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A RFID-enabled global TFT–LCD supply chain associated with Grey forecasting model (GM)
of Company A has been simulated and analyzed in this research. Three key performance
indicates (KPI) including total inventory cost, inventory turnover and bullwhip effect are
analyzed in the simulation experiments in order to compare the effectiveness of five differ-
ent supply chain inventory models. The effectiveness of integrated system which is com-
posed of supply chain operation, Grey short-term forecasting model and RFID system
has been examined by aforementioned three KPIs. According to the result of Taguchi exper-
iments, RFID-enabled R-SCIGM supply chain model which integrates the GM(1,1) forecasting
model based on (s, Q) pull-based replenishment policy reduces 43.36% of the total inven-
tory cost compared with that of the non-RFID SCIGM model. It apparently shows that a great
improving effectiveness of supply chain inventory cost can be conducted while RFID sys-
tem is incorporated with the GM(1,1) forecasting model.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

There has been fierce competition between companies under the trend of globalization of industries. Therefore, the prob-
lems of reducing the length of product lifecycle, tightening shipment date and quick delivery of products are faced by the
industries. In order to achieve the ultimate value of integrated operations, industries are going to focus on the integration
of supply chain. The interrelated networks of supply chain consist of manufacturers, suppliers, distributors, wholesalers,
retailers and customers. The volume of demand forecasted by upstream suppliers is usually greater than the actual market
demand, for the lack of transparent information and communication channel. The wrong decisions on inventory and produc-
tion are caused by the distorted information on purchasing products. Thus, the increased inventory cost in the upstream
channels leads to the enlargement of the total cost of entire supply chain, which creates the bullwhip effect.

Lee et al. (1997) considers demand forecasting, lead time, price variation and batch orders as factors of bullwhip effect. He
thinks one of the ways to weaken bullwhip effect is to avoid repeated demand forecasting. To lessen the problem of bullwhip
effect, the sharing and exchanging of supply chain information is needed. For achieving this goal, one way is to utilize the
Radio Frequency Identification System (RFID). With the real-time product visibility and traceability of RFID, the amount
of on-hand inventory across supply chain tiers can be precisely calculated, and the lead time of product delivery can be
shortened. Moreover, the impact which results from errors in demand forecasting can be reduced, and the effectiveness
of supply chain management can thus increase. In order to cope with the instant RFID-enabled information sharing capabil-
ity, the Grey forecasting model can be appropriately adopted based on merely four pieces of short-term historical data.
. All rights reserved.
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Therefore, there is a great opportunity for integrating the real-time data retrieval capability of RFID with short-term forecast-
ing merit of GM to achieve the quick response in the operation of supply chain.

The purpose of this research is to establish a simulation model of global supply chain, which integrates the Grey short-
term forecasting model and specific service level as basic pull-based inventory replenishment policy for the TFT–LCD Com-
pany A, to prove that the implementation of RFID system can best improve the inventory cost effectiveness.

The remainder of this paper is organized as follows: Section 2 provides a literature review on the RFID applications, sup-
ply chain simulation and Grey forecasting model. The global TFT–LCD RFID-enabled supply chain of Company A and simu-
lation modeling is presented in Section 3. The Taguchi methods/design of experiments and verification by simulation are
described in Section 4. In Section 5, the experiment results of simulation KPI output are analyzed and compared. The con-
clusion of this research is shown in Section 6.
2. Literature review

2.1. RFID applications in supply chain

Saygin et al. (2007) design methods for establishing a RFID-enabled nonlinear supply chain system and emphasize the
communications infrastructure necessary to provide seamless data and information flow in order to achieve RFID data-
based decision-making at all levels of supply chain. By providing visibility, effective RFID implementation in a supply
chain can bridge the gap between the shop floor and higher level operations. Mills-Harris et al. (2007) conducted a sim-
ulated study on the inventory management of time-sensitive materials, based on data collected by RFID. They provide
three inventory models which rely on RFID data and design the trend-adjusted inventory forecast model in accordance
with five estimating indicators. The result shows that a proper adjustment of the two smoothing parameters (a and b)
can achieve the system performance demanded. Moreover, in January 2005, a successful trial of the RFID/EPC system
on tagged pallets and cases was done by Wal-Mart and its top 100 suppliers. The University of Arkansas analyzes Wal-
Mart’s success and finds that after adopting the RFID/EPC system, there’s a 16% decrease in the out-of-stock rate
(MHM, 2005). Hardgrave et al. (2005) did research on 24 retailers of Wal-Mart, which are divided into two groups, and
each group consists of 12 retailers. The result shows that the group which implements RFID has a 26% decrease in the
out-of-stock rate and has improved by 63% compared to the group without RFID. Delen et al. (2007) analyze the RFID data
collected from retailers and suppliers in supply chain and want to know how to estimate the time needed from the logis-
tics center to retailers through RFID. Lee et al. (2004) of the IBM prove the potential effectiveness of RFID in decreasing the
inventory and enhancing the service level with simulation methods based on real data, and the model is a three-tier sup-
ply chain.

These studies above only involve parts of the supply chain tiers, but do not take the interrelation of the entire sup-
ply chain into account. Therefore, this research takes Company A’s global supply chain of TFT–LCD as an example, designs
a simulation model to mimic the operation process of RFID-enabled global supply chain, and uses experimental design meth-
ods to prove the potential effectiveness of RFID in improving the supply chain inventory management.

Visich et al. (2009) conduct an investigation of actual benefits generated by RFID system on supply chain performance
through empirical evidence. The research work of RFID in supply chain is divided into three areas: RFID overview, empirical
studies and analytical studies. This study shows that automational effects of RFID on operational processes include reduced
cost, improved shipping and receiving efficiency, improved inventory control, reduced inventory cost and reduced through-
put time. One of the major automational effects is in the area of inventory control. Ngai et al. (2008) organize RFID research
into four main categories: technological issues, applications areas, policy and security issues, and other issues. Supply chain
management is one sub-category for RFID applications. They conclude that there has been relatively little work done on im-
pacts on the sales and marketing.

Sarac et al. (2010) also conclude that potential benefits, inventory inaccuracy problems, the bullwhip effect and replen-
ishment policies are the major research on the impact of RFID on supply chain management. Simulations study is one major
reviewed methodology. Zelbst et al. (2010) construct a structural model to assess the impacts on the supply chain perfor-
mance based on the utilization of RFID technology and supply chain information sharing. Kok and Shang (2007) develop
an inspection adjusted base-stock (IABS) policy for inventory replenishment in the single-period problem to optimize the
inventory cost. They indicate that the IABS heuristic can achieve a significant value of accurate inventory information pro-
vided by RFID systems.

The motivation of this research is stemmed from those above research findings. We mainly focus on the evaluation of
impacts on the satisfaction of customer requirements and reduced total inventory cost in RFID-enabled supply chain. There-
fore, this research has integrated the Grey short-term customer orders forecasting model with different pull-based replen-
ishment policies within RFID-enabled supply chain and simulated its effectiveness on the total supply chain inventory cost.
2.2. RFID-enabled supply chain simulation

Kleijnen (2005) surveys four types of supply chain simulation: spreadsheet, system dynamics (SD), discrete-event
dynamic system (DEDS), and business games. The survey concludes that the DEDS simulation is an important method in
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supply chain management (SCM). Borshchev and Filippov (2004) suggest that the system being modeled contains active ob-
jects (people, products, stocks, business units, etc.) with timing and event ordering and it is suitable to add agent-based mod-
el to DEDS simulation background. Mustafa et al. (2007) establish a four-tier supply chain. The supply chain is a dynamic
system model which evaluates eight different scenarios by simulation. The performance evaluated is mainly based on inven-
tory, the WIP level, backlogged orders, and customer satisfaction. Liang and Huang (2006) establish a multi-agent system in
supply chain, and the inventory system is operated through different agents. With the genetic algorithm (GA) method, fore-
cast of demand and orders through system thinking is provided by every tier. The result of the agent-based system shows
reduction of total cost and the smoothing of orders variation curve.

Sari (2010) constructs a four-echelon supply chain simulation model to verify the impact of RFID technology on supply
chain performance. He concludes that integrating RFID within supply chain provides greater benefits based on the intensive
collaboration between the partners. Karagiannaki and Pramatari (2010) adopt a discrete event simulation approach to rede-
sign a RFID-enabled supply chain process. They find that the object identification level and RFID labeling responsibility are
identified as key decision factors. Sarac et al. (2008) simulate a RFID-enabled three-level supply chain to evaluate their eco-
nomical impacts and to conduct ROI analyses. They find that the economical impacts of RFID on supply chain depend on the
chosen technology, the tagging level and the product. Mehrjerdi (2009) applies computer simulation techniques for evalu-
ating three large cases of RFID-enabled supply chain. He suggests that management must be committed to high level of per-
formance including competitive lead times, reduced inventories, product quality, and reduced process so that the supply
chain can successfully operate. Ustundag and Tanyas (2009) construct a simulation model to estimate the potential benefits
of an integrated RFID system on a three-echelon supply chain. The study indicates that the lead time and demand uncer-
tainty directly affect the performance of the integrated RFID supply chain in terms of cost factors at each tiers level. The sim-
ulation and evaluation of the impacts on RFID-enabled supply chain performance in terms of total inventory cost have been
conducted with pull-based inventory replenishment policies and ARIMA long-term demand forecasting model (Wang et al.,
2008, 2010).

Due to the interrelated trading and time-based business communication between partners within the supply chain, the
traditional static management approaches have difficulty in solving the problems of the supply chain. Therefore, the alter-
native of system simulation is appropriately adopted. The dynamic system simulation method is used in this research for
establishing a RFID-enabled supply chain model, which consists of agents for planning management, stock control and exec-
utive operation. Moreover, the RFID agent and the Grey forecasting agent are added in order to figure out the most appro-
priate replenishment policy and demand forecasting method for the RFID-enabled supply chain.
2.3. Grey forecasting model

The GM which is originally developed by Deng (1982) is applied in this research. Only four pieces of historical data are
required in the Grey model. There is no strict hypothesis for the distribution of parent data. The main purpose of GM is to
execute the short-term forecasting operation. The fundamental model of Grey prediction is the GM(1,1), a first-order differ-
ential model with only one input variable. The GM(1,1) model uses the most up-to-date data to predict future values. Chen
et al. (2008) develop a GM(1,1) forecasting model to predict the future development for Chunghwa Telecom 3G market, asso-
ciated with the solutions to market obstacles. They find that the Grey forecasting model is suitable for 3G market forecasting
with only four-term historical data. Li et al. (2008) proposed a new prediction model which combines GM(1,1) model with
time series ARIMA from statistics theory. A 3-points average model and Markov chain model are also applied in the research.
Wang and Hsu (2008) develop an improved method to forecast the output and trends of high technology industries in Tai-
wan. The Grey theory is combined with GA in the proposed model. The former is used to forecast the outputs of high tech-
nology industries and the latter is used to estimate the parameters of a forecasting model based on forecasting errors. They
conclude that the proposed GA-based Grey model can be used to effectively reduce the errors in the forecasting process. Wu
et al. (2006) indicate that the types of historical data are smoothing and nonlinear. Wu suggest a 4-points rolling GM(1,1|a)
in the Verhulst model with several values of parameter a to reduce absolute forecasting errors. Chang et al. (2005) construct
a rolling Grey forecasting model (RGM) to forecast Taiwan’s annual semiconductor production. They find that the yearly sur-
vey of anticipated industrial production growth rates in Taiwan and the yearly percent changes in real GDP by US manufac-
turing industry are highly correlated. A Grey–Markov chain forecasting model is proposed by Tien (2005). The deterministic
Grey dynamic model DGDM(1,1,1) is combined with the Grey–Markov chain forecasting model to predict the time for which
the deviation is over the limit of the tolerance. The result showed that high machining accuracy of forecasting can be
achieved by the proposed DGDM(1,1,1). Hsu (2003) examines the precision of the Grey forecasting model applied to samples
based on sales and demand in the global integrated circuit (IC) industry. The results indicate that the Grey model is better
suited to the short-term predictions than to mid- and long-term predictions.

In conclusion, these studies all show that the Grey forecasting model can improve the degree of accuracy based on merely
four pieces of historical data. Therefore, there is a great opportunity for integrating the real-time data retrieval capability of
RFID with short-term forecasting merit of GM in the operation of supply chain. However, these studies do not take the inte-
gration of RFID and the factor of real-time information sharing into consideration. Hence, this research combines supply
chain with the real-time and fast-responding character of RFID in expectation of enhancing the effectiveness of GM-based
demand forecasting model.
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3. Global TFT–LCD supply chain and simulation modeling

3.1. TFT–LCD industry in Taiwan

According to Materialsnet (2008), the Industry Economic Knowledge Center of the Industrial Technology Research Insti-
tute in Taiwan made a statistic showing that the total production value of flat display panel in Taiwan is 40.3 billion USD
in the year of 2007, which overtakes the 34.5 billion USD in South Korea and the 22.5 billion USD in Japan. This in fact
makes Taiwan the biggest flat display manufacturer around world. DisplaySearch (2010) reported that the consolidated
sales revenue in the TFT–LCD from the four major Taiwan panel makers reached NTD 91.767 billion, a 17.8% increase
month by month and also an increase of 177.64% compared with the same period of 2009. The aggregate large-sized panel
shipments in March 2010 were up by 15.2% to 22,723 million units. The architectures of the upstream, midstream, and
downstream of the TFT–LCD industry are quite complex. The components manufactured in the upstream include crystal,
glass substrate, color filter, driver IC, polarizer, and back light. They are fabricated in the midstream, and after that they
can be applied in electronic appliance, consumer products, communication, transportation, computer, and business
products.
3.1.1. Background of Company A
In Fig. 1, the global sites owned by Company A have eight branch warehouses, three regional distribution centers, five LCD

monitor manufactories and four LCD panel manufactories. Its global inventory is computed every day, and the data is trans-
mitted to the headquarters in Taiwan to be organized. Considerations are made on the basis of the inventory of each branch
and the customer demand of each shipment location. Thus, the shipment decision on which manufactories or branch ware-
houses can be made accordingly. Company A collects the stock units and orders information of each tier in its information
management center in order to integrate the information and centralize the distributions. Therefore, the replenishment de-
mand is set depending on the allocated proportion. Under limitations of capacity, stock level, distribution capability, and
Fig. 1. The architecture of global supply chain of Company A.
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storage space, it seeks the optimal level of the throughput in each period, the distribution units, raw materials on-hand units,
and times of purchasing.

Currently, the life cycle of TFT–LCD has already positioned in the maturity stage. The market competition among the indi-
vidual companies should be transferred to the level of the entire supply chain. However, most companies still handle the
transactions of product data manually, which leads to inaccurate and old information across the upstream and downstream
in the supply chain. Therefore, the actual TFT–LCD components inventory status in Company A still cannot be instantly trans-
mitted to the upstream suppliers. The TFT–LCD products shipment status in the downstream distributors also cannot be
timely sent to the Company A. As a result, the purchasing orders issued to the upstream suppliers have to be made according
to the inaccurate and obsolete historical sales data. In order to deal with the customer unstable demand and batch produc-
tion mode, there must be redundant inventory on hand.

Therefore, in order to solve the problem of inventory management in the supply chain, this research establishes a GM
short-term demand forecasting model based on inventory replenishment policy with certain service level. The main goal
is to upgrade the level of customer service and to reduce the amount of inventory generated by the capability of real-time
data transmit in RFID system.
3.2. Global supply chain simulation modeling

3.2.1. Multi-agents simulation functions
This research adopts AnyLogic, a dynamic system simulation tool, to establish a mechanism of RFID-enabled supply chain

simulation associated with a GM-based demand forecasting model. The simulation interface of the R-SCIGM (RFID-enabled
supply chain inventory demand forecasting model) established in this research is shown in Fig. 2. In this model, the mech-
anism of inventory replenishment simulation is operated through functions of agents to monitor the entire supply chain sys-
tem and collect instant information with RFID. The agents can be sorted into three categories: planning, stock control, and
executive operation. The planning agents can be sorted into two categories: supply chain planning and supply chain man-
agement. It publishes the inventory replenishment policies (e.g., (s, Q)), proportion of demand order, reorder point s and
ordering goal of members in the five main tiers of the global supply chain system. The stock control agents play the role
of communication and logical condition judgment for the information of demands, on-hand units and production units gen-
erated by each member of the supply chain system. It can be sorted into four categories: order management, stock units
monitoring, production management and demand forecasting. The executive operation agents can be sorted into four cate-
gories: order check, purchased goods, production and finished goods. The agent of executive operation is the executor of the
Fig. 2. The simulation main screen of R-SCIGM model.
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entire supply chain system. The multi-agents pull-based simulation flow chart for R-SCIGM model is depicted in Fig. 3 and also
is briefly described as follows:

– Once a number of units for customer weekly demand are generated by the system with Weibull distribution, the order
check agent (OCA) will notify the demand forecasting agent (DFA) to process the calculation of forecasted demand based
on GM(1,1) and then provide the number of forecasted units to the upper order management agent (OMA).

– The OMA then asks the finished goods agent (FGA) to release finished goods with required forecasted units. The out-
of-stock units of the finished goods will be recorded by the OMA and production management agent (PMA) notified by
the stock units monitor agent (SUMA). The SUMA gets real-time transactions information regarding the finished goods
on-hand units through the RFID agent (RFIDA) simultaneously.

– If the on-hand units are found to be smaller than the re-ordering points s, the requirements of replenishment Q is sent to
the upper tier’s supplier in the supply chain by OMA. When the replenished raw materials arrive, the SUMA of each tier
will receive the information of the gaining of on-hand units sent by the RFIDA and the purchased unit agent (PUA).

– When the PMA of the manufacturing plant tier receives the information of an out-of-stock in the finished goods stock, it
will ask the production agent (PA) to start the production process. The units of finished goods will increase at the end of
production process.
Table 1
Input parameters of (R, s, S) and (R, S) replenishment policy for Company A.

Tier’s name LCD panel manufactories LCD monitor manufactories Regional DCs Branch warehouses Retailers Unit

D 14,763 11,694 19,286 7165 7094 piece/week
r 76 60 100 37 37 piece/week
L 0.5 0.4 0.2 0.1 0.1 week
R 0.3 0.4 0.4 0.6 0.5 week
DL+R 11,811 9355 11,578 5015 4256 piece/week
rL+R 68 54 77 31 28 piece/week
SL 95% 95% 95% 95% 95%
ss 113 89 127 51 47 piece/week
s 11,923 9444 11,705 5066 4303 piece
Q 1955 1630 2423 1448 1187 piece
S 14,876 11,783 19,424 7216 7140 piece
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3.2.2. Simulation input parameters
The case of Company A is a multi-tiers global supply chain model. The product for simulation is the 17-in. TFT–LCD of

Company A. The simulation period T is set to be 52 weeks. The real historical demand in 52 weeks of the 17-in. TFT–LCD
of Company A is collected as experimental database. A statistics distribution model analysis tool named Stat:Fit is adopted.
The analytic result shows the customer demand statistics distribution of Company A approximates the Weibull (min = 6980
piece/week, a = 4.13, b = 128). In this research, the inventory replenishment policies include the continuous review (s, Q), (s,
S) and the periodic review (R, s, S), (R, S), in reference to the formulas designed by Chopra and Meindl (2001) and Simchi-Levi
et al. (2000), with the prerequisite of the desired cycle service level to be 95%. The periodic review policies of (R, s, S), (R, S)
are calculated as follows and shown in Table 1:
DLþR ¼ D� ðLþ RÞ
rLþR ¼

ffiffiffiffiffiffiffiffiffiffiffi
Lþ R
p

� r
ss ¼ ZðCSLÞ � r�

ffiffiffiffiffiffiffiffiffiffiffi
Lþ R
p

s ¼ DLþR þ ss

S ¼ MAXðD;DLþRÞ þ ZðCSLÞ � r�
ffiffiffiffiffiffiffiffiffiffiffi
Lþ R
p

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�D�PC

CC

q

where D is the average weekly demand by each tier member; r the standard deviation of weekly demand; L the lead time for
replenishment; R the cycle counting periods; DL+R the average weekly demand during lead time plus cycle counting periods;
rL+R the standard deviation of weekly demand during lead time plus cycle counting periods; ss the safety stock; s the reorder
point; S the order-up-to-level; PC the purchasing cost (e.g., retailer = 27 $/piece); CC the carrying cost (e.g., retailer = 0.272
$/piece); Q is the quantity of replenishment (purchasing) order.

3.3. Derivation of Grey forecasting model

The market demand of high technology industries has seriously been affected by the weakening consumer capability
since 2008. The long-term demand cannot be forecasted with the traditional static forecasting models. In particular, the Grey
model requires only four pieces of historical data with which the Grey model can be constructed. Therefore, the Grey model
is suitable for application in the current high technology industries. This research adopts the GM(1,1) to forecast mainly the
end customer demand occurring at the most downstream as depicted in Fig. 1. The historical sales data provided by Com-
pany A have been manipulated as the fundamental database for GM(1,1) derivation. Meanwhile, the value of generation
parameter a in GM(1,1) will be set as 0.01, 0.5, 0.7 and 0.99. The six steps for deriving the model of GM(1,1) is shown in
Fig. 4 and also illustrated as follows:

Step 1: Collect the time series 52 weeks demand x(0) for Company A as follows:
xð0Þ ¼ ðxð0Þð1Þ; xð0Þð2Þ; xð0Þð3Þ; . . . ; xð0ÞðnÞÞ ¼ ðxð0ÞðkÞ; k ¼ 1;2;3; . . . ;nÞ; n P 4
¼ xð0Þð1Þ; xð0Þð2Þ; xð0Þð3Þ; . . . ; xð0Þð17Þ; xð0Þð18Þ; xð0Þð19Þ; . . . ; xð0Þð50Þ; xð0Þð51Þ; xð0Þð52Þ
� �

¼ ð6980;7138;7074; . . . ;7076;7145;7081; . . . ;7036;7113;7077Þ ð1Þ
1. Input historical time series data x(0)

2. Generate time series data x(1)(k) from x

3. Generate partial series data z(1)(k) 
from x(1)(k)

4. Calculate developing coefficient a &
grey input b

5. Construct GM(1,1) forecasting equation

6. Evaluate average residual γ

(0)

Fig. 4. The flow chart of Grey forecasting model.
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Step 2: Generate x(1)(K) time series data from the original data by using accumulated generating operation (AGO) tech-
nique as follows:
xð1ÞðkÞ ¼
X1

k¼1

xð0ÞðkÞ;
X2

k¼1

xð0ÞðkÞ; . . . ;
Xn

k¼1

xð0ÞðkÞ
 !

¼
X1

k¼1

xð0Þð1Þ;
X2

k¼1

xð0Þð2Þ;
X3

k¼1

xð0Þð3Þ; . . . ;
X50

k¼1

xð0Þð50Þ;
X51

k¼1

xð0Þð51Þ;
X52

k¼1

xð0Þð52Þ
 !

¼ ð6980;14118;21192; . . . ;120496;127641;134722; . . . ;354676;361789;368866Þ ð2Þ
where the new series data x(1)(K) is a monotone increasing sequence associated with an exponential function.
Step 3: Formulate the basic first-order differential equation of GM(1,1) as follows:
dxð1ÞðkÞ
dk

þ axð1ÞðkÞ ¼ b ð3Þ
where parameter a is a developing coefficient, and parameter b is a control variable named Grey input. Because the solution
of GM(1,1) is to be an exponential curve, we can predict that the geographic diagram for the results of forecasting will be a
smoothing curve. Thus, the Grey pseudo difference equation is derived through white process as follows:
xð0ÞðkÞ þ azð1ÞðkÞ ¼ b; 8k ¼ 1;2;3; . . . ;n; ð4Þ
where the new series data z(1)(K) can be partially generated from x(1)(K). It is an averaged generation while the parameter
a = 0.5.
zð1ÞðkÞ ¼ axð1ÞðkÞ þ ð1� aÞxð1Þðk� 1Þ; k ¼ 1;2;3; . . . :;n� 1
¼ 0:5xð1ÞðkÞ þ 0:5xð1Þðk� 1Þ; k ¼ 1;2;3; . . . :;n� 1

zð1Þð2Þ ¼ 0:5� xð1Þð2Þ þ 0:5� xð1Þð1Þ ¼ 10;549
zð1Þð3Þ ¼ 0:5� xð1Þð3Þ þ 0:5� xð1Þð2Þ ¼ 17;655
zð1Þð4Þ ¼ 0:5� xð1Þð4Þ þ 0:5� xð1Þð3Þ ¼ 24;740
� � �
zð1Þð52Þ ¼ 0:5� xð1Þð52Þ þ 0:5� xð1Þð51Þ ¼ 365;327:5

ð5Þ
Step 4: Construct the parameters matrix based on Eq. (4) as follows:
xð0Þð2Þ
xð0Þð3Þ
� � �
xð0ÞðnÞ

26664
37775 ¼

�zð1Þð2Þ 1
�zð1Þð3Þ 1
� � �
�zð1ÞðnÞ 1

26664
37775 a

b

� �
)

7138
7074
cldots
7077

26664
37775 ¼

�10;549 1
�17;655 1
� � �
�365;327:5 1

26664
37775 a

b

� �
This matrix is solved by the least square method and is denoted as:
a

b

� �
¼ ðBT BÞ�1BT Yn; ð6Þ
where
B ¼

�zð1Þð2Þ 1
�zð1Þð3Þ 1
� � �
�zð1ÞðnÞ 1

26664
37775Yn ¼

xð0Þð2Þ
xð0Þð3Þ
� � �
xð0ÞðnÞ

26664
37775
The second solution for Eq. (6) is generated by using the polynomial equation for deriving the intermediate parameters C,
D, E, F from the following formulation. The detailed calculation process is described as follows:
a ¼ CD� ðn� 1ÞE
ðn� 1ÞF � C2 ¼ 0:00001971250344; b ¼ DF � CE

ðn� 1ÞF � C2 ¼ 7099:508952
where C ¼
Pn

k¼2zð1ÞðkÞ ¼ 9;585;619; D ¼
Pn

k¼2xð0ÞðkÞ ¼ 361;886,
E ¼
Xn

k¼2

zð1ÞðkÞxð0ÞðkÞ ¼ 68; 006;702;778; F ¼
Xn

k¼2

zð1ÞðkÞ2 ¼ 2;358;154;166;560
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Step 5: To solve the above differential equation Eq. (3), we use the discrete sequence whitening equation to generate the
special solution of forecasting model:� �
x̂ð1Þðkþ 1Þ ¼ xð0Þð1Þ � b
a

e�ak þ b
a
; where xð1Þð1Þ ¼ xð0Þð1Þ
Because the Grey forecasting model is formulated using the data of AGO rather than the original data, it is necessary to
adopt inverse accumulated generating operation (IAGO) to recover the actual forecasting value. Therefore, the GM-based
demand forecasting equation for TFT–LCD of Company A is denoted as:
x̂ð0ÞðkÞ ¼ x̂ð1ÞðkÞ � x̂ð0Þðk� 1Þ ¼ xð0Þð1Þ � b
a

� �
ð1� eaÞe�aðk�1Þ; k ¼ 1;2;3; . . . ;n

¼ xð0Þð1Þ � 7099:508952
0:00001971250344

� �
ð1� e0:00001971250344Þe�0:00001971250344ðk�1Þ
The above equation has been embedded into the simulation module.

Step 6: The difference between the forecasted value and the original value can be compared based on the residual check-
ing process. The average residual r generated by the GM(1,1) model is 0.3963%, which is evaluated on the excellence level.
Furthermore, we also use rolling check approach to evaluate the accuracy of the GM(1,1) model. The value of errors
e(k + 1) generated by forecasting is calculated as follows:
xð0Þ1 ð4Þ � ðxð0Þð1Þ; xð0Þð2Þ; . . . ; xð0Þð4ÞÞ ¼ ð6980;7138;7074;7096Þ

eðkþ 1Þ ¼ xð0Þðkþ1Þ�x̂ð0Þðkþ1Þ
xð0Þðkþ1Þ � 100%; kþ 1 6 n

eð2Þ ¼ 7138�7123:7142
7138 � 100% ¼ 0:2001%

eð3Þ ¼ 7074�7102:6406
7074 � 100% ¼ �0:4049%

eð4Þ ¼ 7096�7081:6294
7096 � 100% ¼ 0:2025%
The average error generated by rolling check method is calculated as:
e ¼ 1
n� 2

Xn�1

k¼4

jeðkþ 1Þj � 100% ¼ 1
5� 2

ðj0:2011j þ j � 0:4049j þ j0:2025jÞ ¼ 0:2692%
Finally, the average accuracy e is derived as:
e ¼ ð1� eÞ � 100% ¼ ð1� 0:2692Þ � 100% ¼ 99:73%
3.4. The key performance indicators in supply chain model

This research considers the total inventory cost, the inventory turnover rate and the bullwhip effect as key performance
indicators. The subjects for simulation are the five tiers in the supply chain of Company A, and the length for simulation run
is 52 weeks. The KPI equation is as follows:

– Total inventory cost = production cost + inventory replenishment cost + backorder cost + delivery cost
TIC ¼
XN

n¼1

XT

t¼1

fRSQ ntðRCn þ RSCnÞ þMCn � PWMQnt þ ðPWQnt þ IESQ ntÞSgCng þ
XN

n¼1

XT

t¼1

ðURCn � OMRQnt þWACn

� ESQntÞ þ
XN

n¼1

XT

t¼1

ðUOCn � ESOQntÞ þ
XN

n¼1

XT

t¼1

ðUTCn � SMQntÞ ð7Þ
where N = 5, and T = 52.
– Inventory turnover rate = sales amount � inventory cost
ITR ¼
PN

n¼1

PT
t¼1SgCn � DntPN

n¼1

PT
t¼1PWMQ nt �MCn þ RSQnt � RCn þ ESEQnt � ECn

ð8Þ
– Bullwhip effect by Simchi-Levi et al. (2000):
BE ¼ VarðQ NÞ
VarðDÞ ; ð9Þ
where Var(QN) represents the deviation of demand orders issued by the N tier in the supply chain. Var(D) represents the devi-
ation of end customer demand.
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The following notations are used in the global supply chain simulation model.

N = the set of members in each tier of the supply chain.
PWQnt = the throughput units of manufacturer n in period t.
IESQnt = the issued units of finished goods of manufacturer n in period t.
SgCn = the unit sale price of finished goods produced by manufacturer n.
RSQnt = the raw materials on-hand units of manufacturer n in period t.
RCn = the raw materials unit cost of manufacturer n.
RSCn = the raw materials carrying cost per unit of manufacturer n.
PWMQnt = the work-in-process units of manufacturer n in period t.
MCn = the work-in-process cost per unit of manufacturer n.
WACn = the issuing activity unit cost of manufacturer n.
OMRQnt = the raw materials purchased units of manufacturer n in period t.
URCn = the raw materials purchasing unit cost of manufacturer n.
ESOQnt = the backorder units of manufacturer n in period t.
UOCn = the backorder unit cost of the finished goods of manufacturer n.
SMQnt = the scheduled shipping units of manufacturer n in period t.
UTCn = the shipping cost per unit of manufacturer n.
ESEQnt = the amount of finished goods of manufacturer n in period t.
ECn = the finished goods unit cost of manufacturer n.
Dnt = the demand units of manufacturer n in period t.

4. Factorial experiments in RFID-enabled supply chain simulation

4.1. Simulation model infrastructure

This research is focused on the simulation of the global TFT–LCD supply chain operation embedded with RFID systems in
Company A. Because of the huge transactions for transmitting tagged EPC products data by real-time RFID systems, it is
impossible to establish a real RFID-enabled supply chain for study. Therefore, the RFID-enabled supply chain infrastructure
is mimicked and simulated based on the conceptual network structure shown in Fig. 5. The receiving and shipping point of
each tier is equipped with RFID system, including one reader and two antennas. When products are loaded into trucks and
transported to downstream warehouses, the antenna of the RFID system read the EPC tags affixed on the cases, retrieve the
embedded information, and transform the data to the readers. The tagged EPC data of each product, affiliated with RFID
tagged records like the receiving time and shipping time, are immediately transmitted to the reader. Through the Internet
connection, transactions of stocks can be monitored at any time.
Fig. 5. The conceptual network structure of RFID-enable supply chain.
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The RFID mechanism in the global supply chain simulation model of Company A established by Anylogic will be gradually
simulated with reference to the conceptual network structure.

4.2. RFID system implementation cost

The capital investment of RFID equipments installed in the supply chain should be included in the cost of supply chain
operations. In this research, RFID equipments, including two antennas and a reader, are set in the receiving and shipment
location of each supply chain tier. The commercial price of each antenna (M/A-COM MAANAT0123) is about $290, and
the commercial price of each reader (ThingMagic Mercury 5) is about $995. The proposed life cycle of RFID is 5 years, the
salvage value is 10%, the simulation time is 1 year, the maintenance expense of RFID is 12%, and the operation cost is
15%. The RFID equipment cost of each supply chain tier is 2 � $290 + 1 � $995 = $1575, the salvage = $1575 � 10% = $157.5,
the maintenance cost = $1575 � 12% = $189, the operation cost = $1575 � 15% = $236.25, and the depreciation cost = $
(1575–157.5) � [(5–1 + 1)/(1 + 2 + 3 + 4 + 5)] = $472.5. Thus, the total cost of 1-year simulation for a set of RFID equip-
ments = the maintenance cost + the operation cost + the depreciation cost = $189 + $236.25 + $472.5 = $897.75. The com-
mercial cost of one RFID tag (Alien EPC Gen 2) is about $1, and the average simulated throughput in 1 year of LCD panel
factories is 2952,116. The attached tags are for entire usage of the supply chain, so the cost of RFID tags is about
2952,116 � $1 = $2952,116. The individual RFID cost of each tier is: LCD panel manufacto-
ries = $897.75 � 4 � 1 + $2952,116 = $2955,707, LCD monitor manufactories = $897.75 � 5 � 2 = $8977.5, regional distribu-
tion centers = $897.75 � 3 � 2 = $5386.5, branch warehouses = $897.75 � 8 � 2 = $14,364, and retailers = $897.75 �
8 � 2 = $14,364.

4.3. Taguchi experiments for simulation

This research adopts the Taguchi method to carry out simulation experiments. The Taguchi method can acquire informa-
tion effectively with fewer combinations of experiments. There are three phases in the Taguchi Method: planning, imple-
mentation, analysis and confirmation of the output.

4.3.1. Experimental planning phase
In the case of Company A, due to the impact of replenishment policies, demand forecasting methods and the non-imme-

diacy of information, there is an increase in the total inventory cost. Therefore, this research intends to decrease the total
inventory cost by implementing appropriate demand forecasting methods and replenishment policies under the RFID envi-
ronment. The quality characteristic of the global supply chain model of Company A is the total inventory cost. Its character-
istic is the smaller-the-better, meaning that the cost should be smaller. The definition of the smaller-the-better signal-to-
noise (SN) ratio is as follows:
Table 2
Control

Facto

A. Re
B. Gr
C. RF
SN ¼ �10� log10ðMSDÞ ¼ �10� log10
1
n

Xn

i¼1

y2
i

 !

where MSD is the mean square deviation, yi is the output value.

This research focuses on replenishment policies, demand forecasting methods and the variation of total inventory cost.
The impact of noise is not taken into consideration. The control factors and their levels are listed in Table 2. There are
two level-4 factors and one level-2 factor, which is a L16(4)3 combination generated by Minitab.

4.3.2. Experiments implementation phase
The 16 combinations determined by the Minitab are experimented and replicated for 40 times, and the total simulation

experiment runs are 16 � 40 = 640 times. The partial experiments output data are shown in Table 3.

4.3.3. Experiments output analysis and confirmation
The first step for data analysis is to transform the observed values of each experiment combination into the SN ratio. The

result is shown in the last column of Table 3, and the total average of the 16 SN ratios is:
factors and levels in Taguchi simulation experiments.

rs Levels

1 2 3 4

plenishment policy (s, Q) (s, S) (R, s, S) (R, S)
ey forecasting a = 0.01 a = 0.5 a = 0.7 a = 0.99
ID Yes None



Table 3
Partial experiments output data.

# Control factors Observation values (total inventory cost)

A B C 1 2 . . . 40 SN

1 1 1 1 721,749,803 721,643,635 . . . 725,190,761 g1 = �177.185
2 1 2 2 1,184,110,620 1,176,051,312 . . . 1,193,296,640 g2 = �186.837
3 1 3 3 554,773,075 564,598,676 . . . 524,869,552 g3 = �174.714
4 1 4 4 1,272,557,106 1,267,463,267 . . . 1,292,377,062 g4 = �182.183

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

15 4 3 2 1,761,556,854 1,741,001,403 . . . 1,804,279,657 g15 = �191.055
16 4 4 1 918,767,722 986,621,533 . . . 978,046,115 g16 = �184.081
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T ¼ 1
16

X16

i¼1

gi ¼
1

16
ð�177:85� 186:837� � � � � 191:055� 184:081Þ ¼ �184:0464
The average SN ratio of level-1 factor A is A1 ¼ �180:2; the average SN ratio of level-3 factor B is B3 ¼ �183:6; the average
SN ratio of level-3 factor C is C3 ¼ �178:6, and the others likewise. The main purpose of carrying out the matrix experiment is
to determine the optimal level of each factor. According to the definition of the SN ratio, the larger the SN ratio is, the better
the quality is. Therefore, the optimal level combination of this research is determined as A1B3C3. Using the factor main effects
graphs to subjectively judge the significance of each factor, we find that factor A and C are significance factors, and factor B is
not a significant factor and is to be merged as errors. Moreover, the SN ratio under the optimal conditions is calculated as
follows:
cSN ¼ T þ ðA1 � TÞ þ ðC3 � TÞ ¼ A1 þ C3 � T ¼ �180:2þ ð�178:6Þ � ð�184:0464Þ ¼ �174:7536
The main purpose of carrying out the experiment confirmation is to verify the correction of the conclusion generated by
the analysis of data. In order to effectively estimate the observed values, the confidence interval (CI) must be calculated. The
confirmation of the expected average value of experiments is:
CI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa;1;v2 � Ve �

1
neff
þ 1

r

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:12� 4:2101� 7

16
þ 1

5

� �s
¼ 3:707
It can be concluded with 95% confidence in this research that the boundary of the expected SN ratio is �174.7536 ± 3.707.
The average SN ratio generated by the five A1B3C3 experiments is �174.9472, which falls in the confidence interval above.
This means that the selected factor A and C and their levels are adequate. Finally, the optimal Company A’s global supply
chain system simulation specification is to implement the (s, Q) replenishment policy and GM(1,1) with a = 0.7 forecasting
method associated with the RFID-enabled system. It is called the R-SCIGM (RFID-enabled Supply Chain Inventory Demand
Forecasting: GM).
5. Simulation output analysis

5.1. The compared global supply chain models

Besides the four replenishment policies: (s, Q), (s, S), (R, S), (R, s, S), the global supply chain of Company A also adopts de-
mand forecasting methods. From the result of the Taguchi experiment, it is known that the (s, Q) replenishment policy is the
optimal. Therefore, this research intends to verify if the R-SCIGM model is the optimal model among five global supply chain
inventory management models.
5.1.1. Supply chain inventory (SCI)
This model represents the current manufacturing environment and simulates the current inventory operation of Com-

pany A. The current operation implements the (s, Q) replenishment policy and checks the weekly inventory level of supply
chain tier’s member to update the purchasing orders to the baseline Q units (Wang et al., 2008).
5.1.2. RFID-enabled supply chain inventory (RFID-SCI)
This model supposes each inventory item is recorded on RFID tag, and its visibility is 100%. The fixed baseline is similar to

that of the SCI model, and RFID is only for the purpose of monitoring rather than modifying the inventory level (Wang et al.,
2008).
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5.1.3. RFID-enabled supply chain inventory demand forecasting: ARIMA (R-SCIARIMA)
This model improves demand management with the real-time function of RFID in addition to using ARIMA long-term

forecasting method. Customer demand can be forecasted and information of demand can be retrieved at any time based
on the RFID-enabled supply chain (Wang et al., 2010).

5.1.4. Supply chain inventory demand forecasting: GM(1,1) (SCIGM)
This model implements the (s, Q) pull-based replenishment policy and the Grey short-term forecasting method. It adopts

GM to forecast the future demand in order to reduce the inventory cost by decreasing variation of customer orders.

5.1.5. RFID-enabled supply chain inventory demand forecasting: GM(1,1) (R-SCIGM)
This model improves demand management with the real-time capability of RFID in addition to using GM forecasting

method. Customer demand can be forecasted and information of demand can be retrieved at any time based on the RFID-
enabled supply chain. However, the time of simulation process is very short, and the RFID tagged data that can be retrieved
is quite large. The virtual method is adopted in the simulation model.

5.2. Significance test

In order to test the differences between R-SCIGM and SCIGM, the fitness of their total inventory costs and inventory turnover
rates to normal distribution will be tested before the Bernoulli experiment is carried out. As the result of the analysis of the
normal distribution graph with Minitab, the total inventory costs and inventory turnover rates of R-SCIGM and SCIGM fall in
the 95% confidence interval, which is fit to the normal distribution. The Bernoulli experiment is carried out in order to test
the difference between the average total inventory costs of R-SCIGM and SCIGM, and the statistic is as follows:
Table 4
The sim

Mod

R-SC
SCIGM

R-SC
R-SC
SCI
r�x1��x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1

n1
þ r2

2

n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð13856983:8Þ2

40
þ ð11247088:51Þ2

40

s
¼ 2821847:779

Z ¼ ð
�x1 � �x2Þ � ðl1 � l2Þ

r�x1��x2

¼ ð545;367;306� 962;094;286Þ � 0
2821847:779

¼ �147:6788
Under the 95% confidence level (a = 0.05), Z = �147.6788, which is less than Z(a = 0.05) = �1.96 and falls in the reject area.
Therefore, we accept the alternative hypothesis H1: there are differences between the total inventory costs of the two groups.
Moreover, the Bernoulli experiment is also carried out in order to test the difference between the average inventory turnover
rates of R-SCIGM and SCIGM, and the test statistics is as follows:
r�x1��x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1

n1
þ r2

2

n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:04638Þ2

40
þ ð0:00824Þ2

40

s
¼ 0:007448

Z ¼ ð
�x1 � �x2Þ � ðl1 � l2Þ

r�x1��x2

¼ ð0:999183807� 0:48774403Þ � 0
0:007448

¼ 68:6679
Z = 68.6679, which is larger than 1.96 and falls in the reject area, so we does not accept the null hypothesis H0: no dif-
ference exists in the average inventory turnover rate of the two models. In conclusion, under a 95% confidence level, there
are differences between the inventory turnover rates of the two models.

5.3. The comparison of KPIs

5.3.1. The total inventory cost
From the simulation outputs shown in Table 4, based on the experiment output of R-SCIGM, it can be known that the

R-SCIGM is the best of the five models. It has the lowest production cost, replenishment cost, backorder cost, delivery cost
and total inventory cost. We can find that compared to the SCIGM or the R-SCIARIMA model, the R-SCIGM model has a
43.32% = (545,367,590 � 962,903,799)/962,903,799 decrease and a 8.56% = (545,367,590 � 596,443,555)/596,443,555
decrease, respectively in the total inventory cost.
ulation results of five models.

el name Production cost Replenishment cost Backorder cost Delivery cost Total inventory cost

IGM 542,277,655 16,595 837 3,072,503 545,367,590
958,976,477 16,750 935 3,909,637 962,903,799

IARIMA 593,077,452 18,052 1045 3,347,006 596,443,555
I 675,954,816 18,003 1057 3,336,281 679,310,157

1,091,657,485 18,886 1375 3,507,069 1,095,184,815



Table 5
The summarized R-SCIGM vs. SCIGM improved costs by tier’s member.

Cost items LCD panel manufactories (%) LCD monitor manufactories (%) Regional DCs (%) Branch warehouses (%) Retailers (%)

Production �52.11 �51.01 �40.26 �52.47 �35.77
Replenishment �0.68 �0.97 �0.96 �0.85 �1.13
Delivery �0.49 �0.81 �0.94 �0.65 �1.08
Backorder �0.69 �8.18 �7.34 �9.34 �25.58

Table 6
The summarized R-SCIGM vs. R-SCIARIMA improved costs by tier’s member.

Cost items LCD panel manufactories (%) LCD monitor manufactories (%) Regional DCs (%) Branch warehouses (%) Retailers (%)

Production �20.68 �4.56 21.23 55.42 �24.04
Replenishment �8.58 �8.46 �7.79 �9.55 �6.28
Delivery �8.87 �8.49 �7.90 �11.25 �6.53
Backorder �7.19 �3.05 �61.39 11.19 �30.56

Table 7
The improved inventory turnover rate of each tier by R-SCIGM vs. SCIGM.

LCD panel manufactories LCD monitor manufactories Regional DC Branch warehouses Retailers

R-SCIGM (1) 0.9789 1.0072 0.6651 1.8880 0.4557
SCIGM (2) 0.4696 0.4930 0.3979 0.8856 0.1974
Improved rate (1)–(2) (%) 50.93 51.42 26.72 100.24 25.83

Table 8
The comparison of bullwhip effect by R-SCIGM vs. SCIGM and R-SCIARIMA.

End
customer

Retailers Branch
warehouses

Regional
DC

LCD monitor
manufactories

LCD panel
manufactories

R-SCIGM (1)
Var(Qk) � 103 19,343 179,871 13,305 42,472 83,791 648,643
BW a 1 9.30 1.21 2.20 4.33 33.53

SCIGM (2)
Var(Qk) � 103 18,408 252,049 37,040 60,505 230,427 1,032,714
BW b 1 13.69 2.01 3.29 12.52 56.10

R-SCIARIMA (3)
Var(Qk) � 103 26,869 300,147 33,121 62,146 121,854 904,600
BW c 1 11.17 1.23 2.31 4.54 33.67

(1) vs. (2) = [(b � a)/
b] � 100

32.86 �19.03 33.20 65.39 40.23

(1) vs.(3) = [(c � a)/c] � 100 16.76 2.26 5.07 4.48 0.40

Table 9
The sensitivity analysis of total inventory cost by lead time.

Total inventory cost (�103) LCD panel manufactories LCD monitor manufactories Regional DCs Branch warehouses Retailers

LT + 5% (1) 82,159 83,585 109,466 32,197 287,220
LT (2) 81,102 83,454 99,588 27,373 285,769
LT � 5% (3) 79,409 81,597 96,575 23,322 285,495
RFID cost (4) 2,955,707 8977.5 5386.5 14,364 14,364
LT + 5% [(1) � (2) � (4)]/(2) (%) �2.36 0.15 9.91 17.57 0.50
LT � 5% [(3) � (2) � (4)]/(2) (%) �5.73 �2.24 �3.03 �14.85 �0.10
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Table 5 shows that the costs of each item are improved resulting from the comparison of the R-SCIGM and SCIGM models.
Among them, the improvement rates of production cost and backorder cost increase a lot. Take LCD panel manufactories for
example. In the R-SCIGM model, the production cost has a 52.11% decrease and the replenishment cost has a 0.68% decrease.

Table 6 also shows that the costs of each item are improved resulting from the comparison of the R-SCIGM and R-SCIARIMA

models. Take retailers for example. In the R-SCIGM model, the production cost has a 24.04% decrease and the backorder cost



Table 10
The sensitivity analysis of inventory turnover rate by lead time.

Inventory turnover rate LCD panel manufactories LCD monitor manufactories Regional DCs Branch warehouses Retailers

LT + 5% (1) 0.769699 0.968169 0.780442 2.840962 0.234352
LT (2) 0.773500 0.972788 0.852247 3.316264 0.237599
LT � 5% (3) 0.780013 1.026480 0.902687 3.939564 0.240358
LT + 5% [(1) � (2)]/(2) (%) �0.49 �0.48 �8.43 �14.33 �1.37
LT � 5% [(3) � (2)]/(2) (%) 0.84 5.52 5.92 18.79 1.16

Table 11
The comparison of backorder cost by service levels.

Backorder risk Low Medium High

Service level (%) 99 97 95 93 90
R-SCIGM ($/year) 1072 1082 1104 1117 1168
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has a 30.56% decrease. The fitness for implementing a GM short-term forecasting model in the RFID-enabled supply chain
can be thus demonstrated.

5.3.2. Inventory turnover rate
Table 7 shows that the inventory turnover rate in every tier are improved from the comparison of the R-SCIGM and SCIGM

models. Take LCD panel manufactories for example, the inventory turnover rate has a 50.93% increase. Take retailers for
example, the inventory turnover rate has a 25.83% increase. This shows the critical effectiveness generated from the imple-
mentation of the GM forecasting method in the RFID-enabled supply chain. Therefore, the importance of the implementation
of RFID in the supply chain can be thus illustrated.

5.3.3. Bullwhip effect
Based on the definition of the bullwhip effect (BW), the bullwhip effect values of the R-SCIGM, SCIGM, and R-SCIARIMA model

are calculated in Table 8. In the R-SCIGM model, take retailers for example, the bullwhip effect value = retailers demand var-
iation � end customer order deviation = 179,871/19,343 = 9.3. This means that the demand variation enlarges 9.3 times
when retailers are disseminating demand information. In conclusion, the RFID system and GM forecasting model both being
implemented together in the supply chain can achieve a significant low degree of bullwhip effect.

5.3.4. Sensitivity analysis
This research carries out the analysis of the sensitivity of lead time (LT) and service level (SL) with the optimal model: the

R-SCIGM model. The lead time is analyzed by the method of the original setting LT ± 5%, which affects the reorder point (s).
From the comparison of total inventory costs in Table 9, it can be known that if the lead time increases, the cost increases. On
the contrary, if the lead time decreases, the cost decreases. From the comparison of inventory turnover rates in Table 10, it
can be known that the variation of the result is the same as that of the total inventory cost. The increase and decrease of the
lead time affect the variation of reorder points and the inventory turnover rate. Take the branch warehouse for example, if
the lead time has a 5% increase, then its total inventory cost will have a 17.57% increase, and its inventory turnover rate will
have a 14.33% decrease. If the lead time has a 5% decrease, then its total inventory cost will have a 14.85% decrease, and its
inventory turnover rate will have a 18.79% increase.

The analysis of sensitivity is carried out with service levels of 99%, 97%, 95%, 93%, and 90%. As service level increases, the
risk of backorder will decrease. From Table 11, it can be known that the higher the service level is, the less the backorder cost
and risk will be. On the contrary, the lower the service level is, the more the backorder cost and risk will increase.

6. Conclusion

From the result of the Taguchi experiments, we find that the optimal specification of R-SCIGM model is to implement the
(s, Q) pull-based replenishment policy, GM(1,1) (a = 0.7) forecasting method associated with the RFID-enabled system. Based
on the Bernoulli experiment, the R-SCIGM model has a 43.32% decrease in the total inventory cost in comparison to the SCIGM

model. This shows that the adoption of RFID technology has a significant effect on the supply chain performance. The R-SCIGM

has a 8.56% decrease in the total inventory cost in comparison to the R-SCIARIMA model. This also shows the adoption of the
GM short-term forecasting method associated with RFID can effectively enhance the performance of forecasting function.
The establishment of the R-SCIGM model in Company A can weaken the degree of bullwhip effect in the supply chain.

In this research, we have successfully constructed a TFT–LCD industry-oriented simulation platform for evaluating the
performance of the RFID-enabled global supply chain. The major mechanism for simulating the operations of global supply
chain has been properly designed as a group of functional agents that can be sorted into ten categories. All of the input
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parameters of pull-based inventory replenishment policies are completely collected from Company A and then derived as
decision variables using theoretical and practical equations. The GM-based customer demand forecasting model stemmed
from the 52 weeks shipment data for TFT–LCD of Company A has been derived following six strict steps. We also have as-
sessed the optimal factorial combination for pull-based replenishment policy, GM parameter and RFID utilization by adopt-
ing a well-known Taguchi experiment methodology.

Finally, the experiment shows that the integration of RFID-enabled real-time information sharing process, pull-based
replenishment policy (s, Q) and GM short-term customer demand forecasting model in the global supply chain can effec-
tively enhance the effectiveness of its inventory cost management. For industries RFID promoters, our analytical evidence
presented in this research can help them identify the implementation principle: RFID adoption must be cooperated with
an appropriate inventory replenishment policy and demand forecasting approach.
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