
N
m

S
a

b

c

a

A
R
R
A
A

K
D
P
F
M

1

t
t
n
r
i
a
w
o
c
b
(
c
m
a
p
i

0
d

The Journal of Systems and Software 84 (2011) 1638– 1651

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

ew and efficient knowledge discovery of partial periodic patterns with multiple
inimum supports

hih-Sheng Chena, Tony Cheng-Kui Huangb,∗, Zhe-Min Linc

Department of Information Management, National Chin-Yi University of Technology, No.57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 411, Taiwan, ROC
Department of Business Administration, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi, Taiwan, ROC
Department of Information Management, Tatung University, No.40, Sec. 3, Zhongshan N. Rd., Taipei City 104, Taiwan, ROC

 r t i c l e i n f o

rticle history:
eceived 20 June 2009
eceived in revised form 11 April 2011
ccepted 12 April 2011
vailable online 22 April 2011

eywords:
ata mining
artial periodicity
P-tree

a b s t r a c t

The problem of mining partial periodic patterns is an important issue with many applications. Previous
studies to find these patterns encounter efficiency and effectiveness problem. The efficiency problem is
that most previous methods were proposed to find frequent partial periodic patterns by extending the
well-known Apriori-like algorithm. However, these methods generate many candidate partial periodic
patterns to calculate the patterns’ supports, spending much time for discovering patterns. The effective
problem is that only one minimum support threshold is set to find frequent partial periodic patterns but
the results is not practical for real-world. In real-life circumstances, some rare or specific events may occur
with lower frequencies but their occurrences may offer some vital information to be referred in decision
making. If the minimum support is set too high, the associations between events along with higher
ultiple minimum supports and lower frequencies cannot be evaluated so that significant knowledge will be ignored. In this study,
an algorithm to overcome these two problems has been proposed to generating redundant candidate
patterns and setting only one minimum support threshold. The algorithm greatly improves the efficiency
and effectiveness. First, it eliminates the need to generate numerous candidate partial periodic patterns
thus reducing database scanning. Second, the minimum support threshold of each event can be specified
based in its real-life occurring frequency.
. Introduction

The problem of mining periodic patterns is one of the impor-
ant issues in data mining. Its purpose is to discover regularity in
ime series data or sequence data. Finding periodic patterns is a sig-
ificant task with many business applications, such as tracing the
egularities of companies’ stock prices rising every week, reorder-
ng points in inventory management happening in every month,
nd analyzing the sales volumes of sales promotions made every
eekend. Han et al. (1998) divided periodic patterns into two types

f patterns, full periodic and partial periodic patterns. The former
onsiders that every point in the period contributes to the cycle
ehavior of the time series, such as all the hours (days) in a day
year). According to the latter, some but not all points in the period
ontribute to the cycle behavior of the time series. Yang et al. (2001),
oreover, divided the task of mining periodic patterns into support
nd information models. The former is concerned with whether a
attern is frequent, whereas the latter explores whether a pattern

s expected to occur frequently based on some prior knowledge or

∗ Corresponding author. Tel.: +886 5 2720411x34319; fax: +886 5 2720564.
E-mail address: bmahck@ccu.edu.tw (T.C.-K. Huang).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.04.022
© 2011 Elsevier Inc. All rights reserved.

by chance. Since using the support model to mine partial periodic
patterns is more popular in business applications, the supportive
move will be made in the following section.

Han et al. (1998) were the first to apply an Apriori-like algo-
rithm to find partial periodic patterns. To efficiently mine partial
periodic patterns, Han et al. (1999) explored the max-subpattern
hit set property. However, the max-subpattern hit set algorithm
proposed by Han et al. (1999) may lead to two issues, efficiency
and effectiveness problems, which will be discussed below.

Originally, the Apriori-like algorithm (Agrawal and Srikant,
1994) adopted a candidate generation-and-test strategy. First, it
finds the frequent itemsets by scanning the database, and calculates
the occurrences of itemsets. If the occurrence of an itemset exceeds
a given threshold, called minimum support, the itemset can be
defined frequent (i.e. large). Afterwards, all frequent itemsets are
treated as seeds to generate the candidate itemsets in the next pass.
The other candidate itemsets are generated and tested iteratively to
find the complete frequent itemsets. If there are no frequent item-
sets to generate candidate itemsets in the next pass, the algorithm is

terminated. In summary, this type of the algorithm leads problems
of efficiency because the Apriori-like approach generates numerous
candidate patterns and the procedure is time-consuming. Fortu-
nately, Han et al. (2000) proposed a new data structure, FP-tree, and

dx.doi.org/10.1016/j.jss.2011.04.022
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:bmahck@ccu.edu.tw
dx.doi.org/10.1016/j.jss.2011.04.022

ems a

a
e
i

o
f
w
n
l
t
r
g
m
o
s
a
i
t
t
a
p
r
b
f
b
p
i
e
p
p
i
p

(
f
e
a
p
s
e
M
o
m
t
s

t
t
a
p
6

2

w
(
r
S
s

2

T

S.-S. Chen et al. / The Journal of Syst

n algorithm, FP-growth, by mining frequent itemsets to avoid gen-
rating any candidate itemsets. The performance of their algorithm
s more efficient than that of the Apriori-like algorithm.

Traditionally, the problem of mining partial periodic patterns
nly considers setting one minimum support threshold (min sup)
or all events. Using the single min sup implies that all events occur
ith similar frequencies in the database. However, this approach is
ot workable in practical applications because there may be prob-

ems with effectiveness. The set of example events representing
he stock statuses includes rising dramatically, rising marginally,
emaining unchanged, falling marginally or falling dramatically. In
eneral, the stock price rises marginally, remains unchanged or falls
arginally very frequently; however it seldom rises dramatically

r falls dramatically. For instance, a company has different daily
tock prices each week. The stock price of the company is defined
n “event” observed and a week is defined as a “period”. Event a
s set as rising marginally and event b is falling dramatically. Addi-
ionally, event a occurs four times on Mondays and event b occurs
wice on Fridays during the 5-week observations period. Tradition-
lly, the minimum support is set at 80% and only a partial periodic
attern, event a, is found. Event b will be ignored, because its occur-
ence fails to exceed the 80% threshold. However, the relationship
etween events a and b within this period will not be found. There-
ore, valuable information will not be provided for making worthy
usiness investments. If a lower min sup is set for event b, the
roblem of detecting event b can be remedied. But, many mean-

ngless frequent patterns may be found and causes the combination
xplosion problem. To solve the rare item problem, Liu et al. (1999)
roposed a model allowing users to specify multiple minimum sup-
orts to reflect different natures and frequencies of items (events

n our study). Hence, this idea is applied for mining partial periodic
atterns.

As discussed above, MSApriori algorithm proposed by Liu et al.
1999), applying the concept of the Apriori-like algorithm, also suf-
ers from inferior performance. To overcome the efficiency and
ffectiveness problems in mining partial periodic patterns, a novel
nd efficient algorithm, the PFP-growth algorithm, has been pro-
osed to find partial periodic patterns with multiple minimum
upports. This method originates from the FP-tree’s concept (Han
t al., 2000) such that the advantages of both FP-growth and
SApriori algorithms can be retained. The proposed approach

ffers two advantages: (1) it is not necessary to scan databases
any times to generate enormous candidate partial periodic pat-

erns and (2) the minimum support threshold of each event can be
pecified by a user depending on its real-life occurring frequency.

This paper is organized as follows. In Section 2, we review
hree algorithms related to our study. Section 3 presents the PFP-
ree structure and its construction method. Section 4 develops the
pproach called the PFP-growth algorithm. Section 5 shows our
erformance evaluation. Finally, conclusions are drawn in Section
.

. Related works

Since the introduction of the mining of partial periodic patterns
ith multiple minimum supports stems from previous research

Liu et al., 1999; Han et al., 1999), three algorithms will be briefly
eviewed in this section. We introduce the MSAprori algorithm in
ection 2.1, the FP-growth algorithm in Section 2.2, and the max-
ubpattern hit set algorithm in Section 2.3.
.1. The MSApriori algorithm

The MSApriori algorithm was proposed by Liu et al. (1999).
his model extends the existing association rule model to allow
nd Software 84 (2011) 1638– 1651 1639

users to specify multiple minimum supports to reflect different
natures and frequencies of items. Moreover, it enables users to
find rare item rules without producing a huge number of mean-
ingless rules. In this model, the definition of minimum support is
changed, and each item in the database has its minimum support
threshold, which is expressed in terms of minimum item supports
(MIS). By providing different MIS values for different items, users
can effectively express different support requirements for differ-
ent rules. For example, consider the following items in a database,
bread, shoes, and clothes. The MIS values are specified as follows:
MIS(bread) = 2%, MIS(shoes) = 0.1%, MIS(clothes) = 0.2%. If the sup-
port of itemset {clothes, bread} is 0.15%, the itemset {clothes, bread}
is infrequent because the MIS value of itemset {clothes, bread} is
equal to min[MIS(clothes), MIS(bread)] = 0.2%, which is larger than
0.15%. On the other hand, if the support of itemset {shoes, bread} is
0.15%, the itemset {shoes, bread} is frequent because its MIS value
is equal to min[MIS(shoes), MIS(bread)] = 0.1%, which is not larger
than 0.15%. Therefore, setting different MIS for different items will
result in different thresholds to find frequent patterns.

Mining association rules typically consist of two steps: (1) find-
ing all frequent itemsets and (2) generating association rules using
the frequent itemsets. When there is only one minimum support,
the above two steps satisfy the downward closure property. That is,
if a set of items can satisfy the minimum support, all its subsets
will also satisfy the minimum support. For example, consider four
items, a, b, c, and d, in a database. If itemset {a, b, c, d} is frequent,
all its subset, {a, b, c}, {a, b, d}, {b, c, d}, {a, b}, {a, c}, {a, d}, {b, c}, {b,
d}, {c, d}, {a}, {b}, {c}, and {d}, would be frequent because of this
property. On the contrary, when Liu et al. (1999) employ the idea
of multiple minimum supports, the downward closure property no
longer holds. They use the sorted closure property to sort the items
in an itemset according to their MIS values in ascending order to
avoid the problem. For example, consider four items, a, b, c, and
d, in a database. Their MIS values are MIS(a) = 10%, MIS(b) = 20%,
MIS(c) = 5%, and MIS(d) = 6%. Assume we have an itemset {a, b} and
its support is equal to 9%. The itemset will be infrequent because
its support is smaller than its MIS value, i.e. MIS(a, b) = min[MIS(a),
MIS(b)] = 10%. Then, itemsets {c, a, b} and {d, a, b} will not be gen-
erated. Notice that each item in the itemset is sorted by its MIS
value. However, itemsets {c, a, b} and {d, a, b} still need to be gen-
erated because both MIS(c) = 5% and MIS(d) = 6% are smaller than
9%. Therefore, {c, a, b} and {d, a, b} become frequent even if their
subset, {a, b}, does not.

Liu et al. (1999) modify the well-known Apriori algorithm so
that the MSApriori algorithm can be used to find all frequent item-
sets with multiple minimum supports. For further details, refer to
the study by Liu et al. (1999). Lee et al. (2008a) proposed a fuzzy
multiple-level mining algorithm with multiple minimum supports.
Ouyang and Huang (2010) devised an algorithm for mining positive
and negative sequential patterns with multiple minimum supports.
Hu et al. (2010) developed a tree based approach to mining sequen-
tial pattern with multiple minimum supports. Summarily, these
studies tackled the issue of multiple minimum supports but did
not apply to mining periodic patterns.

2.2. The FP-tree and the FP-growth algorithm

Han et al. (2000) proposed a novel tree structure, called FP-tree,
which is an extended prefix-tree structure for sorting compressed
and crucial information. Consequently, the FP-growth method is a
FP-tree-based mining algorithm for mining frequent patterns.

In the mining process, the frequent items only play a role before

the construction of a FP-tree. All frequent items are sorted in non-
increasing order of their support counts. The FP-tree consists of
one root labeled as “null”, a set of item prefix subtrees as the chil-
dren of the root, and a frequent-item header table. Each node in the

1 tems a

i
n
r
l
E
i
t

c
s
c
d
d
i
p
n
n
v
g
a

t
u
T
e
a

2

m
i
A
t
c
t
o
l
a
w
t
w
f
f
i
i
t

t
i
a
d
o
i
t
i
0
c
b
d
f
o
i
e

p

640 S.-S. Chen et al. / The Journal of Sys

tem prefix subtree consists of three fields: item-name, count, and
ode-link. The field count registers the number of transactions rep-
esented by the portion of the path reaching this node, and node-link
inks to the next node in the FP-tree carrying the same item-name.
ach entry in the frequent-item header table consists of two fields:

tem-name and head of node-link, which point to the first node in
he FP-tree carrying the item-name.

A FP-tree is constructed as follows. Scan the database once to
ollect all frequent items and their supports. All frequent items are
orted in support nonincreasing order and denoted as L. After that,
reate the root of a FP-tree and label it as “null.” Next, scan the
atabase a second time to sort the items of each transaction in the
atabase according to the order of L. On inserting a transaction,

f the tree has the same path then the count of each node in the
ath is increased by 1. If the path is incomplete in the tree, then
ew branches and new nodes are created. And these new nodes’
ode-link will be linked to the nodes with the same item-name
ia the node-link structure. After constructing the FP-tree, the FP-
rowth algorithm recursively builds a conditional pattern base and

 conditional FP-tree to generate all frequent patterns.
The essential difference between the PFP-tree and FP-tree is that

he PFP-tree sets each item with different minimum supports, and
ses the sorted closure property to append a node to those trees.
herefore, the construction of a PFP-tree is based on the support of
ach item in a real case and not only on one support for all items in

 FP-tree.

.3. The max-subpattern hit set algorithm

Han et al. (1999) presented several algorithms to efficiently
ine partial periodic patterns. These algorithms explore some

nteresting properties related to partial periodicity, such as the
priori and the max-subpattern hit set properties. In order to loosen

he restrictions of the cyclic association rule, Han et al. (1999) used
onfidence to measure the level of significance of a periodic pat-
ern. The confidence of a pattern is defined as the occurrence count
f the pattern over the maximum number of periods of the pattern
ength in the sequence. For example, (a, *, b) is a partial pattern of

 period of length 3 (the character “*” is a “don’t care” character,
hich can match any single set of events); its occurrence count in

he event series “a{b, c}baebaced” is 2; and its confidence is 2/3,
here 3 is the maximum number of periods in any time series. As

or the framework of mining association rules, a pattern is called a
requent partial periodic pattern in a time series if its confidence
s larger than or equal to a threshold, min conf. Therefore, the min-
ng model is still applied to consider a single minimum support
hreshold.

A max-subpattern tree takes the candidate max-pattern, Cmax, as
he root node. Each subpattern of Cmax with one non-* letter miss-
ng is a direct child node of the root. The tree expands recursively
ccording to the following rules. A node w may have a set of chil-
ren if it contains more 2 non-* letters. Then the tree from the root
f the tree is constructed and the missing non-* letters are checked
n order to find the corresponding node. The count increases by 1 if
he node w is found. Otherwise, a new node w (with count 1) and
ts missing ancestor nodes (only those on the path to w, with count
) are created. If one exists, it (or them) is (or are) inserted into the
orresponding place(s) of the tree. After a max-subpattern tree has
een built, the tree is scanned to find frequency counts of the candi-
ate patterns and eliminate the non-frequent ones. Notice that the
requency count of a node is the sum of the count of itself and those
f all of the reachable ancestors. If the derived frequent pattern set

s empty, then return. For more details, refer to the study by Han
t al. (1999).

Previous studies of mining partial periodic patterns have been
roposed in many applications. Ma and Hellerstein (2001) and Yang
nd Software 84 (2011) 1638– 1651

et al. (2004) proposed their algorithms to discover periodic patterns
with noise, respectively. Cao et al. (2004) introduced a method to
discover partial periodic patterns in discrete data sequences. Aref
et al. (2004) developed an incremental and online algorithm for
mining partial periodic patterns in time series databases. Huang
and Chang (2005) extended the Yang et al. (2003) approach and
devised SMCA to discover all patterns via two scans of temporal
databases. Cao et al. (2007) discovered partial periodic patterns in
spatiotemporal data. Lee et al. (2008) introduced fuzzy periodic-
ity to mine fuzzy periodic association rules. Anwar et al. (2008)
presented an efficient periodic patterns mining algorithm in post-
mining environment. Gu and Dong (2009) proposed an algorithm
to find the local frequent periodic patterns in time series data.
Rasheed et al. (2011) devised an efficient algorithm using suffix
trees to detect periodic patterns in time series database. In sum,
these studies only dealt with the issue of mining periodic patterns
without having the thought of multiple minimum supports.

3. PFP-tree: design and construction

In this section, we define the problem of partial periodic pattern
mining and explore a method for PFP-tree construction. The tree
structure can be used to find periodicity information efficiently.

3.1. Problem definition

Let E = {e1, e2, . . ., em} be a set of events, where ei denotes an
independent event for 1 ≤ i ≤ m. An event set D is a nonempty sub-
set of E, i.e. D ⊆ E. A sequence of event sets SD = 〈D1, D2, . . ., Dn〉 is
a time series of events, where Dj is an event set for 1 ≤ j ≤ n, and n
is the number of event sets in SD (or called length). For brevity, the
brackets can be omitted if Dj has only one event.

Example 1. The length of sequence SD = 〈a{b, c}baebaced〉 is 10.
Event a occurs in D1 and events b and c occur in D2 simultaneously.
The remaining event sets can be explained in the same way. Except
event set {b, c}, we omit the remainders’ brackets since each of
them has only one event.

3.1.1. Period segment
To divide a sequence SD into different periods, we develop a

format of a segmented sequence, transformed from SD. A seg-
mented sequence S is denoted as S = 〈S1, S2, . . ., Sm〉 and its length
can be divided into disjoint m segments consisting of event sets. Let
the period length of each segment be l. The form of Sj (1 ≤ j ≤ m),
〈D(j−1) ×l+1, D(j−1)×l+2, . . ., D(j−1)×l+l〉, is defined as a period segment
(abbreviated as ps), where the subscript of D indicates the ordinal
position of D, counting from the beginning of the sequence S, and
m is the number of segments, i.e. m =� n/l �. Additionally, each event
set in Sj is decomposed into the different events successively. The
ps is denoted as Sj = 〈s0, s1, . . ., sr−1〉, where si (0 ≤ i < r) is an event
set and r in the ordinal position of Sj, counting from s0. Each event
in si can be represented as a tuple (eidi), where ei is the event and di
is the occurring position of ei in Sj for 0 ≤ di ≤ l − 1. The tuple (eidi) is
defined as an element of the period segment Sj, and a set of period
segments is called a period segment database (abbreviated as PSD).
The advantage of using the form of the tuple is that we can know
directly when each event occurs in a sequence.

Example 2. Following Example 1 and setting a period length of
3 (l = 3), the sequence S can be divided into three period segments
(m = [10/3] = 3), of which lengths are all equal to 3, and the results
are shown in the second column of Table 1. We say that the period

segment S1 = 〈a{b, c}b〉 is a subsequence of S = 〈a{b, c}baebaced〉.
For event a in S1, we know that it occurs at position 0 (d = 0) of
the period segment S1, i.e. e0 = a, which can be denoted as ele-
ment s0 = (e0d0) = (a0). Then, the next position (d = 1) of event a in S1

S.-S. Chen et al. / The Journal of Systems a

Table 1
The set of period segments PSD.

Si Period segment Element set

i = 1 〈a{b, c}b〉 (a0), (b1), (c1), (b2)

h
s
t
e
S
o
o

3

p
p
t
k

E
3
A
a

o

E
a
t

3

p
P
t
s
m
o
h
a

3

i
T
o
(
t
(
f

t
M
m
t
i
v

E
t
v
a
T

i = 2 〈aeb〉 (a0), (e1), (b2)
i = 3 〈ace〉 (a0), (c1), (e2)

as two events, b and c, denoted as elements s1 = (e1d1) = (b1) and
2 = (e2d2) = (c1), respectively. Finally, only event b occurs at posi-
ion 2 (d = 2) of the period segment S1. So, event b can be denoted as
lement s3 = (e3d3) = (b2). The transformations of period segments
2 and S3 are the same as that of S1. Afterward, we collect the PSD
f the set of all period segments and present it in the last column
f Table 1.

.1.2. Periodic pattern
A pattern with period length l is a nonempty element set P over

eriod segments. The pattern is a nonempty element subset of a
eriod segment in PSD. The element length of pattern P denotes
he number of elements, and the pattern with k length is called a
-pattern.

xample 3. A pattern P = {(a0), (b2)} belongs to period length
 (l = 3), and its element length is 2. Thus, we call it a 2-pattern.
ccording to the illustration in Example 2, we know that event a is
t position 0 and event b is at position 2.

Moreover, we define that a nonempty pattern P′ is a subpattern
f pattern P, if each element in P′ is also an element in P, i.e. P′ ⊆ P.

xample 4. Suppose we have two patterns, P = {(a0), (c1), (b2)}
nd P′ = {(a0), (b2)}. We say that P′ is a subpattern of P because the
wo elements, (a0) and (b2), in P′ are also in P.

.1.3. The frequency count and support
A pattern P can be matched with a period segment Si if P is a sub-

attern of Si. The frequency count (abbreviated as count) of pattern
 in PSD, count(P), is the number of period segments matching pat-
ern P. The support (abbreviated as supp) of pattern P is defined as
upp(P) = count(P)/m, where count(P) is the number of period seg-
ents matching pattern P and m is the maximum number of periods

f length contained in the time series. Following Example 2, we
ave a pattern P = {(a0), (b2)} and its count and supp in the sequence
re count(P) = 2 and supp(P) = 2/3 = 66% (m = 3), respectively.

.1.4. Multiple minimum supports
Each event in the time series databases is a pattern, and its min-

mum event support value (abbreviated as MES) has to be specified.
he MES assignment for each event can be classified into two meth-
ds: (1) the automatic computation method (Liu et al., 1999) and
2) the manual method, i.e. all MESs are specified by users based on
heir domain knowledge. Since the experiments of the past study
Liu et al., 1999) were adopted by the first one, we employ it in our
ollowing experiments as well.

A pattern is called frequent if its support is greater than or equal
o MIN. We describe the problem as follows. Let MIN be the smallest

ES value of all events in P = {s1, s2, . . ., sk} so that MIN is equal to
in(MES(s1), MES(s2), . . ., MES(sk)), and let MIN F denote the set of

hose elements whose supports are no less than MIN. The elements
n MIN F are sorted in nonincreasing order according to their MES
alues.

xample 5. Results obtained in Example 2 are used to perform

he following calculations. Four events are specified and their MES
alues are defined as: MES(a) = 100%, MES(b) = 100%, MES(c) = 66%,
nd MES(e) = 66%. Their frequency counts (supports) are shown in
able 2. Therefore, the value of MIN is equal to the minimum of
nd Software 84 (2011) 1638– 1651 1641

the MESs or MIN = min(MES(a), MES(b), MES(c), MES(e)). If MES(a),
MES(b), MES(c), and MES(e) are 100%, 100%, 66%, and 66%, respec-
tively, MIN equals 66% and MIN F = {(a0), (b2), (c1)}. Because the
supports of b1, e1, and e2 are less than MIN, none of them are
included in MIN F.

Lemma 1 (.). Let Lk denote the set of all frequent k-patterns, then
each element of a pattern in Lk must be in MIN F.

Rationale. Suppose that a k-pattern P exists in Lk, where P = {s1,
s2, . . ., sk}. If an element of P doest not exist in MIN F, then
min(MES(s1), MES(s2), . . ., MES(sk)) is less than MIN. However,
MIN be the smallest MES value of all events, so min(MES(s1),
MES(s2), . . ., MES(sk)) does not exist. Thus, each element of a pattern
in Lk must be in MIN F. �

For example, let a 3-pattern P = {(a0),(b1),(c2)} exist in L3. If P is
in L3, the MES values of elements in P are then not less than MIN so
that all elements of P are in the MIN F. If the MES of any element in
P is less than MIN, P does not exist in L3.

The PFP-tree, therefore, consists of not only all frequent ele-
ments but also those infrequent elements with supports no less
than MIN. According to Lemma 1, we must keep those elements
which belong to MIN F, because their supersets may be frequent.

Example 6. In Example 2, we know that supp(a0) = 100%,
supp(b1) = 33%, supp(c1) = 66%, and supp(b2) = 66%, and the set
of MIN F = {(a0), (b2), (c1)}. In {(a0), (b2), (c1)}, the elements
are sorted in nonincreasing order according to their MES val-
ues. Consider the small element (b2), where supp(b2) = 66% and
MES(b) = 100%. We must retain it because any new patterns discov-
ered in the following passes, such as {(b2), (c1)}, may be frequent.
But if supp(b2) is less than MIN, we discard it directly.

3.2. PFP-tree construction

We propose a PFP-tree (Periodic FP-tree) for mining partial peri-
odic patterns with multiple minimum supports. It is designed by
modifying the FP-tree structure. We define the PFP-tree as follows.

Definition 1 (PFP-tree). A PFP-tree is a tree structure defined as
follows.

1. It consists of one root labeled as “null”, a set of element prefix
subtrees as the children of the root, and a frequent-element-
header table which contains all elements in MIN F.

2. Each node in the element prefix subtree consists of three fields:
element-name, count, and node-link, where element-name reg-
isters which element the node represents, count registers the
number of transactions represented by the portion of the path
reaching the node, and node-link links to the null if there is none
or to the next node in the PFP-tree carrying the same element-
name.

3. Each entry in the frequent-element-header table consists of
three fields, (1) element-name, (2) MES, and (3) head of node-
link, which point to the first node in the PFP-tree carrying the
element-name.

4. All the elements in the table are sorted in decreasing order
in terms of their MES values. A node is arranged according to
its element occurring position in increasing order if the node’s
element-name is the same as one with a different element occur-
ring position.

5. If there is a node y except the root in a PFP-tree and node y is
linked to node x, the path composed of some nodes from node x to

the root is called the prefix subpath of node y, the path composed
of all nodes from node x to the root is called the prefix path of
node y and those nodes in the path are called the prefix nodes of
node y. On the contrary, if there is a node z except any leaves in

1642 S.-S. Chen et al. / The Journal of Systems and Software 84 (2011) 1638– 1651

Table 2
The frequency count (support) of each element in PSD.

Element

(a0) (b1) (c1) (e1) (b2) (e2)

2

s
i

3
t
w
c

Count (support) 3 (100%) 1 (33%)

a PFP-tree and node z is linked to node y, the path composed of
some nodes from node z to the leaf is called the postfix subpath
of node y, the path composed of all nodes from node z to the leaf
is called the postfix path of node y and those nodes in the path
are called the postfix nodes of node y.

Based on Definition 1, we devise the following PFP-tree con-
truction algorithm and each function used in Algorithm 1 is shown
n Fig. 1.

Fig. 1 gives the PFP-tree construction algorithm. Lines 1, 2, and

 are the data preprocessing steps of the algorithm. Line 1 divides
he time series database TSD into several period segments, each of
hich is equal to period length l (Algorithm 1, Line 1.1). Then, we

ollect PSD, the set of all period segments (Algorithm 1, Line 1.2).

Algorithm 1 (The PF P-t ree construction Alg

Input: a time series database TSD , a minimum

and a period length l.

Output: PF P-tree .

Method:

1 Divide TSD into s everal period segments,

1.1 Derive the elements in each period

1.2 Collect PSD , th e s et of all period se

2 Scan PSD once .

2.1 Calculate th e support valu e of each

2.2 Collect MIN_F, the set of those elem

3 Let f denote an element in MIN_F. For ea

3.1 Delete th e element in period s egmen

3.2 Sort all elements in period segme

nonincreasing order.

4 Create the roo t of a tree T, and label it as

do th e fol lowing:

4.1 Let the sorted elements in perio d

element and P is th e remaining li st.

4.2 Call in sert_tree([p|P], T).

5 Name the resulting tabl e as a frequ ent-ele

Fig. 1. The PFP-tree cons
(66%) 1 (33%) 2 (66%) 1 (33%)

Line 2 counts each element support to determine MIN F (Algorithm
1, Line 2.1), the set of those elements with supports no less than
MIN (Algorithm 1, Line 2.2). We discard the elements which do not
belong to MIN F in each period segment of PSD (Algorithm 1, Line
3.1). Then, we sort all elements according to their MES values in
nonincreasing order (Algorithm 1, Line 3.2). At the end of the data
preprocessing step, PSD will become the source database in the
mining process. Line 4 consists of two steps (Algorithm 1, Lines
4.1 and 4.2). First, we create the root of a tree, labeled with “null”.
Second, we scan each period segment to construct the branch of

the tree. Then, the procedure is called insert tree in Fig. 2. If the tree
has a node’s name which is the same as its element-name, then we
increase its count by 1 (Procedure insert tree, Line 2). Otherwise,
a new node is created and its count is set to 1. Moreover, its parent

orithm)

 suppo rt th reshol d of each event MES,

 eac h of whi ch equ als to period length l.

segment.

gments, as a new database.

element in PSD .

ents with suppo rts no less than MIN.

ch f in MIN_F do the follo win g:

ts with element∉MIN_F .

nts acc ording to their MES values in

 “nu ll”. For eac h period segment in PSD

segment s be [p|P], where p is the first

ment-he ader tabl e.

truction algorithm.

S.-S. Chen et al. / The Journal of Systems and Software 84 (2011) 1638– 1651 1643

Table 3
A time series database TSD.

Time 1 2 3 4 5 6 7 8 9 10
Events b c a, c e, f b, d c a d a d
Time 11 12 13 14 15 16 17 18 19 20
Events a, f a a e a, b b a c, e a c

Procedu re in sert_t ree([p|P], T)

1 Whil e (P is non empt y) {

2 If T has a child N such that N.element -name=p.element-name Then

 N.count ++ ;

3 Else

4 Create a new nod e N;

5 N.count=1;

6 Let its parent link be linked to T;

7 Let it s no de-link be linked to the nod es with the same element-name vi a

the nod e-link s tructure;

8 End If

9 }

tree fo

l
w
4
i
t

E
T
a
i
L
s
T
w

T
T

T
A

Fig. 2. The Procedure insert

ink is linked to the tree, and its node-link is linked to the next node
hich has the same element-name (Procedure insert tree, Lines

–7). For traversing the PFP-tree, a frequent-element-header table
s built (Algorithm 1, Line 5). We illustrate the PFP-tree construc-
ion algorithm with Example 7.

xample 7 (The construction of PFP-tree). Let a time series database
SD be in Table 3. The period length is set to 4. The MES value
nd its corresponding frequency count of each event are shown
n Table 4. At first, it is a part of data preprocessing (Algorithm 1,

ines 1–3). We scan TSD and separate it into period segments of the
ame period length, PSD, which is shown in the second column of
able 5. According to Lemma 1, we know that only those elements
ith support values no less than MIN will play a role in the mining

able 4
he MES value and its corresponding frequency count of each event in TSD.

Event

a b c d e f

MES value 80% 60% 60% 60% 40% 40%
Frequency count 4 3 3 3 2 2

able 5
 period segment database PSD.

Segment ID Period segment (Ordered) frequent elements

1 (b0), (c1), (a2), (c2), (e3), (f3) (a2), (b0), (c1)
2 (b0), (d0), (c1), (a2), (d3) (a2), (b0), (c1)
3 (a0), (d1), (a2), (f2), (a3) (a0), (a2)
4 (a0), (e1), (a2), (b2), (b3) (a0), (a2), (e1)
5 (a0), (c1), (e1), (a2), (c3) (a0), (a2), (c1), (e1)
r the PFP-tree construction.

process. The process consists of two phases. First, we scan PSD and
derive the support of each element in Table 6. Second, we discard
those elements whose support values are less than MIN in period
segments. According to Algorithm 1, the order of the elements in the
PFP-tree is arranged according to their MES values in nonincreasing
order. The result of each period segment is listed in this order in the
last column of Table 5. Table 6 shows the actual frequency counts
(supports) of elements in PSD. We use element (a0) as an example.
We count element (a0) if it appears in the period segments of PSD of
Table 5. After traversing Table 5, we find that element (a0) appears
in Segment IDs 3, 4, and 5. We know that the frequency count (sup-
port) of the element is equal to 3 (60%). The remaining elements for

computing their frequency counts (supports) are shown in Table 6.

The algorithm needs to scan PSD twice to construct a PFP-tree.
We first show the construction outcome of the PFP-tree in Fig. 3.

Frequent-Element-Header
Table

Element

(a0)

(a2)

(e1)

(c1)

(b0)

Frequent
count (MES

value)
Head of

node-links

2(40%)

3(60%)

4(80%)

3(60%)

4(80%)

root

(a2):2 (a0):3

(c1):2

(b0):2 (a2):3

(e1):1

(e1):1

(c1):1

null

Fig. 3. The PFP-tree of Example 7.

1644 S.-S. Chen et al. / The Journal of Systems and Software 84 (2011) 1638– 1651

Table 6
The frequency count (support) of each element in PSD.

Element a0 a2 a3 b0 b2 b3 c1 c2 c3
Count (support) 3 (60%) 5 (100%) 1 (20%) 2 (40%) 1 (20%) 1 (20%) 3 (60%) 1 (20%) 1 (20%)
Element d0 d1 d3 e1 e3 f2 f3

%)

T
t
i
w
fi
b
m
v
(
c
(
c
N
e
t
2
h
o
c
T
〈
n
(
w

t
m

L
m
d

R
p
m
s
v
s
p
v

Count (support) 1 (20%) 1 (20%) 1 (20%) 2 (40

he first scan of PSD retrieves a set of frequent elements. Then,
he retrieved frequent elements are arranged by their MES values
n nonincreasing order. In the second scan, to create the PFP-tree,

e first create the root of a tree, labeled as “null”. The scan of the
rst period segment in Table 5 leads to the construction of the first
ranch of the tree: 〈(a2): 1, (b0): 1, (c1): 1〉. Those frequent ele-
ents in all period segments are ordered according to their MES

alues in nonincreasing order. The second period segment {(a2),
b0), (c1)} is identical to the first one. The path is shared with the
ount of each node along the path incremented by 1, i.e. 〈(a2): 2,
b0): 2, (c1): 2〉. The scan of the third period segment leads to the
onstruction of the second branch of the PFP-tree, 〈(a0): 1, (a2): 1〉.
ext, for the fourth period segment {(a0), (a2), (e1)}, the first two
lements are the same as the existing path 〈(a0), (a2)〉. Therefore,
he count of each node along the path is incremented by 1, i.e. 〈(a0):
, (a2): 2〉. For the last element (e1) of the fourth period segment,
owever, one new node ((e1): 1) is created and linked as the child
f ((a2): 2). The last period segment, {(a0), (a2), (c1), (e1)}, shares a
ommon prefix 〈(a0), (a2)〉 with the existing path 〈(a0), (a2), (e1)〉.
he count of each node along the prefix is incremented by 1, i.e.
(a0): 3, (a2): 3〉. Then, for the remaining elements {(c1), (e1)}, a
ew path 〈(c1): 1, (e1): 1〉 is created and linked as a postfix path of
(a2): 3). After the algorithm scans all the period segments, the tree
ith the associated node-links is completed, as shown in Fig. 3.

In constructing the PFP-tree, the important property of the PFP-
ree is that the PFP-tree contains the complete information for

ining patterns.

emma 2. Given a PSD and a support threshold MES for each ele-
ent, the frequency count (support) of every frequent elements can be

erived from PSD PFP-tree.

ationale. Based on the PFP-tree construction process, for each
eriod segment in the PSD, its frequent element projection is
apped to one path in the PFP-tree. Given a frequent pattern S = 〈s1,

2, . . ., sn〉 in which elements are sorted in according to their MES

alues in nonincreasing order. Following the side-link of element
n, we can visit all the nodes with label sn in the tree. For each path

 from the root to a node v with label sn, the count sn: count in node
 is the number of transactions represented by p. If 〈s1, s2, . . ., sn〉 all

root

Conditional PFP-tree of
“ (e1) ”

{(a0):1, (a2):1)}
{(a0):1,(a2):1,(c1):1}

Conditional patterns base of “ (e1) ”

(a0):2

(a2):2

Co(a) (b)

Fig. 4. (a) (e1)’s conditional PFP-tree. (b
1 (20%) 1 (20%) 1 (20%)

appear in p, then the sn: count transactions represented by p con-
tain S. Thus, we accumulate such counts. The sum is the count of S.
�

In Example 7, we explain how to construct a PFP-tree. The algo-
rithm employs the ordered frequent elements in the last column of
Table 5 to construct a PFP-tree in Fig. 3. The process of constructing
a PFP-tree describes Lemma 2.

Lemma 3 (Space complexity of Algorithm 1). Given a period
segment database PSD and a minimum support threshold of each
event MES, the number of nodes in an PFP-tree is no more than∑

ps∈PSD|freq(ps)| + 1, where freq(ps) is the set of frequent elements
in ps. Moreover, the number of nodes in the longest path from the root
is maxps∈PSD {|freq(ps)|}.

Rationale. According to the PFP-tree construction process, for any
period segment ps in PSD, let freq(ps) = s1, s2, . . ., sn. A path exists,
root − s1 − s2− · · · −sn, in the PFP-tree. Except for when the root
node that is empty and eliminated from the tree, all other nodes
correspond to at least one frequent element occurring in the PSD.
In the worst case, there is no overlap among frequent element pro-
jections of period segments; and thus all paths from the root to the
leaves share only the root node. Therefore, the number of nodes
in the tree is no more than

∑
ps∈PSD|freq(ps)| + 1. In the longest

path from the root in the tree, there are maxps∈PSD {|freq(ps)|}
nodes. �

4. Mining frequent periodic patterns using a PFP-tree

In this section, we study how to explore the information stored
in the PFP-tree, and develop an efficient PFP-growth algorithm for
mining frequent partial periodic patterns. We observe two prop-
erties of the PFP-tree structure in Section 4.1 and introduce the
PFP-growth algorithm in Section 4.2.
4.1. PFP-tree property

Here, explanations of prefix and postfix paths are proposed in
the flowing paragraphs.

nditional pattern base of “(a2)(e1)”: {(a0):2}

Conditional PFP-tree of “(a2)(e1)”

root

(a0):2

) (a2)(e1)’s conditional PFP-tree.

S.-S. Chen et al. / The Journal of Systems a

roo t

Condition al PF P-tree of

{(a2):2,(b0):2}
{(a0):1,(a2):1}

Condition al patterns base of “ (c1)”

(a2):1(a2):2

E
(
t
f
(
f
(
p

l

P
t
s
h

c
t
a
p
i
l
o

P
t
b
s

R
i
s
b
t
p
s
c

T
C

T
C

“ (c1)”

Fig. 5. (c1)’s conditional PFP-tree.

xample 8. The node (e1) in Fig. 3 derives two prefix paths: 〈(a0),
a2), (e1)〉 and 〈(a0), (a2), (c1), (e1)〉 in the PFP-tree. The two paths in
he PFP-tree are terminated at their respective nodes, (e1)s. There-
ore, node (e1) is a leaf node. The two paths, 〈(a0), (a2)〉 and 〈(a0),
a2), (c1)〉, form prefix paths of node (e1). The path 〈(a0), (a2)〉 also
orms a prefix path of node (c1). Node (a0) is a prefix node of node
a2) since node (a0) links node (a2). Similarly, node (e1) forms the
ostfix path of node (a2), and it is linked to node (a2).

Two properties of the PFP-tree structure are introduced as fol-
ows.

roperty 1 (Node-link property). For any frequent element si, all
he possible frequent patterns containing only frequent elements and

i can be obtained by following si’s node-links, starting from the si’s
ead in the PFP-tree frequent-element-header.

This property is based directly on the PFP-tree construction pro-
ess. It allows us to find all of si’s pattern information through
raversing the PFP-tree once following si’s node-links. For example,

 frequent element (e1) in Fig. 3 is derived for node (e1) and has two
aths, {(a0): 3, (a2): 3, (e1): 1} and {(a0): 3, (a2): 3, (c1): 1, (e1): 1}

n the PFP tree. The two paths are obtained by following (e1)’s node-
inks, starting from the (e1)’s head in the frequent-element-header
f the PFP-tree.

roperty 2 (Prefix path property). To compute the si’s frequent pat-
erns in a path P, only si’s prefix subpathes in the PFP-tree needs to
e accumulated. The frequency count of every node in the prefix path
hould hold the same count as node si.

ationale. Let the nodes along the path P be labeled as s1, s2, . . ., sn

n such an order that s1 is the root of the prefix subtree. The element
n in P is the leaf of the subtree. The element si (1 ≤ i ≤ n) is the node
eing referenced. Based on the process of construction of the PFP-

ree presented in Algorithm 1, for each prefix node sk (1 ≤ k ≤ i), the
refix subpath of the node si in P occurs together with sk exactly
i: count times. Thus, every such prefix node should hold the same
ount as node si. Notice that a postfix node sm (for i < m ≤ n) along

able 7
onditional pattern base and conditional PFP-tree.

Element MES Conditional patter

(e1) 2 {(a0): 1, (a2): 1}, {
(c1) 3 {(a2): 2, (b0): 2}, {
(b0) 3 {(a2): 2}

(a2) 4 {(a0): 3}

(a0) 4 ∅

able 8
onditional patterns and conditional frequent patterns.

Element Conditional patterns Conditional

(e1) {(a0), (e1)}, {(a2), (e1)}, {(a0), (a2), (e1)} {(a0), (e1)},
(c1) {(a2), (c1)} {(a2), (c1)}
nd Software 84 (2011) 1638– 1651 1645

the same path also co-occurs with node si. However, the patterns
with sm will be generated at the examination of the postfix node
sm, enclosing them here will lead to redundant generation of the
patterns. Therefore, we only need to examine the si’s prefix subpath
in P. �

For example, in Fig. 3, node (b0) is involved in a path, 〈(a2):
2, (b0): 2, (c1): 2〉, which is calculated for the frequent patterns
containing node (b0) in this path. Only the prefix subpath of node
(b0), 〈(a2): 2}, needs to be extracted, and frequency count of every
node in the prefix path should carry the same frequency count as
node (b0). That is, the frequency count of the node in the prefix
path should be adjusted to 〈(a2): 2〉.

Notice that the set of si’s prefix subpaths form a small database of
patterns which co-occur with si. Such a database of patterns occur-
ring with si is called si’s conditional pattern base, and is denoted
as “pattern base|si”. Then one can compute all the frequent pat-
terns co-occur with si in this si-conditional pattern base by creating
a small PFP-tree, called si’s conditional PFP-tree and denoted as
“PFP-tree|si”.

4.2. The PFP-growth algorithm

In our research, the PFP-growth algorithm recursively builds a
conditional PFP-tree from the PFP-tree and a conditional pattern
base for the mining frequent patterns. A detailed description of the
procedure is given in Example 9.

Example 9. Let us examine the mining process based on the con-
structed PFP-tree shown in Fig. 3. According to Property 1, we
collect all the patterns that node si participates with by starting
from si’s head (in the frequent-element-header table) and follow-
ing si’s node-links. Here, we start from the bottom of the header
table.

A frequent pattern ((e1): 2) is derived for node (e1) and it has
two paths, 〈(a0): 3, (a2): 3, (e1): 1〉 and 〈(a0): 3, (a2): 3, (c1): 1, (e1):
1〉. The first path indicates that 〈(a0), (a2), (e1)〉 appears once in the
database. Notice the path also indicates that 〈(a0), (a2)〉 appears
three times. Based on Property 2, we exclude the node “(e1)” itself
and add the rest of the nodes to the conditional pattern base. Those
nodes whose supports are not smaller than MIN are added the con-
ditional PFP-tree. And the frequency count of each node should hold
the same count as that of node (e1). So, we discard the node (e1) in
the two paths. Two (e1)’s prefix paths, 〈(a0): 1, (a2): 1〉 and 〈(a0): 1,
(a2): 1, (c1): 1〉, form (e1)’s conditional pattern base. Then, we use
(e1)’s conditional pattern base to generate a (e1)’s conditional PFP-

tree. We know that node (e1) shares a common prefix 〈(a0), (a2)〉
with the two paths. Therefore, {(a0), (a2)} appears twice together
with node (e1). Taking note of node (c1), it only appears once in
path with node (e1) and is discarded. After adding these paths 〈(a0):

n base Conditional PFP-tree

(a0): 1, (a2): 1, (c1): 1} {(a0): 2, (a2): 2}|(e1)
(a0): 1, (a2): 1} {(a2): 3 }|(c1)

∅

∅

∅

 frequent patterns The Han et al. frequent pattern format

 {(a2), (e1)}, {(a0), (a2), (e1)} {ae**}, {*ea*}, {aea*}
{*ca*}

1646 S.-S. Chen et al. / The Journal of Systems and Software 84 (2011) 1638– 1651

Algorithm 2 (PFP -growth for mining partial per iodic patt ern with multiple

minimum s upp orts)

Inpu t: PFP -tree and MES(si) for ea ch element si.

Outpu t: The comp lete set of all si’s condit ional frequ ent patterns and the set of all

suppo rt values of si’s condit ion al patterns.

Method : call PFP-growth (PFP -tree, null, MES(si)).

Procedu re PFP -growth (Tree, α, MES(α)) {

1 For ea ch si in the header table of Tree do {

2 Generate patt ern β=si∪α with suppo rt=si.support;

3 Con struct β’s cond ition al pattern base and β’s cond ition al PFP -tree Treeβ;

4 If Treeβ≠∅ Then call PF P-growth (Treeβ, β, MES(α));

5 }

}

-grow

2
o
n
r
g
t
a
o
o
b
(
t

F
I

Fig. 6. The PFP

, (a2): 2〉, (e1)’s conditional PFP-tree is shown in Fig. 4a. We can
btain 2 elements through (e1)’s conditional PFP-tree. Then, we
eed to check the count of each element whether exceeds the cor-
esponding count of the MES value for element (e1). If the former is
reater than the latter, it is frequent. Otherwise, it is infrequent and
hen we need to remove it. We follow the node-link of each element
nd sum up the counts. For (e1)’s conditional PFP-tree, the count
f element (a0) is 2 and (a2) is 2. Since the corresponding count

f the MES value for element (e1) is 2, elements (a0) and (a2) are
oth frequent. We find that (e1) has two frequent patterns: {(a0): 2,
e1): 2} and {(a2): 2, (e1): 2}. After finding all of (e1)’s frequent pat-
erns {(a0): 2, (e1): 2} and {(a2): 2, (e1): 2}, we respectively build

N1000-E3-I4-S050K (MIN=0.02, P=3)

0
100
200
300
400
500

0.00.10.20.30.40.50.60.70.80.91.0
SIGMA

R
un

tim
e

(s
ec

)

PFP-growth HitSet

N1000-E3-I4-S050K (MIN=0.03, P=3)

0
50

100
150
200
250

0.00.10.20.30.40.50.60.70.80.91.0
SIGMA

R
un

tim
e

(s
ec

)

PFP-growth HitSet

(a) (b

(c)

ig. 7. (a) Run times for dataset N1000-E3-I4-S050K (MIN = 2%, P = 3). (b) Run times for d
4-S050K (MIN = 3%, P = 3).
th algorithm.

〈(a0): 2, (e1): 2〉 and 〈(a2): 2, (e1): 2〉 paths in element (e1)’s condi-
tional PFP-tree. 〈(a0): 2, (e1): 2〉’s conditional pattern base contains
no elements and would be terminated. For 〈(a2): 2, (e1): 2〉’s con-
ditional pattern base and conditional PFP-tree, we find a frequent
pattern, {(a0): 2, (a2): 2, (e1): 2}. The conditional PFP-tree of 〈(a2):
2, (e1): 2〉 is shown in Fig. 4b. We find two patterns {(a0): 2, (c1): 2,
(e1): 2} and {(a2): 2, (c1): 2, (e1): 2}. In summary, we find that all
of (e1)’s conditional patterns are {(a0): 2, (e1): 2}, {(a2): 2, (e1): 2}

and {(a0): 2, (a2): 2, (e1): 2}. Also, the frequent periodic patterns
are: {(a0): 2, (e1): 2}, {(a2): 2, (e1): 2}, and {(a0): 2, (a2): 2, (e1):
2}. The PFP-growth algorithm for element (e1) will be terminated
if (e1)’s conditional pattern base is null.

N1000-E3-I4-S050K (MIN=0.025, P=3)

0

100
200

300

400

0.00.10.20.30.40.50.60.70.80.91.0
SIGMA

R
un

tim
e

(s
ec

)

PFP-growth HitSet

)

ataset N1000-E3-I4-S050K (MIN = 2.5%, P = 3). (c) Run times for dataset N1000-E3-

S.-S. Chen et al. / The Journal of Systems and Software 84 (2011) 1638– 1651 1647

N1000-E3-I4-S050K (MIN=0.02, P=5)

0
100
200
300
400
500

0.00.10.20.30.40.50.60.70.80.91.0
SIGMA

R
un

tim
e

(s
ec

)

PFP-growth HitSet

N1000-E3-I4-S050K (MIN=0.025, P=5)

0

100

200

300

400

0.00.10.20.30.40.50.60.70.80.91.0
SIGMA

R
un

tim
e

(s
ec

)

PFP-growth HitSet

N1000-E3-I4-S050K (MIN=0.03, P=5)

0
50

100
150
200
250

0.00.10.20.30.40.50.60.70.80.91.0

SIGMA

R
un

tim
e

(s
ec

)

PFP-growth HitSet

(a) (b)

(c)

F s for d
I

w
(
c
3
i
o
p

b
o
t
p

F
s

ig. 8. (a) Run times for dataset N1000-E3-I4-S050K (MIN = 2%, P = 5). (b) Run time
4-S050K (MIN = 3%, P = 5).

Similarly, node (c1) has only one path, 〈(a2): 3, (c1): 3〉. Then,
e exclude the node (c1) in the path, leaving 〈(a2): 3〉. The element

c1)’s conditional PFP-tree is shown in Fig. 5. After finding the (c1)’s
onditional pattern base, we build (c1)’s conditional PFP-tree, 〈(a2):
〉. The pattern {(a2): 3, (c1): 3} in (c1)’s conditional pattern base

s frequent, since its count is greater than the corresponding count
f the MES value for element (c1). In summary, only one frequent
eriodic pattern, {(a2): 3, (c1): 3}, can be found.

Since the counts of elements in the (c1)’s conditional pattern

ases, {(b0): 2} and {(a2): 2}, are less than the corresponding counts
f their MES values, its conditional PFP-tree is not generated. Fur-
hermore, the last node (a0) has no elements in its conditional
attern base, so its conditional PFP-tree is also not generated.

Scalability with the length of time series(MIN=0.02 ,P=3)

0

500

1000

1500

2000

2500

500K200K150K100K50K
The length of time series

R
un

tim
e(

se
c)

PFP-growth HitSet

Scalability with the length of time series(MIN=0.03 ,P=3)

0

500

1000

1500

2000

500K200K150K100K50K
The length of time series

R
un

tim
e(

se
c)

PFP-growth HitSet

(a) (b

(c)

ig. 9. (a) Scalability with the length of time series (MIN = 2%, P = 3). (b) Scalability with
eries (MIN = 3%, P = 3).
ataset N1000-E3-I4-S050K (MIN = 2.5%, P = 5). (c) Run times for dataset N1000-E3-

Finally, all of the conditional pattern bases and the conditional PFP-
trees are summarized in Table 7. Table 8 shows all conditional
patterns, frequent patterns, and the Han et al. frequent pattern
format (the conversion from our pattern format to theirs).

The developments of the FP-growth and PFP-growth algorithms
both find frequent patterns based on the conditional FP-tree con-
cept. However, their major difference is that the latter adopts a
sorted downward closure property to prune unnecessary conditional
patterns. Based on this property, all of the minimum supports of

the elements in the conditional PFP-tree will not be less than the
minimum support of the condition element. In other words, if an
element is not frequent in a conditional PFP-tee, there is no longer
any need to generate a condition PFP-tree.

Scalability with the length of time series(MIN=0.02 5,P=3)

0

500

1000

1500

2000

500K200K150K100K50K

The length of time series

R
un

tim
e(

se
c)

PFP-growth HitSet

)

 the length of time series (MIN = 2.5%, P = 3). (c) Scalability with the length of time

1648 S.-S. Chen et al. / The Journal of Systems and Software 84 (2011) 1638– 1651

Scalability with the length of time series(MIN=0.02 ,P=5)

0

500

1000

1500

2000

2500

500K200K150K100K50K

The length of time series

R
un

tim
e(

se
c)

PFP-growth HitSet

Scalability with the length of time series(MIN=0.02

0

500

1000

1500

2000

500K200K150K100K50K
The length of time series

R
un

tim
e(

se
c)

PFP-growth HitSet

Scalability with the length of time series(MIN=0.03 ,P=5)

0

500

1000

1500

2000

500K200K150K100K50K
The length of time series

R
un

tim
e(

se
c)

PFP-growth HitSet

(a) (b)

(c)

F y with
s

p

L
c
c
(

R
i
o
t

F
l

ig. 10. (a) Scalability with the length of time series (MIN = 2%, P = 5). (b) Scalabilit
eries (MIN = 3%, P = 5).

The following lemma and corollary are related to our mining
rocess.

emma 4 (Fragment growth). Let ̨ be an element in PSD, B be ˛’s
onditional pattern base, and ̌ be an element in B. Then the frequency
ount (support) of ̨ ∪ ̌ in PSD is equivalent to the frequency count
support) of ̌ in B.
ationale. According to the definition of conditional pattern base
n Section 4.1, each period segment in B occurs under the condition
f the occurrence of ̨ in the PSD. If an element ̌ appears in B t
imes, it appears with ̨ in PSD t times as well. Moreover, since all

MIN=0.02,P=3

0

10

20

30

40

50

500K200K150K100K50K

The length of time series

Fr
eq

ue
nt

 P
at

te
rn

 #

PFP-growth HitSet

MIN=0.03,P=3

0

10

20

30

40

500K200K150K100K50K
The length of time series

Fr
eq

ue
nt

 P
at

te
rn

 #

PFP-growth HitSet

(a) (b

(c)

ig. 11. (a) Frequent pattern # with length of time series (MIN = 2%, P = 3). (b) Frequent p
ength of time series (MIN = 3%, P = 3).
 the length of time series (MIN = 2.5%, P = 5). (c) Scalability with the length of time

such elements are collected in ˛’s conditional pattern base, ̨ ∪ ˇ
occurs exactly t times in PSD as well. Thus the lemma holds. �

In Example 9, element (e1)’s conditional pattern base involves
element (a2). The frequency count of {(a2), (e1)} in PSD is 2 which
is equal to that of element (a2) in element (e1)’s conditional pattern
base.
Corollary 1 (Pattern growth). Let ̨ be a frequent element in PSD, B
be ˛’s conditional pattern base, and ̌ be an element in B. Then ̨ ∪ ˇ
is frequent in PSD if and only if ̌ is frequent in B.

MIN=0.025,P=3

0

10

20

30

40

50

500K200K150K100K50K

The length of time series

Fr
eq

ue
nt

 P
at

te
rn

 #

PFP-growth HitSet

)

attern # with length of time series (MIN = 2.5%, P = 3). (c) Frequent pattern # with

S.-S. Chen et al. / The Journal of Systems a

Table 9
Parameters.

|S| The length of time series
|E| Average number of the event sets
|I| Average size of maximal potentially frequent patterns
|L| Number of maximal potentially frequent patterns

R
i
n
i
S
s
t
f
n
S
ˇ
t

c
i

e
i
P

A
d
t
i
o
c
L
r
A

5

p
m
r
a
a
s
s

b
T
d
a

e
e
a
v
v
e
t
M
O
e

P A period length
N Number of events

ationale. This corollary is the case when ̨ is a frequent element
n PSD, and when the support of ̌ in ˛’s conditional pattern base B is
o less than MIN. We first prove the “if” part. Suppose ̌ is frequent

n B, that is, ̌ appears in B at least MIN × m times (m is defined in
ection 3.1.3). Since B is ˛’s conditional pattern base, each period
egment in B appears under the existence of ˛. That is, ̌ appears
ogether with ̨ in PSD at least MIN × m times. Therefore, ̨ ∪ ̌ is
requent in PSD. Then, we prove the “only if” part. Suppose ̌ is
ot frequent in B. that is, ̌ appears in B less than MIN × m times.
ince B is ˛’s conditional pattern base, all the elements containing

 and co-occurring with ̨ are in B. Thus ̌ co-occurs with ̨ less
han MIN × m times. Therefore, ̨ ∪ ̌ is not frequent in PSD. �

In Example 9, element (e1) is a frequent element in PSD, and its
onditional pattern base involves element (a2). Since element (a2)
s frequent, {(a2), (e1)} is also frequent.

Lemma 4 and Corollary 1 are similar to those proposed by Han
t al. (2000). Therefore, we have the following algorithm for min-
ng partial periodic patterns with multiple minimum supports. The
FP-growth algorithm (Algorithm 2) is shown in Fig. 8.

As shown in Fig. 6, we describe the PFP-growth algorithm briefly.
t first, we construct a conditional pattern base and mine its con-
itional PFP-tree for each frequent element si. Therefore, we have
he procedures of Lines 2 and 3. Otherwise, the process of min-
ng frequent partial periodic patterns is then recursively executed
n the pattern base ̌ by constructing a conditional PFP-tree and a
onditional pattern base for ˇ. Therefore, we have the procedure of
ine 4. To streamline the presentation, we leave the analyses of cor-
ectness (Theorem 1) and completeness (Theorem 2) in Appendix
.

. Experimental evaluation

In this section, we report an experimental study which com-
ares the performances of the PFP-growth algorithm and the
ax-subpattern hit set algorithm (Han et al., 1999). These algo-

ithms were implemented using Sun Java language (J2SDK 1.4.2 16)
nd tested on a PC with an Intel Core 2 Duo 2.4 GHz processor
nd 2GB main memory using the Windows Server 2003 operating
ystem. Neither multithreading technology nor parallel computing
kills were used in implementing our programs.

The synthetic datasets used for our experiments were generated
y applying the standard procedure described in Han et al. (1999).
able 9 lists the parameters used in this simulation. We generate
atasets by fixing N = 1000, |E| = 3, |I| = 4, |L| = 2000, and |S| = 50 K in
ll experiments. Moreover, the period length is assigned to 3 and 5.

In our experiments, we need a method to assign MES values to
vents in PSD. Therefore, we refer to the method proposed by Liu
t al. (1999) to use the actual frequencies of the events in the PSD
s the basis for the MES assignments. The formula of assigning MES
alues is MES(e) = max{�f(e), MIN}, where f(e) is the actual support
alue of event e in PSD, and � (0 ≤ � ≤ 1) is a non-negative param-
ter, controlling that how the MES values for events are related to

heir support’s values. If � = 0, we have only one minimum support,
IN, which is the same as the traditional periodic pattern mining.
n the contrary, if � = 1 and MIN ≤ f(e), f(e) is the MES value for event
.

nd Software 84 (2011) 1638– 1651 1649

Example 10. Consider three events, a, b, and c in a time
series dataset, where f(a) = 1%, f(b) = 3%, and f(c) = 10%. If we
set MIN = 1% and � = 0.3, then MES(a) = max{0.3 × 1%, 1%} = 1%,
MES(b) = max{0.3 × 3%, 1%} = 1%, and MES(c) = max{0.3 × 10%,
1%} = 3%.

The first comparison considers the run times of two algorithms
with different MIN values, 2%, 2.5%, and 3%. Then, we assign a period
length of 3 (P = 3) for dataset N1000-E3-I4-S050K. The N1000-E3-
I4-S050K means that it is generated with 1000 events, 3 events
per event set on average, the average size of maximal potentially
frequent patterns is 4, and the length of the time series is 50000.
We show the results in Fig. 7(a) for MIN = 2% and P = 3, Fig. 7(b) for
MIN = 2.5% and P = 3, and Fig. 7(c) for MIN = 3% and P = 3. The results
all indicate that the PFP-growth algorithm is superior to the max-
subpattern hit set algorithm (the compared baseline is observed
when the PFP-growth algorithm’s sigma is equal to 0.0). To find
the reason, let us first note that although the max-subpattern hit
set algorithm requires nothing but two scans of the database, it
still needs to construct more possible infrequent patterns in the hit
set with a max-subpattern tree structure. Whether a pattern is fre-
quent or not in the tree and exerting the candidate max-pattern to
span the following subpatterns will all worsen the performance
of the max-subpattern hit set algorithm. According to our idea,
however, we build a compressed data structure, a PFP-tree, to hold
the entire time series database in the memory. Then, a divide-and-
conquer strategy is used to find all frequent patterns. No candidate
patterns will be generated. This explains why the performance of
the PFP-growth algorithm is better than that of the max-subpattern
hit set algorithm.

After testing the run times under different MIN values for P = 3,
we then change the period length into 5 (P = 5) to repeat the above
experiments in Fig. 11(a)–(c). We show the run times of dataset
N1000-E3-I4-S050K for each MIN value. All results are observed in
Fig. 8(a) for MIN = 2% and P = 5, Fig. 8(b) for MIN = 2.5% and P = 5, and
Fig. 8(c) for MIN = 3% and P = 5. The results all demonstrate again
that the performance of the PFP-growth algorithm is superior to
that of the max-subpattern hit set algorithm. Besides, modifying
the period length does not have much impact on the performance
of the PFP-growth algorithm either.

Next, we study the scalabilities of the two algorithms. The
tests are performed by using five datasets: N1000-E3-I4-D50K,
N1000-E3-I4-D0100K, N1000-E3-I4-D150K, N1000-E3-I4-D200K,
and N1000-E3-I4-D500K, with the MIN values varied from 2%
to 3%. The arguments are executed for P = 3 and 5, respectively.
Fig. 9(a)–(c) shows the results for MIN = 2% and P = 3, MIN = 2.5% and
P = 3, and MIN = 3% and P = 3, and Fig. 10(a)–(c) shows the results for
MIN = 2% and P = 5, MIN = 2.5% and P = 5, and MIN = 3% and P = 5. The
reported run time is the average of the 10 tests for sigma from 0.1
to 1.0. All results show that the PFP-growth algorithm presents lin-
ear scalability with the length of time series from 50K to 500K, MIN
from 2% to 3%, and P from 3 to 5; however, the max-subpattern
hit set algorithm does not. This experiment indicates that the PFP-
tree algorithm is more scalable than the max-subpattern hit set
algorithm.

According to the scale-up experiments, we study the number of
frequent patterns generated by the two algorithms. Fig. 11(a)–(c)
shows the results for MIN = 2% and P = 3, MIN = 2.5% and P = 3, and
MIN = 3% and P = 3, and Fig. 12(a)–(c) shows the results for MIN = 2%
and P = 5, MIN = 2.5% and P = 5, and MIN = 3% and P = 5. All the results
show when the support threshold is decreased and when the
number of frequent patterns is increased by both algorithms. How-

ever, the PFP-growth algorithm presents reasonable outcomes.
A possible reason is that the max-subpattern hit set algorithm
only considers one single minimum support to mine patterns in
time series databases. The PFP-growth algorithm, however, uses

1650 S.-S. Chen et al. / The Journal of Systems and Software 84 (2011) 1638– 1651

MIN=0.02,P=5

0

10

20

30

40

50

500K200K150K100K50K
The length of time series

Fr
eq

ue
nt

 P
at

te
rn

 #

PFP-growth HitSet

MIN=0.025,P=5

0

10

20

30

40

500K200K150K100K50K
The length of time series

Fr
eq

ue
nt

 P
at

te
rn

 #

PFP-growth HitSet

MIN=0.03,P=5

0

10

20

30

40

500K200K150K100K50K
The length of time series

Fr
eq

ue
nt

 P
at

te
rn

 #

PFP-growth HitSet

(a) (b)

(c)

F uent p
l

m
e
r
s
r
T
m
e

6

i
a
a
u
p
t
p
r
s
s
m
b
m
a
s

p
i
a
t
e
a
p
a

i

ig. 12. (a) Frequent pattern # with length of time series (MIN = 2%, P = 5). (b) Freq
ength of time series (MIN = 3%, P = 5).

ultiple minimum supports for the different frequencies of differ-
nt events. This can certainly reduce the number of the possible
edundant patterns which are found by the max-subpattern hit
et algorithm. The results demonstrate our argument that some
edundant patterns may not be available for realistic applications.
herefore, all the above experiments not only demonstrate our
odel’s computational efficiency and scalability, but also prove the

ffectiveness of the patterns.

. Conclusion and future work

The study explored the problem of mining partial periodicity
n time series databases. Information about variations of events
ids managers in identifying better trends in partial periodicity and
ttaining a better understanding of forecasting. Disadvantages of
sing the Apriori-property (Agrawal and Srikant, 1994) to discover
eriodic patterns can be eliminated. An efficient mining method,
he PFP-growth algorithm, has also been developed. Results of
erformance analyses show that the proposed PFP-growth algo-
ithm is more efficient and scalable than the max-subpattern hit
et algorithm. In particular, when the MIN value is small or the
calability is extended, the PFP-growth algorithm outperforms the
ax-subpattern hit set algorithm. Based on the results of the num-

er of frequent periodic patterns, mining patterns with multiple
inimum supports is more realistic in real-life applications to

ssist the user in reducing the number redundant patterns for deci-
ion making.

The proposed algorithm can be applied to predict stock market
rice movement, shopping habits, and so on. For example, periodic

nformation of customers’ shopping behavior based on login time
nd searches for products could be available from a database main-
ained by an online shopping system. The periodicities for different
vent frequencies may reveal pertinent information for prediction
nd analysis. Therefore, different and specific information (e.g., new

roduct information and on sales product information) can be made
vailable to each customer (customization).

This study has confirmed the validity of using the proposed min-
ng partial periodic patterns in a time series with a single level.
attern # with length of time series (MIN = 2.5%, P = 5). (c) Frequent pattern # with

Additionally, the model can also be extended to find partial period-
icity with multiple minimum supports in multiple-level categorical
data (such as: hour, day, and week). The algorithm and results are
of great importance for understanding more general and linguistic
information in order to make efficient decisions.

Acknowledgments

The authors would like to thank the Area Editor, Dr. K. Dutta,
and anonymous reviewers for their helps and valuable comments
to improve this paper. This research was supported by the National
Science Council of the Republic of China under the grant NSC 99-
2410-H-194-063-MY2.

Appendix A.

Theorem 1. The patterns obtained by the PFP-growth algorithm are
correct.

Rationale. Since Line 2.2 in Algorithm 1 removes elements whose
supports are less than MIN, each possible frequent pattern of length
1 can be collected in MIN F. After deleting the elements of the period
segments that do not exist in MIN F, Line 4 in Algorithm 1 starts
to construct the PFP-tree. Assume that every pattern of length k
obtained by Algorithm 2 is frequent, i.e. ̨ is frequent. Because of
the sorted downward closure property, ̌ obtained by si ∪ ̨ is also
frequent. This proves the induction. �

Theorem 2. The PFP-growth algorithm can find every frequent pat-
tern.

Rationale. Based on the PFP-tree construction process (Algorithm
1), for each element in the PSD, its possible frequent element pro-
jection is mapped to a path from the root in the PFP-tree.

Given a frequent pattern S = 〈s1, s2, . . ., sn〉 in which elements are

sorted in the support descending order, by following the side-link
of element sn, we can visit all the nodes with label sn in the tree.

For each path p from the root to a node r with label sn, the fre-
quent count count(r) in node r is the number of period segments

ems a

r
p
m

f
a

R

A

A

A

C

C

G

H

H

H

H

H

with Applications, and Computers and Education.
S.-S. Chen et al. / The Journal of Syst

epresented by p. If s1, s2, . . ., sn all appear in p, then the count(r)
eriod segments represented by p contain S. Therefore, we accu-
ulate the frequent counts. The sum is the frequent count of S.
After a PFP-tree is constructed, it contains complete information

or mining frequent patterns from the PSD. Thus, the PFP-growth
lgorithm can find all frequent patterns in this tree. �

eferences

grawal, R., Srikant, R., 1994. Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases , pp. 487–499.

ref, W.G., Elfeky, M.G., Elmagarmid, A.K., 2004. Incremental, online, and merge
mining of partial periodic patterns in time-series databases. IEEE Transactions
on Knowledge and Data Engineering 16 (3), 332–342.

nwar, F., Petrounias, I., Kodogiannis, V.S., Tasseva, V., Peneva, D., 2008. Efficient
periodicity mining of sequential patterns in a post-mining environment. In:
2008 4th International IEEE Conference “Intelligent Systems” , pp. 16-2–16-11.

ao, H., Cheung, D.W., Mamoulis, N., 2004. Discovering partial periodic patterns in
discrete data sequences. In: Proceedings of the 8th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining , pp. 653–658.

ao, H., Mamoulis, N., Cheung, D.W., 2007. Discovery of periodic patterns in spa-
tiotemporal sequences. IEEE Transactions on Knowledge and Data Engineering
19 (4), 453–467.

u, C.-K., Dong, X.-L., 2009. Efficient mining of local frequent periodic patterns in
time series database. In: 2009 International Conference on Machine Learning
and Cybernetics , pp. 183–186.

an, J., Dong, G., Yin, Y., 1998. Mining segment-wise periodic patterns in time-
related databases. In: Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining , pp. 214–218.

an, J., Dong, G., Yin, Y., 1999. Efficient mining of partial periodic patterns in time
series database. In: Proceedings of the 15th International Conference on Data
Engineering , pp. 106–115.

an, J., Pei, J., Yin, Y., 2000. Mining frequent patterns without candidate genera-
tion. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data , pp. 1–12.

u, Y.-H., Wu, F., Liao, Y.-C., 2010. Sequential pattern mining with multiple mini-

mum supports: a tree based approach. In: International Conference on Software
Engineering and Data Mining (SEDM) , pp. 428–433.

uang, K.-Y., Chang, C.-H., 2005. SMCA: a general model for mining asynchronous
periodic patterns in temporal databases. IEEE Transactions on Knowledge and
Data Engineering 17 (6), 774–785.
nd Software 84 (2011) 1638– 1651 1651

Lee, W.-J., Jiang, J.-Y., Lee, S.-J., 2008. Mining fuzzy periodic association rules. Data
& Knowledge Engineering 65, 442–462.

Lee, Y.-C., Hong, T.-P., Wang, T.-C., 2008a. Multi-level fuzzy mining with multiple
minimum supports. Expert Systems with Applications 34, 459–468.

Liu, B., Hsu, W., Ma, Y., 1999. Mining association rules with multiple minimum sup-
ports. In: Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining , pp. 337–341.

Ma, S., Hellerstein, J.L., 2001. Mining partially periodic event patterns with unknown
periods. In: Proceedings of the 17th International Conference on Data Engineer-
ing , pp. 205–214.

Ouyang, W., Huang, Q., 2010. Mining positive and negative sequential patterns with
multiple minimum supports in large transaction databases. In: 2010 Second WRI
Global Congress on Intelligent Systems , pp. 190–193.

Rasheed, F., Alshalalfa, M., Alhajj, R., 2011. Efficient periodicity mining in time series
databases using suffix trees. IEEE Transactions on Knowledge and Data Engi-
neering 23 (1), 79–94.

Yang, J., Wang, W., Yu, P.S., 2001. Infominer: mining surprising periodic patterns. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining , pp. 395–400.

Yang, J., Wang, W., Yu, P.S., 2003. Mining asynchronous periodic patterns in time
series data. IEEE Transaction on Knowledge and Data Engineering 15 (3),
613–628.

Yang, J., Wang, W., Yu, P.S., 2004. Discovering high order periodic patterns. Knowl-
edge and Information Systems 6 (3), 243–268.

Shih-Sheng Chen received his Ph.D. degree in Information Management from
National Central University of Taiwan in 2003. He is an Assistant Professor in the
Department of Information Management at National Chin-Yi University of Technol-
ogy. His current research interests include data mining in soft computing, decision
support systems, information management, customer relationship management
and business.

Tony, Cheng-Kui Huang received the Ph.D. degree in Information Management
from National Central University of Taiwan in 2006. He is an Assistant Professor
in the Department of Business Administration at National Chung Cheng University
of Taiwan. His current research interests include data mining in business, decision
support systems, information management, and soft computing. He has published
papers in IEEE Transactions on Systems, Man and Cybernetics, Part B, Information
Sciences, Data & Knowledge Engineering, Fuzzy Sets and Systems, Expert Systems
Zhe-Min Lin received his MS degree in Information Management from Tatung
University of Taiwan. His research interests are in data mining and information
management.

	New and efficient knowledge discovery of partial periodic patterns with multiple minimum supports
	1 Introduction
	2 Related works
	2.1 The MSApriori algorithm
	2.2 The FP-tree and the FP-growth algorithm
	2.3 The max-subpattern hit set algorithm

	3 PFP-tree: design and construction
	3.1 Problem definition
	3.1.1 Period segment
	3.1.2 Periodic pattern
	3.1.3 The frequency count and support
	3.1.4 Multiple minimum supports

	3.2 PFP-tree construction

	4 Mining frequent periodic patterns using a PFP-tree
	4.1 PFP-tree property
	4.2 The PFP-growth algorithm

	5 Experimental evaluation
	6 Conclusion and future work
	Acknowledgments
	References
	References

