
A
N

M
a

b

c

a

A
R
R
A
A

K
N
S
D
E
C

1

s
o
f
i
a
d
i
g

t
o
i
a
C
a
f
t
a
d
t

1
d

Applied Soft Computing 11 (2011) 4847–4858

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

 Rule-Based Symbiotic MOdified Differential Evolution for Self-Organizing
euro-Fuzzy Systems

iin-Tsair Sua, Cheng-Hung Chenb, Cheng-Jian Linc,∗, Chin-Teng Lina

Department of Electrical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan, ROC
Department of Electrical Engineering, National Formosa University, Yunlin County 632, Taiwan, ROC
Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan, ROC

 r t i c l e i n f o

rticle history:
eceived 9 March 2009
eceived in revised form 24 March 2011
ccepted 26 June 2011
vailable online 8 July 2011

a b s t r a c t

This study proposes a Rule-Based Symbiotic MOdified Differential Evolution (RSMODE) for Self-
Organizing Neuro-Fuzzy Systems (SONFS). The RSMODE adopts a multi-subpopulation scheme that uses
each individual represents a single fuzzy rule and each individual in each subpopulation evolves sepa-
rately. The proposed RSMODE learning algorithm consists of structure learning and parameter learning
for the SONFS model. The structure learning can determine whether or not to generate a new rule-
eywords:
euro-fuzzy systems
ymbiotic evolution
ifferential evolution
ntropy measure
ontrol

based subpopulation which satisfies the fuzzy partition of input variables using the entropy measure.
The parameter learning combines two strategies including a subpopulation symbiotic evolution and a
modified differential evolution. The RSMODE can automatically generate initial subpopulation and each
individual in each subpopulation evolves separately using a modified differential evolution. Finally, the
proposed method is applied in various simulations. Results of this study demonstrate the effectiveness
of the proposed RSMODE learning algorithm.
. Introduction

Neuro-fuzzy systems (NFSs) [1–3] have been demonstrated to
olving many engineering problems. They combine the capability
f neural networks to learn from processes and the capability of
uzzy reasoning under linguistic information pertaining to numer-
cal variables. On the other hand, recent development in genetic
lgorithms (GAs) has provided a method for neuro-fuzzy system
esign. Genetic fuzzy systems (GFSs) [4–6] hybridize the approx-

mate reasoning of fuzzy systems with the learning capability of
enetic algorithms.

GAs represent highly effective techniques for evaluating sys-
em parameters and finding global solutions while optimizing the
verall structure. Thus, many researchers have developed GAs to
mplement fuzzy systems and neuro-fuzzy systems in order to
utomate the determination of structures and parameters [7–16].
arse et al. [7] presented a GA-based approach to employ vari-
ble length rule sets and simultaneously evolves fuzzy membership
unctions and relations called Pittsburgh-style fuzzy classifier sys-
em. Herrera et al. [8] proposed a genetic algorithm-based tuning

pproach for the parameters of membership functions used to
efine fuzzy rules. This approach relied on a set of input–output
raining data and minimized a squared-error function defined

∗ Corresponding author.
E-mail address: cjlin@ncut.edu.tw (C.-J. Lin).

568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2011.06.015
© 2011 Elsevier B.V. All rights reserved.

in terms of the training data. Homaifar and McCormick [9] pre-
sented a method that simultaneously found the consequents of
fuzzy rules and the center points of triangular membership func-
tions in the antecedent using genetic algorithms. Velasco [10]
described a Michigan approach which generates a special place
where rules can be tested to avoid the use of bad rules for online
genetic learning. Ishibuchi et al. [11] applied a Michigan-style
genetic fuzzy system to automatically generate fuzzy IF-THEN
rules for designing compact fuzzy rule-based classification systems.
The genetic learning process proposed is based on the itera-
tive rule learning approach and it can automatically design fuzzy
rule-based systems by Cordon et al. [12]. A GA-based learning algo-
rithm called structural learning algorithm in a vague environment
(SLAVE) was proposed in [13]. SLAVE used an iterative approach to
include more information in the process of learning one individual
rule.

Moreover, a very interesting algorithm was proposed by Russo
in [14] which attempted to combine all good features of fuzzy
systems, neural networks and genetic algorithm for fuzzy model
derivation from input–output data. Chung et al. [15] adopted both
neural networks and GAs to automatically determine the param-
eters of fuzzy logic systems. They utilized a feedforward neural
network for realizing the basic elements and functions of a fuzzy

controller. In [16], a hybrid of evolution strategies and simu-
lated annealing algorithms is employed to optimize membership
function parameters and rule numbers which are combined with
genetic parameters.

dx.doi.org/10.1016/j.asoc.2011.06.015
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:cjlin@ncut.edu.tw
dx.doi.org/10.1016/j.asoc.2011.06.015

4 Comp

s
H
o
s
l
s
e
t
s
o
p
m
m
i
a
o

f
c
(
s
v

l
t
c
p
I
u
m

848 M.-T. Su et al. / Applied Soft

In the aforementioned literatures, it has been fully demon-
trated that GAs are very powerful in searching for the true profile.
owever, the search is extremely time-consuming, which is one
f the basic disadvantages of all GAs. Although the convergence in
ome special cases can be improved by hybridizing GAs with some
ocal search algorithms, it is achieved at the expense of the ver-
atility and simplicity of the algorithm. Similar to GAs, differential
volution (DE) [17–19] also belongs to the broad class of evolu-
ionary algorithms, but DE has many advantages such as the strong
earch ability and the fast convergence ability over GAs or any
ther traditional optimization approach, especially for real valued
roblems [19]. In addition, the DE algorithm has gradually become
ore popular and has been used in many practical areas, mainly
any researches [20–24] demonstrated that DE is robust, simple

n implementation and use, easy to understand, and requires only
 few control parameters for particle swarm optimization (PSO),
riginal GA and some modified GAs.

This study proposes a RSMODE for a SONFS. The neuro-
uzzy system is based on our previous research [25], and
ombines a fuzzy system with a functional link neural network
FLNN) [26]. The consequent part of the fuzzy rules that corre-
ponds to an FLNN comprises the functional expansion of input
ariables.

The proposed RSMODE learning algorithm consists of structure
earning to generate initial rule-based subpopulation, and parame-
er learning to adjust the SONFS parameters. The structure learning
an determine whether or not to generate a new rule-based sub-

opulation which satisfies the fuzzy partition of input variables.

nitially, there is not any subpopulation. The rule-based subpop-
lation is automatically generated from training data by entropy
easure. The parameter learning combines two strategies includ-

Fig. 1. Structure of th
uting 11 (2011) 4847–4858

ing a subpopulation symbiotic evolution (SSE) and a modified
differential evolution (MODE). The SSE in which each individual
represents a single fuzzy rule differs from original symbiotic evo-
lution [27]. Each subpopulation allows the rule itself to evolve.
The MODE adopts a method to effectively search between the best
individual and randomly chosen individuals.

This study is organized as follows. Section 2 describes the struc-
ture of the Self-Organizing Neuro-Fuzzy system. Section 3 presents
the Rule-Based Symbiotic MOdified Differential Evolution. Next,
Section 4 presents the results of simulations of various problems.
Finally, the last section draws conclusions.

2. Structure of SONFS

This subsection describes the SONFS [25], which uses a non-
linear combination of input variables (FLNN) [26]. Each fuzzy rule
corresponds to the FLNN, comprising a functional expansion of
input variables. The SONFS model realizes a fuzzy if-then rule in
the following form.

Rulej : IF x̂1 is A1j and x̂2 is A2j... and x̂i is Aij... and x̂N is ANj

THEN ŷ
′
j =

M∑
k=1

wkj�k = w1j�1 + w2j�2 + ... + wMj�M (1)

where x̂i and ŷ
′
j

are the input and local output variables, respec-

tively; Aij is the linguistic term of the precondition part; N is the
number of input variables; wkj is the link weight of the local out-
put; �k is the basis trigonometric function of input variables; M is
the number of basis function, and Rulej is the jth fuzzy rule.

e SONFS model.

Compu

l
d

�

w
b
v

p
a
d

�

o
t
l

y

w
m
n
T
f
f
b

3
f

T
T
p
t
t
o
e
a
e
e
i
s
l

3

d
d
a
f
v
i
e

M.-T. Su et al. / Applied Soft

The structure of the SONFS model is shown in Fig. 1, in which
inguistic layer by a Gaussian-type membership function, �Aij

(x̂i),
efined by

Aij
(x̂i) = exp

(
− [x̂i − mij]

2

�2
ij

)
(2)

here mij and �ij are the mean and variance of the Gaussian mem-
ership function, respectively, of the jth term of the ith input
ariable xi.

The collection of fuzzy sets Aj = {A1j, ..., ANj} pertaining to the
recondition part of Rulej forms a fuzzy region that can be regarded
s a multi-dimensional fuzzy set whose membership function is
etermined by

Aj
(x̂) =

N∏
i=1

�Aij
(x̂i) (3)

Nodes in consequent layer only receive the signal, which are the
utput from rule layer and a functional link neural network. Finally,
he output node integrates all of the actions recommended by rule
ayer and consequent layer and acts as a defuzzifier with,

ˆ =
∑R

j=1�Aj
(x̂)ŷ

′
j∑R

j=1�Aj
(x̂)

=

∑R
j=1�Aj

(x̂)

(
M∑

k=1

wkj�k

)
∑R

j=1�Aj
(x̂)

(4)

here R is the number of fuzzy rules, ŷ is the output of the SONFS
odel, wkj is the corresponding link weight of functional link neural

etwork, and �k is the functional expansion of input variables [26].
he functional expansion uses a trigonometric polynomial basis
unction, given by [x̂1 sin(�x̂1) cos(�x̂1) x̂2 sin(�x̂2) cos(�x̂2)]
or two-dimensional input variables. Therefore, M is the number of
asis functions, M = 3 × N, where N is the number of input variables.

. A rule-based symbiotic modified differential evolution
or the SONFS model

This section represents the proposed RSMODE for the SONFS.
he RSMODE comprises structure learning and parameter learning.
he structure learning uses the entropy measure that determines
roper input space partitioning and finds the mean and variance of
he Gaussian membership function and the number of rules. Next,
he initial rule-based subpopulation is created according to a range
f the mean and variance of the membership function. The param-
ter learning consists of a subpopulation symbiotic evolution (SSE)
nd a modified differential evolution (MODE). Each individual in
ach subpopulation evolves separately using a modified differential
volution. But in order to evaluate each individual, the individual
s composed a fuzzy system using other individuals (rules) in other
ubpopulations. The detailed flowchart of the proposed RSMODE
earning algorithm is presented in Fig. 2.

.1. Structure learning

In this study, we can finish the structure learning from training
ata in the first generation. This subsection introduces the pro-
uction of initial rule-based subpopulation, covering the coding
nd initialization steps. The coding step involves the membership

unctions and the fuzzy rules of a fuzzy system that represent indi-
iduals and are suitable for subpopulation symbiotic evolution. The
nitialization step assigns the number of subpopulation before the
volution process begins.
ting 11 (2011) 4847–4858 4849

3.1.1. Coding step
The first step in RSMODE learning algorithm is the coding of a

fuzzy rule into an individual. Fig. 3 shows an example of a fuzzy rule
coded into an individual where i and j are the ith dimension and the
jth rule. Fig. 3 describes a fuzzy rule given by Eq. (1), where mij and
�ij are the mean and variance of a Gaussian membership function,
respectively, and wkj represents the corresponding link weight of
the consequent part that is connected to the jth rule node. In this
study, a real number represents the position of each individual.

3.1.2. Initialization step
For training data, finding the optimal solution is difficult because

the range of training data is wide. Therefore, the data must be nor-
malized. Let training data be transformed to the interval of [0,1]:

x̂i = x̂
′
i
− x̂

′
i min

x̂
′
i max − x̂

′
i min

(5)

where x̂i is the value after normalization; x̂′
i
is the vector of the ith

dimension to be normalized; x̂′
i min is the minimum value of vector

x̂
′
i
; x̂′

i max is the maximum value of vector x̂′
i
.

Before the RSMODE method is designed, the individuals that
will constitute R initial subpopulation must be created. The first
step in structure learning is to create the initial first individual in
each subpopulation to satisfy the fuzzy rule partition of input vari-
ables. The fuzzy rule partition strategy can determine whether a
new rule should be extracted from the training data and determine
the number of fuzzy rules in the universal of discourse of each input
variable, since one cluster in the input space corresponds to one
potential fuzzy logic rule. For each incoming data x̂′

i
, the rule firing

strength can be regarded as the degree to which the incoming data
belongs to the corresponding cluster. Entropy measure between
each data point and each membership function is calculated based
on a similarity measure. A data point of closed mean will has lower
entropy. Therefore, the entropy values between data points and
current membership functions are calculated to determine whether
or not to add a new rule into the initial first individual and create a
new rule-based subpopulation space. For computational efficiency,
the entropy measure can be calculated using the firing strength
from �Aij

(x̂i) as follows:

EMj = −
N∑

i=1

Dij log2 Dij (6)

where Dij = exp(uAij
(x̂i)

−1) and EMj ∈ [0, 1]. According to Eq. (6),
the measure is used to generate a new fuzzy rule and new func-
tional link bases for new incoming data is described as follows. The
maximum entropy measure

EMmax = max
1≤j≤R

EMj (7)

is determined, where R is the number of existing rules. If EMmax ≤
EM, then a new rule and a new rule-based subpopulation space are
generated, where EM ∈ [0, 1] is a prespecified threshold.

Once a new rule has been generated, the next step is to assign the
initial first individual in the new rule-based subpopulation by the
initial mean and variance to the new membership function and the
corresponding link weight. Hence, the mean, variance and weight
for the new rule are set as follows:

mij = x̂i (8)
�ij = �init (9)

wkj = random[−1, 1] (10)

where x̂i is the current input data and �init is a prespecified constant.

4850 M.-T. Su et al. / Applied Soft Computing 11 (2011) 4847–4858

Fig. 2. Flowchart of the proposed RSMODE method.

M.-T. Su et al. / Applied Soft Compu

F

t
f

M

w

V

w

O

w

w
c
i

ig. 3. Coding a fuzzy rule into an individual in the proposed RSMODE method.

The second step is to create other individuals in each subpopula-
ion according to a range of the initial first individual. The following
ormulations show the production of the other individuals.

ean : Individual [d] = mij + random [0, 1] × �ij,

here d = 1, 3, . . . , 2 × N − 1 (11)

ariance : Individual [d] = 2 × random [0, 1] × �ij,

here d = 2, 4, . . . , 2 × N (12)

ther parameters : Individual [d] = random [−1, 1],

here d > 2 × N (13)
here d is the site of each individual and mij and �ij are the
orresponding mean and variance, respectively, of the initial first
ndividual.

Fig. 4. Structure of the indiv
ting 11 (2011) 4847–4858 4851

3.2. Parameter learning

The parameter learning combines two strategies including a
subpopulation symbiotic evolution (SSE) and a modified differen-
tial evolution (MODE). Each subpopulation allows the individual
(rule) itself to evolve by evaluating the composed fuzzy system.
Fig. 4 shows the structure of the individual in the RSMODE. The
parameter learning process is described step-by-step below.

Step 1: Generate the initial best Fuzzy system

In this step, we orderly select the first individual from each sub-
population, and compose a fuzzy system as the initial best fuzzy
system.

Step 2: Update each individual in each subpopulation using MODE

In order to update each individual in each subpopulation, we use

a modified differential evolution to select the better individual to
the next step. Fig. 5 gives an example of the MODE process. Hence,
this step comprises of three components – parent choice phase,
offspring generation phase, and survivor selection phase.

idual in the RSMODE.

4852 M.-T. Su et al. / Applied Soft Computing 11 (2011) 4847–4858

t
s
2
t
x

f

a
f

v

w
c
c
x
t
u
n
a
u
c

=

w
R
F
i

F
v

Fig. 5. Illustration of the MODE process for 8-dimensional vector.

Step 2.1: Parent choice phase

Each individual in the current generation is allowed to breed
hrough mating with other randomly selected individuals from the
ubpopulation. Specifically, for each current individual xk,g, k = 1,
,. . ., PS, where g denotes the current generation and PS denotes
he population size, three other random individuals xr1,g , xr2,g and
r3,g are selected from the subpopulation such that r1, r2, and r3

∈
{

1, 2, ...PS
}

and k /= r1 /= r2 /= r3. This way, a parent pool of
our individuals is formed to breed an offspring.

Step 2.2: Offspring generation phase

After choosing the parents, MODE applies a differential oper-
tion to generate a mutated individual vk,g+1, according to the
ollowing equation:

k,g+1 = xr1,g + (1 − F) · (xr2,g − xr3,g) + F · (xbest − xr1,g) (14)

here F, commonly known as scaling factor, is defined as g/G to
ontrol the rate at which the subpopulation evolves, g denotes the
urrent generation, G is the maximum number of generations, and
best is the corresponding parameter of the current best fuzzy sys-
em. To complement the differential operation search strategy, then
ses a crossover operation, often referred to as discrete recombi-
ation, in which the mutated individual vk,g+1 is mated with xk,g
nd generates the offspring uk,g+1. The element of trial individual
k,g+1 are inherited from xk,g and vk,g+1, determined by a parameter
alled crossover probability (CR ∈ [0, 1]), as follows:{

vkd,g+1, if Rand(d) ≤ CR

xkd,g, if Rand(d) > CR
(15)

here d = 1,2. . .,D denotes the dth element of individual vectors.
and(d) ∈ [0, 1] is the dth evaluation of a random number generator.
or searching in nonseparable and multimodal landscapes, CR = 0.9
s a good choice [19] in this study.

Step 2.3: Survivor selection phase
MODE applies selection pressure only when selecting survivors.
irst, the current composed fuzzy system embeds the current indi-
idual xk,g into the best fuzzy system and the trial composed fuzzy
Fig. 6. A mutation operation in the RSMODE.

system embeds the trial individual uk,g+1 into the best fuzzy sys-
tem. Second, a knockout competition is played between the current
composed fuzzy system and the trial composed fuzzy system, and
the corresponding individual of the winner is selected determinis-
tically based on objective function values and promoted to the next
phase. In this study, we adopt a fitness function (i.e., objective func-
tion) to evaluate the performance of these composed fuzzy systems.
The fitness function is defined as follows.

F = 1

1 +
√

1/Nt
∑Nt

l=1(yl − ȳl)
2

(16)

where yl represents the model output of the lth data; ȳl represents
the desired output of the lth data, and Nt represents the number of
the training data.

Step 3: Update the best fuzzy system

Compare the fitness value of the current composed fuzzy sys-
tem, the trial composed fuzzy system and the best fuzzy system. If
the fitness value of the current composed fuzzy system exceeds
those of the best fuzzy system, then the best fuzzy system is
replaced with the current composed fuzzy system. If the fitness
value of the trial composed fuzzy system exceeds those of the best
fuzzy system, and then the best fuzzy system is replaced with the
trial composed fuzzy system.

Step 4: Mutation

After the above process yielded offspring, no new information is
introduced to the each subpopulation at the site of an individual. As
a source of new sites, mutation should be used sparingly because it
is a random search operator. In the following simulations, a muta-
tion rate was set to 1/(2*N + M), meaning that, on average, only one
trial parameter is mutated, where N is the number of input vari-
ables, M is the number of basis function of SOFNS, and 2*N + M is
the length of each individual. Mutation is an operator that ran-
domly alters the allele of an element. The mutation adopted in
MODE to yield diversity. The individual suffers from a mutation to
avoid falling in a local optimal solution and to ensure the searching
capacity of approximate global optimal solution. Fig. 6 shows the
mutation of an individual. The mutation value is generated accord-
ing to Eqs. (11)–(13), where mij and �ij are the corresponding mean
and variance, respectively, of the current individual. Following the
mutation step, a new individual can be introduced into the each
subpopulation.

4. Simulation results
This study evaluated the performance of the proposed RSMODE
for a SONFS to control nonlinear systems. This section presents
several examples and compares the performance with that
of other methods. In the nonlinear system control problems,

M.-T. Su et al. / Applied Soft Computing 11 (2011) 4847–4858 4853

Table 1
Initial parameters before learning.

Parameter Value

Population size 50
Maximum number of generation 2000

S
l
t
[
i

E

a

w
t
e
l
s

i
a

y

i
C
ı
w
i
T

t
t
a
S
i
y
t
i
s
f
e
y

5

Fig. 8. Learning curves of best performance of the SONFS–REMODE, SONFS–RSDE,
Crossover rate 0.9
Mutation rate 1/(2 × N + M)
Coding type Real number

ONFS–RSMODE is adopted to design controllers in three simu-
ations – control of water bath temperature system [28], control of
he ball and beam system [29], and control of backing up the truck
30]. Table 1 presents the initial parameters before learning used
n the three computer simulations.

xample 1. Control of water bath temperature system

The goal of this section is to elucidate the control of the temper-
ture of a water bath system according to,

dy(t)
dt

= u(t)
C

+ Y0 − y(t)
TRC

(17)

here y(t) is the output temperature of the system in ◦C; u(t) is
he heat flowing into the system; Y0 is room temperature; C is the
quivalent thermal capacity of the system, and TR is the equiva-
ent thermal resistance between the borders of the system and the
urroundings.

TR and C are assumed to be essentially constant, and the system
n Eq. (17) is rewritten in discrete-time form to some reasonable
pproximation. The system

(k + 1) = e−˛Tsy(k) + (ı/˛)(1 − e−˛Ts)
1 + e0.5y(k)−40

u(k) + [1 − e−˛Ts]y0 (18)

s obtained, where � and � are some constant values of TR and
. The system parameters used in this example are ̨ = 1.0015e−4,

 = 8.67973e−3 and Y0 = 25.0 (◦C), which were obtained from a real
ater bath plant considered elsewhere [28]. The input u(k) is lim-

ted to 0, and 5 V represent voltage unit. The sampling period is
s = 30.

The conventional online training scheme is adopted for online
raining. Fig. 7 presents a block diagram for the conventional online
raining scheme. This scheme has two phases – the training phase
nd the control phase. In the training phase, the switches S1 and
2 are connected to nodes 1 and 2, respectively, to form a train-
ng loop. In this loop, training data with input vector I(k) = [yp(k + 1)
p(k)] and desired output u(k) can be defined, where the input vec-
or of the SONFS controller is the same as that used in the general
nverse modeling [31] training scheme. In the control phase, the
witches S1 and S2 are connected to nodes 3 and 4, respectively,
orming a control loop. In this loop, the control signal û(k) is gen-

rated according to the input vector I ’ (k) = [yref(k + 1) yp(k)], where
p is the plant output and yref is the reference model output.

A sequence of random input signals urd(k) limited to 0 and
 V is injected directly into the simulated system described in Eq.

Fig. 7. Conventional onlin
SONFS–DE and SONFS–GA in Example 1.

(18), using the online training scheme for the SONFS–RSMODE
controller. The 120 training patterns are selected based on the
input–outputs characteristics to cover the entire reference output.
The temperature of the water is initially 25 ◦C, and rises progres-
sively when random input signals are injected.

In initialization phase, four subpopulations are generated.
This dissertation compares the SONFS–RSMODE controller to
the SONFS–RSDE controller, the SONFS–DE controller and the
SONFS–GA controller. Each of these controllers is applied to the
water bath temperature control system. The performance mea-
sures include the set-points regulation, the influence of impulse
noise, and a large parameter variation in the system, and the track-
ing capability of the controllers. Fig. 8 plots the learning curves of
the best performance of the SONFS–RSMODE controller for the fit-
ness value, the SONFS–RSDE controller, the SONFS–DE controller
and the SONFS–GA controller, after the learning process of 2000
generations.

The first task is to control the simulated system to follow three
set-points.

yref(k) =

⎧⎪⎨
⎪⎩

35 ◦C, for k ≤ 40

55 ◦C for 40 < k ≤ 80

75 ◦C, for 80 < k ≤ 120.

(19)

Fig. 9(a) presents the regulation performance of the
SONFS–RSMODE controller. The regulation performance was
also tested using the SONFS–RSDE controller, the SONFS–DE con-
troller and the SONFS–GA controller. Fig. 9(b) plots the error curves
of the SONFS–RSMODE controller, the SONFS–RSDE controller,

the SONFS–DE controller, and the SONFS–GA controller. In this
figure, the SONFS–RSMODE controller obtains smaller errors than

e training scheme.

4854 M.-T. Su et al. / Applied Soft Computing 11 (2011) 4847–4858

F
s
t

t
p

S

w
o
t
S
3
o
a
c

n
i
v
i
F
t
s

Fig. 10. (a) Behavior of SONFS–RSMODE controller under impulse noise in water

T
C

ig. 9. (a) Final regulation performance of SONFS–RSMODE controller in water bath
ystem. (b) Error curves of the SONFS–RSMODE controller, SONFS–RSDE controller,
he SONFS–DE controller, and SONFS–GA controller.

he other three controllers. To test their regulation performance, a
erformance index, the sum of absolute error (SAE), is defined by

AE =
∑

k

∣∣yref(k) − y(k)
∣∣ (20)

here yref(k) and y(k) are the reference output and the actual
utput of the simulated system, respectively. The SAE values of
he SONFS–RSMODE controller, the SONFS–RSDE controller, the
ONFS–DE controller, and the SONFS–GA controller are 352.66,
52.81, 352.91, and 372.85, which values are given in the sec-
nd row of Table 2. The proposed SONFS–RSMODE controller has

 much better SAE value of regulation performance than the other
ontrollers.

The second set of simulations is performed to elucidate the
oise-rejection ability of the five controllers when some unknown

mpulse noise is imposed on the process. One impulse noise
alue −5 ◦C is added to the plant output at the 60th sampling

nstant. A set-point of 50 ◦C is adopted in this set of simulations.
or the SONFS–RSMODE controller, the same training scheme,
raining data and learning parameters as were used in the first
et of simulations. Fig. 10(a) and (b) presents the behaviors of

able 2
omparison of performance of various controllers to control of water bath temperature s

SAE =
120∑
k=1

|yref(k) − y(k)| SONFS–RSMODE controller SONF

Regulation performance 352.66 352.8
Influence of impulse noise 270.46 270.7
Effect of change in plant dynamics 262.63 263.2
Tracking performance 41.73 42.5
bath system. (b) Error curves of SONFS–RSMODE controller, SONFS–RSDE controller,
the SONFS–DE controller and SONFS–GA controller.

the SONFS–RSMODE controller, the SONFS–RSDE controller, the
SONFS–DE controller and the SONFS–GA controller under the influ-
ence of impulse noise, and the corresponding errors, respectively.
The SAE values of the SONFS–RSMODE controller, the SONFS–RSDE
controller, the SONFS–DE controller, and the SONFS–GA controller
are 270.46, 270.76, 270.65, and 282.21, which are shown in the
third row of Table 2. The SONFS–RSMODE controller performs quite
well. It recovers very quickly and steadily after the occurrence of
the impulse noise.

One common characteristic of many industrial-control pro-
cesses is that their parameters tend to change in an unpredictable
way. The value of 0.7 × u(k − 2) is added to the plant input
after the 60th sample in the third set of simulations to test
the robustness of the five controllers. A set-point of 50 ◦C
is adopted in this set of simulations. Fig. 11(a) presents the
behaviors of the SONFS–RSMODE controller when in the plant
dynamics change. Fig. 11(b) presents the corresponding errors of

the SONFS–RSMODE controller, the SONFS–RSDE controller, the
SONFS–DE controller and the SONFS–GA controller. The SAE val-
ues of the SONFS–RSMODE controller, the SONFS–RSDE controller,

ystem.

S–RSDE controller SONFS–DE controller SONFS–GA controller

1 352.91 372.85
6 270.65 282.21
1 263.25 270.66
6 42.92 62.02

M.-T. Su et al. / Applied Soft Computing 11 (2011) 4847–4858 4855

Fig. 11. (a) Behavior of SONFS–RSMODE controller when a change occurs in the
w
c

t
2
r
d
c

S
i

y

S
e
t
T
c
a
r
d
c
t
S

E

different initial conditions.
According to the input/output-linearization algorithm [29], the

control law u(x) is determined as follows: for state x, compute
v(x) = −˛3�4(x) − ˛2�3(x) − ˛1�2(x) − ˛0�1(x), where �1(x) = x1,
ater bath system. (b) Error curves of SONFS–RSMODE controller, SONFS–RSDE
ontroller, the SONFS–DE controller, and SONFS–GA controller.

he SONFS–DE controller, and the SONFS–GA controller are 262.63,
63.21, 263.25, and 270.66, which values are shown in the fourth
ow of Table 2. The results present the favorable control and
isturbance rejection capabilities of the trained SONFS–RSMODE
ontroller in the water bath system.

In the final set of simulations, the tracking capability of the
ONFS–RSMODE controller with respect to ramp-reference signals
s studied. Define

ref(k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

34 ◦C for k ≤ 30

(34 + 0.5(k − 30)) ◦C for 30 < k ≤ 50

(44 + 0.8(k − 50)) ◦C for 50 < k ≤ 70

(60 + 0.5(k − 70)) ◦C for 70 < k ≤ 90

70 ◦C for 90 < k ≤ 120

(21)

Fig. 12(a) presents the tracking performance of the
ONFS–RSMODE controller. Fig. 12(b) presents the corresponding
rrors of the SONFS–RSMODE controller, the SONFS–RSDE con-
roller, the SONFS–DE controller, and the SONFS–GA controller.
he SAE values of the SONFS–RSMODE controller, the SONFS–RSDE
ontroller, the SONFS–DE controller, and the SONFS–GA controller
re 41.73, 42.56, 42.92, and 62.02, which are shown in the fifth
ow of Table 2. The results present the favorable control and
isturbance rejection capabilities of the trained SONFS–RSMODE
ontroller in the water bath system. The aforementioned simula-
ion results, presented in Table 2, demonstrate that the proposed

ONFS–RSMODE controller outperforms other controllers.

xample 2. Control of the Ball and Beam System
Fig. 12. (a) Tracking of SONFS–RSMODE controller when a change occurs in the
water bath system. (b) Error curves of SONFS–RSMODE controller, SONFS–RSDE
controller, the SONFS–DE controller, and SONFS–GA controller.

Fig. 13 shows the ball and beam system [29]. The beam is made
to rotate in the vertical plane by applying a torque at the center of
rotation and the ball is free to roll along the beam. The ball must
remain in contact with the beam.

Ball and beam system can be written in state space form as⎡
⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x2

B(x1x2
4 − G sin x3)

x4

0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦u,

y = x1

(22)

where x = (x1, x2, x3, x4)T ≡ (r, ṙ, �, �̇)
T

is the state of the system
and y = x1 ≡ r is the output of the system. The control u is the angular
acceleration (�̈) and the parameters B = 0.7143 and G = 9.81 are set
in this system. The purpose of control is to determine u(x) such
that the closed-loop system output y will converge to zero from
Fig. 13. Ball and beam system.

4856 M.-T. Su et al. / Applied Soft Computing 11 (2011) 4847–4858

F
S

�
c
C
[

s
S
t
b
x
U
p
F
S
c
a
c
t
[
t
t
c
u
S
s
s
u

F
t
c

Fig. 16. Responses of four states of the ball and beam system under the control of
the SONFS–RSMODE controller.

Table 3
Comparison of performance of various controllers to control of ball and beam
system.

Method SONFS–RSMODE SONFS–RSDE SONFS–DE SONFS–GA

Fitness value
(Avg)

0.9041 0.8737 0.8516 0.8287
ig. 14. Learning curves of best performance of the SONFS–RSMODE, SONFS–RSDE,
ONFS–DE, and SONFS–GA in Example 2.

2(x) = x2, �3(x) = − BG sin x3, �4(x) = − BGx4 cos x3, and ˛i are
hosen so that s4 + ˛3s3 + ˛2s2 + ˛1s + ˛0 is a Hurwitz polynomial.
ompute a(x) = − BG cos x3 and b(x) = BGx2

4 sin x3; then u(x) =
v(x) − b(x)]/a(x).

In the simulation herein, the differential equations are
olved using the second/third-order Runge–Kutta method. The
ONFS is trained to approximate the aforementioned conven-
ional controller of a ball and beam system. u(x) = [v(x) −
(x)]/a(x) is used to generate the input/output train pair with

 obtained by randomly sampling 200 points in the region
 = [−5,5] × [−3,3] × [−1,1] × [−2,2]. In initialization phase, 14 sub-
opulations are generated. This example was simulated 30 times.
ig. 14 plots the learning curves of the best performance of the
ONFS–RSMODE controller for the fitness value, the SONFS–RSDE
ontroller, the SONFS–DE controller and the SONFS–GA controller,
fter the learning process of 2000 generations. The SONFS–RSMODE
ontroller after learning was tested under the following four ini-
ial conditions; x(0) = [2.4, −0.1, 0.6, 0.1]T, [1.6, 0.05, −0.5, −0.05]T,
−1.6, −0.05, 0.5, 0.05]T and [−2.4, 0.1, −0.6, −0.1]T. Fig. 15 plots
he output responses of the closed-loop ball and beam system con-
rolled by the SONFS–RSMODE controller and the SONFS–RSDE
ontroller. These responses approximate those of the controller
nder the four initial conditions. In this figure, the curves of the
ONFS–RSMODE controller tend quickly to stabilize. Fig. 16 also

hows the behavior of the four states of the ball and beam system,
tarting for the initial condition [−2.4, 0.1, −0.6, −0.1]T. In this fig-
re, the four states of the system decay gradually to zero. The results

ig. 15. Responses of ball and beam system controlled by SONFS–RSMODE con-
roller (solid curves) and SONFS–RSDE controller (dotted curves) under four initial
onditions.
Fitness value
(Best)

0.9653 0.9447 0.9441 0.9131

show the perfect control capability of the trained SONFS–RSMODE
controller. The performance of the SONFS–RSMODE controller is
compared with that of the SONFS–RSDE controller, the SONFS–DE
controller and the SONFS–GA controller. Table 3 presents the
comparison results. The results demonstrate that the proposed
SONFS–RSMODE controller outperforms other controllers.

Example 3. Control of backing up the truck

Backing a truck into a loading dock is difficult. It is a nonlin-
ear control problem for which no traditional control method exists
[30]. Fig. 17 shows the simulated truck and loading zone. The truck
position is exactly determined by three state variables �, x and y,
where � is the angle between the truck and the horizontal, and the
coordinate pair (x, y) specifies the position of the center of the rear
of the truck in the plane. The steering angle � of the truck is the con-
trolled variable. Positive values of � represent clockwise rotations
of the steering wheel and negative values represent counterclock-
wise rotations. The truck is placed at some initial position and is
backed up while being steered by the controller. The objective of

this control problem is to use backward only motions of the truck to
make the truck arrive in the desired loading dock (xdesired, ydesired)
at a right angle (�desired = 90◦). The truck moves backward as the

Fig. 17. Diagram of simulated truck and loading zone.

M.-T. Su et al. / Applied Soft Computing 11 (2011) 4847–4858 4857

F
S

s
T

m
c
l
c
s

0

−
−

ig. 18. Learning curves of best performance of the SONFS–RSMODE, SONFS–RSDE,
ONFS–DE and SONFS–GA in Example 3.

teering wheel moves through a fixed distance (df) in each step.
he loading region is limited to the plane [0,100] × [0,100].

The input and output variables of the SONFS–RSMODE controller
ust be specified. The controller has two inputs, truck angle � and

ross position x. When the clearance between the truck and the
oading dock is assumed to be sufficient, the y coordinate is not
onsidered as an input variable. The output of the controller is the
teering angle �. The ranges of the variables x, � and � are as follows.
 ≤ x ≤ 100 (23)

90◦ ≤ � ≤ 270◦ (24)

30◦ ≤ � ≤ 30◦ (25)

Fig. 20. Trajectories of truck, starting at four initial positions under the con
Fig. 19. The moving trajectories of the truck where the solid curves represent the six
sets of training trajectories and the dotted curves represent the moving trajectories
of the truck under the SONFS–RSMODE controller.

The equations of backward motion of the truck are,

x(k + 1) = x(k) + df cos �(k) + cos �(k)

y(k + 1) = y(k) + df cos �(k) + sin �(k)

�(k + 1) = tan−1

[
l sin �(k) + df cos �(k) sin �(k)
l cos �(k) − df sin �(k) sin �(k)

] (26)
where l is the length of the truck. Eq. (26) yields the next state from
the present state.

Learning involves several attempts, each starting from an ini-
tial state and terminating when the desired state is reached; the

trol of the SONFS–RSMODE after learning using training trajectories.

4858 M.-T. Su et al. / Applied Soft Comp

Table 4
Comparison of performance of various controllers to control of backing up the truck.

Method SONFS–RSMODE SONFS–RSDE SONFS–DE SONFS–GA

Fitness value 0.9110 0.8939 0.8846 0.8421

S
g
o
c
t
F
a
c
s
m
i
(
h
t
r
c

5

R
e
a
r
s
t
b
c

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(Avg)
Fitness value

(Best)
0.9746 0.9604 0.9527 0.9286

ONFS is thus trained. In initialization phase, 7 subpopulations are
enerated. This example was simulated 30 times. The fitness value
f the SONFS–RSMODE is approximately 0.9746 and the learning
urve of SONFS–RSMODE is compared with those obtained using
he SONFS–RSDE, SONFS–DE, and SONFS–GA, as shown in Fig. 18. In
ig. 19, the solid curves are the training paths and the dotted curves
re the paths that the tuck runs under the control of the proposed
ontroller. As this figure shown, the SONFS–RSMODE controller can
mooth the training paths. Fig. 20(a)–(d) plots the trajectories of the
oving truck controlled by the SONFS–RSMODE controller, start-

ng at initial positions (x, y, �) = (a) (40, 20, −30◦), (b) (10, 20, 150◦),
c) (70, 20, −30◦) and (d) (80, 20, 150◦), after the training process
as been terminated. The considered performance indices include
he best fitness and the average fitness value. Table 4 compares the
esults. According to these results, the proposed SONFS–RSMODE
ontroller outperforms various existing methods.

. Conclusion

This study proposes a RSMODE for a SONFS. The proposed
SMODE learning algorithm consists of structure learning to gen-
rate initial rule-based subpopulation, and parameter learning to
djust the SONFS parameters. The proposed RSMODE learning algo-
ithm allows that each individual in each subpopulation evolves
eparately using a modified differential evolution. The experimen-
al results demonstrate that the proposed RSMODE can obtain a
etter performance than other existing methods under some cir-
umstances.

eferences

[1] C.T. Lin, C.S.G. Lee, Neural Fuzzy Systems: A Neuro-fuzzy Synergism to Intelli-
gent System , Prentice-Hall, NJ, 1996.

[2] D. Nauck, F. Klawoon, R. Kruse, Foundations of Neuro-fuzzy Systems , John
Wiley, New York, 1997.

[3] R. Fuller, Introduction to Neuro-fuzzy Systems , Physica-Verlag, New York,
1999.

[4] E. Sanchez, T. Shibata, L.A. Zadeh, Genetic Algorithms and Fuzzy Logic Systems:
Soft Computing Perspectives , World Scientific, Singapore, 1997.
[5] O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic Fuzzy Systems-
evolutionary Tuning and Learning of Fuzzy Knowledge Bases , World Scientific,
Singapore, 2001.

[6] P.P. Angelov, Evolving Rule-based Models: A Tool for Design of Flexible Adap-
tive Systems , Physica-Verlag, Heidelberg, 2002.

[

[

uting 11 (2011) 4847–4858

[7] B. Carse, T.C. Fogarty, A. Munro, Evolving fuzzy rule based controllers using
genetic algorithms , Fuzzy Sets Syst. 80 (June) (1996) 273–293.

[8] F. Herrera, M. Lozano, J.L. Verdegay, Tuning fuzzy logic controllers by
genetic algorithms , Int. J. Approx. Reas. 12 (April–May) (1995) 299–
315.

[9] A. Homaifar, E. McCormick, Simultaneous design of membership functions and
rule sets for fuzzy controllers using genetic algorithms , IEEE Trans. Fuzzy Syst.
3 (1995 May) 129–139.

10] J. Velasco, Genetic-based on-line learning for fuzzy process control , Int. J. Intell.
Syst. 13 (1998) 891–903.

11] H. Ishibuchi, T. Nakashima, T. Murata, Performance evaluation of fuzzy classifier
systems for multidimensional pattern classification problems , IEEE Trans. Syst.
Man Cybern. B: Cybern. 29 (1999) 601–608.

12] O. Cordon, M.J. del Jesus, F. Herrera, M. Lozano, MOGUL: A methodology to
obtain genetic fuzzy rule-based systems under the iterative rule learning
approach , Int. J. Intell. Syst. 14 (1999) 1123–1153.

13] A. Gonzalez, R. Perez, SLAVE: a genetic learning system based on an iterative
approach , IEEE Trans. Fuzzy Syst. 27 (April) (1999) 176–191.

14] M. Russo, FuGeNeSys: a fuzzy genetic neural system for fuzzy modeling , IEEE
Trans. Fuzzy Syst. 6 (1998) 373–388.

15] I.F. Chung, C.J. Lin, C.T. Lin, A GA-based fuzzy adaptive learning control network
, Fuzzy Sets Syst. 112 (1) (2000) 65–84.

16] G. Alpaydin, G. Dandar, S. Balkir, Evolution-based design of neural fuzzy net-
works using self-adapting genetic parameters , IEEE Trans. Fuzzy Syst. 10 (2)
(2002) 211–221.

17] R. Storn, K.V. Price, Differential evolution: a simple and efficient heuristic for
global optimization over continuous spaces , J. Global Opt. 11 (December (4))
(1997) 341–359.

18] R. Storn, System design by constraint adaptation and differential evolution ,
IEEE Trans. Evol. Comput. 3 (April (1)) (1999) 22–34.

19] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization , Springer-Verlag, Germany, 2005.

20] Z. Yang, K. Tang, X. Yao, Differential evolution for high-dimensional function
optimization , IEEE Congress on Evolutionary Computation (September) (2007)
3523–3530.

21] H.R. Cai, C.Y. Chung, K.P. Wong, Application of differential evolution algorithm
for transient stability constrained optimal power flow , IEEE Trans. Power Syst.
23 (May (2)) (2008) 514–522.

22] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based differen-
tial evolution , IEEE Trans. Evol. Comput. 12 (February (1)) (2008) 107–
125.

23] S.L. Cheng, C. Hwang, Optimal approximation of linear systems by a differential
evolution algorithm , IEEE Trans. Syst. Man Cybern. A 31 (November (6)) (2001)
698–707.

24] R. Joshi, A.C. Sanderson, Minimal representation multisensor fusion using dif-
ferential evolution , IEEE Trans. Syst. Man Cybern. A 29 (January (1)) (1999)
63–76.

25] C.H. Chen, C.T. Lin, C.J. Lin, A functional-link-based fuzzy neural network for
temperature control , in: 2007 IEEE Symposium on Foundations of Computa-
tional Intelligence, Honolulu, Hawaii, USA, April 1–5, 2007, pp. 53–58.

26] J.C. Patra, R.N. Pal, B.N. Chatterji, G. Panda, Identification of nonlinear dynamic
systems using functional link artificial neural networks , IEEE Trans. Syst. Man
Cybern. 29 (April (2)) (1999) 254–262.

27] D.E. Moriarty, R. Miikkulainen, Efficient reinforcement learning through sym-
biotic evolution , Mach. Learn. 22 (1996) 11–32.

28] J. Tanomaru, S. Omatu, Process control by on-line trained neural controllers ,
IEEE Trans. Ind. Electron. 39 (1992) 511–521.

29] J. Hauser, S. Sastry, P. Kokotovic, Nonlinear control via approximate
input–output lineariztion: The ball and beam example , IEEE Trans. Autom.

Control. 37 (March) (1992) 392–398.

30] D. Nguyen, B. Widrow, The truck backer-upper: an example of self-learning in
neural network , IEEE Conf. Syst. Mag. 10 (3) (1990) 18–23.

31] D. Psaltis, A. Sideris, A. Yamamura, A multilayered neural network controller ,
IEEE Contr. Syst. 8 (1988) 17–21.

	A Rule-Based Symbiotic MOdified Differential Evolution for Self-Organizing Neuro-Fuzzy Systems
	1 Introduction
	2 Structure of SONFS
	3 A rule-based symbiotic modified differential evolution for the SONFS model
	3.1 Structure learning
	3.1.1 Coding step
	3.1.2 Initialization step

	3.2 Parameter learning

	4 Simulation results
	5 Conclusion
	References

