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Batch processing machines are frequently encountered in many industrial environments. A batch pro-
cessing machine is one which can process several jobs simultaneously as a batch. The processing time
of a batch is equal to the largest processing time of any job in the batch. This study deals with the prob-
lem of scheduling jobs in a flowshop with two batch processing machines such that the makespan is min-
imized. A heuristic based on Tabu search (TS) technique is proposed. The proposed heuristic is compared
with a heuristic based on mixed integer linear programming (MILP). Because the complexity of the MILP-
based heuristic is depended on the number of job batches, the comparison is under up-to-eight batches
problem. In order to measure the proposed TS-based heuristic in larger batch problem, the relative error
percentage with the lower bound (REPLB) is used. The results show that the proposed heuristic is efficient
and effective for the problems with relative large job sizes.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Batch processing machines (BPMs) are encountered in many
different environments such as chemical processes performed in
tanks or kilns and burn-in operations in semiconductor industrials.
The applications of batch processing machines could be found in
Uzsoy (1994), Damodaran, Srihari, and Lam (2007), Damodaran
and Srihari (2004), and Manjeshwar, Damodaran, and Srihari
(2009). Uzsoy described an application for burn-in operations in
semiconductor manufacturing. Damodaran et al. (2007) and Man-
jeshwar et al. (2009) provided applications of batch processing ma-
chines used in the chemically treat stage in a rim (for bike)
manufacturing facilities and in chambers for the environmental
stress screening (ESS) in the printed circuit board assembly envi-
ronment. This paper deals with the problem of scheduling batch
processing machines in a two-machine flowshop which is the same
as Damodaran and Srihari (2004) and Manjeshwar et al. (2009).

ESS has evolved from burn-in techniques and requires the en-
tire product to be tested at specified conditions. The chambers em-
ployed in an ESS are batch processing time with restricted
capacities. The capacities are defined by number of job that can
be held. Jobs loaded with different types may be processed in the
same chamber. However, once processing is started, no job can
be added to or removed from the chamber until the processing
of the batch is complete. The batch processing time is set by the
longest processing time among those of all the jobs contained in
the batch.
ll rights reserved.

: +886 4 24363039.
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This paper considers a scheduling problem for a flowshop with
two batch processing machines (two-BPM) in which a finite num-
ber of varied size of jobs are handled. The problem is defined as fol-
lows. There are n jobs to be grouped into batches. The batches of
jobs are processed on the first machine, they move together to
the second machine with negligible transportation time. Each job
has a processing time and a size on each machine. All jobs in a
batch begin processing at the same time, and the processing time
of a batch is determined by the longest processing time of all the
jobs in the batch. Each machine can process a batch of jobs simul-
taneously as long as the total size of the batch does not exceed the
machine capacity.

Makespan or maximal completion time is equivalent to the
completion time of the last job leaving the last work center of pro-
duction system. The smaller makespan implies a higher utilization.
The utilization for flowshop is closely related to productivity of the
production system. Therefore, the makespan performance measure
is selected as the objective.

The rest of this paper is organized into five sections. Sections 2
and 3 reviews related papers and describes the proposed two-BPM
flowshop problems with MILP model, respectively. The proposed
heuristic based on Tabu search, TSH is presented in Section 4.
Extensive computational experiments are conduct in Section 5 to
evaluate the performance of the heuristic. Finally, concluding re-
marks are made in Section 6.
2. Related works

Problems related to scheduling batch processing machines, in
which machine has the ability of processing a number of jobs
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simultaneously has received much attention in scheduling litera-
ture in recent years. The main classification division is research
done for batch processing machines with incompatible job families
vs. those with compatible job families (Perez, Fowler, & Carlyle,
2005). The first model concerns the case of incompatible product
families. According to this model, only products belonging to the
same family may be processed simultaneously. Kempf, Uzsoy,
and Wang (1998), Uzsoy (1995) and Dobson and Nambimadon
(2001) developed deterministic algorithms to schedule batch pro-
cessing machines with incompatible job families. The second mod-
el concerns the batch processing of compatible product families.
This model is assumed that products belonging to alternative fam-
ilies may be processed simultaneously. For example, Lee, Uzsoy,
and Martin-Vega (1992) model burn-in oven as batch processing
machine. The role of batch machines is used as a bottleneck for re-
sources, and can process a number of jobs simultaneous. The dif-
ferent jobs can be batched together but the processing time of
the batch is given by the longest processing time among all jobs
in the batch (Lee et al., 1992; Uzsoy, 1994; Lee & Uzsoy, 1999;
Damodaran & Srihari, 2004; Damodaran et al., 2007, and Manjesh-
war et al., 2009). This paper considers the second model.

In a batching machine with compatible job families, Uzsoy
(1995) firstly proposed heuristics to minimize the makespan and
total flow time. Brucker et al. (1998) proposed dynamic program-
ming algorithms to optimize several different criteria both for
unrestricted batch sizes, and for batches that can contain at most
n jobs. The dynamic programming algorithms are further extended
to identical parallel batching machines for unrestricted batch sizes
(Van Der Zee, 2007). Dupont and Dhaenens-Flipo (2002) presented
some dominance properties for a general enumeration scheme and
for the makespan criterion, and provided a branch and bound
method. Damodaran et al. (2007) and Kashan, Karimi, and Jenabi
(2008) proposed a simulated annealing (SA) heuristic and a hybrid
genetic heuristic to minimize makespan, respectively.

From Perez et al. (2005), we know that the scheduling research
for batch processing machines almost focus on single and parallel
batch machines. Due to the problem of single or parallel batching
processing machines is complicate, some efficient heuristics based
on hybrid genetic algorithm are proposed. In flowshop batch pro-
cessing machines, there is little reported research deal with it.
Sung and Kim (2003) considers a scheduling problem in a two
batch processing machines in a flowshop (two-BPM flowshop)
and three efficient polynomial time algorithms are proposed. The
paper assumes that the processing time of a batch depends on
the individual machine, but not on the jobs in the batch. That is,
all the jobs sizes are one. Damodaran and Srihari (2004) proposed
two mixed integer linear programming (MILP) models which are
for two-BPM flowshop when the buffer capacity is unlimited or
zero. Liao and Liao (2008) considered the same problem as Damod-
aran and Srihari and proposed an improved MILP models for the
problem. An effective heuristic based on the modified MILP model
was developed to solve near-optimal solutions in less computation
time. From Liao and Liao (2008), it reveals that the MILP-based
heuristic is still an integer program, where the computation time
grows exponentially with problem size. The heuristic only solved
problem size about 15 jobs or 8 batches. Afterwards, Liao and
Huang. (2008) applied local search (LS) method to develop a poly-
nomial time heuristic to solve the larger problems, and also ob-
tained good solutions. Therefore, this paper refers to Liao and
Huang (2008) LS method to construct a heuristic based on Tabu
search, named TSH heuristic.

3. Problem statement

This paper considers two-BPM flowshop problem with the fol-
lowing assumptions.
(1) Given n jobs to be processed in a two-machine flowshop.
Each job j is available at time 0 and the processing time of
job j on machine m denotes by pjm. Because the processing
times of jobs are known a priori from production system,
all data are assumed to be deterministic.

(2) Capacities of all machines are Q and job j has a size sj. The
size of a job and the sum of the sizes of jobs in batch b cannot
exceed Q. That is

P
jeb sj 6 Q, "b.

(3) Once the processing of a batch is initiated, it cannot be inter-
rupted and other jobs cannot be introduced into the
machine until the processing is completed. The processing
time of batch b is given by the largest processing time of
the jobs in the batch. That is Pbm = maxjeb pjm.

(4) The objective is to minimize the makespan, that is the max-
imum completion time of jobs, Cmax.

The related sets and variables of problem addressed by Liao and
Liao (2008) are as follows:

Sets
J: jobs
M: machines
B: batches
K: positions
Decision variable
Xjb = 1, if job j is in batch b; 0 otherwise
Dependent variables
Cmax: makespan
Pbm: processing time of batchb on machine m
Ckm: completion time of the kth batch on machine m

Liao and Liao (2008) proposed the MILP model for the unlimited
intermediate storage. The complexity of MILP model is based on
batch number, |B|. The computational time increases rapidly as
|B| increases. The model is described as follows:

Minimize Cmax ð1Þ
Subject to

X
b2B

Xjb ¼ 1 8j ð2Þ
X
j2J

sjXjb � Q ; 8b ð3Þ

Pbm � pjmXjb 8j 2 J; b 2 B; m 2 M ð4Þ

Cb1 ¼
Xb

k¼1

Pk1 8b 2 B ð5Þ

C12 ¼ C11 þ P12 ð6Þ
Cb2 ¼ Cb�1;2 þ Pb2 8b 2 B=f1g ð7Þ
Cb2 � Cb1 � Pb2 8b 2 B ð8Þ
Cmax � Cn2 ð9Þ
Xjb ¼ 0 or 1 ð10Þ
Cbm; Pbm;Cmax � 0 ð11Þ
4. Proposed Tabu search heuristic

This paper adopts Tabu search (TS) technique to develop a heu-
ristic named as TSH for the two-BPM flowshop problem. The objec-
tive is to minimize makespan. Fig. 1 illustrates the computational
procedure of TSH.

4.1. Initial solution

Su (2003) proposed an algorithm which minimizes the number
of bathes formed for minimizing the makespan. For the two-BPM
machines flowshop problem, minimizing the number of batches
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need not minimize the makespan (Manjeshwar et al., 2009). There-
fore, don’t enforce batch number minimized on the initial solution.
In Liao and Liao (2008) study, it has observed that the optimal
number of batch is always near the number of batch minimized,
but equation is not a certainty.

Johnson’s algorithm (JA) provided an optimal schedule for min-
imizing makespan in a two-machine flowshop that do not require
sequence changes between machines (Pinedo, 2002). Therefore,
this paper adopts the procedure of First Fit (FF) (Uzsoy, 1994)
and JA to construct the initial solution, called FFJA algorithm. The
procedure of FFJA is described as follows:
Step 1. All jobs are arranged by JA, and obtain an initial
sequence U0 = {r1, r2, . . . , rn}, where ri is the ith job of
W0. The batches are formed only when each batch accom-
modates exactly one job. Determine the makespan, Cmax.
Step 2. Batches formed procedure

2.1 Let WB denote a set of job batches, and U denote a set of

jobs unassigned. The WB set only includes the first job
of W0 i.e. WB = {r1}, and now U = {r2, . . . , rn}. The cur-
rent batch is 1, b = 1, and job r1 is included in the batch.

2.2 If U – / , then try to assign a job of U to batch b of WB;
else go to step 3.

2.3 While forming the batches the machine capacity should
not be exceeded. Sequentially select a job of U, named
job j, which satisfy sj 6 Q �

P
iebsi. If none job satisfies

the conditions, then creates a new batch, b = b + 1, and
assign the first job of U to batch b of WB and go to step
2.2; else try to combine it to current batch b. Once the
batches are formed, each batch is treated as an artificial
job and by applying JA to obtain a new batch sequence
of WB [U.

2.4 Determine the makespan C0max of the new batch
sequence. If C0max < Cmax, then assign job j from U to
batch b of WB and go to step 2.2.
Step 3 Applying JA to obtain the best batch sequence W�B,
and determine the makespan C�max.
4.2. Short-term search strategy

Most flowshop heuristics based on neighborhood search tech-
niques need excessive computing effort when dealing with large-
size problems. Therefore, this paper proposes a set of alternative
Tabu search procedures by combining two different neighborhood
structures, search strategies, and stopping conditions.

4.2.1. Neighborhood structures and selection
Two neighborhood structures are considered, namely adjacent

swap (or adjacent interchange) and insert neighborhoods. An adja-
cent swap neighborhood is obtained by exchanging two jobs which
respectively belong to two adjacent batches. An insert neighbor-
hood is obtained by inserting a job to another batch but the batch
size cannot exceed machine capacity. The most sizes of the adja-
cent swap neighborhood and insert neighborhood for an arbitrary
sequence with B batches wherein they have n jobs are n2(1/|B| � 1/
|B|2) and n(n � 1)/2, respectively. The entire neighborhoods are
examined and the best move but not Tabu is taken. This paper
adopts adjacent swap neighborhood structure.

4.2.2. Tabu list and size
Hashing function is used to create Tabu list. The type of hashing

can be achieved by a function of the form (Carlton & Barnes, 1996;
Woodruff & Zemel, 1993):

h ¼
Xn

i¼1

zðxiÞ � zðxiþ1Þ
" #

mod½MAXINTþ 1� ð12Þ

where z(xi) is an integer drawn from the range [1, 32,767], MAXI-
NT = 65,535, and xn+1 = x1.

This paper considers batch processing machines, in which ma-
chine has the ability of processing a number of jobs simulta-
neously. Therefore, the jobs within a batch are processed
simultaneously and the optimal batch sequence is unconcerned
with the jobs’ positions within a batch. In order to ensure a batch
sequence with only one corresponding hashing value, the hashing
function is modified and described as follows:

h ¼
XB

b¼1

gðbÞ ð13Þ

where

gðbÞ ¼
X

xi ;xiþ12b

zðxiÞ � zðxiþ1Þ

2
4

3
5mod½MAXINTþ 1� ð14Þ

z(xi) is an integer drawn from the range [1, 32,767], MAXI-
NT = 65,535, and the values of the last job and first job in a batch
are equivalent.

In a Tabu search heuristic, the size of Tabu list is an important
parameter.

4.2.3. Stopping criterion for short-term search
The iterations of adjacent swap (IS) and insert (Ii) are the stop-

ping criteria.

4.2.4. Aspiration criterion
This paper uses the simplest form of aspiration criterion. A Tabu

move is accepted if it produces a solution better than the current
best one.

4.3. Long-term search strategy

An intensification scheme often takes the form of reinforcing
attributes of good solutions, while a diversification scheme typi-



Table 2
Data for Example 2.

Job j 1 2 3 4 5 6 7 8 9 10

pj1 10 2 6 15 7 9 3 10 10 6
pj2 14 9 10 1 12 4 5 8 5 9
sj 5 2 3 4 5 3 5 1 4 4

Table 3
Result of JA for Example 2.

Job j 2 7 3 10 5 1 8 9 6 4

pj1 2 3 6 6 7 10 10 10 9 15
pj2 9 5 10 9 12 14 8 5 4 1
sj 2 5 3 4 5 5 1 4 3 4
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cally jumps to a new region not yet explored. This paper adopts in-
sert to exploring a new solution. The parameter of termination
condition is repeated iteration (Li).

The above procedure of TSH can be divided into three stages.
The first stage is to generate an initial batch sequence by applying
FFJA method. If the processing times of the jobs in a batch are sig-
nificant difference, the neighborhood search method should be ap-
plied to decrease the difference. For this reason, in the second
stage, this paper proposes adjacent swap and insert techniques
to combine jobs with closer processing times on each machine to
form a batch for making the makespan reduction. That is, the
methods reassign jobs to another batch but not Tabu and find a
better batch sequence. Finally, in the third stage, this paper tries
to explore a new solution region to avoid trapping into local opti-
mum. If the termination condition is not satisfied, then go back to
the second stage for another search interaction, otherwise termi-
nation of TSH heuristic.

For explaining the advantage of FFJA, a numerical example in
Manjeshwar et al. (2009) is used. The example is described as
follows:

Example 1. The processing times and sizes of jobs are given in
Table 1. The machine capacities are 10.

Although the least batch of example 1 is 2, it is not the optimal
batch number. By applying FFJA, an initial solution
W�B ¼ f2;3j1;5j4g is obtained, where ‘|’ denotes a division between
two adjacent batches. Obviously, there are three batches in the se-
quence and it means that FFJA does not enforce on batch number
minimized. The sequence f2;3j1;5j4g is the optimal sequence
and the optimal makespan is 35; C�max ¼ 35.

For explaining the procedure of TSH, another example in Dam-
odaran and Srihari (2002) is demonstrated and described as
follows:

Example 2. The processing times and sizes of jobs are given in
Table 2. The machine capacities are assumed to be 10. Applying the
above procedures yield the following result.
Table 4
The first batch formed for Example 2.

Job j 2, 7 3 10 5 1 8 9 6 4

(a)
4.4. Initial solution

Step 1 All jobs are arranged by JA, and obtain initial sequence
U0 = {2, 7, 3, 10, 5, 1, 8, 9, 6, 4}, and its makespan Cmax = 79.
(See Table 3)
Step 2.1 b = 1, WB = {2}, U = {7, 3, 10, 5, 1, 8, 9, 6, 4}.
Step 2.2 U – /, then try to assign a job of U.
Step 2.3 Q � s2 = 10 � 2 = 8 > 0 and i = 2 < 10. s7 = 5 6 10–2.
Step 2.4 WB = {2, 7}, U = {3, 10, 5, 1, 8, 9, 6, 4}. Use JA to schedule
WB and U, and obtain C0max ¼ 77. Because C0max < Cmax, update
Cmax = 77 and go to Step 2.2. (See Table 4a).
Step 2.2 U – /, then try to assign a job of U.
Step 2.3 Q � (s2 + s7) = 10 � (2 + 5) = 3 > 0, and i = 3 < 10.
s3 = 3 6 3.
Step 2.4 WB = {2, 7, 3}, U = {10, 5, 1, 8, 9, 6, 4}. Use JA to schedule
WB and U, and obtain C0max ¼ 74. Because C0max < Cmax, update
Cmax = 74 and go to Step 2.2. (See Table 4b).
Step 2.2 U – /, then try to assign a job of U.
Step 2.3 Because none job satisfies the machine capacity condi-
tions (that is, batch 1 is done), then creates a new batch,
Table 1
Data for Example 1.

Job j 1 2 3 4 5

pj1 10 2 6 15 7
pj2 14 9 10 1 12
sj 5 2 3 4 5
b = b + 1 = 2. WB = {2, 7, 3|10}and U = {5, 1, 8, 9, 6, 4}, and go
to step 2.2 (a new batch is starting).

Repeat the Step 2.2–2.5, and finally, all jobs is combined as four
batches.

Step 3 Applying JA to obtain the best batch sequence of
WB;W

0
B ¼ f2;3;7j5;10j1;8;9j4;6g and the makespan, C�max ¼

46. It is shown in Table 5.

4.5. Short-term search strategy

Swap two jobs wherein two adjacent batches are. The best neigh-
borhood is the swap of jobs 1 and 10, and C0max ¼ 45. Because
C0max < C�max, swap the two jobs, and updateW�B ¼ f2;3;7j1;5j8;
9;10j4;6g;C�max ¼ 45. Repeat the short-term search strategy, until
stopping criterion is satisfied. The result is shown in Table 6 and
Fig. 2.

4.6. Long-term search strategy

A new solution is obtained by insert but not belong to long-term
Tabu list and go back to execute short-term strategy. Repeat Li
times (terminal condition), the search procedure is termination.
The best batch sequence is W�B ¼ f2;3;7j1;5j8;9;10j4;6g and the
C�max ¼ 45. This solution is optimal in this example (See Fig. 2).
5. Computational experiments

In this section, we evaluate the proposed heuristic by using the
same problem generating scheme as Uzsoy (1994) and Liao and
Liao (2008). Job processing times were randomly generated from
a discrete uniform distribution U(1,100). The capacities of both ma-
chines were assumed to be 10. Job sizes were generated from dis-
crete uniform distributions between amin and amax. Three different
pj1 3 6 6 7 10 10 10 9 15
pj2 9 10 9 12 14 8 5 4 1
sj 7 3 4 5 5 1 4 3 4

Job j 2, 3, 7 10 5 1 8 9 6 4

(b)
pj1 6 6 7 10 10 10 9 15
pj2 10 9 12 14 8 5 4 1
sj 10 4 5 5 1 4 3 4



Table 5
The all batches formed for Example 2.

Job j 2, 3, 7 5, 10 1, 8, 9 4, 6

pj1 6 7 10 15
pj2 10 12 14 4
sj 10 9 10 7

Table 6
The best batch sequence of Example 2.

Job j 2, 3, 7 1, 5 8, 9, 10 4, 6

pj1 6 10 10 15
pj2 10 14 9 4
sj 10 10 9 7

M1

M2

7, 3, 2

7, 3, 2

5, 1

5, 1

6, 4

6, 4

6 16 30 39

10,  8, 9

10, 8, 9

4526 41

Fig. 2. Gantt chart of the best batch sequence of Example 2.

Table 8
Design of experiment for adjacent swap.

Source F P

n 4.41 0
Distribution 145.91 0
Swap iteration 4.44 0.004

swap iteration
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Fig. 3. Interaction plot of Dist. I, II, III and swap iterations.

Table 9
Improved instances of long-term repeated iterations.
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distributions of job sizes are designed as shown in Table 7. The
MILP models, generated by a computer program, were solved by
LINGO 10.0. The proposed heuristic and MILP model run on a Pen-
tium IV 3.2 GHz PC.

This paper evaluates the performance of the proposed heuristic
by solving the problem with job n = 10, 20, . . . , 100. There are 10
independent instances generated for each combination. The total
instance is 300.

In order to calibrate the TSH, the heuristic runs 10 instances of
50-job in distribution I, II, III, respectively. Preliminary experiments
are conducted to determine TL = 35 and show that the ranges of
Stopping criterions. Therefore, a full factorial design is chosen, in
which all combinations of the following factors are tested:

d Stopping criterion of adjacent swap: 5 levels (20, 40, 60, 80 and
100 iterations);

d Stopping criterion of insert: 4 levels (50, 100, 150, and 200)

All the cited factors result in total of 20 different combinations.
The set of instances comprises 27 combinations of job number and
distributions of job sizes, being n = {20, . . . , 100} and three distri-
butions. There are 10 replicates for each combination thus sum-
ming up for 270 instances.

The first experiment is designed for stopping criterion of adjacent
swap. The ANOVA shows that the number of job, distributions of job
sizes and stopping criterion of adjacent swap are significant. The
brief summary of ANOVA table is shown in Table 8. The interaction
plot of job size distributions and adjacent swap iteration was shown
in Fig. 3. Based on Fig. 3, 80, 60 and 40 are chosen as adjacent swap
iterations in job size distributions I, II, III problems, respectively.

The second experiment is designed for stopping criterion of in-
sert. The ANOVA shows that stopping criterion of insert is not sig-
Table 7
Three different distributions of job sizes.

Dist. (amin, amax) Description

I (1, 5) Job sizes are relatively small
II (4, 10) Job sizes are relatively large
III (1, 10) Job sizes are distributed widely
nificant (P value = 0.57). Therefore, 100 is selected as stopping
criterion of insert.

After the short-term search strategy is done, the next experi-
ment will decide a proper long-term search strategy. The termina-
tion condition of TSH has six levels of repeated iterations, i.e., 5, 10,
15, 20, 25, 30. There are 90 instances in each job size distribution
problems. The improved instances from iterations k to l are shown
in Table 9. As an illustration, in case of Dist. I, there are 81 im-
proved instances in all 90 instances from 1 iteration to 5 iterations.
The improve rate is 90% (81/90 � 100%). Similarly, there are 45 im-
proved instances from 5 iterations to 10 iterations. Consequently,
the number of improved instances is in decreasing order of itera-
tions k to l from Table 9. In tradeoff of time and solution quality,
the proper choice for distributions, I, II, III are 30, 20, 10 iterations,
respectively.

From above experiments, the important parameters of TSH are
shown in Table 10.

The further experiments are concerned with the solution qual-
ity. Firstly, the problem with n = 10 is solved by the MILP model de-
scribed in Section 3 and the optimal solution is obtained. The
solutions of the proposed TSH heuristic compare with the opti-
From iterations k to l # of improved instances

Dist. I Dist. II Dist. III

1–5 81 71 46
5–10 45 22 9
10–15 27 16 5
15–20 24 9 1
20–25 16 6 0
25–30 10 6 0



Table 10
Parameters setting of TSH.

Parameters Dist. I Dist. II Dist. III

Tabu size 35 35 35
Iteration of swap 80 60 40
Iteration of insert 100 100 100
Termination condition 30 20 10

Table 12
Computational results of n = 10, 20, . . . , 100.

n Mean of REPLB

Dist. I Dist. II Dist. III

20 10.00 4.42 4.06
30 13.39 7.04 2.05
40 13.27 6.10 3.24
50 13.40 6.82 4.00
60 12.99 5.50 3.19
70 12.48 6.96 5.15
80 13.04 7.64 6.27
90 13.42 7.64 4.21
100 13.26 8.10 6.30

Avg. 12.80 6.69 4.27
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mum. The relative error percentage (REP) is used to evaluate the
performance and described as follows. The computational results
are shown in Table 11.

REP ¼ CTSH
max � C�max

C�max
� 100 ð12Þ

In n = 20 problems, few instances can be solved by MILP model
in 24 h. Therefore, the proposed heuristic solves for 20-, 30-
, . . . , 100-job problems, and then the results compare with the
lower bounds (LB) (Liao and Liao, 2008). The LB substitutes the
optimal solution, C�max in formulation (12). The performance index
is named REPLB and described as follows. The results are shown in
Table 12.

REPLB ¼
CTSH

max � LB
LB

� 100 ð13Þ

Table 11 presents the performance of the proposed TSH heuris-
tic for n = 10 problems. In distributions I and II, the percentages of
optimum are both 100%. There are only 3 instances is not optimal
in distributions III and the average of REP is 1.00. One relation be-
tween LB and C�max deserves to be mentioned: The average relative
error percentages of LBs and C�max are respectively 13.05, 0.99 and
Table 11
Computational results of instances as n = 10.

Inst. Dist. LB MILP model C�max�LB
C�max

� 100 Proposed TSH

C�max CPU time (s) Cmax REP

1 I 223 256 81 14.80 256 0
2 193 214 11 10.88 214 0
3 188 213 11 13.30 213 0
4 208 241 12 15.87 241 0
5 216 246 7 13.89 246 0
6 223 251 3 12.56 251 0
7 204 242 7 18.63 242 0
8 243 249 43 2.47 249 0
9 252 269 16 6.75 269 0
10 173 210 5 21.39 210 0

Avg. 13.05 0
11 II 423 423 549 0 423 0
12 469 471 1371 0.43 471 0
13 379 402 1333 6.07 402 0
14 451 467 700 3.55 467 0
15 454 456 1298 0.44 456 0
16 636 636 – 0 636 0
17 482 491 1027 1.87 491 0
18 545 545 440 0 545 0
19 476 476 274 0 476 0
20 468 468 1463 0 468 0

Avg. 0.99 0
21 III 365 393 442 7.67 393 0
22 314 349 844 11.15 349 0
23 279 325 249 16.91 325 2.46
24 467 467 585 0 467 0
25 336 363 514 8.04 363 1.10
26 477 477 170 0 477 0
27 375 375 730 0 375 6.40
28 406 406 280 0 406 0
29 239 283 93 18.41 283 0
30 336 338 177 0.60 338 0

Avg. 6.28 1.00
6.28 for distributions I, II and III. It presents that the LB of distribu-
tion II is the closest to the optimum and distribution I is the far-
thest from optimum.

Table 12 presents the performance of the proposed TSH heuris-
tic for n = 20, 30, . . . , 100 problems. The averages of REPLB in distri-
butions II and III only are respectively 6.69 and 4.27. They are
significant smaller than the averages of REPLB of distribution I.
The main reason is that the LB is closer to the optimum than distri-
butions I.

6. Conclusions

For two-BPM problem, as the number of batch rapidly increases,
the computational time of MILP model becomes more exhausted.
As job batch is larger than 8, few instances can be solved. In
n = 20 problems with distribution II, job sizes are relatively large;
no instance can be solved by MILP-based heuristic in 12 h. This pa-
per proposes a heuristic based Tabu search for flowshop with two-
BPM such that the makespan is minimized. Because the complexity
of the MILP-based heuristic is depended on the number of job
batches, the comparison of the TSH heuristic with the MILP-based
one is under up-to-eight batch problem. As job size is relatively
large, the proposed TSH heuristic is significant efficiency.

The TSH heuristic is used to solve large problems and only con-
sumes little time, e.g., a 100-job problem can be solved within 60 s,
to obtain a good solution. The performance is evaluated by the
REPLB. Although the mean of REPLB of distribution I is 12.28, we
can conjecture that the REP of TSH heuristic is very close to opti-
mum based on the average relative error percentages of LB and
C�max; ðC

�
max � LBÞ=C�max � 100, of Table 11. The proposed TSH heuris-

tic is more significant efficient and effective than the proposed one
by Liao and Huang (2008).

All the experimentation clearly highlights the superior of the
proposed TSH heuristic as opposed to Lingo commercial solvers.
This research can be extended to optimize other meta-heuristics.
The authors are currently applying SA technique for the problem.
However, other novel approaches, such as branch-and-bound tech-
nique, can also be developed for further research.
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