig. 3).

3. Controller design for uncertain HPS

3.1. Error dynamics of HPS

The chaotic behavior in HPS is suppressed by adding a control input u in Eq. (2). Therefore, the controlled HPS is shown as
follows:



Fig. 2. Horizontal platform system on the earth.
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_x1 ¼ x2

_x2 ¼ �ðaþ DaÞx2 � ðbþ DbÞ sin x1 þ l cos x1 � sin x1 þ h cos xt þ u
ð3Þ
where Da and Db denote the parametric uncertainties of HPS. Notably, Da and Db are assumed here to be bounded, i.e.
jDaj 6 a and jDbj 6 b ð4Þ
where a and b are positive constants. The control problem manipulates the system to track the desired regular angle trajec-
tories xd (i.e. xd is a differential function). By allowing the tracking error to be EðtÞ ¼ ðx1 � xd; x2 � _xdÞ ¼ ðe1; e2Þ, the error
dynamics becomes
_e1 ¼ e2

_e2 ¼ f ðtÞ þ nðtÞ þ uðtÞ
ð5Þ
where
f ðtÞ ¼ �aðe2 þ _xdÞ � b sinðe1 þ xdÞ þ l cosðe1 þ xdÞ � sinðe1 þ xdÞ þ h cos xt ð6Þ
and
nðtÞ ¼ �Daðe2 þ _xdÞ � Db sinðe1 þ xdÞ ð7Þ
Therefore, for any given chaotic uncertain HPS, e.g., (3), this work designs an adaptive sliding mode controller (ASMC), so
that, the asymptotic stability of the resulting error system (5) can be achieved in the sense that
kEðtÞk ¼ e1 e2½ �k k ! 0 as t !1;
where k�k is the Euclidean norm of a vector.
The following assumption is made to derive the main results.

Assumption 1. For the nonlinear function f(t) of (6) and the uncertainty term n(t) of (7), a sufficiently large constant q
satisfies
d
dt
½f ðtÞ þ nðtÞ�

����
���� 6 q <1 ð8Þ
Remark 1. Notably, the unknown but constant q is only introduced to verify the stability later; the value of q for the control
design does not need to be known. Thus, q is assumed here to be sufficiently large, i.e. q ?1, so the assumption of (8)
always holds.

Introducing the concept of extended systems [11], the error dynamics in (6) can be extended as



Fig. 3. The chaotic response of the HPS.
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_e1 ¼ e2

_e2 ¼ f ðtÞ þ nðtÞ þ u ¼ e3

_e3 ¼
d
dt
½f ðtÞ þ nðtÞ� þ _u

ð9Þ
System (9) is of the controllable canonical form. In such a case, no internal dynamics occur.

3.2. Sliding surface design

Implementing the sliding mode control (SMC) scheme to control a chaotic system generally involves two steps. An appro-
priate switching surface must be selected first, capable of ensuring the stability of the equivalent dynamics in the sliding
mode such that the error dynamics (5) can converge to zero. A SMC must then be determined to ensure not only the striking
of the switching surfaces in finite time, but also that the state trajectory can remain on the sliding mode s = 0 thereafter even
when undergoing the system uncertainties. As mentioned earlier, a proper switching surface must be designed to ensure the
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system stability in the sliding mode. The asymptotical stability of the sliding mode can be ensured by defining a switching
surface s(t) in the extended error space as follows:
sðtÞ ¼ e3ðtÞ þ k2e2ðtÞ þ k1e1ðtÞ ð10Þ
where s(t) 2 R and k1,k2 are that design parameters that can be easily determined later. A system that operates in the sliding
mode satisfies the following equations [11,12]:
sðtÞ ¼ 0 ð11Þ

Therefore, the following sliding mode dynamics can be obtained as:
_e1

_e2

� �
¼

0 1
�k1 �k2

� �
e1

e2

� �
¼ A

e1

e2

� �
ð12:aÞ

_e3 ¼
d
dt
½f ðtÞ þ nðtÞ� þ _u ð12:bÞ
Obviously, if the design parameters k1, k2 are specified to ensure kmax(A) < 0, the stability of (12.a) is guaranteed, i.e.
limt!1k½e1 e2�k ¼ 0. Furthermore, according to Eq. (11), e3(t) is also stable, that is limt!1e3ðtÞ ¼ 0.

3.3. Sliding mode controller design

With an appropriate switching surface established, the next step involves designing an adaptive SMC scheme to drive the
extended error system trajectories onto the switching surface s(t) = 0. Before the adaptive SMC design is introduced, the
Barbalat lemma is given below.

Lemma 1 (Barbalat lemma, [12]). If F:R ? R is a uniformly continuous function for t P 0 and if the limit of the integral
lim
t!1

Z t

0
jFðkÞjdk ð13Þ
exists and is finite, then
lim
t!1

FðtÞ ¼ 0 ð14Þ
To ensure the occurrence of the sliding motion, an adaptive scheme is proposed as
_uðtÞ ¼ �k1e2ðtÞ � k2e3ðtÞ � cĵðtÞsignðsðtÞÞ; uð0Þ ¼ u0 ð15Þ
where c > 1 and u0 is the bounded initial value of u(t). The adaptive law is
_̂jðtÞ ¼ qjsðtÞj; ĵð0Þ ¼ ĵ0 ð16Þ
where the parameter q of adaptive law is selected as positive value and ĵ0 denotes the bounded initial value of ĵðtÞ. The adaptive
SMC controller can be also written in the following integral form:
uðtÞ ¼
Z t

0
½�k1e2ðtÞ � k2e3ðtÞ � cĵðtÞ � signðsÞ�dt þ u0 ð17Þ
and
ĵðtÞ ¼ q
Z t

0
jsðtÞjdt þ ĵ0 ð18Þ
Remark 2. In the conventionally adopted SMC controller, the control scheme is often discontinuous, causing chattering in
the sliding mode. However, the proposed adaptive controller scheme as shown in (17) is continuous. Therefore, chattering in
the sliding mode is eliminated.
Remark 3. From Eqs. (15)–(18), it seen that the values of parameter q and ĵ0 can influence ĵðtÞ. Furthermore, the value of
ĵðtÞ dominate the hitting time of sliding surface. We can obtain a shorter hitting time if we increase the positive value of
ĵðtÞ. However, a larger value of ĵðtÞ will cause a larger value of control input. It may lead to the phenomenon of saturation.
Therefore, we can obtain the suitable values of q and ĵ0 by trial and error method.

Next, the proposed adaptive SMC (17) is demonstrated to be capable of driving the extended error dynamics (9) onto the
sliding mode s(t) = 0.

3.4. Robust stability analysis

The following discussion establishes that if the control input u(t) is appropriately designed as (15) with adaption law (16),
then the trajectory of the error dynamics (9) converges to the switching surface s(t) = 0. Consider the following Lyapunov
function candidate:



Fig. 4. The chaotic response of the uncertain HPS.

Fig. 5. Maximum Lyapunov exponent of uncertain HPS trajectory plotted as function of number of driven cycles.
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Fig. 6. The time history of controlled system for xd = 0; (a) time response of x1; (b) time response of x2; (c) time response of control input; (d) time response
of adaptation parameter ĵðtÞ; and (e) time response of sliding surface. The control u is activated at t = 40 s.

N.-S. Pai, H.-T. Yau / Commun Nonlinear Sci Numer Simulat 16 (2011) 133–143 139



Fig. 6 (continued)
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VðtÞ ¼ 1
2
ðs2 þ q�1d2Þ; q > 0 ð19Þ
where d 2 R denotes the adaptation error defined later. Taking the derivative of V(t) with respect to time yields
_VðtÞ ¼ s_sþ q�1d _d ¼ s _e3 þ k2e3 þ k1e2ð Þ þ q�1d _d ¼ s
d
dt
ðf ðtÞ þ nðtÞÞ þ k2e3 þ k1e2 þ _u

� �
þ q�1d _d ð20Þ
Now let d ¼ q� ĵðtÞ denote the adaptation error. Since q is constant, _q ¼ 0 and the following expression holds:
_d ¼ � _̂jðtÞ ð21Þ
Then, Eq. (20) can be rewritten as
_VðtÞ ¼ s
d
dt
ðf ðtÞ þ nðtÞÞ þ k2e3 þ k1e2 þ _u

� �
� q�1 q� k̂

� �
_̂
k ð22Þ
Substituting _u and _̂k into the above equation yields
_VðtÞ ¼ s
d
dt
ðf ðtÞ þ nðtÞÞ � c � k̂ � signðsÞ

� �
� q� k̂
� �

jsj ¼ s
d
dt
ðf ðtÞ þ nðtÞÞ

� �
� qjsj þ ð1� cÞk̂jsj

6 jsj d
dt
ðf ðtÞ þ nðtÞÞ

����
����� qjsj þ ð1� cÞk̂jsj 6 ð1� cÞk̂ sj j 6 �FðtÞ ð23Þ
where FðtÞ ¼ ðc� 1Þk̂ðtÞjsðtÞjP 0 and c > 1.
Integrating the above equation from zero to t yields
Vð0ÞP VðtÞ þ
Z t

0
FðkÞdk P

Z t

0
FðkÞdk ð24Þ
As t goes infinite, the above integral is always less than or equal to V(0). Since V(0) is positive and finite, limt!1
R t

0 FðkÞdk
exists and is finite. Thus, according to Barbalat lemma (see Lemma 1), we obtain
lim
t!1

FðtÞ ¼ lim
t!1
ðc� 1ÞĵðtÞjsj ¼ 0 ð25Þ
Since both (c � 1) and ĵðtÞ are greater than zero, (25) implies s = 0. Hence, the proof is achieved.
4. Results and discussion

This section presents the simulation results to demonstrate the performance of the proposed controller scheme. The
parameters are a = 4/3, b = 3.776, l = 4.6 � 10�6, h = 34/3, x = 1.8. The initial state is (x1(0),x2(0)) = (�3.4,2.1). The parametric
uncertainties Da and Db are assumed to be Da = 0.1 � sin(t), Db = 0.2 � cos(t), then jDaj 6 0.1 = a, jDbj 6 0.2 = b. Fig. 4 shows
the time responses and phase plane trajectory of uncontrolled HPS (u = 0 in system (3)), indicating that the behavior of
uncontrolled uncertain HPS is still extremely complex. According to Fig. 5, the corresponding maximum Lyapunov exponent
has a positive value. We can thus infer that the uncertain HPS trajectory is in a state of chaotic motion [3]. The controller
scheme attempts to suppress this undesired chaotic behavior. As mentioned in Section 3, the proposed design procedure
can be obtained as follows:



Fig. 7. The time history of controlled system for xd = sin(2t); (a) time response of x1; (b) time response of x2; (c) time response of control input; (d) time
response of adaptation parameter ĵðtÞ; (e) time response of sliding surface; and (f) time response of error dynamics. The control u is activated at t = 40 s.
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Fig. 7 (continued)
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Step 1: According to (12.a), select k1 = 12, k2 = 7 such that k(A) = (�4,�3), resulting in a stable sliding mode. Therefore, the
switching surface equation is obtained as
sðtÞ ¼ e3ðtÞ þ 7e2ðtÞ þ 12e1ðtÞ ð26Þ
Step 2: From (17) and (18), determine the continuous control input as
uðtÞ ¼
Z t

0
�12e2ðtÞ � 7e3ðtÞ � cĵðtÞsignðsðtÞÞ½ �dt þ u0 ð27Þ
where c = 1.2 > 1 and u0 = 0.
The adaptive law is
ĵðtÞ ¼ q
Z t

0
jsðtÞjdt þ ĵ0 ð28Þ
where q = 1 and ĵ0 ¼ 2.

Figs. 6 and 7 summarize the simulation results under the proposed adaptive sliding mode controller (27). The first sim-
ulation case is xd = 0 (regulation problem). Fig. 6 displays those results, indicating that the system is uncontrolled and the
trajectories are chaotic during the first 40 s. The control input is activated at t = 40 s. Following the transient response,
the chaotic behavior of the uncontrolled system is suppressed to zero. The corresponding control input continues
(Fig. 6(c)). According to this figure, chattering does not occur, due to the continuous control. Fig. 6(d) and (e) shows the time
responses of corresponding s(t) and adaptation parameter ĵðtÞ. The second simulation case is xd = sin(2t) (tracking problem).
Fig. 7 summarizes those results. The time responses of controlled system states are tracked to xd = sin(2t) after the control
becomes active at t = 40 s. Fig. 7(c)–(f) shows the continuous control input, time response of sliding surface s(t), adaptation
parameter ĵðtÞ and error state dynamics, indicating that the uncertain chaotic HPS can be steered to a periodic orbit.
5. Conclusion

This work presents an adaptive sliding mode control scheme for suppressing uncertain chaotic behavior in horizontal
platform systems. Based on a rigorous mathematical analysis and Lyapunov stability theory, an adaptive sliding mode con-
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troller is designed such that the controlled system state can be driven to a desired orbit. Simulation results indicate that the
proposed continuous control input can stabilize an uncertain chaotic HPS. Under the proposed control scheme, the error
state convergence time can be arbitrarily determined by assigning corresponding eigenvalues of the sliding surfaces. Anal-
ysis and simulation results demonstrate that the proposed adaptive sliding mode control is highly promising for suppressing
uncertain chaotic dynamics, even for higher-dimensional and complex systems.
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