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a b s t r a c t

This study aimed to propose an intelligent islanding phenomenon detection method for a photovoltaic
power generation system. First, a PSIM software package was employed to establish a simulation envi-
ronment of a grid-connected photovoltaic (PV) power generation system. A 516W PV array system
formed by Kyocera KC40T photovoltaic modules was used to complete the simulation of the islanding
phenomenon detection method. The proposed islanding phenomenon detection technology was based
on an extension neural network (ENN), which combined the extension distance of extension theory, as
well as the learning, recalling, generalization and parallel computing characteristics of a neural network
(NN). The proposed extension neural network was used to distinguish whether the trouble signals at the
grid power end were power quality interference or actual islanding operations, in order that the islanding
phenomenon detection system could cut off the load correctly and promptly when a real islanding oper-
ation occurs. Finally, the feasibility of the proposed intelligent islanding detection technology was veri-
fied through simulation results.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

When a photovoltaic power generation system is connected
with a grid power system to supply power, and the grid power is
cut off due to a malfunction, the photovoltaic power generation
system cannot detect the problem and cut the power. This situa-
tion results in an independent power supply phenomenon, which
is called an islanding operation. Once an islanding operation oc-
curs, a protective device should immediately detect and stop it;
otherwise there may be a negative impact on the power supply
system or power users (Task, 2002). When an islanding operation
occurs, if the gap between the total output power of a photovoltaic
power generation system and the total consumed power of the
load in the area of the islanding operation exceeds a certain degree,
then, the voltage and frequency of the system would change signif-
icantly. At this moment, over/under voltage relay (OVR/UVR) and
over/under frequency relay (OFR/UFR) can be used for detection
to avoid the continuation of the islanding operation; however,
when the output and load consumption of a photovoltaic power
generation system approach a balance, the changes in voltage
and frequency of the system are not sufficient for detection by
the voltage and frequency relays; this is called the non-detection
zone of relay in this paper (Mango, Liserre, & Aquila, 2006a;
ll rights reserved.
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Mango, Liserre, & Aquila, 2006b). Therefore, other methods must
be used for detection of an islanding operation in order to avoid
the phenomenon continuing.

At present, the existing islanding operation detection methods
can be divided into passive (IEEE Std. 1547, 2003; Jeraputra &
Enjeti, 2004; Jones, Sims, & Imece, 1990; Mango et al., 2006a,
2006b) and active detection modes (Hung, Chang, & Chen, 2003;
John, Ye, & Kolwalkar, 2004; Ye, Kolwalkar, Zhang, Du, & Walling,
2004; Ye et al., 2004). The passive detection technique monitors
the load end states, such as voltage, frequency, and phase angle
to judge whether there is an islanding operation. The passive
detection technique mainly includes a voltage phase jump detec-
tion method, a frequency change rate detection method, and the
third harmonic distortion of a voltage surge detection method
(Mango et al., 2006a, 2006b). However, only the third harmonic
distortion of a voltage surge detection method lacks a non-detec-
tion zone, the other two detection methods have non-detection
zones, the size of the non-detection zone depends on the sensitiv-
ity of the relay. The non-detection zone is large if the sensitivity of
the relay is low, however, the non-detection zone can be reduced if
the sensitivity of relay is increased, but a misoperation is likely to
occur as a result, which influences the stability of the relay. The
sensitivity of the relay should not be set too high, in consideration
of the stability of the relay, thus, it is necessary to use an active
detection mode together with a passive detection mode in order
to remedy the deficiency.
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During ordinary operations, the active detection mode initi-
atively exerts a periodic disturbance on the voltage or frequency
of the system in parallel operation mode. Since the grid power sys-
tem is a very stable reference supply, the disturbance of the active
detection mode does not exert a significant influence on the sys-
tem voltage or frequency under normal conditions. However, when
an islanding operation occurs, the system loses its stable reference
power supply, and this disturbance to the active detection mode
would cause instability in the system. Even if the power generation
output and load consumption are balanced, the disturbance would
break the balanced state of power, and the obvious voltage or fre-
quency changes of the system at this point would cause the islan-
ding operation to be detected. The active detection method mainly
includes an active voltage drift method, an active frequency drift
method, a slip mode frequency shift method, and a load variation
method (Ye, Kolwalkar, et al., 2004; Ye, Li, et al., 2004). However,
the power system may experience an electrical disturbance from
an external force, which would be regarded as an islanding detec-
tion. Therefore, this paper adopts an extension neural network
(ENN) based multi-variable method that combines passive and ac-
tive detection modes to detect an islanding operation, where the
photovoltaic power generation system can be promptly cut from
load when the grid power becomes disconnected, furthermore, it
can distinguish whether the trouble signal at the grid end is de-
rived from a power quality disturbance or an actual islanding
operation.
2. The proposed extension neural network (ENN)

The extension neural network theory combines the concept of
an extension theory with the concept of a neural network, and cal-
culates the relations among various data through the extension
distance (ED). Fig. 1 shows the architecture of an extension neural
p
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Fig. 1. Extension neural netw
network; it has input and output layer neurons, the input data are
first classified in the architecture, and are then read in the exten-
sion neural network, the output layer stores the calculated exten-
sion distance. The connection between the input layer and the
output layer is the weighting factor, which includes the upper limit
of the weighting factor, the weighting center, and the lower limit of
the weighting factor. Finally the minimum ED value of the output
layer of different types is determined, and the type of data is
judged (Chao, Li, & Wang, 2009; Wang, 2003).

2.1. Learning process of extension neural network

The extension neural network is of supervised learning, which
means first inputting a characteristic sample, if the characteristic
sample does not match the preset target value, then, the weighting
factor shall be modified, and the accuracy rate of the identification
system can be effectively improved by adjusting the weighting
factor.

The parameters are defined before learning, first the learning
sample is defined by X ¼ X1;X2;X3; . . . XNp

� �
and Np is the total

amount of the learning samples, each sample contains the charac-
teristic and type of data Xp

i ¼ xp
i1; x

p
i2; x

p
i3; . . . ; xp

in

� �
, among which

i = 1, 2, 3, . . . , Np, and n is the characteristic number, and p is the
type. If Nm is the total number of errors, then, the total error ratio,
Es can be defined as follows:

Es ¼
Nm

Np
ð1Þ

The learning rule of an extension neural network is described as
follows (Chao et al., 2009; Wang, 2003):

Step 1: Set up extension matter-element model, and set the
weighting factor between input and output layers, the kth mat-
ter-element model can be expressed as
p

ork architecture diagram.
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Rk ¼
Nk; c1; Vk1

c2; Vk2

cj; Vkj

2
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3
75 j ¼ 1;2; . . . ;n; k ¼ 1;2; . . . ;nc ð2Þ

Nk: the name of the kth type.
cj: the jth characteristic of Nk.
Vkj: the classical region hwL

kj;w
U
kji.

nc: total classification clusters of output end.
The classical regions wU

kj and wL
kj of ENN are:

wL
kj ¼mini2Npfx

p
ijg ð3Þ

wU
kj ¼max

i2Np

fxp
ijg ð4Þ

where, xp
ij represents the learning data of ENN at input end.

Step 2: Find the weighting center zkj of each cluster.
Zk ¼ fzk1; zk2; . . . ; zkng ð5Þ

zkj ¼
ðwU

kj þwL
kjÞ

2
ð6Þ
Among which,j = 1, 2, . . ., n; k = 1, 2, . . ., nc

Step 3: Read in the ith learning sample of p type, expressed as
Xp
i ¼ fx

p
i1; x

p
i2; . . . ; xp

ing; x 2 nc ð7Þ

Step 4: Use (8), the extension distance equation to calculate the
distance between learning sample and various clusters.

EDik ¼
Xn

j¼1

jxp
ij � zkjj � ðwU

kj �wL
kjÞ=2

jðwU
kj �wL

kjÞ=2j þ 1

" #
; k ¼ 1;2; . . . ;nc

ð8Þ

where, xp
ij is the ith learning sample of type p, and the character-

istic of type p is j; zkj is the weighting factor center of jth input
end point and kth output end point.

Step 5: The new cluster k⁄ can be obtained after the calculation
of extension distance, and EDik� ¼ minfEDikg. If k� ¼ p, skip to
step 7 directly; on the contrary, execute step 6.
Step 6: Adjust and update the weighting factors of pth and k⁄th
clusters as follows:
(1) Update the weighting center values of pth and k⁄th
clusters.

znew
pj ¼ zold

pj þ gðxp
ij � zold

pj Þ ð9Þ

znew
k� j ¼ znew

k� j � gðxp
ij � znew

k�j Þ ð10Þ

(2) Update the weighting factors of pth and k⁄th clusters.

wLðnewÞ
pj ¼ wLðoldÞ

pj þ gðxp
ij � zold

pj Þ

wUðnewÞ
pj ¼ wUðoldÞ

pj þ gðxp
ij � zold

pj Þ

8<
: ð11Þ

wk�jLðnewÞ ¼ wLðoldÞ
k� j þ gðxp

ij � zold
k� jÞ

wUðnewÞ
k�j ¼ wUðoldÞ

k�j þ gðxp
ij � zold

k�jÞ

8<
: ð12Þ
g: the learning rate of extension neural network.
znew

pj : the new weighting center value of characteristic j of
type p after learning.
zold

pj : the old weighting center value of characteristic j of
type p before learning.
znew

k�;j
: the new weighting center value of characteristic j of

cluster k⁄ after learning.
zold
k�;j: the old weighting center value of characteristic j of

cluster k⁄before learning.
wLðnewÞ

pj : the new lower limit of weighting of characteristic
j of type p.
wUðnewÞ

pj : the new upper limit of weighting of characteristic
j of type p.
wLðoldÞ

pj : the old lower limit of weighting of characteristic j

of type p.
wUðoldÞ

pj : the old upper limit of weighting of characteristic j

of type p.
wLðnewÞ

k�j : the new lower limit of weighting of characteristic
j of cluster k⁄.
wUðnewÞ

k�j : the new upper limit of weighting of characteristic
j of cluster k⁄.
wLðoldÞ

k�j : the old lower limit of weighting of characteristic j

of cluster k⁄.
wUðoldÞ

k�j : the old upper limit of weighting of characteristic j

of cluster k⁄.

Step 7: This learning is finished after all the samples are classi-
fied, otherwise, repeat the calculation procedure from Step 3 to
Step 6.
Step 8: When the total error rate Es meets the expected target
value, stop the calculation procedure, otherwise, return to Step
3 to continue.

Fig. 2 shows the adjustment process of the weighting factors, as
described in step 6. The learning sample xij, in Fig. 2(a), belongs to
cluster B. However, the result of the extension distance equation is
EDA < EDB, thus, it is classified as cluster A. As shown in Fig. 2(b),
after the adjustment of the weighting factor, the new extension
distance is ED0A > ED0B; hence, the learning sample xij can be classi-
fied as cluster B.
2.2. Calculation procedure of extension neural network

Once the learning process is completed, identification or classi-
fication can be conducted, the calculation procedure is:

Step 1: Read in weighting matrix of ENN
Step 2: Read the sample to be identified
Step 3: Use (8) to determine the extension distance value
between the identification sample and the cluster after learning
Step 4: Determine the minimum extension distance to judge
what cluster type the identification sample is
Step 5: Check whether all samples are detected, stop calculation
if the identification is finished, otherwise return to step 2 and
read the new sample to be identified.

3. Extension neural network based islanding detection method

This paper uses an extension neural network with passive and
active multi-variable detection methods for the detection of islan-
ding operations. Fig. 3 shows the architecture diagram of the intel-
ligent islanding operation detection system, which contains a
power conditioner, an LC-filter, an intelligent islanding phenome-
non detection controller, a grid power, and a load. Among which,
Vdc is the DC voltage of the output for the photovoltaic module ar-
ray through the converter. The peak voltage of the power condi-
tioner, the frequency of output voltage of the power conditioner,
and the phase difference between the voltage and current of the
power conditioner can be calculated through the voltage and cur-
rent feedback signals, and the obtained signals can be used as the
index of islanding detection.



Fig. 2. Adjustment process of cluster weighting: (a) before adjustment; (b) after
adjustment.
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3.1. Construction of matter-element models

This paper simulates the situation of a disconnected grid power
with a RLC parallel load as shown in Fig. 3, where the extension
neural network islanding operation characteristics are selected as:
Vdc

Fig. 3. Architecture diagram of the intelligent islanding phenomenon detection
system.
1. Peak voltage: the maximum output voltage value of the power
conditioner.

2. Frequency: the frequency of output voltage of the power
conditioner.

3. Phase difference: the phase difference between output voltage
and current of the power conditioner.

Therefore, the matter-element model of islanding phenomenon
detection technology in this paper is defined as:

Rk ¼
Nk; c1; Vk1

c2; Vk2

c3; Vk3

2
64

3
75 ð13Þ

where, Nk denotes the islanding phenomenon detection type, c1 and
c2 denote the peak voltage and frequency of output of the power
conditioner, respectively, c3 denotes the phase difference between
output voltage and current of the power conditioner, and Vk1 � Vk3

are the range values of the three characteristics, respectively (i.e.
classical region).

Power systems may suffer from lightning, salt damage, collision
with foreign objects, or violent variations in load, which could re-
sult in a voltage swell, voltage dip, voltage flicker, or power har-
monic within the system, hence, may be interpreted as an
islanding detection by the system. Therefore, this paper uses an
extension neural network for the detection of islanding operations
through different environments of power quality in order to iden-
tify power quality disturbances or islanding operations within a
photovoltaic power generation system; hereinafter, all the factors
influencing the power quality are discussed (IEEE Std. 1159-
1995, 1995; Taiwan Power Company. Power Quality).

(1) Voltage swell: as defined by IEEE Std. 1159-1995, the root-
mean-square value of the grid voltage is between
1.1 p.u.(per unit) and 1.8 p.u., for the duration of a
0.5 period.

(2) Voltage dip: as defined by IEEE Std. 1159-1995, a voltage dip
refers to the root-mean-square value of a grid voltage is
0.1 p.u. � 0.9 p.u., and the duration is 0.5 period to 1 minute.

(3) Power harmonic: voltage harmonic means the grid power
system contains a third, fifth, or seventh harmonic compo-
nent, and various harmonics defined in this paper are 10%,
7%, and 5% of fundamental frequency, respectively.

(4) Voltage flicker: the simulated voltage flicker in this paper is
derived from combining a low frequency voltage source
(15 Hz and 20 Hz) with the standard voltage of 60 Hz.

There are seven types of operational phenomena in this paper,
according to the system’s voltage swell, voltage dip, injected with
power harmonic, normal operation, islanding operation above nor-
mal operating limit, islanding operation below normal operating
limit, and voltage flicker. In addition, 360 data obtained in seven
operating states are divided into 235 learning data and 125 identi-
fication data. The islanding detection matter-element model, as
shown in Table 1, can be obtained by calculating the 125 learning
data according to the learning process of the extension neural net-
work, as shown in Section 2.1, and the preset parameters of the
learning process of the extension neural network as follows:

(1) Learning rate: 0.001
(2) Learning times: 200 times
(3) Characteristic number: 3
(4) Type number: 7
(5) Fault tolerance rate: 0 (i.e. learning accuracy must reach

100%).



Table 2
Upper and lower limits of weighting and weighting centers of characteristic values.

Category/Characteristic c1 c2 c3

I1 (upper limit) 572.271 60.4438 19.4
I1 (center) 455.104 59.8143 �21.6
I1 (lower limit) 277.938 59.1848 �31.6
I2 (upper limit) 280.805 60.8026 17.6751
I2 (center) 216.58 60.0331 1.6751
I2 (lower limit) 157.355 59.2636 �30.3249
I3 (upper limit) 342.098 60.3985 179.7027
I3 (center) 311.172 60.1185 �0.70268
I3 (lower limit) 279.646 59.7185 �170.29732
I4 (upper limit) 342.677 60.57 17.8086
I4 (center) 311.196 60.127 0.97656
I4 (lower limit) 273.315 59.302 �34.8554
I5 (upper limit) 3554.61 1018.64 180.688
I5 (center) 1002.06 406.36 98.78
I5 (lower limit) 347.506 60.671 20
I6 (upper limit) 278.949 59.34 �32
I6 (center) 3.1415 27.9 �60.0365
I6 (lower limit) 0.334 0.4 �180.555
I7 (upper limit) 345 64.69 178.5
I7 (center) 311 60 �27.99
I7 (lower limit) 270.19 57.3 �174.12
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3.2. Identification procedure

The upper and lower limits of weighting and weighting centers
of various characteristic values through the learning process exten-
sion neural network are shown in Table 2.

The detection steps of the extension neural network islanding
detection method are listed as follows:

Step 1: Read in the weighting factors of ENN islanding detection
after learning.
Step 2: Read 125 identification data samples.
Step 3: Use (8) to calculate the extension distance between 125
entered identification data and each cluster.
Step 4: Look for the minimum extension distance, which can be
determined from the calculated distance in step 3, and judge
the type of identification data.
Step 5: Check whether all the samples are detected, stop calcu-
lation if identification is completed, otherwise return to step 2
to read identification data samples.

Fig. 4 is the flow chart of the extension neural network islanding
detection system, as put forward in this paper, first the output volt-
age and the current of the power conditioner are detected, then,
the voltage peak, frequency, and phase difference between voltage
and current are calculated, and then the active voltage drift meth-
od is adopted to judge whether there is an islanding operation,
according to the aforesaid identification process.
4. Simulation results

In this paper, Kyocera KC40T (Kyocera Solar Industries) photo-
voltaic modules are connected as a photovoltaic power generation
system with a rated output voltage of 208V (12 modules connected
in series), a rated output current of 2.48A, and a rated output
power of 516W, through a PSIM simulation software package
(Powersim Inc., 2001–2003) to simulate islanding detection.
Fig. 5 shows when the output of a power conditioner is connected
with the grid power in parallel, the grid power is disconnected
from the system at the fourth second, the islanding detection sys-
tem detects the islanding operation in 0.5 period (about 8.3 ms),
and then, cuts off the load. The strip time conforms to the stan-
dards for islanding operations, as constituted by (Sandia National
Table 1
Islanding detection matter-element model after extension neural network learning.

Category of islanding detection Matter-element model of islanding
detection

I1: Voltage swell
R1 ¼

N1; c1; h277:938;572:271i
c2; h59:1848;60:4438i
c3; h�31:6;19:4i

2
4

3
5

I2: Voltage dip
R2 ¼

N2; c1; h157:355;280:805i
c2; h59:2636;60:8026i
c3; h�30:3249;17:6751i

2
4

3
5

I3: Injected power harmonic
R3 ¼

N3; c1; h279:646;342:098i
c2; h59:7185;60:3985i
c3; h�170:29732;179:7027i

2
4

3
5

I4: Normal operation
R4 ¼

N4; c1; h273:315;342:677i
c2; h59:302;60:57i
c3; h�34:8554;17:8086i

2
4

3
5

I5: Islanding operation above
normal operating limit R5 ¼

N5; c1; h347:506;3554:61i
c2; h60:671;1018:64i
c3; h20:156;180:688i

2
4

3
5

I6: Islanding operation below
normal operating limit R6 ¼

N6; c1; h0:334;278:949i
c2; h0:4;59:34i
c3; h�170:29732;�32:0i

2
4

3
5

I7: Voltage flicker
R7 ¼

N7; c1; h270:19;345:0i
c2; h59:30;64:69i
c3; h�174:12;178:5i

2
4

3
5

Fig. 4. The flowchart of the proposed extension neural network islanding detection
method.
Laboratories SAND, 2000-1939), namely the maximum voltage
strip period is 1 period (about 16 ms). Fig. 6 shows when the grid
power end has an islanding operation occurring at about the fourth
second, while the system has experienced three periods of voltage
swells, as seen, the ENN islanding detection method can distin-
guish the voltage swell is from a signal interference from an



Fig. 5. Simulation of islanding operation detection when the grid is disconnected from system at the fourth second.

Fig. 6. Simulation of islanding operation detection when a voltage swell occurs.
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Fig. 7. Simulation of islanding operation detection when a voltage dip occurs.
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islanding phenomenon, and the load is not cut off until the 0.5 per-
iod after the actual islanding occurrence. Fig. 7 shows the situation
Fig. 8. Simulation of islanding operation de
when a voltage dip occurs in the system, and the grid power end
also has an islanding operation at about the fourth second. As seen,
tection when power harmonic occurs.



Fig. 9. Simulation of islanding operation detection when voltage flicker occurs.

12114 K.-H. Chao et al. / Expert Systems with Applications 38 (2011) 12107–12115
the proposed method can definitely identify the voltage dip as
electrical disturbance, and the load is cut off in a 0.5 period after
the actual islanding operation.

Fig. 8 shows the simulation of an harmonic disturbance prior to
an islanding operation in order to observe whether islanding
detection is influenced, the harmonic components added in are
the third, fifth, and seventh harmonics, and the harmonic compo-
nents are 10%, 7%, and 5%, respectively, of fundamental frequency.
As shown in Fig. 8, the system has an islanding operation at about
fourth second, and the proposed ENN islanding detection method
does not result in a misjudgment, although the system was dis-
turbed by harmonics prior to the islanding operation. Fig. 9 shows
the islanding operation detection when a voltage flicker occurs,
which is formed by a 15 Hz and a 20 Hz flicker voltage and a
60 Hz standard voltage, and the actual islanding operation occurs
at about the fourth second, the controller cut off the load in the
0.5 period later on islanding operation.

5. Conclusions

This study used an extension neural network for islanding phe-
nomenon detection of a photovoltaic power generation system.
The extension neural network theory is realized by combining
the multi-variable detection methods of passive and active islan-
ding phenomenon detections. Power quality disturbances, such
as voltage swells, voltage dips, power harmonics, and voltage flick-
ers at the grid power end are also analyzed to identify whether the
abnormity at the grid power end is a power quality disturbance or
an actual islanding operation. The mentioned extension neural net-
work islanding detection algorithm is written in dynamic-link li-
brary (DLL) modules, and composed and translated by C language
supported by PSIM software package. The signals sent from DLL
are sent back to the controller to complete control of islanding
detection. Finally, the simulation results showed that the islanding
phenomenon detection method could detect islanding operations
correctly and promptly cut the load from the photovoltaic power
generation system within the set time.
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