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a b s t r a c t

This study presents a functional neural fuzzy network (FNFN) for classification applications. The proposed
FNFN model adopts a functional neural network (FLNN) to the consequent part of the fuzzy rules. Orthog-
onal polynomials and linearly independent functions are used for a functional expansion of the FLNN.
Thus, the consequent part of the proposed FNFN model is a nonlinear combination of input variables.
The FNFN model can construct its structure and adapt its free parameters with online learning algo-
rithms, which consist of structure learning algorithm and parameter learning algorithm. The structure
learning algorithm is based on the entropy measure to determine the number of fuzzy rules. The param-
eter learning algorithm, based on the gradient descent method, can adjust the shapes of the membership
functions and the corresponding weights of the FLNN. Finally, the FNFN model is applied to various sim-
ulations. The simulation results for the Iris, Wisconsin breast cancer, and wine classifications show that
FNFN model has superior performance than other models for classification applications.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Classification is one of the most frequent decision making tasks
performed by humans. A classification problem for objects is the
problem of assigning these objects into predefined groups or
classes based on the number of observed attributes related to that
object, and giving some criteria for determining whether a
assigned object is in a particular group or not. Many decision prob-
lems in business, science, industry, and medicine can be treated as
classification problems. Most traditional statistical classification
approaches, such as discrimination analysis, are built on the
Bayesian decision theory (Duda & Hart, 1973). These approaches
generally have an explicit underlying probability model. The model
is used to calculate the posteriority probability, and upon which a
classification decision is made. One major drawback of statistical
models is that they work well only when the underlying assump-
tions are correct. The effectiveness of these methods depends to
a large extent on the various assumptions or conditions under
which the models are developed. To make the model successfully
applied, users must have a good knowledge of both data properties
and model capabilities.

Neural networks (Setiono & Liu, 1997) have arisen as an impor-
tant tool for pattern recognition, modeling, and prediction. Vast re-
search activities in neural classification have shown that neural
networks are promising alternatives to various conventional classi-
ll rights reserved.
fication methods. However, the meaning of each neuron and the
function of each weight are difficult to understand in the neural
networks. A fuzzy entropy measure (Lee, Chen, Chen, & Jou,
2001) is employed to partition the input feature space into decision
regions and to select relevant features with good separability for
the classification task. According to the literature review men-
tioned before, neural fuzzy networks (NFNs) (Jang, 1993; Juang &
Lin, 1998; Li & Lee, 2003; Lin & Lee, 1996; Lin & Lin, 1997; Lin, Tsai,
& Liu, 2001; Mitra & Hayashi, 2000; Sun, Sun, Li, & Li, 2003; Takagi
& Sugeno, 1985; Wang & Mendel, 1992) provide the advantages of
both neural networks and fuzzy systems, unlike pure neural net-
works or fuzzy systems alone. NFNs bring the low level learning
and computational power of neural networks into fuzzy systems
and give the high-level human-like thinking and reasoning of fuzzy
systems to neural networks.

Two typical types of NFNs are the Mamdani-type and the
Takagi–Sugeno–Kang (TSK)-type. For Mamdani-type NFNs (Lin &
Lin, 1997; Lin et al., 2001; Wang & Mendel, 1992), the minimum
fuzzy implication is adopted in fuzzy reasoning. Meanwhile, for
TSK-type NFNs (Jang, 1993; Juang & Lin, 1998; Li & Lee, 2003;
Takagi & Sugeno, 1985), the consequence part of each rule is a
linear combination of input variables. Many researches (Jang,
1993; Juang & Lin, 1998) have shown that TSK-type NFNs offer bet-
ter network size and learning accuracy than Mamdani-type NFNs.
In the typical TSK-type NFN, which is a linear polynomial of input
variables, the model output is approximated locally by the rule
hyper-planes. Nevertheless, the traditional TSK-type NFN does
not take full advantage of the mapping capabilities that may be
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Fig. 1. Structure of a FLNN.
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offered by the consequent part. Introducing a nonlinear function,
especially a neural structure, to the consequent part of the fuzzy
rules has yielded the neural networks designed on approximate
reasoning architecture (NARA) (Takagi, Suzuki, Koda, & Kojima,
1992) and the coactive neural fuzzy inference system (CANFIS)
(Mizutani & Jang, 1995) models. These models (Mizutani & Jang,
1995; Takagi et al., 1992) apply multilayer neural networks to
the consequent part of the fuzzy rules. Although the interpretabil-
ity of the model is reduced, the representational capability of the
model is markedly improved. The main disadvantages of multi-
layer neural network are slower convergence and greater compu-
tational complexity. Therefore, in our proposed model, called a
functional neural fuzzy network (FNFN), uses the functional link
neural network (FLNN) (Pao, 1989; Patra, Pal, Chatterji, & Panda,
1999) to the consequent part of the fuzzy rules. Thus, the conse-
quent part of the proposed FNFN model is a nonlinear combination
of input variables, which differs from the other existing models
(Jang, 1993; Juang & Lin, 1998; Lin & Lin, 1997). The FLNN is a sin-
gle-layer neural structure capable of forming arbitrarily complex
decision regions by generating nonlinear decision boundaries with
nonlinear functional expansion. The FLNN (Pao, Phillips, & Sobajic,
1992) was conveniently used for function approximation and pat-
tern classification with faster convergence rate and less computa-
tional complexity than a multilayer neural network. Moreover,
using the functional expansion can effectively increase the dimen-
sionality of the input vector, so the hyperplanes generated by the
FLNN will provide a good discrimination capability in input data
space.

2. Structure of functional neural fuzzy network

This section describes the structure of FLNN model and the
structure of the FNFN model. In FLNN, the input data usually incor-
porate high-order effects. Thus, the dimensionality of the input
space is artificially increased using a functional expansion. Accord-
ingly, the input representation is enhanced and linear separability
is achieved in the extended space. The FNFN model adopted the
FLNN, generating complex nonlinear combinations of input vari-
ables to the consequent part of the fuzzy rules. The rest of this sec-
tion details these structures.

2.1. Functional link neural networks

The FLNN is a single-layer network in which the need for hidden
layers is removed. Thus, the computational complexity is less and
learning speed is faster. While the input variables generated by the
linear links of neural networks are linearly weighted, the func-
tional link acts on an element of input variables by generating a
set of linearly independent functions (i.e., the use of suitable
orthogonal polynomials for a functional expansion) and then eval-
uating these functions with the variables as the arguments. There-
fore, the FLNN structure considers trigonometric functions. For
example, for a two-dimensional input X = [x1, x2]T, the enhanced in-
put is obtained using trigonometric functions in U ¼ ½x1; sinðpx1Þ;
cosðpx1Þ; x2; sinðpx2Þ; cosðpx2Þ; . . . �T . Thus, the input variables can
be separated in the enhanced space (Pao, 1989). In the FLNN struc-
ture with reference to Fig. 1, a set of basis functions U and a fixed
number of weight parameters W represent fW(x). The theory be-
hind the FLNN for multidimensional function approximation has
been discussed elsewhere (Patra & Pal, 1995) and is analyzed later.

Consider a set of basis functions B¼f/k 2UðAÞgk2K ;K ¼f1;2; . . .g;
with the following properties: (1) /1 = 1; (2) the subset Bj ¼
f/k 2 BgM

k¼1 is a linearly independent set, meaning that ifPM
k¼1wk/k ¼ 0, then wk = 0 for all k = 1, 2, ..., j; and (3)

supj

Pj
k¼1k/kk

2
A

h i1=2
<1.
Let BM ¼ f/kg
M
k¼1 be a set of basis functions to be considered, as

shown in Fig. 1. The FLNN comprises M basis functions
f/1;/2; . . . ;/Mg 2 BM . The linear sum of the jth node is given by

ŷj ¼
XM

k¼1

wkj/kðXÞ ð1Þ

where X 2 A � Rn;X ¼ ½x1; x2; . . . ; xn�T is the input vector and Wj ¼
½w1j;w2j; . . . ;wMj�T is the weight vector associated with the jth
output of the FLNN. ŷj denotes the local output of the FLNN struc-
ture and the consequent part of the jth fuzzy rule in the FNFN mod-
el. Thus, (1) can be expressed in matrix form as ŷj ¼WjU, where
U ¼ ½/1ðxÞ;/2ðxÞ; . . . ;/MðxÞ�

T is the basis function vector, which is
the output of the functional expansion block. The m-dimensional
linear output may be given by ŷ ¼WU, where ŷ ¼ ½ŷ1; ŷ2; . . . ; ŷm�T ,
m denotes the number of functional link bases, which equals the
number of fuzzy rules in the FNFN model, and W is an (m �M)-
dimensional weight matrix of the FLNN given by W ¼ ½w1;w2; . . . ;

wm�T . The jth output of the FLNN is given byŷ0j ¼ qðŷjÞ, where the
nonlinear function qð�Þ ¼ tanhð�Þ. Thus, the m-dimensional output
vector is given by

Ŷ ¼ qðŷÞ ¼ fWðxÞ ð2Þ

where Ŷ denotes the output of the FLNN. In the FNFN model, the
corresponding weights of functional link bases do not exist in the
initial state, and the amount of the corresponding weights of func-
tional link bases generated by the online learning algorithm is con-
sistent with the number of fuzzy rules. Section III details the online
learning algorithm.

2.2. Structure of FNFN model

This subsection describes the FNFN model, which uses a nonlin-
ear combination of input variables (FLNN). Each fuzzy rule corre-
sponds to a sub-FLNN, comprising a functional link. Fig. 2
presents the structure of the proposed FNFN model. The FNFN
model realizes a fuzzy IF-THEN rule in the following form.

Rule j:

IF x1is A1j and x2 is A2j . . . and xi is Aij . . . and xN is ANj

then ŷj ¼
XM

k¼1

wkj/k ¼ w1j/1 þw2j/2 þ . . .þwMj/M

ŷj ¼
XM

k¼1

wkj/kðXÞ ð3Þ

where xi and ŷj are the input and local output variables, respec-
tively; Aij is the linguistic term of the precondition part with Gauss-
ian membership function, N is the number of input variables, wkj is
the link weight of the local output, /k is the basis trigonometric
function of input variables, M is the number of basis function, and
rule j is the jth fuzzy rule.

The operation functions of the nodes in each layer of the FNFN
model are now described. In the following description, denotes the



Fig. 2. Structure of proposed FNFN model.
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output of a node in the lth layer. No computation is performed in
layer 1. Each node in this layer only transmits input values to the
next layer directly

uð1Þi ¼ xi ð4Þ

Each fuzzy set Aij is described here by a Gaussian membership
function. Therefore, the calculated membership value in layer 2 is

uð2Þij ¼ exp � ½u
ð1Þ
i �mij�2

r2
ij

 !
ð5Þ

where mij and rij are the mean and variance of the Gaussian mem-
bership function, respectively, of the jth term of the ith input vari-
able xi.

Nodes in layer 3 receive one-dimensional membership degrees
of the associated rule from the nodes of a set in layer 2. Here, the
product operator described earlier is adopted to perform the pre-
condition part of the fuzzy rules. As a result, the output function
of each inference node is

uð3Þj ¼
Y

i

uð2Þij ð6Þ

where the
Q

iu
ð2Þ
ij of a rule node represents the firing strength of its

corresponding rule.
Nodes in layer 4 are called consequent nodes. The input to a

node in layer 4 is the output from layer 3, and the other inputs
are calculated from the FLNN that has not used the function tanh(�),
as shown in Fig. 2. For such a node

uð4Þj ¼ uð3Þj �
XM

k¼1

wkj/k ð7Þ

where wkj is the corresponding link weight of the FLNN and /k is the
functional expansion of input variables. The functional expansion
uses a trigonometric polynomial basis function, given by
½x1; sinðpx1Þ; cosðpx1Þ; x2; sinðpx2Þ; cosðpx2Þ� for two-dimensional in-
put variables. Therefore, M is the number of basis functions,
M = 3 � N, where N is the number of input variables. Moreover,
the output nodes of the FLNN depend on the number of fuzzy rules
of the FNFN model.
The output node in layer 5 integrates all of the actions recom-
mended by layers 3 and 4 and acts as a defuzzifier with

y ¼ uð5Þ ¼
PR

j¼1uð4ÞjPR
j¼1uð3Þj

¼
PR

j¼1uð3Þj

PM
k¼1wkj/k

� �
PR

j¼1uð3Þj

¼
PR

j¼1uð3Þj ŷjPR
j¼1uð3Þj

ð8Þ

where R is the number of fuzzy rules and y is the output of the FNFN
model.

As described earlier, the number of tuning parameters for the
FNFN model is known to be (2 + 3 � P) � N � R, where N, R, and P
denote the number of inputs, existing rules, and outputs, respec-
tively. The proposed FNFN model can be demonstrated to be a uni-
versal uniform approximation by the Stone–Weierstrass theorem
(Rudin, 1976) for continuous functions over compact sets.

3. Learning algorithms of the FNFN model

This section presents an online learning algorithm for construct-
ing the FNFN model. The proposed learning algorithm comprises a
structure learning phase and a parameter learning phase. Fig. 3 pre-
sents flow diagram of the learning scheme for the FNFN model.
Structure learning is based on the entropy measure used to deter-
mine whether a new rule should be added to satisfy the fuzzy parti-
tioning of input variables. Parameter learning is based on supervised
learning algorithms. The backpropagation algorithm minimizes a
given cost function by adjusting the link weights in the consequent
part and the parameters of the membership functions. Initially,
there are no nodes in the network except the input–output nodes,
i.e., there are no nodes in the FNFN model. The nodes are created
automatically as learning proceeds, upon the reception of online
incoming training data in the structure and parameter learning pro-
cesses. The rest of this section details the structure learning phase
and the parameter learning phase. Finally, in this section, the stabil-
ity analysis of the FNFN model based on the Lyapunov approach is
performed to ensure that the convergence property holds.

3.1. Structure learning phase

The first step in structure learning is to determine whether a
new rule should be extracted from the training data and to deter-
mine the number of fuzzy sets in the universe of discourse of each
input variable, since one cluster in the input space corresponds to
one potential fuzzy logic rule, in which mij and rij represent the
mean and variance of that cluster, respectively. For each incoming
pattern xi, the rule firing strength can be regarded as the degree to
which the incoming pattern belongs to the corresponding cluster.
The entropy measure between each data point and each member-
ship function is calculated based on a similarity measure. A data
point of closed mean will have lower entropy. Therefore, the entro-
py values between data points and current membership functions
are calculated to determine whether or not to add a new rule. For
computational efficiency, the entropy measure can be calculated
using the firing strength from uð2Þij as

EMj ¼ �
XN

i¼1

Dijlog2Dij ð9Þ

where Dij ¼ exp uð2Þ
�1

ij

� �
and EMj e [0, 1]. According to (9), the mea-

sure is used to generate a new fuzzy rule, and new functional link
bases for new incoming data are described as follows. The maxi-
mum entropy measure

EMmax ¼ max
16j6RðtÞ

EMj ð10Þ

is determined, where R(t) is the number of existing rules at time t. If
EMmax < EM, then a new rule is generated, where EM 2 ½0; 1� is a
prespecified threshold that decays during the learning process.
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In the structure learning phase, the threshold parameter EM is
an important parameter. The threshold is set between zero and
one. A low threshold leads to the learning of coarse clusters (i.e.,
fewer rules are generated), whereas a high threshold leads to the
learning of fine clusters (i.e., more rules are generated). If the
threshold value equals zero, then all the training data belong to
the same cluster in the input space. Therefore, the selection of
the threshold value EM will critically affect the simulation results.
As a result of our extensive experiments and by carefully examin-
ing the threshold value EM, which uses the range [0, 1], we con-
cluded that there was a relationship between threshold value EM
and the number of input variables (N). Accordingly, EM ¼ sN,
where s belongs to the range [0.26, 0.3]. Once a new rule has been
generated, the next step is to assign the initial mean and variance
to the new membership function and the corresponding link
weight for the consequent part. Since the goal is to minimize an
objective function, the mean, variance, and weight are all adjust-
able later in the parameter learning phase. Hence, the mean, vari-
ance, and weight for the new rule are set as

m
ðRðtþ1ÞÞ
ij ¼ xi ð11Þ

rðRðtþ1ÞÞ
ij ¼ rinit ð12Þ

w
ðRðtþ1ÞÞ
kj ¼ random½�1; 1� ð13Þ

where xi is the new input and rinit is a prespecified constant. The
whole algorithm for the generation of new fuzzy rules and fuzzy
sets in each input variable is as follows. No rule is assumed to exist
initially.
ameter learning for the FNFN model.
� Step1: IF xi is the first incoming pattern THEN do
{Generate a new rule
with mean mi1 = xi, variance ri1 = rinit,
weight wk1 = random[�1, 1]
where rinit is a prespecified constant
}
{Find EMmax ¼ max

16j6RðTÞ
EMj

IF EMmax < EM
do nothing
ELSE

{ R(t+1) = R(t) +1
generate a new rule
with mean miRðtþ1Þ ¼ xi;

variance riRðtþ1Þ ¼ rinit ,

weight wkRðtþ1Þ ¼ random½�1;1�
where rinit is a prespecified constant.

}
}

3.2. Parameter learning phase

After the network structure has been adjusted according to the
current training data, the network enters the parameter learning
phase to adjust the parameters of the network optimally based
on the same training data. The learning process involves determin-
ing the minimum of a given cost function. The gradient of the cost
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function is computed and the parameters are adjusted with the
negative gradient. The backpropagation algorithm is adopted for
this supervised learning method. When the single-output case is
considered for clarity, the goal to minimize the cost function E is
defined as

EðtÞ ¼ 1
2
½yðtÞ � ydðtÞ�2 ¼ 1

2
e2ðtÞ ð14Þ

where yd(t) is the desired output and y(t) is the model output for
each discrete time t. In each training cycle, starting at the input vari-
ables, a forward pass is adopted to calculate the activity of the mod-
el output y(t).

When the backpropagation (BP) learning algorithm is adopted,
the weighting vector of the FNFN model is adjusted such that the
error defined in (14) is less than the desired threshold value after
a given number of training cycles. The well-known backpropaga-
tion learning algorithm may be written briefly as

Wðt þ 1Þ ¼WðtÞ þ DWðtÞ ¼WðtÞ þ �g
@EðtÞ
@WðtÞ

� �
ð15Þ

where, in this case, g and W represent the learning rate and the tun-
ing parameters of the FNFN model, respectively.

Let W ¼ ½m;r;w�T T be the weighting vector of the FNFN model.
Then, the gradient of error E(�) in (14) with respect to an arbitrary
weighting vector W is

@EðtÞ
@W

¼ eðtÞ @yðtÞ
@W

ð16Þ

Recursive applications of the chain rule yield the error term for
each layer. Then the parameters in the corresponding layers are ad-
justed. With the FNFN model and the cost function as defined in
(14), the update rule for wj can be derived as

wkjðt þ 1Þ ¼ wkjðtÞ þ DwkjðtÞ ð17Þ

where

DwkjðtÞ ¼ �gw
@E
@wkj

¼ �gw � e �
uð3Þj /kPR

j¼1uð3Þj

 !

Similarly, the update laws for mij and rij are

mijðt þ 1Þ ¼ mijðtÞ þ DmijðtÞ ð18Þ
rijðt þ 1Þ ¼ rijðtÞ þ DrijðtÞ ð19Þ

where

DmijðtÞ ¼ �gm
@E
@mij

¼ �gm � e �
uð4ÞjPR
j¼1uð3Þj

 !
� 2ðuð1Þi �mijÞ

r2
ij

 !
Table 1
Experimental results of Iris data.

Experiment 1 2 3 4 5 Average

Accuracy (%) 97.3 98.7 98.7 97.3 98.7 98.1
Testing errors 2 1 1 2 1 1–2
Number of rules 4 3 5 2 3 2–5
DrijðtÞ ¼ �gr
@E
@rij
¼ �gr � e �

uð4ÞjPR
j¼1uð3Þj

 !
� 2ðuð1Þi �mijÞ2

r3
ij

 !

where gw, gm, and gr are the learning rate parameters of the
weight, the mean, and the variance, respectively. In this study,
both the link weights in the consequent part and the parameters
of the membership functions in the precondition part are
adjusted by using the backpropagation algorithm. Recently, many
researchers (Juang & Lin, 1998; Wang & Mendel, 1993) tuned the
consequent parameters using either LMS or recursive least
squares (RLS) algorithms to obtain optimal parameters. However,
they still used the backpropagation algorithm to adjust the
precondition parameters.
4. Experimental results

4.1. Example 1: Iris data

The Iris data set (Fisher, 1936) contains 150 patterns that are
distributed equally into three output species, Iris Setosa, Iris Vers-
icolur and Iris Virginica. Each pattern consists of four input fea-
tures: sepal length, sepal width, petal length, and petal width.
We exploit these patterns to produce both the training data and
testing data. In the experiment, 25 instances from each species
were randomly selected as the training set (i.e., a total of 75 train-
ing patterns were used) and the remaining instances were used as
the testing set. The data set was normalized to the range [0, 1], and
the output y of the FNFN model was used with the following clas-
sification rules.

Iris ¼
Setosa; if y < 1:5
Versicolour; if 1:5 6 y < 2
Virginica; if y P 2:5

8><
>: ð20Þ

The initial parameters gm = gr = gw = 0.01 and EM ¼ ½0:26; 0:3�
were chosen. We repeated the experiment on 5 different train-
ing-test data sets that were obtained via a random process from
the original Iris data. After learning, only 2–5 rules were generated
in the FNFN model. Table 1 tabulated the results of the 5 different
data sets in independent runs. The average testing accuracy rate of
the FNFN model was 98.1%. Fig. 4 shows the input membership
functions for Iris data classification.

The experiment calculated the training and testing accuracy
rates by the FNFN and other existing models (the general MLP
(Cho & Kim, 1995), the general NFN (Lin, Lin, & Shen, 2001), the
self-organizing HCMAC (Lee, Chen, & Lu, 2003), the SANFIS (Wang
& Lee, 2002), and a single CNFN classifier (Lin & Chen, 2003)). The
comparison results are tabulated in Table 2. We can find that both
the rates for FNFN model are higher than those of the other
methods.

4.2. Example 2: Wisconsin Breast Cancer Diagnostic data

The Wisconsin Breast Cancer Diagnostic data set is available
from the University of California, Irvine, via ftp://ftp.ics.uci.edu/
pub/machine-learning-databases. Otherwise, for the Cleveland
Heart Disease data, there are a few missing values in the data. In
our experiments, these data sets were replaced by the average of
the column (feature) regardless of the class labels. The data set
contains 699 patterns distributed into two output classes, Benign
(458 patterns) and Malignant (241 patterns). Each pattern consists
of nine input features: clump thickness, uniformity of cell size, uni-
formity of cell shape, marginal adhesion, single epithelial cell size,
bare nuclei, bland chromatin, normal nucleoli, and mitoses. Since
there were 16 patterns containing missed values, only 683 patterns
were used. In the experiment, half of the 683 patterns were used as
the training data set and the remaining patterns were used as the
test data set. We demarcated the output y of the FNFN model using
the following rules.

class ¼
Benign; if y < 1:5
Malignant; if 1:5 6 y

�
ð21Þ



Fig. 4. Input membership functions for Iris data classification.

Table 2
Comparison of classification results on Iris data.

Models Avg. training
accuracy (%)

Avg. testing
accuracy (%)

MLP (Cho and Kim, 1995) 98.5 94.7
NFN (Lin et al., 2001) 98 97
Self-organizing HCMAC (Lee

et al., 2003)
98.6 97.3

SANFIS (Wang and Lee, 2002) 98.6 97.3
CNFN (Lin et al., 2003) 99.3 97.3
FNFN 99.5 98.1

Table 5
Experimental results on Wine data.

Experiment 1 2 3 4 5 Average

Accuracy (%) 98.9 98.9 99.4 99.4 98.9 99.1
Testing errors 2 2 1 1 2 1–2
Number of rules 1 1 1 2 1 1–2

Table 6
Comparison of classification results on Wine data.

Models Average recognition rate (%) Number of rules

Corcoran and Sen (1994) 99.5 60
Ishibuchi et al. (1999) 98.5 60
Setnes and Roubos (2000) 98.3 3
FNFN 99.1 1–2
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We set parameters gm = gr = gw = 0.01 and EM ¼ ½0:26; 0:3� as
initial values. The experiments were performed on 5 different
training-test data sets that were obtained via a random process
from the original data. After learning, there were 1–2 rules gener-
ated in the FNFN model. Table 3 shows the results of the 5 different
data sets in independent runs. The average testing accuracy rate of
the FNFN model was 98.3%.

We compare the performance of our model with that of other
existing models (the FEBFC (Lee et al., 2001), the self-organizing
HCMAC (Lee et al., 2003), the general MLP (Cho & Kim, 1995),
the SANFIS (Wang & Lee, 2002), and the general NFN (Lin et al.,
2001)), and the results are tabulated in Table 4. The averaged rec-
ognition rate of FNFN model is better than the other models.
Table 3
Experimental results of Wisconsin Breast Cancer Diagnostic data.

Experiment 1 2 3 4 5 Average

Accuracy (%) 97.7 98.2 97.7 98.2 99.7 98.3
Testing errors 8 6 8 6 1 1–8
Number of rules 1 2 1 2 2 1–2

Table 4
Comparison of classification results on Wisconsin Breast Cancer Diagnostic data.

Models Avg. recognition rate (%)

FEBFC (Lee et al., 2001) 94.7
Self-organizing HCMAC (Lee et al., 2003) 95.7
MLP (Cho and Kim, 1995) 95.7
SANFIS (Wang and Lee, 2002) 96
NFN (Lin et al., 2001) 98
FNFN 98.3
4.3. Example 3: Wine data

The wine classification data set contains 178 wines that are
brewed in the same region of Italy but derived from three different
cultivars. Each pattern consists of 13 continuous features: alcohol,
malic acid, ash, alkalinity of ash, magnesium, total phenols, flavo-
noids, nonflavonoid phenols, proanthocyanins, color intensity,
hue, OD280/OD315 of diluted wines and proline. We demarcated
the output y of the FNFN model using the following rules.

class ¼
Type1; if y < 1:5
Type2; if 1:5 6 y < 2:5
Type3; if y 6 2:5

8><
>: ð22Þ

For this problem, the initial parameters gm = gr = gw = 0.01 and
entropy = [0.26, 0.3] were chosen. Five different training-test data
sets were used in this experiment. These data sets were randomly
selected from the original data. After learning, there were 1–2 rules
generated in the FNFN model. Table 5 shows the results. The aver-
age testing accuracy rate of the FNFN model was 99.1%.

Corcoran and Sen (1994) applied all the 178 samples for learn-
ing 60 nonfuzzy IF-THEN rules in a real-coded genetic-based meth-
od learning approach. They used a population of 1500 individuals
and applied 300 generations, with full replacement, to come up
with the following result for ten independent trials: average classi-
fication rate 99.5%. Ishibuchi, Nakashima, and Murata (1999) pro-
posed an integer-coded GA and grid-partitioning to design a
fuzzy classifier with 60 fuzzy rules from the 178 patterns. Their
population contained 100 individuals and they applied 1000 gen-
erations, with full replacement, to come up with the following re-
sult for ten independent trials: average classification rate 98.5%.
Setnes and Roubos (2000) applied a real-coded GA and c-means
clustering algorithm on all the available 178 patterns to design a
TSK model as a classifier. Table 6 shows the comparison of perfor-
mance between FNFN and other fuzzy, neural-network, and neural
fuzzy classifiers. The recognition rates of FNFN outperform the
listed classifiers except Cornran et al. Although the averaged recog-
nition rate of FNFN model is a little worse than Cornran et al. FNFN
model uses far fewer rules.
5. Conclusions

In this study of classification applications, we have proposed a
functional neural fuzzy network (FNFN). The FNFN model uses the
functional link neural network (FLNN) as the consequent part of
the fuzzy rules. Therefore, the FNFN can form the consequent part
of a nonlinear combination of the input variables to be approxi-
mated more effectively. In addition, the FNFN can automatically
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construct its structures and adjust free parameters by performing
online learning schemes concurrently. The FNFN has the advantages
of higher classification accuracy and less rule number. Finally, three
examples have showed that the proposed FNFN has better perfor-
mance than that of other methods.
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