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The main objective of this paper is to design and implement an improved intelligent state-of-health
(SOH) estimator for estimating the useful life of lead-acid batteries. Laboratory studies were carried
out to measure and record the distributed range of characteristic values in each SOH cycle for the battery
subject to cycles of charging and discharging experiments. The measured coup de fouet voltage, internal
resistance, and transient current are used as characteristics to develop an intelligent SOH evaluation algo-
rithm. This method is based on the extension matter-element model that has been modified in this
research by adding a learning mechanism for evaluation SOH of batteries. The proposed algorithm is rel-
atively simple so that it can be easily implemented with a programmable system-on-chip (PSOC) micro-
controller achieve rapid evaluation of battery SOH with precision by using a concise hardware circuit.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

For most normal lead-acid batteries, state-of-health (SOH) is
determined by measuring the usable capacity of a fully-charged
lead-acid battery. In past literature, besides direct use of the
Coulometric measurement method, there are lead-acid battery
SOH estimation approaches (Robinson, 1996), as characterized in
terminal voltage, internal resistance, operating temperature, and
the voltage phase angle, which is measured after AC current input
to batteries. However, these characteristic values generally vary
with battery aging, thus exacerbating SOH estimation. Recently,
many expert scholars suggest analysis of the coup de fouet voltage
derived at the initial discharge period of a fully-charged lead-acid
battery, and thus the SOH of a lead-acid battery could be estimated
from its trough value, plateau voltage, or occurring time (Bose &
Laman, 2000). Compared with other characteristics, the tendency
of coup de fouet plateau voltage versus battery usable capacity is
the most linear, thus, using this characteristic to estimate SOH of
battery life can achieve accuracy to some extent. There have been
many studies on the coup de fouet voltage of a lead-acid battery
(Anbuky & Pascoe, 2000; Pascoe & Anbuky, 2005), such as Prof.
Pascoe et al., which reported that lead-acid battery coup de fouet
voltage can definitely reveal the current SOH of a battery. However,
experts failed to determine a definite interpretation of such phe-
nomenon until 2006, when Prof. Delaille et al. (Delaille, Perrin,
Huet, & Hernout, 2006) reported that this was primarily a transient
ll rights reserved.
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phenomenon arising from redox reaction between a sulfuric acid
electrolyte (H2SO4) in a positive electrode container and a lead sul-
fide (PbSO4) on a positive electrode plate, in a battery unit. This
phenomenon is not restricted to occur in a fully-charged lead-acid
battery at the time of discharge moment. In fact, when maintaining
and stabilizing a lead-acid battery electrolyte for a period of time,
both charging and discharge behaviors would induce such coup de
fouet phenomenon (Delaille et al., 2006). When measuring the
coup de fouet voltage of a lead-acid battery, the charging/discharg-
ing state must be controlled for achieving the measurement condi-
tion with one accord. Therefore, it remains difficult to determine
the battery SOH simply from the coup de fouet voltage of a lead-
acid battery.

In order to improve the lead-acid battery SOH estimation accu-
racy, many studies have employed intelligent algorithms to esti-
mate the lead-acid battery life state, such as the neural network
(Kim et al., 2009; Valdez et al., 2006), fuzzy (Shen et al., 2002;
Spath, Jossen, Doring, & Garche, 1997; Wang, Wang, Lee, & Tseng,
1995) and neuro-fuzzy (Jang, 1996; Lin & Lee, 1999; Oh, Pedrycz,
& Park, 2006; Pascoe & Anbuky, 2001) algorithms, and combined
multiple characteristics representing the lead-acid battery SOH to
study the relationship between each characteristics and data of
each battery SOH, thereby improving recognition accuracy. None-
theless, data distribution of lead-acid battery SOH representative
characteristics, often appear nonlinear to battery usable capacity
throughout the battery service life. Therefore, to estimate the bat-
tery SOH from a change of battery usable capacity during the entire
lead-acid battery service life, besides considering the battery SOH
characteristics, additional testing methods must be imposed in or-
der to improve SOH estimation accuracy.
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mailto:chaokh@ncut.edu.tw
mailto:chaokh0706@yahoo.com.tw
http://dx.doi.org/10.1016/j.eswa.2011.05.084
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


15184 K.-H. Chao, J.-W. Chen / Expert Systems with Applications 38 (2011) 15183–15193
Therefore, this study conducts multiple lead-acid battery charg-
ing/discharging tests to propose a modified recognition structure
based on extension theory (Cai, 1983), so that battery SOH recog-
nition can be more accurate. Input characteristics for the proposed
estimation approach include coup de fouet plateau voltage of lead-
acid battery, internal resistance under lead-acid battery floating
charge, and the ratio of these two characteristics (i.e., coup de fouet
voltage plateau value/battery internal resistance, called transient
current). By computing the correlation degree of these three char-
acteristics with lead-acid battery usable capacity, this study can
improve the estimation accuracy of the lead-acid battery life. It
also references a recognition system based a neural network train-
ing mechanism from previous literature, takes absolute mean error
between training data and recognition results for adjustment basis
to expand/reduce the classic field of extension matter-element
model, and further modify recognition results to meet the objec-
tive of the training data, and achieve the optimum estimation
accuracy.
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2. State-of-health characteristics of lead-acid batteries

Coup de fouet voltage is a kind of transient phenomenon, when
discharging a fully-charged lead-acid battery, battery terminal
voltage would fall instantaneously at initial discharge period, and
thereafter restore to normal load voltage. As shown in Fig. 1, the
minimal voltage during transient response to coup de fouet voltage
is called trough voltage, and after trough voltage appears, battery
discharge voltage will restore to discharge voltage in loading; bat-
tery terminal voltage at this time is called plateau voltage.

The most significant indicator of lead-acid battery SOH is usable
capacity. Based on a knowing of usable capacity, one can further
estimate remaining charging/discharging cycles or sustainable
floating charge time of a lead-acid battery. According to previous
literature, lead-acid battery SOH can be categorized in terms of five
characteristics, operating temperature, internal resistance, floating
voltage, floating current, and coup de fouet voltage. When choosing
lead-acid battery SOH estimation characteristics, the following ma-
jor factors are taken into account.

2.1. Refrain from prolonged monitoring of equipment

To users, battery SOH does not require real-time estimation, but
the use of the Coulometric measurement method or prolonged
monitoring of battery operating temperature requires more mem-
ory capacity of the estimation system, which benefit neither hard-
ware volume nor cost, and prolonged estimation would impact on
battery use.
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Fig. 1. Test curve of coup de fouet voltage for a lead-acid battery.
2.2. Restriction of estimation circuit hardware

As the relationship between lead-acid battery SOH and usable
capacity is a nonlinear function, more characteristics are normally
required to estimate its usable capacity in order to improve accu-
racy. However, the more characteristics used, the more compli-
cated the estimation system, the higher the cost, and the more
restrictions in application. Therefore, how to use the fewest esti-
mation apparatus to achieve highly accurate SOH estimation re-
mains a critical research topic.
2.3. Adaptiveness of estimation approach

Usable capacity of lead-acid battery can act as a uniform indica-
tor for both battery floating life and recycle life. However, battery
floating or recycling uses variable charging/discharging methods,
therefore, if estimating SOH using a constant program testing
method while satisfying both battery application modes, then the
estimation approach would be more widely applied.

Based on the above factors, it is a good choice to select coup de
fouet voltage as the major characteristic for estimating lead-acid
battery SOH. The reason that coup de fouet voltage failed to esti-
mate lead-acid battery SOH previously is that its variation is little,
thus, error factors were too much. In other words, almost any kind
of battery application environment factor, such as current floating
voltage, previous depth of discharge, charging/discharging current
and post-charge waiting time, could all cause measurement errors.
In the implementation of a measuring system, a 10 mV scaled me-
ter and a timekeeping device can measure coup de fouet voltage,
except that the constant current discharge is difficult on a battery.
Considering the influences of various factors on coup de fouet volt-
age, this study performs 10% and 100% depth discharge on a 12V-
13Ah lead-acid battery, respectively, and adopted a 0.1 C current to
charge the lead-acid battery, allowing the charge voltage to reach
15.2 V and floating charge, then measured internal battery resis-
tance and floating voltage after 120 min waiting time, followed
by a 0.5 C current to discharge the battery for 10 min in order to
acquire its coup de fouet voltage data. The general test system
structure is shown in Fig. 2, where a programmable system on chip
(PSoC) microcontroller is the control kernel of the entire system
PSoC
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Fig. 2. Scheme of lead-acid battery coup de fouet voltage acquisition system.
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Fig. 4. Flow chart of the battery aging test.

12.3
120 100 80 60 40 20 0

Useable capacity (%)

Pl
at

ea
u 

vo
lta

ge
 (

V
)

12.35

12.4

12.45

12.5

12.55

12.6

12.65

12.7

12.75

12.8

Fig. 5. Test curve of coup de fouet plateau voltage versus usable capacity of lead-
acid battery.
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(Technical Reference Manual for All PSoC Devices with a Base Part
Number of CY8C2, XXXX), PSoC governs the battery power supply
to the electronic load for 0.5 C constant current discharge, or
charges battery by means of dual level constant current charging.
A battery tester monitored terminal voltage and internal resistance
of the lead-acid battery in real time, and transferred the informa-
tion to a PSoC microcontroller and personal computer for data stor-
age. From the battery terminal voltage, as acquired by the battery
tester, the PSoC microcontroller can determine whether the battery
is fully charged and should go to waiting time, or the discharge has
finished and the battery should be recharged.

General charging/discharging behavior of the testing system is
shown in Fig. 3, according to changes in the battery terminal volt-
age, testing system operations can be divided into three stages. The
first is a charging stage, when the battery charger is begun to per-
form a constant current charging of the battery by means of a dual
stage charge, where the charge current is set at 0.1 C (about 1.3 A).
After the battery charge voltage rises to 15.2 V, the system goes
into a waiting state, while continuing to supply 13.8 V of floating
charge voltage to the battery. The battery waiting time is set at
120 min. Thereafter, a counter in the PSoC microcontroller gener-
ates an interruption signal to end the charging action, and starts
an electronic load to perform constant current discharging of the
battery, which is set at a 0.5 C (about 6.5 A) discharge current to
test coup de fouet voltage; experimental results proved that this
test procedure can obtain a more significant coup de fouet voltage.
Finally, after discharging for 10 min at a constant current, the Cou-
lometric measurement method is used to compute the power con-
sumption in battery.

As known from specifications provided by battery manufactur-
ers, in cases of 100% depth of discharge, the lead-acid battery re-
cycle life can maintain at least 200 charging/discharging cycles.
Therefore, to speed battery aging and facilitate observations, this
study carries out multiple cycles of in-depth large current dis-
charge and rapid large current charging of batteries, throughout
a battery’s life with a discharge current of 1 C (13 A), which per-
sisted until a 5 V cutoff voltage; and a charge current of 0.5 C
(6.5 A), charging to a 15.2 V saturation voltage, followed by obser-
vations of changes in battery discharge time during aging. Accord-
ing to the Coulometric measurement method, a significantly
decreased battery discharge time indicates that battery usable
capacity is varied. Next, characteristic value acquisition tests are
run on the coup de fouet voltage, as mentioned above. Fig. 4 shows
the flow chart of battery aging tests. Throughout an entire battery
life, 14 coup de fouet voltage measurement tests are employed,
with the Coulometric measurement method running battery
usability capacity tests. Fig. 5 shows the test curve of battery
usable capacity versus coup de fouet plateau voltage. Fig. 6 shows
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Fig. 6. Test curve of transient current versus usable capacity of lead-acid battery.
the test curve of battery usable capacity versus battery transient
current. Fig. 7 shows the test curve of battery usable capacity ver-
sus battery internal resistance in the floating stage. As shown in
Figs. 5–7, compared with other characteristics, the relation be-
tween coup de fouet plateau voltage and battery usable capacity
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Fig. 7. Test curve of internal resistance versus usable capacity of lead-acid battery.
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Fig. 8. Data distribution of 14 tests on usable capacity over battery service life.

0

Value (V)

Matter-element
R=(N,C,V)

Characteristic (C)

Name (N)

Fig. 9. Illustration of matter-element space.

15186 K.-H. Chao, J.-W. Chen / Expert Systems with Applications 38 (2011) 15183–15193
is the most linear. Therefore, if using coup de fouet plateau voltage
as the main characteristic of estimating lead-acid battery SOH,
higher estimation accuracy should be attained.

Among 14 tests of usable capacity throughout a lead-acid bat-
tery’s service life, the capacity results shown in Fig. 8 have a con-
tinuous descending function with increased use time and
charging/discharging cycles. To facilitate computing and compari-
son of estimation results, percentage% is universally used in this
study to represent battery usable capacity, that is, the rated capac-
ity (e.g., 10 Ah) marked by the battery manufacturer is deemed
100% of the usable capacity. If total discharge results in half of ori-
ginal rated capacity (5 Ah) after battery aging, then the usable
capacity is deemed as 50%. If using such usable capacity percentage
to represent lead-acid battery SOH, then battery usable capacity
test results would be between 10% and 110% in any category of
battery SOH.

3. Modified recognition structure based on extension theory

If phenomena of life are referred to as the ‘‘matter’’, to differen-
tiate the matters, they must be named. Each matter has its corre-
sponding characteristics, and these characteristics have
corresponding values; therefore, elements describing a matter in-
clude the matter name, characteristic, and characteristic value. In
the extension theory (Cai, 1983), these three basic elements consti-
tute a matter-element, composed of N (name), C (characteristic),
and V (value of characteristic) of any given matter, thus, a mat-
ter-element mathematical formula can be expressed as in (1)

R ¼ ðN;C;VÞ: ð1Þ

According to the relation between matter-element, characteristic,
and value, V = C(N), (1) can be expressed as:
R ¼ ðN;C;CðNÞÞ: ð2Þ

According to the matter-element theory, the matter-element it-
self not only has a single characteristic, as shown in (1), if the mat-
ter-element contains an n-dimensional characteristic vector
C = [C1, C2, . . . , Cn], then the corresponding characteristic vector
should be expressed as V = [V1, V2, . . . , Vn]. As shown in (3), the
state-of-health of a 12 V–13 Ah lead-acid battery, as studied in this
paper, is represented by a matter-element model, the matter name
is battery life or usable capacity%, the characteristic vector is [C1:
coup de fouet plateau voltage Vplateau, C2: internal resistance Rin,
C3: instantaneous current (Vplateau/Rin)], and the corresponding
characteristic vector values are [12.74 V, 40.38 mX, 1.02 kA].
Fig. 9 is an illustration of the matter-element combination charac-
teristics represented in 3D space, where matter name N, character-
istic C, and value V correspond to x, y, z-axes, respectively, each
combination is represented in space coordinates, and the three
axes are extended to the matter-element space

R ¼ ðN;C;VÞ ¼
N C1 V1

C2 V2

C3 V3

2
4

3
5

¼
Usable capacity % Vplateau 12:74 V

Rin 40:38 mX
Vplateau=Rin 1:02 kA

2
4

3
5: ð3Þ

In practice, the application of the extension theory should be
realized by an appropriate mathematical tool. The extension eval-
uation method is based on two terms, an ‘‘extension set’’ and the
‘‘correlation function,’’ which are applied with practical estimation
rules (Cai, 1983). Its main idea is to divide matter into some cate-
gory sets, which are determined according to data accumulated in
various experiments, and then allow a database or an expert to
comment on the data range of each category set, and then substi-
tute the assessment data into each category data range in order to
compute the correlation degree. Evaluated results are compared in
terms of correlation degree of each category set, the greater the
correlation degree, the greater consistency of the assessment data
in the category sets. The specific evaluation steps are as follows:

Step 1: Define classical field and joint field.

If matter R can be divided into j categories, denoted by Rj, and n
characteristic matrices C represent this matter, then, the character-
istic spread is called Xp, and P is the defined set in all characteristic
spreads in j categories, XPi can be defined as all probable numerical
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ranges arising from each ith characteristic, and aPi and bPi, respec-
tively, denote the probable maximum and minimum numerical
ranges arising from each ith characteristic. Hence, the joint field
RP of such matter can be defined as shown in (4)

Rp ¼ ðP;C;XpÞ ¼

P C1 XP1 ¼ haP1 ; bP1i
C2 XP2 ¼ haP2 ; bP2i
..
. ..

.

Cn XPn ¼ haPn ; bPni

2
66664

3
77775: ð4Þ

In joint fields, numerical sets with matter R divided into j cate-
gories, are called classical fields, where Nj represents the individual
characteristic range of the j category sets, Ci denotes the ith charac-
teristic of this category, Xji denotes the input data spread of the ith
characteristic in the jth category, and aji and bji represent the max-
imum and minimum of this characteristic input of the j categories,
respectively, this range is defined as the classical field of the ith
characteristic in the jth category. Where, Yji is the output data
spread of the ith characteristic in the jth category, and cji and dji

represent the maximum and minimum of this characteristic out-
put in this category, respectively, thus, it is deemed as an output
classical field of testing data. Hence, the jth classical field Rj is de-
fined for this matter, thus, a matter R can be divided into joint field
RP and j classical fields Rj, as shown in (5)

Rj ¼ ðNj;C;Xj;YjÞ ¼

Nj C1 Xj1 ¼ haj1; bj1i Yj1 ¼ hcj1; dj1i
C2 Xj1 ¼ haj1; bj1i Yj1 ¼ hcj1; dj1i

..

. ..
. ..

.

Cn Xjn ¼ hajn; bjni Yjn ¼ hcjn; djni

2
66664

3
77775
ð5Þ

Taking the curve of coup de fouet plateau voltage versus usable bat-
tery capacity, shown in Fig. 5, as an example; when battery usable
capacity falls from 90% to 100%, the relationship between usable
capacity and plateau voltage is linear. Therefore, according to (5),
plateau voltage range is set within the interval of (12.69–12.74 V),
and denote the upper bounds and lower bounds of classical field
X11, at the input end of category R1 (i.e., battery usable capacity in-
put data spread of the 1st characteristic in the 1st category), and
sets the corresponding usable capacity range of (90–100%) as the
upper bounds and lower bounds of classical field Y11, at output
end of category R1. In Fig. 5, four categories of classical fields (i.e.,
divided into four linear regions) are built according to linearity be-
tween usable battery capacity and plateau voltage, the plateau volt-
age at 110% usable battery capacity is even lower than that at 90%
usable capacity. Then, if classifying 110% usable capacity as cate-
gory R1, the input ends of classical fields category R1 and category
R2 will overlap, leading to estimation errors; thus, it is more appro-
priate to classify it as category R2, according to the plateau voltage
at 110% usable capacity. According to (5) and numerical spread lin-
earity, the above three characteristics can be built into an extension
matter-element model, where joint field RP, input classical field Xji,
Table 1
Matter-element model of lead-acid battery at variable state-of-health.

R1 R2

N1 C1 h12:69;12:74i h90;100i
C2 h13:13;40:38i h83;110i
C3 h0:38;1:02i h83;110i

2
4

3
5 N2 C1 h12:64;12:67i h62; 110i

C2 h27:40;41:21 > h63; 90i
C3 h0:32; 0:47i h71; 76i

2
4

3
5

R3 R4

N3 C1 h12:58;12:66i h51;63i
C2 h46:16;47:46i h51;55i
C3 h0:258;0:307i h39;90i

2
4

3
5 N4 C1 h12:36;12:51i h15;39i

C2 h40:13;48:47i h15;62i
C3 h0:25;0:304i h15;62i

2
4

3
5

Rp

Np C1 Xp1 ¼ h12:36;12:74 >
C2 Xp2 ¼ h13:13;48:47 >
C3 Xp3 ¼ h0:25;1:02 >

2
4

3
5

and output classical field Yji, of each characteristic, are listed in
Table 1, respectively.

Step 2: Determine assessment matter-elements.

A group of characteristic values within matter-element R is
called assessment matter-element of matter R; if this matter-
element has n characteristics, then this matter-element can be
represented by:

R ¼ ðq;Ci;xiÞ ¼

q C1 x1

..

. ..
.

Ci xi

..

. ..
.

Cn xn

2
666666664

3
777777775
; ð6Þ

where, q denotes this group of characteristic values, and xi denotes
the value of Ci, and the ith characteristic of q, or specific data ob-
tained from tests of assessment matter, thus, matter R can have
multiple groups of characteristic q values.

Step 3: Determine weighting factor.

The importance of each characteristic Ci to matter R is called the
weighting factor wi; which is expressed by a value of 0–1, accord-
ing to its importance, and the sum is 1, that is:

Xn

i¼1

wi ¼ 1: ð7Þ

Step 4: Determine correlation degree of assessment data of each
category.

3.1. Computing distance

Distance refers to the difference between the distance of one
characteristic value xi, taken from the center point of joint field
RP of this characteristic (or each classical field Rj), and the distance
from center of gap between the upper and lower bounds of the
joint field RP (or classical field Rj); therefore, the distance of charac-
teristic value xi from joint field RP can be defined as:

qðxi;XpiÞ ¼ xi �
api þ bpi

2

����
����� bpi � api

2
: ð8Þ

The distance of the characteristic value xi from each classical field Rj

is defined as:

qðxi;XjiÞ ¼ xi �
aji þ bji

2

����
����� bji � aji

2
: ð9Þ
3.2. Computing correlation function

After computing distance, the correlation function can be com-
puted; the correlation function kj(xi) depicts the membership of
each characteristic of assessment matter q with respect to assess-
ment category j. The computational method of correlation function
kj(xi), listed in (10), contains the initial classification of the test
data; or, if the classical field distance calculated from (9), is greater
than 0, then it indicates that the test data are not completely with-
in the range of this state-of-health (SOH). In cases where the joint
field distance is the same as the distance of the classical field, it
indicates that the correlation function value approximates to infin-
ity, and cannot be resolved; however, the correlation function for
this case, and the case of a classical field distance below 0, can
be computed. After computing the correlation function of the test-
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ing data through (10), the correlation function Kj(xi) of each charac-
teristic, for each category of test data, can be obtained:

kjðxiÞ ¼

�qðxi ;XjiÞ
jXji j

;qðxi;XjiÞ ¼ qðxi;XpiÞ
or qðxi;XjiÞ < 0

�qðxi ;XjiÞ
qðxi ;XjiÞ�qðxi ;XjiÞ

;qðxi;XjiÞ– qðxi;XpiÞ:

2
6664 ð10Þ

Using the extension correlation function formula in (10) to
compute the correlation function of each characteristic value xi of
this matter-element, the relationship between characteristic value
xi and extension correlation function kj(xi) is shown in Fig. 10. As
seen, when the characteristic value is nearer the center point of
classical field Rj, then the obtained correlation function kj(xi) is
more approximate to 1, and if the characteristic value is not within
the classical field range, the derived correlation function will be
negative. Therefore, in the structure of the extension theory, the
correlation function kj(xi) indicates the degree of each characteris-
tic value belong to an interval.

If expanding number of classical field of this matter Rj to m, then
classical field of this matter can be represented by

Rm ¼ ðNm;C;Xm ¼ ham;bmiÞ: ð11Þ

Similarly, using (10) to depict the relationship between the charac-
teristic value and the correlation function of each classical field as
shown in Fig. 11. As seen, characteristic value xi produces the corre-
lation function kj(xi) for each classical field Xj, and every correlation
function kj(xi) varies with the distance of characteristic value xi, as
taken from the center of classical field Xj. According to the correla-
tion function value, the extension theory determines the correlation
degree between each output category j and input characteristic va-
lue xi.

The mapping relationship between input characteristic data xi

and output category j is shown in Fig. 12, where the columns in
3D space represent the relationship between input characteristic
xi, output category j and correlation function kj(xi). Input character-
istic xi on axis-X and output category j on axis-Y form the X–Y
xi

kj(xi)

0

-1
jia

jib

Pia Pib

1

Fig. 10. Relationship curve of characteristic value versus correlation function.

kj(xi)

xi
0

1ia 1ib2ia 2ib a b

j=1 j=2

mi mi

j=m

Fig. 11. Relationship between characteristic value xi and m categories of correlation
functions.
plane, the axis-Z vertical to the plane represents corresponding
correlation function kj(xi) for each point on X–Y plan. The X–Z
display is according to the curve of input characteristic data versus
the correlation function, as shown in Fig. 11. In Fig. 12, matter-ele-
ment is divided into three categories (or j = 3), if there is only one
characteristic, then matter-element model is represented by:

R1 ¼ ðN1; C1; X11 ¼ h1;3iÞ;
R2 ¼ ðN2; C1; X21 ¼ h2;4iÞ;
R3 ¼ ðN3; C1; X31 ¼ h3;5iÞ;
Rp ¼ ðP C1; Xp ¼ h0;6iÞ:

ð12Þ

When input xi is 2, the obtained three categories of correlation func-
tion values kj(xi) will be:

k1ð2Þ ¼ 1; k2ð2Þ ¼ 0:5; k3ð2Þ ¼ �1=3: ð13Þ

Similarly, when input xi is 4, the obtained three categories of corre-
lation function values kj(xi) will be:

k1ð4Þ ¼ �1=3; k2ð4Þ ¼ 0:5; k3ð4Þ ¼ 1: ð14Þ

If xi is 2, the drawn curve of Y–Z plane will be shown in Fig. 13,
as known from comparisons with Fig. 11, j categories of a matter
can generate j-dimensional extension correlation function kj(xi),
and by mapping this j-dimensional extension correlation function,
a two-dimensional space can be obtained based on category j. In
the conventional extension theory, the basis j for the maximum
correlation function value in such 2D space is regarded as the esti-
mated category. Further study of the curve of input on axis-X
(characteristic) versus output on axis-Y (category), as shown in
Fig. 12, finds that as input xi on axis-X changes, the mapped output
on axis-Y also varies continuously with correlation function kj(xi).
Therefore, if giving a data range for an output end category, then
the estimated output category can be computed from correlation
j0

1

1 2 3

-1/3

0.5

j ik (x =2)

Fig. 13. Relationship between correlation function and matter-element category j.
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function kj(xi), as shown in Fig. 13, and obtain continuous output
category estimations, which vary with input data. If there are mul-
ti-dimensional characteristics in the matter-element, then the cor-
relation function for each characteristic can be obtained by the
same method as above. From the value of the correlation function
of each characteristic, the estimation of each corresponding output
category can be computed.

Step 5: Compute the correlation degree.

The computed correlation function kj(xi) is multiplied by the
weight of the characteristic with respect to category, and summed
to obtain a correlation degree of each assessment category, kj.
Then, from (15), obtain category j attributed to the maximum cor-
relation degree for test data categories, such category is the assess-
ment result of the conventional extension theory (Cai, 1983)

maxðkjÞ ¼max
Xn

i¼1

wi � kjðxiÞ
 !

; j ¼ 1;2; . . . ;m: ð15Þ

To make the output estimation result continuous, as shown in
Fig. 10, if the characteristic value is nearer the center point of the
classical field, then its correlation function is more approximate
to 1. Therefore, by using the center point of classical field Yji, at
the output end and range of classical field Yji in (5), then more def-
inite output values can be computed from each category of corre-
lation function kj(xi). The correlation function of the output layer
can be derived from the maximum correlation function 1 minus
category correlation function kj(xi), and that can be expressed as:

kout
j ðxiÞ ¼ 1� kjðxiÞ: ð16Þ

After the computation of (16), the relationship between the out-
put category and the output layer correlation function kout

j ðxiÞ is
shown in Fig. 14. The value of category j corresponding to mini-
j
0

1

( )out
j ik x

min( ( ))out
j ik x

Fig. 14. Relationship curve of output layer correlation function versus matter-
element category j.

0

1

( )out
j ik x

jic
jid

outi

jiY

Fig. 15. Relationship curve of output layer correlation function versus output
classical field.
mum of the derived output layer correlation function kout
j ðxiÞ acts

as a basis of output computation. By computing the output range
by (17), the explicit output data outi can be obtained. The curve
of the output layer correlation function kout

j ðxiÞ versus the data
range of output category j, as shown in Fig. 15

outi ¼
cji þ dji

2

� �
� dji � cji

2
� kout

j ðxiÞ �
m
jmj ; ð17Þ

where m¼D xi �
ajiþbji

2 is the distance of the test data from the center
point of the classical field, and the symbol ‘‘±’’ in (17) can be deter-
mined by the slope of a linear equation derived from testing data
versus the usable capacity curve by the first order of linear regres-
sion. If a matter possesses n characteristics, then the estimation re-
sult of each characteristic obtained from (17) can be multiplied by
the weighting factor of (7), and then summed to obtain the recogni-
tion results in (18)

out ¼
Xn

i¼1

wi � outi: ð18Þ
4. Extension evaluation method with learning mechanism

To improve the lead-acid battery SOH estimation accuracy, this
paper proposes an extension supervised training system with a
learning mechanism, as shown in Fig. 16. The recognition structure
in Fig. 16 only shows the ith characteristic Ci of the jth category
matter-element Rj, where the input classical field range is Xji =
haji, bjii, while the output classical field range is Yji = hcji, djii. The
curve of characteristic Ci input, in, versus the output estimation,
outt

i ; is as shown on the top left of Fig. 16. In the center of the fig-
ure, characteristic Ci input, in, changes from 0 to 1, and the curve
of the input data versus correlation function kji (in) is derived from
(10). The top right of the figure is the curve of the output layer cor-
relation function kout

ji ðinÞ; versus output category numerical range
Yji, and obtained from (16) and (17). If input in is exactly equal to aji

or bji, then output outji, after recognition in (17), will be cji and dji. In
this paper, training data is represented by T = {T1, T2, . . . , Tnp},
where np is the total of the training data, thus, the matter-element
model for the ith training data can be defined as:

Ti ¼ ðouti;Ci;X
t
i Þ ¼

outt
i C1 xt

1

C2 xt
2

..

.

Cn xt
n

2
66664

3
77775; i ¼ 1;2; . . . ;np ð19Þ

where outt
i is the known output of the said training data of the

supervised learning procedure, and Ci is the matrix of the n charac-
teristics of the matter-element, and Xt

i is the value of Ci for n char-
acteristics of the training data. After building the matter-element
model in Table 1 through (5), we can train according to the pro-
posed structure, and further adjust the output classical field range
till optimum. The adjustment procedure is, input the ith training
data into the recognition structure of Fig. 16, and compare recogni-
tion results outi with the known would-be outt

i to obtain recognition
error e, then, adjust the classical field of output Yji, in order that
outt

i ¼ out. An example is presented below to describe the learning
procedure of the supervised training system constructed by this
study; suppose two training data, T1 and T2, are defined as:

T1 ¼ ðout1; C1; xt
1Þ ¼ ðc þ 1; C1; aÞ;

T2 ¼ ðout2; C1; xt
1Þ ¼ ðd; C1; bÞ;

ð20Þ

where T2 input xt
1 ¼ b, and from the recognition structure shown in

Fig. 16, the result is estimated as out2 = d, and is compared with
known output T2 outt

2 ¼ d, to obtain error e ¼ out2-outt
2 ¼ 0. Regard-
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ing T1 input xt
1 ¼ a, it is estimated from the recognition structure in

Fig. 16 to obtain out1 = c, and then the known output of T1,
outt

1 ¼ c þ 1, is compared to obtain its error e = 1. Multiplying this
error e by the learning rate (g), and adjusting through (21), to adjust
the classical field output range Y11, and further changes the output
estimation
a b
in

T1

cji,old=c

cji,new=c+1

Fig. 18. Curve of input versus output in recognition structure before and after
training.

Table 2
14 sets of training data on lead-acid battery SOH built on experiment.

T1 T2 T3
t

2 3
t

2 3
t

2 3
cji;new ¼ cji;old � e� g
dji;new ¼ dji;old � e� g:

ð21Þ

Adjustment of output classical field in training is shown in
Fig. 17. Because error e = 1 for recognition result of training data
T1, lower bound of the output classical field is adjusted by (21).
The training system calculates a new lower bound for output clas-
sical field cij,new = c + 1, therefore, the final recognition result of
training data T1 is, out1 = c + 1 = outt

1, where output error e = 0. It
indicates that the output has been changed to the known output
of the training data by adjusting the output classical field. Finally,
repeat input training data into the training procedure until output
recognition results are obtained for all training data, outi, thus,
meeting its target outt

i ; then the (21) derived output classical field
range will no longer be changed, indicating that the recognition re-
sult has been optimized at this time. Fig. 18 shows the curve of in-
put in versus the estimated output out, both before and after
training procedures are completed. The corresponding recognition
result of input of training data T1 has been changed from the origi-
nal c to c + 1 after the training procedure, and the recognition error
out
d

1

kout(in)
T1 T2

cji,newcji,old= =

c c+1

Before learning
After learning

Fig. 17. Illustration of output classical field adjustment during training.
e falls from 1 to 0. It indicates that the output classical field range
Y11, and its corresponding training data, are optimized after train-
ing procedure adjustments.

Therefore, according to the definition of the matter-element
theory, (19) can be used to represent 14 sets of training data built
from the characteristic data of a lead-acid battery in various SOH,
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Table 3
Optimal training learning rate for each characteristic.

C1: Plateau
voltage

C2: Internal
resistance

C3: Transient
current

Average absolute error
(before training)

8.2% 11.3% 12.38%

Best learning rate (g) 3.4 1.07 3.36
Average absolute error

(after training)
4.03% 8.02% 7.5%

Convergence times of
learning error

1 4 2
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Fig. 19. Optimal weight combinations selected for plateau voltage and internal
resistance in various regions.
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Fig. 20. Estimation result of lead-acid battery SOH before and after training.
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and details of each set of data are listed in Table 2. Then, these 14
sets of test data are inputted into the training procedure, and train
classical field Yji for three output characteristics. The general struc-
ture of the training procedure is shown in Fig. 16, where (10) is
used to compute the correlation function kj(xi) of the jth category
for the three characteristics of training data, respectively. And from
(16) and (17), the output layer correlation function kout(xi) can be
computed to further know the value of output category outi. Thus,
by comparing characteristic output outji with the known output
category of training data outt

ji; their error e can be obtained, and
by adjusting the output classical field range through (21), the esti-
mation result of each characteristic outji is changed. The comple-
tion of one training cycle is indicated upon inputting the 14 sets
of training data into the training procedure shown in Fig. 16. None-
theless, in actual training procedures of a matter-element model,
training data is repeatedly input into the training system, and
training procedures will be stopped only when the estimation error
of each characteristic e is less than the preset target, or the training
cycles are more than the maximal preset number of cycles.

In (21), the output classical field of the matter-element model is
adjusted. The estimating error e was used to determine the in-
crease and decrease of the classical field. Nevertheless the learning
rate g influences the output error convergence rate and estimation
accuracy. A faster learning rate can speed the convergence of out-
put errors, but estimation accuracy would decrease. Alternatively,
a slower learning rate enables greater error convergence accuracy,
but learning cycles and time will be greatly increased. Thus, the
learning rate setting is another key factor of the training proce-
dures. In this paper, there are 500 learning rates for each character-
istic, learning rate g is scaled at 0.01, between 0 and 5. They are
input into the proposed recognition structure for training. The
mean absolute error of minimal estimation errors obtainable from
the 14 sets of training data of each learning rate are recorded, and
the mean absolute error me is defined as:

me ¼

Pn
i¼1
jouti � outt

i j

n
: ð22Þ

Mean absolute errors, optimal learning rates, and error convergence
rates obtained from the training data of the three characteristics, C1
Table 4
Matter-element model for lead-acid battery SOH estimation a

R1

N01 C1 h12:69;12:74i h90;100i
C2 h13:13;40:38i h78:2;110i
C3 h0:38;1:02i h90;110i

2
4

3
5

R3

N03 C1 h12:58;12:66i h51;62i
C2 h46:16;47:46i h51;62i
C3 h0:258;0:307i h55;63i

2
4

3
5

RP

NP C1 XP1 ¼ h12:36;12:74i
C2 XP2 ¼ h13:13;48:47i
C3 XP3 ¼ h0:25;1:02i

2
4

3
5

(plateau voltage), C2 (internal resistance), and C3 (instantaneous
current), are tabulated in Table 3. The matter-element model built
after training, as shown in Table 4, as compared with the empiri-
cally built matter-element model in Table 2, recognition accuracy
of the output classical field range has been greatly improved after
appropriate adjustments.

After finishing training procedures of the matter-element
model, and according to the test results of the training data, this
study employed (18) to select one of four weighting factor combi-
nations, as shown in (23), and chose one of the best four weights
according to the spread of the test characteristic values of C1 (pla-
teau voltage) and C2 (internal resistance), the ranges of the best
four weights are shown in Fig. 19

W1 ¼ hw1 ¼ 0:1; w2 ¼ 0:8; w3 ¼ 0:1i
W2 ¼ hw1 ¼ 0:8; w2 ¼ 0:1; w3 ¼ 0:1i
W3 ¼ hw1 ¼ 0:6; w2 ¼ 0:1; w3 ¼ 0:3i
W4 ¼ hw1 ¼ 0:1; w2 ¼ 0:1; w3 ¼ 0:8i:

ð23Þ
fter training by a system with a learning mechanism.

R2

N02 C1 h12:64;12:67i h63;82:06i
C2 h27:4;41:21i h74:7;73:5i
C3 h0:32;0:47i h71;83i

2
4

3
5

R4

N04 C1 h12:3;12:51i h15;39i
C2 h40:13;48:4i h36:2;42:1i
C3 h0:25;0:30i h15;121i

2
4

3
5



Table 5
Comparison of recognition errors of various estimation approaches at variable disturbing quantity.

Estimation method Existed extension neural Network (Wang, 2003; Wang & Ho,
2005)

The proposed modified extension method with a learning
mechanism

Classical field numbers 4 4
Data numbers 14 350 350 14 350 350
Random disturbance of joint field ±0% ±5% ±10% ±0% ±5% ±10%
Average absolute error (me) 9.07% 10.5% 11.91% 2.15% 5.95% 8.01%
Maximun error (emax) 35% 35% 60% 7.04% 20.45% 29.5%
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Taking the characteristic data of 110% usable battery capacity as
an example; as seen from Fig. 5, the plateau voltage of 110% usable
battery capacity is 12.67 V; and as seen from Fig. 7, the battery
internal resistance of 110% usable battery capacity is 13.29 mX.
In the interval of 90–110% usable battery capacity, the curve of bat-
tery internal resistance versus usable capacity is more linear than
the curve of plateau voltage versus usable capacity. Therefore, if
estimating usable capacity from plateau voltage and internal resis-
tance, respectively, the recognition error from internal resistance
must be smaller, if giving greater weight w2 to characteristic C2

(internal resistance), or choosing W1 in weight combinations from
(23), then the accuracy of the estimation results derived from (18)
must be higher. Therefore, when the plateau voltage input into the
estimation program is greater than 12.67 V, we can see whether
internal resistance is less than 20 mX to determine whether giving
greater weight, W1 (i.e., w1 = 0.1, w2 = 0.8, w3 = 0.1), to characteris-
tic C2 (internal resistance), or giving greater weight, W2 (i.e.,
w1 = 0.8, w2 = 0.1, w3 = 0.1), to characteristic C1 (plateau voltage).
The estimation program can determine the weight combination
according to the characteristics of test data, and the three charac-
teristics adopted by the estimation program can be combined
according to linearity with the estimation result, in order to im-
prove general estimation accuracy.

According to (18), the estimation results of each characteristic
are multiplied by their weight, and summed, thus, estimation re-
sults of the three characteristics can be combined to obtain the rec-
ognition result out. In this paper, the curve of the number of tests of
the 14 sets of training data over an entire battery service life, ver-
sus the usable capacity, is drawn in Fig. 20, and estimation results
of each group of data, both before and after training, are listed in
the figure to facilitate comparison. In Fig. 20, the absolute mean
error between the estimation results of the untrained matter-
element model in Table 1 and test data is 8.43%, while the absolute
mean error of estimation results of the trained matter-element
model in Table 4 falls to 2.15%. Therefore, it proves that the train-
ing system proposed in this paper can optimize the training data
matter-element model, and improve its recognition accuracy.

5. Test results of lead-acid battery SOH

To validate the recognition accuracy and robustness of the pro-
posed lead-acid battery SOH estimation approach, according to the
joint field range in the matter-element model, 5% and 10% disturb-
ing quantity were added to the 14 sets of training data built in this
study to obtain 350 sets of test data. The test data disturbing quan-
tity is defined as:

xi ¼ xt
i þ rand� ðdpi � cpiÞ � h5%;10%i; ð24Þ

where ‘‘rand’’ represents the random function in h�1, 1i made by
random number generator, while dpi and cpi are the upper and lower
bounds of the joint field of each matter-element model, respec-
tively. According to the trained matter-element model in Table 4,
(17) can be used to estimate usable battery capacity from 350 sets
of test data under various disturbing quantities, and used (22) to
compute absolute mean errors of the estimation results and usable
capacity of the known testing data, as listed in Table 5 for compar-
ison. As shown in Table 5, when disturbing quantity of characteris-
tic values is increased to ±10%, the absolute mean error of the
proposed modified extension method with a learning mechanism
is about 8.01%, which is better than the 8.43% estimation accuracy
of an untrained matter-element model. By setting an appropriate
learning rate, the proposed method can greatly reduce training cy-
cles, just four cycles of learning procedures; at most, can optimize
the range of the matter-element model, giving it about ±10% noise
resistance to input characteristic data. Hence, estimating the lead-
acid battery SOH using a modified extension method with a learn-
ing mechanism proposed in this paper has better accuracy than
other methods. And as the proposed approach applies a correlation
function to map output values, the testing data classification cate-
gories become fewer, memory required for recognition system is re-
duced, thus, estimation rate is improved. As to results of recognition
on the same test data, resulted from previously used extension neu-
ral network (ENN) recognition methods (Wang, 2003, 2005; Wang
& Ho, 2005), as seen in Table 5, the existed extension neural net-
work fails to output the respective input data continuously. There-
fore, given the same amount of classical fields, recognition accuracy
falls greatly by adopting the ENN method, especially in cases of
measuring error disturbing quantities when the recognition error
is significant. This also highlights the merit of the proposed method
in this paper.

6. Conclusions

This paper proposed a modified extension method with a learn-
ing mechanism. When estimating the state-of-health of a lead-acid
battery, given the same amount of classical fields, the proposed
method can improve lead-acid battery state-of-health estimation
accuracy, as compared with the conventional extension theory
and extension neural network. Furthermore, for the supervised
learning system composed of the proposed modified extension
theory and learning mechanism, only the classical fields of various
categories of matter-element models are required to optimize out-
put recognition from the training data. With more learning data,
future studies can build a more adaptive matter-element model,
making the estimation system even more robust.
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