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a b s t r a c t

This study analyzes the chaotic behavior of a micromechanical resonator with electrostatic
forces on both sides and investigates the control of chaos. A phase portrait, maximum
Lyapunov exponent and bifurcation diagram are used to find the chaotic dynamics of
this micro-electro-mechanical system (MEMS). To suppress chaotic motion, a robust fuzzy
sliding mode controller (FSMC) is designed to turn the chaotic motion into a periodic
motion even when the MEMS has system uncertainties.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinearities exist ubiquitously in micro-electro-mechanical systems (MEMS). Examples include nonlinear springs and
damping mechanisms [1], nonlinear resistive, inductive and capacitive circuit elements [2] and nonlinear surface, fluid,
electric andmagnetic forces [3].Many researches have been conducted on various nonlinear dynamic phenomena, including
bending of the frequency response curve and the jump phenomenon in MEMS resonators [4]. Nonlinearities may also cause
chaotic behavior [5]. Modeling [6] has been used to predict the existence of chaotic motion in electrostatic MEMS. In one
study [7], the chaotic motion of MEMS resonant systems close to the specific resonant separatrix was investigated under the
corresponding resonant condition. An optimal linear feedback control strategy has been adopted [8] to reduce the chaotic
motion of the system proposed in the former study [7] to a stable orbit. In a later investigation [9], the chaotic behavior of a
micro-electro-mechanical oscillator was modeled by a version of the Mathieu equation and was studied both numerically
and experimentally. Chaotic motion of a micro-electro-mechanical cantilever beam under both open and close loop control
has also been reported [10].

This study develops a fuzzy slidingmode control (FSMC) scheme [11–13] that is designed to control chaos in aMEMSwith
systemuncertainties. Firstly, the switching surface that is required to achieve chaos control is specified, and then a switching
control law based on fuzzy linguistic rules is developed to generate a suitable chatter-free control signal for driving the error
dynamic system such that the error state trajectories converge asymptotically to zero.

2. System description

Fig. 1 presents the electrostatically actuated micro-beam, where d is the initial width of the gap and z is the vertical
displacement of the beam. An external driving force is applied as an electrical driving voltage on the resonator that causes
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Fig. 1. A schematic diagram of the electrostatically actuated micromechanical resonator.
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Fig. 2. The bifurcation diagram obtained by varying AC voltage VAC from 0 to 0.4 V.

electrostatic excitation with a dc bias voltage between the electrodes and the resonator: Vi = Vb + VAC · sinΩt , where Vb is
the bias voltage and VAC and Ω are the AC amplitude and frequency, respectively. The amplitude of the AC driving voltage
is assumed to be much lower than the bias voltage, yielding the nondimensional equation of motion [14]:

ẍ + µẋ + αx + βx3 = γ


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where the nondimensional variables x and ω are defined as
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whereω0 is the purely elastic natural frequency. Given the states x1 = x, x2 = ẋ and g(x) = γ
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can be transformed into the following nominal form:ẋ1 = x2

ẋ2 = −αx1 − βx31 − µx2 + g(x1) +
A

(1 − x1)2
sinωτ.

(2)

This MEMS (2) exhibits complex dynamics and has been studied by Haghighi and Markazi [14] for values of VAC in the
range 0 < VAC < 0.47 and constant values of α = 1, β = 12, γ = 0.338, µ = 0.01, Vb = 3.8 and ω = 0.5. Fig. 2 displays
its bifurcation diagram. In this case, the qualitative behavior of the system is shown against a varying AC voltage from 0 to
0.4. When the AC voltage is increased from zero, periodic motion occurs around one of the center points. Fig. 3 presents the
irregular motion that is exhibited by this system at VAC = 0.2 V under initial conditions of (x1, x2) = (0, 0). Fig. 3(b) reveals
that the corresponding maximum Lyapunov exponent has a positive value, and so the MEMS trajectory is inferred to be in
a state of chaotic motion at VAC = 0.2 V. The following section examines the problem of the suppression of chaos of MEMS
and introduces the FSMC to cope with this chaotic motion.

3. Robust fuzzy sliding mode control

Consider a chaotic MEMS of the form
ẋ1 = x2

ẋ2 = −αx1 − βx31 − µx2 + g(x1) +
A

(1 − x1)2
sinωτ + 1f (x1, x2) + u,

(3)
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Fig. 3. Phase plane trajectory (a) and maximum Lyapunov exponent (b) of chaotic MEMS with VAC = 0.2.

where u ∈ R is the control input, and1f (y1, y2) is an uncertainty term that represents the unmodeled dynamics or structural
variation of the system that is given by Eq. (3). Generally, the uncertainty is assumed to be bounded as follows:

|1f (y)| ≤ ρ,

where ρ is a positive constant.
If the tracking error states of the controlled systems are defined as e1 = x1 − xr and e2 = x2 − ẋr , then the dynamic

equations of these errors can be obtained as
ė1 = e2

ė2 = −α(e1 + xr) − β(e1 + xr)3 − µ(e2 + ẋr) + g(e1 + xr) +
A

(1 − e1 − xr)2
sinωτ

+ 1f (e1 + xr , e2 + ẋr) + u,

(4)

where xr is the desired trajectory and ẋr is the first derivative of xr with respect to time. In the SMC field, the sliding surface
is generally taken to be

s = e2 + λe1, (5)

where λ represents a real number. The existence of the sliding mode requires the following conditions to be satisfied [15]:

s = e2 + λe1 = 0, (6a)

and

ṡ = ė2 + λė1 = 0. (6b)

Therefore, the equivalent control law is given by

ueq = −λe2 + α(e1 + xr) + β(e1 + xr)3 + µ(e2 + ẋr) − g(e1 + xr)

−
A

(1 − e1 − xr)2
sinωτ − 1f (e1 + xr , e2 + ẋr). (7)

In the sliding mode, the error dynamics become

ė1 = e2 = −λe1, (8a)
ė2 = −λe2. (8b)

If the parameter λ is assigned a positive value, then the stability of Eq. (8a) is assured, and (e1, e2) → 0 as t → ∞. Restated,
the chaotic MEMS is asymptotically stabilized to a desired trajectory xr . Notably, the rate of convergence to the sliding
surface is governed by the value assigned to parameter λ.

Eq. (7) defines the output of the equivalent controller, and while the reaching law is given by

ur = kfsufs, (9)

where kfs is a normalization factor of the output variable and ufs is the output of the FSMC [11], and is determined in
accordance with the normalized outputs of the SMC, s and ṡ. Hence, the overall control signal, u, has the form

u = ueq + ur = ueq + kfsufs. (10)
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Fig. 4. Membership functions of the input–output variables for FSMC: (a) Membership function of s and ṡ; (b) Membership function of ufs .

Table 1
FSMC rule table.

ufs s
PB PM PS ZE NS NM NB

ṡ

PB NB NB NB NB NM NS ZE
PM NB NB NB NM NS ZE PS
PS NB NB NM NS ZE PS PM
ZE NB NM NS ZE PS PM PB
NS NM NS ZE PS PM PB PB
NM NS ZE PS PM PB PB PB
NB ZE PS PM PB PB PB PB

The fuzzy control rules are represented by the mapping of the input linguistic variables s and ṡ to an output linguistic
variable ufs:

ufs = FSMC1(s, ṡ), (11)

where FSMC1(·, ·) denotes the functional characteristics of the fuzzy linguistic decision scheme. Fig. 4(a) and (b) show the
membership functions of the input linguistic variables (s and ṡ) and the output linguistic variable (ufs), respectively. Table 1
is the corresponding fuzzy rule table [11].

In real-world applications, the system uncertainties 1f (e1 + x1, e2 + x2) are unknown. The equivalent control input is
therefore modified to

ueq = −λe2 + α(e1 + xr) + β(e1 + xr)3 + µ(e2 + ẋr) − g(e1 + xr) −
A

(1 − e1 − xr)2
sinωτ, (12)

while the overall control input becomes

u = ueq + kfsufs

= −λe2 + α(e1 + xr) + β(e1 + xr)3 + µ(e2 + ẋr) − g(e1 + xr) −
A

(1 − e1 − xr)2
sinωτ + kfsufs. (13)

Let the Lyapunov function of the system be defined as V =
1
2 s

2. The first derivative of this system with respect to time
can be expressed as

V̇ = sṡ
= s · [ė2 + λė1]

= s ·


−α(e1 + xr) − β(e1 + xr)3 − µ(e2 + ẋr) + g(e1 + xr) +

A
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+ 1f (e1 + xr , e2 + ẋr) + ueq + kfsufs + λe2


= s ·


1f (e1 + xr , e2 + ẋr) + kfsufs


≤ |s| ρ − kfs |s| = −


kfs − ρ


|s| . (14)

If kfs > ρ is selected, then the reaching condition (sṡ < 0 [15]) is always satisfied. Therefore, the uncertain MEMS (3) can be
stabilized to a desired trajectory xr .
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Fig. 5. Time responses of controlledMEMS system and variation of control action over nondimensional time τ . Note that control u is activated at τ = 200.

4. Simulation results

This section describes a numerical simulation to demonstrate the feasibility and effectiveness of the proposed FSMC
scheme in controlling the chaotic MEMS given by Eq. (3). In the solution procedure, Eq. (3) is solved using the 4th order
Runge–Kutta algorithm with a time-step of 0.001. The parameters of the MEMS are α = 1, β = 12, γ = 0.338, µ =

0.01, Vb = 3.8, VAC = 0.2 and ω = 0.5, which, as shown in Section 2, give a rise to a chaotic state. The initial conditions
are defined as x1(0) = 0 and x2(0) = 0. The goal is to control the position state x to track the desired trajectory
xr = 0.2 sin(0.5τ). The uncertainty term1f (x1, x2) = −0.05 sin(x1), is assumed to be bounded by |1f (y1, y2)| ≤ ρ = 0.05.
Consistent with Eq. (5) λ = 2 is selected to ensure a stable sliding mode, while kfs = 1 is selected to satisfy the condition
prescribed by Eq. (14), kfs > ρ.

Fig. 5 presents the simulation results. It confirms that the chaotic MEMS can achieve a periodic state following activation
of the control signal at τ = 200. Additionally, the control input is chatter-free even though the overall system is subject to
uncertainty.

5. Conclusion

This study discusses the chaotic motion of micromechanical resonators with electrostatic forces on both sides, and it
shows that such a system will exhibits a complex behavior. Bifurcation that corresponds to transient chaotic behavior of
the system and further increases of the AC voltage amplitude can lead to persistent chaotic motion. A fuzzy sliding mode
control (FSMC) scheme is used to stabilize the chaotic motion. The simulation results verify the ability of the FSMC approach
to control the chaotic MEMS through the application of a single control signal.
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