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A Hamiltonian graph G is said to be panpositionably Hamiltonian if, for any two distinct
vertices x and y of G, there is a Hamiltonian cycle C of G having dC(x,y) = l for any integer
l satisfying dGðx; yÞ 6 l 6 jVðGÞj2 , where dG(x,y) (respectively, dC(x,y)) denotes the distance
between vertices x and y in G (respectively, C), and jV(G)j denotes the total number of ver-
tices of G. As the importance of Hamiltonian properties for data communication among
units in an interconnected system, the panpositionable Hamiltonicity involves more flexi-
ble message transmission. In this paper, we study this property with respect to the class of
crossed cubes, which is a popular variant of the hypercube network.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In many parallel and distributed computer systems, processors are connected based on interconnection networks, so the
interconnection network is a critical factor that affects system performance and it is widely addressed by researchers
[14,20,26]. In terms of network analysis, the topological structure of an interconnection network can be modeled as a graph
whose vertices and edges represent processors and communication links, respectively. Among many kinds of network topol-
ogies, the binary n-cube [23] (for short, hypercube) is one of the most popular networks for parallel and distributed compu-
tation. Not only is it ideally suited to both special-purpose and general-purpose tasks, but it can efficiently simulate many
other networks [14,20,26]. However, the hypercube is bipartite so that it cannot make the best use of its hardware resources.
For example, the hypercube has the largest diameter among cube family. To compensate for this drawback, many research-
ers [1,7,8,28] try to fashion networks with lower diameters. One such network topology is the crossed cube, which was first
proposed by Efe [9]. The crossed cube is derived from the hypercube by changing the connection of some links. Its diameter
is about half of the hypercube’s [6,9]. Besides, the crossed cube has many attractive properties. For example, it has more cy-
cles than the hypercube [12], and binary trees can be embedded into it [18]. Moreover, the embedding of paths of odd and
even lengths [11,13] and the embedding of many-to-many disjoint path covers [22] can be done in the crossed cube. The
definition of the crossed cube will be presented in the next section.

Throughout this paper, graphs are finite, simple, and undirected. Some important graph-theoretic definitions and nota-
tions will be introduced in advance. For those not defined here, however, we follow the standard terminology given by Bondy
and Murty [4]. An undirected graph G is a graph with vertex set V(G) and edge set E(G), where jV(G)j > 0 and
E(G) # {(u,v)j(u,v) is an unordered pair of V(G)}. Two vertices u and v of G are adjacent if (u,v) 2 E(G). The degree of a vertex
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u in G is the number of edges incident to u. A graph G is k-regular if all its vertices have the same degree k. A graph H is a
subgraph of G if V(H) # V(G) and E(H) # E(G); H is a spanning subgraph of G (equivalently, H spans G) if V(H) = V(G). Let S be a
nonempty subset of V(G). The subgraph of G induced by S is a graph whose vertex set is S and whose edge set consists of all
the edges of G joining any two vertices in S.

A path P of length k, k P 1, from vertex x to vertex y in G is a sequence of distinct vertices hv1,v2, . . . ,vk+1i such that v1 = x,
vk+1 = y, and (vi,vi+1) 2 E(G) for every 1 6 i 6 k. Moreover, a path of length 0, consisting of a single vertex x, is denoted by hxi.
We can write P as hv1,v2, . . . ,vi,Q,vj, . . . ,vk+1i for convenience if we know that Q = hvi, . . . ,vji, where i 6 j. The ith vertex of P is
denoted by P(i); i.e., P(i) = vi. In particular, let rev(P) represent the reverse of P; that is, rev(P) = hvk+1,vk, . . . ,v1i. We use ‘(P) to
denote the length of P. The distance between two distinct vertices u and v in G, denoted by dG(u,v), is the length of the shortest
path between u and v. A cycle is a path with at least three vertices such that the last vertex is adjacent to the first one. For
clarity, a cycle of length k, k P 3, is represented by hv1,v2, . . . ,vk,v1i. A path (or cycle) is a Hamiltonian path (or Hamiltonian
cycle) of G if it spans G. A graph G is Hamiltonian if it has a Hamiltonian cycle, and a graph G is Hamiltonian connected if it
contains a Hamiltonian path joining any pair of distinct vertices.

In recent years, many research results about cycle embedding have been focused on exploring the properties of pancyc-
licity [5,12,17,21,27]. A graph G is called pancyclic [3] if it contains a cycle of length l for each integer l from 3 to jV(G)j inclu-
sive. More specifically, a graph G is called edge-pancyclic (respectively, vertex-pancyclic) if its any edge (respectively, vertex)
lies on a cycle of length l for every 3 6 l 6 jV(G)j. On the other hand, graph G is said to be panconnected [2] if, for any two
distinct vertices x and y, it has a path of length l joining x and y for any integer l satisfying dG(x,y) 6 l 6 jV(G)j � 1. It is easy
to see that every panconnected graph must be pancyclic, edge-pancyclic, and vertex-pancyclic. In order to have insight into
the topological properties related to cycle embedding, Kao et al. [16] paid attention to embedding Hamiltonian cycles and
proposed an intriguing property as follows: A graph G is panpositionably Hamiltonian [16] if, for any two distinct vertices
x and y of G, there is a Hamiltonian cycle C of G having dC(x,y) = l for any integer l satisfying dGðx; yÞ 6 l 6 jVðGÞj2 . Such a concept
is called the panpositionable Hamiltonicity. As the significance of Hamiltonian properties for data communication among pro-
cessors/computers in an interconnected system, the panpositionable Hamiltonicity involves much more flexible message
transmission. Later, Teng et al. [24,25] studied the panpositionable Hamiltonicity with respect to alternating group graphs
and arrangement graphs, and they gave an example to show that a panconnected graph is not necessarily panpositionably
Hamiltonian [24].

In this paper, we investigate the panpositionable Hamiltonicity for the class of crossed cubes. The rest of this paper is or-
ganized as follows. In Section 2, the definition of crossed cubes is introduced. In Section 3, the proofs of two main theorems
are given. Finally, some concluding remarks are given in Section 4.

2. The crossed cube and its properties

The n-dimensional crossed cube, denoted by CQn, has 2n vertices, each of which corresponds to an n-bit binary string. To
define the crossed cube, an additional concept ‘‘pair related’’ has to be introduced first.

Definition 1. Two 2-bit binary strings x = x2x1 and y = y2y1 are pair related, denoted by x � y, if and only if (x,y) 2 {(00,00),
(10,10), (01,11), (11,01)}.

The definition of CQn is given as below.

Definition 2. The n-dimensional crossed cube CQn is recursively constructed as follows: (i) CQ1 is a complete graph with two
vertices, whose vertex set is represented by {0,1}. (ii) For n P 2, let CQ0

n�1 and CQ1
n�1 be two copies of CQn�1 with

V CQ0
n�1

� �
¼ f0un�1un�2 � � �u1jui ¼ 0 or 1 for 1 6 i 6 n � 1} and VðCQ1

n�1Þ ¼ f1un�1un�2 � � �u1jui ¼ 0 or 1 for 1 6 i 6 n � 1}.
Then, CQn is formed by connecting CQ0

n�1 and CQ1
n�1 with 2n�1 edges so that a vertex u = 0un�1un�2� � �u1 in CQ 0

n�1 is adjacent
to a vertex v = 1vn�1vn�2� � �v1 in CQ1

n�1 if and only if

(1) un�1 = vn�1 if n is even, and
(2) u2iu2i�1 � v2iv2i�1 for all i; 1 6 i 6 n�1

2

� �
.

For the sake of convenience, we denote this recursive construction by CQn ¼ CQ0
n�1 � CQ1

n�1. From the above definition,
CQ2 is just a cycle of length 4, and CQn is an n-regular graph. We depict CQ3 and CQ4 in Fig. 1. It is proved that CQn is n-con-
nected [19] and has diameter nþ1

2

� �
[9]. Furthermore, the crossed cube receives many researchers’ attention [6,10,13,15,27]

since it was introduced.
In [9], Efe proposed a shortest path routing algorithm Route(u,v) for CQn, which implies the following two lemmas.

Lemma 1 [9]. Let u and v be any two different vertices of CQn such that fu;vg � VðCQi
n�1Þ; i 2 f0;1g. Then,

dCQnðu;vÞ ¼ dCQi
n�1
ðu;vÞ.
Lemma 2 [9]. Let u and v be any two vertices of CQn, n P 2, such that u is in CQ0
n�1 and v is in CQ1

n�1. Suppose that x is the vertex
in CQ1

n�1 adjacent to u, and y is the vertex in CQ0
n�1 adjacent to v. Then, dCQn ðu;vÞ ¼ dCQn ðu; yÞ þ 1 or dCQn ðu;vÞ ¼ dCQn ðx;vÞ þ 1.



Fig. 1. Illustration of CQ3 and CQ4.
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Fan et al. [13] proved that, for any two vertices u and v in CQn, there exists a path of length l joining u and v for any integer
l with dCQn ðu;vÞ 6 l 6 2n � 1 and l – dCQn ðu;vÞ þ 1.

A Hamiltonian graph G is said to be f-fault-tolerant Hamiltonian if G � F remains Hamiltonian for every F # V(G) [ E(G)
with jFj 6 f. A Hamiltonian connected graph G is said to be f-fault-tolerant Hamiltonian connected if G � F remains Hamilto-
nian connected for every F # V(G) [ E(G) with jFj 6 f.

Lemma 3 [15]. For any integer n, n P 3, CQn is (n � 2)-fault-tolerant Hamiltonian and (n � 3)-fault-tolerant Hamiltonian
connected.

Any vertex u = unun�1� � �u1 in CQn is said to be adjacent to a vertex v = vnvn�1� � �v1 along the ith dimension, 1 6 i 6 n, if the
following four conditions are all satisfied: (i) ui – vi, (ii) uj = vj for all j, i + 1 6 j 6 n, (iii) u2ku2k�1 � v2kv2k�1 for all
k; 1 6 k 6 i�1

2

� �
, and (iv) ui�1 = vi�1 if i is even. Then, we say that u is the i-neighbor of v, denoted by (v)i, and vice versa.

The edge (u, (u)i) is called an i-dimensional edge. It is easy to see that v = (u)i if and only if u = (v)i.

Lemma 4. Let u be any vertex of CQn, n P 3. For any integer i, 1 6 i 6 n � 1, ((u)i)n = ((u)n)i if (1) i is even, or (2) i = n � 1 with n
even.
Proof. Let u, v, x, y, and z be five vertices of CQn, where v = (u)n, x = (u)i, y = (v)i, and z = (x)n. Since CQn ¼ CQ0
n�1 � CQ1

n�1, we
assume, without loss of generality, that u 2 VðCQ0

n�1Þ. According to the possible values of n and i, we distinguish the follow-
ing three cases.

Case 1. n is even and i = 2j for any j; 1 6 j 6 n�1
2

� �
. By the definition of i-neighbors, we can obtain immediately that yp = zp

for 1 6 p 6 n except p 2 {i, i � 1}. Moreover, zizi�1 � �uiui�1; yiyi�1 ¼ �v iv i�1, and vivi�1 � uiui�1, where �ui denotes the
complement of ui. According to the possible values of ui�1, we consider the following two subcases.
Subcase 1.1. ui�1 = 0. This results in zizi�1 ¼ �ui0; v iv i�1 ¼ ui0, and yiyi�1 ¼ �v iv i�1 ¼ �ui0. It yields y = z.
Subcase 1.2. ui�1 = 1. This results in zizi�1 ¼ ui1; v iv i�1 ¼ �ui1; and yiyi�1 ¼ �v iv i�1 ¼ ui1. This also yields y = z. Thus,
((u)i)n = ((u)n)i when n is even and i = 2j for any j; 1 6 j 6 n�1

2

� �
.

Case 2. n is even and i = n � 1. In this case, by the definition of i-neighbors, we can derive directly that yp = zp for
1 6 p 6 n � 2. Furthermore, ynyn�1 ¼ vn �vn�1 ¼ �un�un�1 and znzn�1 ¼ �xnxn�1 ¼ �un�un�1. This reveals that y = z.
Case 3. n is odd. By a similar argument as that in Case 1, this case holds. This concludes the proof of this lemma. h
Corollary 1. Let (u,v) be any n-dimensional edge in CQn, n P 3. For any integer i, 1 6 i 6 n � 1, the set of vertices {u,v, (u)i, (v)i}
induces a cycle of length 4 if (1) i is even, or (2) i = n � 1 with n even.

In [12], Fan et al. introduced how to locate a cycle of length 5 as the following lemma.

Lemma 5 [12]. Let (u,v) be any n-dimensional edge in CQn, n P 3. Then, ((u)1)n = ((v)2)1 = ((v)1)2.
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(i) The set of vertices {u,v, (u)1, (v)2, ((v)2)1} induces a cycle of length 5.
(ii) The set of vertices {u,v, (u)1, (v)1, ((v)1)2} induces a cycle of length 5.

The following lemma describes a good property of CQ4. It can be verified by brute force with a computer program [29].

Lemma 6. Let (x,y) be any 2-dimensional, 3-dimensional, or 4-dimensional edge of CQ4. Then, CQ4 � {x,y} has a Hamiltonian path
between two arbitrary vertices.

Corollary 2 is drawn from Lemmas 3 and 6.

Corollary 2. For n P 4 and 2 6 i 6 n, let (x,y) be any i-dimensional edge of CQn. Then, CQn � {x,y} has a Hamiltonian path
between two arbitrary vertices.
3. Panpositionable Hamiltonicity of CQn

By the definition, CQn has no cycle of length 3 as a subgraph so that there does not exist any path of length 2 between
adjacent vertices x and y in CQn. For this reason, CQn is not panpositionably Hamiltonian. However, Theorem 2 will show
a relaxed version of the panpositionable Hamiltonicity. Before introducing Theorem 2, we prove the following theorem in
advance.

Theorem 1. Let x and y be any two vertices of CQn, n P 4, and let l be any integer with dCQn
ðx; yÞ 6 l 6 2n � 1 and

l – dCQn
ðx; yÞ þ 1. There exists a Hamiltonian path P of CQn such that P(1) = x and P(l + 1) = y.
Proof. We prove this theorem by induction on n. Firstly, the correctness of the induction base on CQ4 can be verified by brute
force with a computer program [30]. The inductive hypothesis is that the statement holds for any CQk, 4 6 k 6 n � 1. Then,
we need to show that CQn has a Hamiltonian path P such that P(1) = x and P(l + 1) = y. Since CQn ¼ CQ0

n�1 � CQ1
n�1, we assume,

without loss of generality, that x 2 VðCQ0
n�1Þ. The following three cases are distinguished.

Case 1. y 2 VðCQ0
n�1Þ. By Lemma 1, we have dCQn

ðx; yÞ ¼ dCQ0
n�1
ðx; yÞ. The following three subcases have to be considered.
Subcase 1.1. dCQn ðx; yÞ 6 l 6 2n�1 � 1 and l – dCQn ðx; yÞ þ 1. By the inductive hypothesis, there exists a Hamiltonian path R of
CQ0

n�1 such that R(1) = x and R(l + 1) = y. For convenience, path R is written as hx,R1,y,R2,zi, where z is some vertex in CQ0
n�1. It

is noticed that z = y if l = 2n�1 � 1. By Lemma 3, we can find a Hamiltonian path S of CQ1
n�1 joining (z)n to any vertex a in

CQ1
n�1. Then, P = hx,R1,y,R2,z,(z)n,S,ai is a Hamiltonian path of CQn with P(1) = x and P(l + 1) = y, see Fig. 2(a) for illustration.
Subcase 1.2. l = 2n�1. Let a be any vertex in CQ1
n�1 other than (x)n and (y)n. By Lemma 3, there exists a Hamiltonian path S of

CQ1
n�1 � fag joining (x)n to (y)n. Similarly, there exists a Hamiltonian path R of CQ0

n�1 � fxg joining (a)n and y. Then,
P = hx, (x)n,S, (y)n,y,R, (a)n,ai is a Hamiltonian path of CQn such that P(1) = x and P(2n�1 + 1) = y. Fig. 2(b) illustrates this
subcase.
Subcase 1.3. 2n�1 + 1 6 l 6 2n � 1. By Lemma 3, there exists a Hamiltonian path R of CQ0
n�1 joining x to y. For clarity, path R is

written as hx,R1,a,b,R2,yi, where a and b are adjacent vertices satisfying ‘(R1) = l � 2n�1 � 1. It is noticed that x = a if
l = 2n�1 + 1, and b = y if l = 2n � 1. Again, Lemma 3 ensures that CQ1

n�1 has a Hamiltonian path S joining (a)n to (y)n. Then,
P = hx,R1,a, (a)n,S, (y)n,y,rev(R2),bi is a Hamiltonian path of CQn such that P(1) = x and P(l + 1) = y, see Fig. 2(c) for illustration.
Fig. 2. Case 1 in the Proof of Theorem 1. (A dashed line or a straight line represents an edge.)



Fig. 3. Case 2 in the Proof of Theorem 1. (A dashed line or a straight line represents an edge.)
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Case 2. y 2 VðCQ1
n�1Þ and (x,y) R E(CQn). The following three subcases are distinguished.
Subcase 2.1. dCQn ðx; yÞ 6 l 6 2n�1 � 1 and l – dCQn ðx; yÞ þ 1. By Lemmas 1 and 2, we have
dCQ0

n�1
ðx; ðyÞnÞ ¼ dCQn ðx; ðyÞ

nÞ ¼ dCQn ðx; yÞ � 1 or dCQ1
n�1
ððxÞn; yÞ ¼ dCQn ððxÞ

n
; yÞ ¼ dCQn ðx; yÞ � 1. Firstly, we assume that

dCQ0
n�1
ðx; ðyÞnÞ ¼ dCQn ðx; yÞ � 1. By the inductive hypothesis, there exists a Hamiltonian path R of CQ0

n�1 with R(1) = x and
R(l) = (y)n. For clarity, path R is written as hx,R1, (y)n,a,R2,zi, where a and z are vertices in VðCQ0

n�1Þ � fx; ðyÞ
ng. It is noticed

that a = z if l = 2n�1 � 1. By Lemma 3, there exists a Hamiltonian path S of CQ1
n�1 joining y to (z)n. Then,

P = hx,R1, (y)n,y,S, (z)n,z,rev(R2),ai is a Hamiltonian path of CQn such that P(1) = x and P(l + 1) = y. This subcase is illustrated
in Fig. 3(a).

Next, we assume that dCQ1
n�1
ððxÞn; yÞ ¼ dCQn ðx; yÞ � 1. By the inductive hypothesis, there exists a Hamiltonian path S of

CQ1
n�1 with S(1) = (x)n and S(l) = y. The path S can be written as h(x)n,S1,y,S2,zi, where z is some vertex in

VðCQ1
n�1Þ � fðxÞ

n
; yg. By Lemma 3, there exists a Hamiltonian path R of CQ0

n�1 � fxg joining (z)n to any vertex a in
VðCQ0

n�1Þ � fx; ðzÞ
ng. Then, P = hx, (x)n,S1,y,S2,z, (z)n,R,ai is a Hamiltonian path of CQn such that P(1) = x and P(l + 1) = y. See

Fig. 3(b) for illustration.

Subcase 2.2. 2n�1
6 l 6 2n � 2. Let h = l � 2n�1. By Lemma 3, CQ 0

n�1 has a Hamiltonian path R joining x and (y)n. For
convenience, path R is written as hx,R1,a,b,R2, (y)ni, where a and b are two adjacent vertices in CQ0

n�1 with ‘(R1) = h. It is
noticed that a = x if l = 2n�1 and b = (y)n if l = 2n � 2. Obviously, CQ1

n�1 has a Hamiltonian path S joining (a)n to y. Then,
P = hx,R1,a, (a)n,S,y, (y)n,rev(R2),bi is a Hamiltonian path of CQn with P(1) = x and P(l + 1) = y. See Fig. 3(c) for illustration.
Subcase 2.3. l = 2n � 1. By Lemma 3, CQn is Hamiltonian connected. Thus, there exists a Hamiltonian path P of CQn joining x
to y.
Case 3. y 2 VðCQ1
n�1Þ and (x,y) 2 E(CQn). Since (x,y) 2 E(CQn), we have 1 6 l 6 2n � 1 and l – 2. When l = 1, it follows from

Lemma 3 that there exists a Hamiltonian path R of CQn � {x} joining y to any vertex z, z – x, so that P = hx,y,R,zi is our
required path with P(1) = x and P(2) = y. Thus, we discuss 3 6 l 6 2n � 1. The following subcases are distinguished.
Subcase 3.1. l = 3. By Corollary 1, the set of vertices {x,y, (x)2, (y)2} induces a cycle of length 4. By Lemma 3, CQn is (n � 3)-
fault-tolerant Hamiltonian connected. Therefore, there exists a Hamiltonian path R of CQn � {(x)2, (y)2} joining y to x. We can
write R as hy,R0,z,xi, where z is some vertex in V(CQn) � {x,y, (x)2, (y)2}. Then, P = hx, (x)2, (y)2,y,R0,zi is a Hamiltonian path of
CQn such that P(1) = x and P(4) = y. Fig. 4(a) illustrates this subcase.
Subcase 3.2. l = 4. By Lemma 5, the set of vertices {x,y, (x)1, (y)1, ((y)1)2} induces a cycle of length 5. Let v be any vertex in
VðCQ1

n�1Þ � fy; ðyÞ
1
; ððyÞ1Þ2g. By Corollary 2, there exists a Hamiltonian path S of CQ1

n�1 � fðyÞ
1
; ððyÞ1Þ2g joining y to v. By

Lemma 3, there exists a Hamiltonian path R of CQ0
n�1 � fðxÞ

1g joining (v)n to x. Path R can be written as h(v)n,R0,u,xi, where
u is some vertex adjacent to x. Therefore, P = hx, (x)1, ((y)1)2, (y)1,y,S,v, (v)n,R0,ui is a Hamiltonian path of CQn with P(1) = x and
P(5) = y. The illustration of this subcase is shown in Fig. 4(b).
Subcase 3.3. 5 6 l 6 2n�1. Let h = l � 2. Then, we have 3 6 h 6 2n�1 � 2. By Corollary 1, the set of vertices {x,y, (x)2, (y)2}
induces a cycle of length 4. By the inductive hypothesis, there exists a Hamiltonian path R of CQ0

n�1 such that R(1) = (x)2

and R(h + 1) = x. For clarity, path R is written as h(x)2,R1,x,v,R2,zi, where v and z are two vertices in VðCQ0
n�1Þ � fx; ðxÞ

2g.
It is noticed that v = z if h = 2n�1 � 2. By Lemma 3, there exists a Hamiltonian path S of CQ1

n�1 � fðyÞ
2g joining y to (z)n. Then,

P = hx,rev(R1), (x)2, (y)2,y,S, (z)n,z,rev(R2),vi is a Hamiltonian path of CQn with P(1) = x and P(l + 1) = y, see Fig. 4(c) for
illustration.



Fig. 4. Case 3 in the Proof of Theorem 1. (A dashed line or a straight line represents an edge.)
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Subcase 3.4. l = 2n�1 + 1. Obviously, the set of vertices {x,y, (x)2, (y)2} induces a cycle of length 4. By Lemma 3, there exists a
Hamiltonian path R of CQ0

n�1 joining x and (x)2. Similarly, there exists a Hamiltonian path S of CQ1
n�1 � fðyÞ

2g joining y to any
vertex z in VðCQ1

n�1Þ � fðyÞ
2g. Then, P = hx,R, (x)2, (y)2,y,S,zi is a Hamiltonian path of CQn with P(1) = x and P(2n�1 + 2) = y.

Fig. 4(d) illustrates this subcase.
Subcase 3.5. l = 2n�1 + 2. By Lemma 5, the set of vertices {x,y, (x)1, (y)1, ((y)1)2} induces a cycle of length 5. By Lemma 3, CQ0
n�1

has a Hamiltonian path R joining x to (x)1. By Corollary 2, CQ1
n�1 � fðyÞ

1
; ððyÞ1Þ2g has a Hamiltonian path S joining y to any

vertex z in VðCQ1
n�1Þ � fy; ðyÞ

1
; ððyÞ1Þ2g. Then, P = hx,R, (x)1, ((y)1)2, (y)1,y,S,zi is a Hamiltonian path of CQn with P(1) = x and

P(2n�1 + 3) = y, see Fig. 4(e).
Subcase 3.6. 2n�1 + 3 6 l 6 2n � 1. Let h = l � 2n�1. Hence, we have 3 6 h 6 2n�1 � 1. It is obvious that the set of vertices
{x,y, (x)2, (y)2} induces a cycle of length 4. By Lemma 3, there exists a Hamiltonian path R of CQ0

n�1 joining x and (x)2. By
the inductive hypothesis, there exists a Hamiltonian path S of CQ1

n�1 with S(1) = (y)2 and S(h + 1) = y. For convenience,
path S is written as h(y)2,S1,y,S2,zi, where z is some vertex in VðCQ1

n�1Þ � fðyÞ
2g. It is noticed that z = y if h = 2n�1 � 1.

Then, P = hx,R, (x)2, (y)2,S1,y,S2,zi is a Hamiltonian path of CQn with P(1) = x and P(l + 1) = y. Fig. 4(f) shows the
illustration. h
Theorem 2. Let x and y be any two vertices of CQn, n P 4, and let l be any integer with dCQn ðx; yÞ 6 l 6 2n�1 and l – dCQn ðx; yÞ þ 1.
There exists a Hamiltonian cycle C of CQn such that dC(x,y) = l.
Proof. When n = 4, the statement can be verified by brute force with a computer program [31]. Here, we show that there
exists a Hamiltonian cycle C of CQn, n P 5, such that dC(x,y) = l. Since CQn ¼ CQ0

n�1 � CQ1
n�1, we assume, without loss of gen-

erality, that x 2 VðCQ0
n�1Þ. Consider the following three cases.
Case 1. y 2 VðCQ0
n�1Þ. In this case, we have to consider the following two subcases.
Subcase 1.1. dCQn ðx; yÞ 6 l 6 2n�1 � 1 and l – dCQn ðx; yÞ þ 1. By letting a be vertex (x)n in the proof of Subcase 1.1 in Theo-
rem 1, we can obtain a Hamiltonian cycle C = hx,R1,y,R2,z, (z)n,S, (x)n,xi of CQn such that dC(x,y) = l.



Fig. 5. Subcase 1.2 in the Proof of Theorem 2. (A dashed line or a straight line represents an edge.)

Fig. 6. Case 2 in the Proof of Theorem 2. (A straight line represents an edge.)
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Subcase 1.2. l = 2n�1. Let a = (x)n. Obviously, we can choose an even integer i, 1 6 i 6 n � 1, such that (x)i is not identical to y.
By Corollary 1, {x,a, (x)i, (a)i} induces a cycle of length 4. Let b be a neighbor of x in CQ0

n�1 such that b R {(x)1, (x)i,y}. By Cor-
ollary 2, CQ0

n�1 � fx;bg has a Hamiltonian path R joining (x)i and y. Similarly, CQ1
n�1 � fa; ðaÞ

ig has a Hamiltonian path S join-
ing (y)n and (b)n. Then, C = hx,a, (a)i, (x)i,R,y, (y)n,S, (b)n,b,xi is a Hamiltonian cycle of CQn with dC(x,y) = 2n�1, see Fig. 5 for
illustration.
Case 2. y 2 VðCQ1
n�1Þ and (x,y) R E(CQn). By Lemmas 1 and 2, we have dCQ0

n�1
ðx; ðyÞnÞ ¼ dCQn ðx; yÞ � 1 or dCQ1

n�1
ððxÞn; yÞ ¼

dCQn ðx; yÞ � 1. For convenience, let h = l � 1.
Suppose that dCQ0

n�1
ðx; ðyÞnÞ ¼ dCQn ðx; yÞ � 1. Since dCQ0

n�1
ðx; ðyÞnÞ 6 h 6 2n�1 � 1 and h – dCQ0

n�1
ðx; ðyÞnÞ þ 1, Theorem 1 en-

sures that there exists a Hamiltonian path R of CQ0
n�1 with R(1) = (y)n and R(h + 1) = x. For convenience, path R is written

as h(y)n,R1,x,R2,zi, where z is some vertex in VðCQ0
n�1Þ � fðyÞ

ng. It is noticed that z = x if h = 2n�1 � 1. By Lemma 3, there exists
a Hamiltonian path S of CQ1

n�1 joining y to (z)n. Then, C = hx,rev(R1), (y)n,y,S, (z)n,z,rev(R2),xi is a Hamiltonian cycle of CQn

such that dC(x,y) = h + 1 = l. The illustration of this subcase is shown in Fig. 6(a).
Suppose that dCQ1

n�1
ððxÞn; yÞ ¼ dCQn ðx; yÞ � 1. Since dCQ1

n�1
ððxÞn; yÞ 6 h 6 2n�1 � 1 and h – dCQ1

n�1
ððxÞn; yÞ þ 1, by Theorem 1,

there exists a Hamiltonian path S of CQ1
n�1 with S(1) = (x)n and S(h + 1) = y. Path S can be written as h(x)n,S1,y,S2,zi, where

z is some vertex in VðCQ1
n�1Þ � fðxÞ

ng. It is noticed that z = y if h = 2n�1 � 1. By Lemma 3, there exists a Hamiltonian path
R of CQ0

n�1 joining (z)n to x. Then, C = hx, (x)n,S1,y,S2,z, (z)n,R,xi is a Hamiltonian cycle of CQn such that dC(x,y) = h + 1 = l,
see Fig. 6(b) for illustration.

Case 3. y 2 VðCQ1
n�1Þ and (x,y) 2 E(CQn). Since (x,y) 2 E(CQn), we have 1 6 l 6 2n�1 and l – 2. When l = 1, it follows from

Lemma 3 that there exists a Hamiltonian path R of CQn joining y to x, and C = hx,y,R,xi is our required cycle with dc(x,y) = 1.
Therefore, we discuss 3 6 l 6 2n�1. The following three subcases are distinguished.
Subcase 3.1. l = 3. As described in the proof of Subcase 3.1 of Theorem 1, we can construct a Hamiltonian cycle
C = hx, (x)2, (y)2,y,R,z,xi of CQn with dC(x,y) = 3.
Subcase 3.2. l = 4. By using the same argument as that in Subcase 3.2 of Theorem 1, we can construct a Hamiltonian cycle
C = hx, (x)1, ((y)1)2, (y)1,y,S,v, (v)n,R0,u,xi of CQn with dC(x,y) = 4.
Subcase 3.3. 5 6 l 6 2n�1. This subcase is the same as Subcase 3.3 of Theorem 1, and C = hx,rev(R1), (x)2, (y)2,
y,S, (z)n,z,rev(R2),v,xi is a Hamiltonian cycle of CQn with dC(x,y) = l. h
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4. Concluding remarks
The class of crossed cubes is a popular variant of the hypercube network for its nice topological properties. However, the
crossed cube is not panpositionably Hamiltonian due to the limitation that it contains no cycle of length 3 as a subgraph.
Therefore, we are attracted to propose a relaxed version of panpositionable Hamiltonicity for the crossed cube. In this paper,
we solve the problem of embedding a Hamiltonian cycle in the crossed cube such that two required vertices can keep a given
distance from each other. To be precise, let x and y be any two distinct vertices of CQn. We show that, for any integer l with
dCQn ðx; yÞ 6 l 6 2n�1 and l – dCQn ðx; yÞ þ 1, there exists a Hamiltonian cycle C of CQn such that dC(x,y) = l.
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