
Expert Systems with Applications 38 (2011) 673–681
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Implementation of a neuro-fuzzy network with on-chip learning and its applications

Cheng-Jian Lin a,*, Chi-Yung Lee b

a Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung County 411, Taiwan, ROC
b Department of Computer Science and Information Engineering, Nankai University of Technology, Nantou 542, Taiwan, ROC

a r t i c l e i n f o a b s t r a c t
Keywords:
Neural fuzzy network (NFN)
Field programmable gate array (FPGA)
Backpropagation (BP) method
Simultaneous perturbation
Gaussian function
0957-4174/$ - see front matter Crown Copyright � 2
doi:10.1016/j.eswa.2010.07.019

* Corresponding author.
E-mail address: cjlin@ncut.edu.tw (C.-J. Lin).
The implementation of adaptive neural fuzzy networks (NFNs) using field programmable gate arrays
(FPGA) is proposed in this study. Hardware implementation of NFNs with learning ability is very difficult.
The backpropagation (BP) method in the learning algorithm is widely used in NFNs, making it difficult to
implement NFNs in hardware because calculating the backpropagation error of all parameters in a system
is very complex. However, we use the simultaneous perturbation method as a learning scheme for the
NFN hardware implementation. In order to reduce the chip area, we utilize the traditional non-linear acti-
vation function to implement the Gaussian function. We can confirm the reasonableness of NFN perfor-
mance through some examples.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction difficult. The backpropagation method requires a large number of
The uses of traditional neural fuzzy networks (NFNs) (Juang &
Lin, 1998; Lin & Lee, 1996; Lin & Lin, 1997; Lin, Lin, & Shen,
2001; Paul & Kumar, 2002; Takagi & Sugeno, 1985; Zhang & Kan-
del, 1998) have been applied in many fields. Neural fuzzy networks
(NFNs) bring the low-level learning and computational power of
neural networks into fuzzy systems and give the high-level hu-
man-like thinking and reasoning of fuzzy systems to neural
networks.

NFNs have been mostly implemented in software, but the dis-
advantage of the software method is the lack of real-time. There-
fore, we propose implementing NFNs in hardware in this study.
Neural networks have been successfully implemented before.
Krips, Lammert, and Kummert (2002) proposed using field pro-
grammable gate arrays (FPGA) to implement neural networks
through parallel computing in a real-time hand tracking system.
Mohd-Yasin, Tan, and Reaz (2004) realized IRIS recognition for bio-
metric identification employing neural networks on FPGA devices
that allow for efficient hardware implementation. Hannan Bin
Azhar and Dimond (2002) considered a RAM-based neural network
using an alternative hardware solution to be implemented on FPGA
devices for collision-free robot navigation. However, their imple-
mentation using hardware has resulted in a lack learning ability.

Implementing the learning mechanism of a NFN in hardware is
a difficult issue (Sheu & Choi, 1995). We know that the backprop-
agation method is commonly used. The backpropagation method is
difficult to implement using hardware because calculating the
backpropagation error of all parameters in a system is very
010 Published by Elsevier Ltd. All r
logic gates in the hardware. From this point of view, we must
use the easy learning capability of hardware to realize the imple-
mentation of NFNs.

In this study, we use the simultaneous perturbation method by
Maeda and De Figueiredo (1997); Maeda and Kanata (1993). The
advantage of the simultaneous perturbation optimization method
is its simplicity. The method can estimate the gradient using only
values of the error function. Therefore, implementation of this
learning algorithm is relatively easier than the implementation of
other learning algorithms. The simultaneous perturbation method
does not have to take the backpropagation circuit into account.

This study adopts field programmable gate array (FPGA) devices
to realize the hardware implementation of a NFN model. NFNs
have been implemented using FPGAs because FPGAs are program-
mable and flexible. In recent years, FPGA have been used in many
applications because the programmable logic element increases
logic, speed, and memory capability and adds many extra func-
tions. After the designing procedure is finished, the circuit can be
easily and quickly implemented using a very high speed integrated
circuit hardware description language (VHDL).

The advantages of this study are summarized below.

(1) The hardware implementation of a neural fuzzy network
(NFN) is proposed for classification and prediction problems.

(2) We utilize the traditional non-linear activation function to
replace the Gaussian function to reduce chip area.

(3) An online learning algorithm is applied to adjust the param-
eters of the NFN model in Section 3.

(4) We use a very high speed integrated circuit hardware
description language (VHDL) to design a NFN with learning
ability and implement using field programmable gate arrays
(FPGAs).
ights reserved.

http://dx.doi.org/10.1016/j.eswa.2010.07.019
mailto:cjlin@ncut.edu.tw
http://dx.doi.org/10.1016/j.eswa.2010.07.019
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


674 C.-J. Lin, C.-Y. Lee / Expert Systems with Applications 38 (2011) 673–681
(5) As demonstrated in Section 5, the NFN model is demon-
strated to be adaptive and effective for solving classic exclu-
sive OR (XOR) problems and predicting chaotic signals.

The remainder of this study is organized as follows. Section 2
describes the structure of neural fuzzy networks. Section 3 de-
scribes the simultaneous perturbation algorithm. The basic archi-
tecture and implementation of a NFN is presented in Section 4.
Section 5 presents the results of the simulation of several prob-
lems. Finally, the conclusions are given in the last section.

2. The structure of NFN

In this section, the structure of the a NFN is introduced. The
standard four-layer network (Lin, Lin, & Shen, 2001) is used to real-
ize a fuzzy model of the following form:

Rj : IFx1 is A1j and x2 is A2j . . . and xn is Anj THEN y0 is wj; ð1Þ
where xi is an input variable, y’ is an output variable, Anj is a linguis-
tic term of the precondition part, wj is a constant consequent part,
and n is the number of input variables.

The structure of the NFN is shown in Fig. 1, where the functions of
the nodes in each layer of the NFN model are described as follows.

Layer 1: No computation is done in this layer. Each node in this
layer is an input node, which corresponds to one input variable,
and only transmits input values to the next layer directly.
uð1Þi ¼ xi: ð2Þ

Layer 2: Nodes in this layer corresponds to one linguistic label of
the input variables in Layer 1, i.e., the membership value spec-
ifying the degree to which an input value belongs to a fuzzy set
is calculated in Layer 2. The Gaussian membership function, the
operation performed in Layer 2, is
Π Π

Σ

)4(u

u
)3(

1

u
)2(

11

w1

u
)3(

2

u
)2(

12 u
)2(

13 u j

)2(

1

w2 w3

u
)1(

1

x1

Layer4

Layer3

Layer2

Layer1

Fig. 1. Structure of a NFN m
uð2Þij ¼ exp � ½u
ð1Þ
i �mij�2

r2
ij

 !
; ð3Þ
where mij and rij are, respectively, the mean and variance of Gauss-
ian membership function of the jth term of the ith input variable xi.

Layer 3: Nodes in this layer represents the precondition part of
one fuzzy logic rule. They receive the one-dimensional mem-
bership degrees of the associated rule from the nodes of a set
in Layer 2. This layer is denoted by I, which multiplies the
incoming signals and outputs the product result. As a result,
the output function of each inference nodes is
uð3Þj ¼
Y

i

uð2Þij ; ð4Þ
where uð3Þj is the output of the jth rule node.
Layer 4: This layer acts a defuzzifier. The single node in this
layer is labeled

P
, and its sums all incoming signals to obtain

the final inferred result
uð4Þ ¼
X

j

uð3Þj wj; ð5Þ
where the weight wj is the output action strength associated with
the jth rule, and u(4) is the output of the NFN.

3. Simultaneous perturbation algorithm

When this study utilizes the gradient descent method as a
learning algorithm to train a NFN, the parameters are updated iter-
atively. First, this study defines a cost function as follows

JðuÞ ¼ 1
2
ðy� ydÞ

2
; ð6Þ

where u represents the adjusted parameter of the NFN, and yd and y
are the desired output and the current output, respectively. The
Π
u

)3(

3 u j

)3(

u
)2(

21 u
)2(

22 u
)2(

23 u j

)2(

2

wj

u
)1(

2

x2

odel.



Gaussian
unit

Gaussian
unit

Gaussian
unit

Gaussian
unit

Input 2

Input 1

Defuzzifier 
Unit

Inference 
Process UnitFuzzifier UnitInput Layer

w

w

Modifying quantity

+

Multiplier

Multiplier

Summation

output

Teaching signals

-
Learning unit

Fig. 2. The overall component of the NFN model with learning ability.

Table 1
Data representation.

Value Data
representation
Format: s4�5

8 0 1000 00000
4 0 0100 00000
2 0 0010 00000
1 0 0001 00000
0.5 0 0000 10000
0.25 0 0000 01000
0.0125 0 0000 00100
0.0625 0 0000 00010
0.03125 0 0000 00001

Table 2
Representing values.

Value Data representation
format: s4�5

Encoded value

0.2849 0 0000 01001 0.28125
1.7482 0 0001 10111 1.71875
�4.6741 1 0100 10101 �4.65625

C.-J. Lin, C.-Y. Lee / Expert Systems with Applications 38 (2011) 673–681 675
optimization target is characterized to minimize the following error
function with respect to the adjusted parameters u of the NFN.
Then, according to the gradient descent method, the parameters
are updated using

Du ¼ �g
@JðuÞ
@u

; ð7Þ

where g is the learning rate. We use the chain rule for @J(u)/@u

Du ¼ �g
@JðuÞ
@u
¼ �g

@JðuÞ
@y

@y
@u
¼ �gðy� ydÞ

@y
@u
¼ �ge

@y
@u

: ð8Þ

In Eq. (8), e, the error between the desired output and the current
output, can be calculated easily, but @y/@u requires more compli-
cated computation.

In order to improve the above-mentioned complicated compu-
tation problem, many researchers (Maeda, 1993; Spall, 1987) used
the different approximation approach to obtain a derivation of a
function. They added a small perturbation factor c to the ith
parameter of the parameter vector, ui, which is defined in Eq. (9):

ui ¼ ðu1; . . . ;ui þ c; . . . ;ukÞ; ð9Þ

where k is the number of adjustable parameters. They utilized the
different approximation approach to derive @y/@u. This can calcu-
late the amount of parameter modification for the NFN:

Du ¼ �g
@JðuÞ
@u
� �g

JðuiÞ � JðuÞ
c

: ð10Þ

On the other hand, they also utilized the different approximation
approach to derive the @y/@u as follows:

@y
@u
� f ðuiÞ � f ðuÞ

c
: ð11Þ

Although the different approximation approach is simple, it re-
quires many forward operations in the NFN. When the number of
adjustable parameters is k, k-times forward operations are required
to complete the amount of parameter modifications for all parame-
ters. Therefore, when the number of adjustable parameters in the
network is large, this approach is not suitable.

In order to improve the above-mentioned disadvantages, we
adopt the simultaneous perturbation method proposed by Maeda,
Hirano, and Kanata (1995). First, we define a perturbation vector
that is added to all parameter of the NFN as follows:

cl ¼ c1
l ; . . . ; cn

l

� �
; ð12Þ

where the l denotes an iteration. The perturbation vector cl is an
uniformly random number in the interval [�cmax,cmax] except the
interval [�cmin,cmin].

The simultaneous perturbation learning rule with the parame-
ters is updated and the parameter modifying quantity is described
as follows:

ulþ1 ¼ ul þ Dul; ð13Þ

Dui
l ¼ �gel

f ðul þ clÞ � f ðulÞ
ci

l

; ð14Þ

where ul is the adjustable parameter of the NFN, g is a positive the
learning rate of the parameters of the NFN, and D ul is the update of
the modifying quantity.



( )
2

2

σ
mx − Multiplier

+/-θ
Multiplier

x F(z)z
Divider +0.5

Adder
β

The error 
correction 

part

Fig. 3. A block diagram of a hardware implementation of the Gaussian approximation.

yes

no

yes

no

mr = 1

product = product(n downto (n/2)+1) + md;

Shift 1 bit to right for product value

Shift 1 bit to right for the multiplier

iteration = n/2

End

iteration = iteration + 1;

mr = multiplier , n/2 bits;
md = multiplicand , n/2 bits;

product = 0 of n bits ;
iteration = 1;

Fig. 4. A flow diagram of the multiplier algorithm.

676 C.-J. Lin, C.-Y. Lee / Expert Systems with Applications 38 (2011) 673–681
4. Hardware implementation of NFN

In this section, we introduce the hardware implementation of
the NFN structure, the data representation, and the learning
method. The overall component of the NFN model with learning
ability is shown in Fig. 2. It consists of four main parts: (1) a fuzz-
ifier unit; (2) an inference processing unit; (3) a defuzzifier unit;
and (4) a learning unit. Detailed descriptions are given in Section
4.2–4.5 and 4.6, respectively. In Section 4.1, we describe the data
representation of fixed-point numbers. In Section 4.2, the tradi-
tional non-linear activation function is adopted to replace the
Gaussian function in the NFN model. In Section 4.3, we imple-
ment the inference processing unit that calculates the result using
the designed multiplier. Hardware implementation of the defuzz-
ifier unit is described in Section 4.4. All modified quantities of
parameters are calculated in Section 4.5. Finally, in Section 4.6,
we include a limiter to prevent overflow in the parameter modi-
fication parts.

4.1. Data representation

In this study, we use a fixed-point number for NFNs to maintain
consistency and effectiveness of the representation of data which
are the same. The encoding technique uses digital values as a
means to represent the respective data (Blake & Maguire, 1998;
Tommiska, 2003). The fixed-point format is defined as follows:

½s�a � b; ð15Þ

where the optional s denotes a sign bit with 0 for positive numbers
and 1 for negative numbers, a is the number of integer bits, and b is
the number of fractional bits.

Table 1 shows the principal values with the above-mentioned
technique. Table 1 shows that the fixed-point numbers are easily
accommodated in this system. Therefore, the smallest value can
be represented by �15.86875 (1 1111 11111) and the largest va-
lue by 15.86875 (0 1111 11111). Table 2 shows the corresponding
values by data representation. It shows some errors between the
principal values and the encoded values. For all practical systems
it is possible to choose a word-length long enough to reduce the
finite precision effects in a negligible level, and it is often desir-
able to use as few bits as possible while achieving user-defined
output error conditions in order to optimize area, power, or speed
(Inacio & Ombres, 1996; Ewe, Cheung, & Constantinides, 2004).
This study uses 10 bits as the number of word-length for all
operations.

4.2. Fuzzifier unit

This module implements the fuzzification operator in Eq. (3). In
this module, the Gaussian function is the main part of the structure
of the NFN for the fuzzy rules. In Eq. (3), we know that the operator
of the Gaussian function is very complicated using the traditional
non-linear activation functions. The Taylor series with a look-up
table (LUT) (Lin & Tsai, 2007) has been adopted to approximate
the implementation of the Gaussian function. The method requires
a quite large number of hardware resources. Therefore, it is unsuit-
able for direct digital implementation in hardware. A reasonable
approximation of a non-linear function can be implemented di-
rectly using digital techniques. The following equation is a second
order non-linear function (Blake & Maguire, 1998):

FðzÞ ¼
ðz � ðb� h � zÞ þ 1Þ=2 for 0 6 z 6 L;

ðz � ðbþ h � zÞ þ 1Þ=2 for � L 6 z 6 0;

�
ð16Þ

where b and h represent the slope and the gain of the non-linear
function F(z) between the saturation regions �L and L. Taking the
upper and lower saturation regions to be equal to 2, we get the fol-
lowing expressions for h and b:

h ¼ �1
4

and b ¼ 1:

Fig. 3 shows a block diagram of the hardware implementations
of the Gaussian approximation. It uses two multipliers, an adder, a
divider, and an error correction part. The flow diagrams of the mul-
tiplier and divider algorithms are shown in Figs. 4 and 5, respec-
tively. In Fig. 6 we compare the representative Gaussian function
and the implemented Gaussian function using the second order
non-linear function without the error correction part. Fig. 7 shows
a comparison between the practical Gaussian function and the
implemented Gaussian function using the second order non-linear
function with the error correction part. The errors in the above two
methods for the representative Gaussian function approximation
are shown in Figs. 8 and 9. The resource costs for a multiplier



no
yes

yes

no

yes

no

yes

no

yes

no

enable = 0;dr = 0

counter < 0

dd = 0

dr = dd

enable = 1;
quotient = ‘0’& 000...;

enable = 1;
quotient = (dr_s xor dd_s) & ...010...;

re = re(n-1 downto 0) & 
dd(counter);

re >= dr

re = re - dr;
q_r = q_r(n-1 downto 0) & ‘1’;

q_r = q_r(n-1 downto 0) & ‘0’;

counter = counter – 1;

enable = 1;
quotient = (dr_s xor dd_s) & q_r;

nf = the number of fraction bits.
dr = nf & divisor;

dd = dividend & nf;
n = counter = the number of dividend bits -1 + nf ;

dr_s = divisor sign;
dd_s = dividend sign;
qr = quotient register;

re = remainder;
The initial values of qr and re are 0 for n bits.

Fig. 5. A flow diagram of the divider algorithm.

Fig. 6. The representative Gaussian function and the implemented Gaussian
function using a second order non-linear function without the error correction part.

Fig. 7. The representative Gaussian function and implemented the Gaussian
function using a second order non-linear function with the error correction part.

C.-J. Lin, C.-Y. Lee / Expert Systems with Applications 38 (2011) 673–681 677
and a divider are tabulated in Tables 3 and 4, respectively. We
compare the resource requirement for our utilization method with
an adopted Taylor series method which has a look-up table (Lin &
Tsai, 2007). The comparison results are tabulated in Table 5. The
result shows that our utilization method costs fewer resources
than other methods (Lin & Tsai, 2007).
4.3. Inference processing unit

The main work of the inference processing unit is to perform
the multiplication operation in Eq. (4). Fig. 10 shows a block
diagram of the inference processing unit in which each product
module is made up of one or more multipliers. The hardware
implementation of the multiplier is shown in Fig. 11.



Fig. 8. Error between the representative Gaussian function and an approximation
method of a second order non-linear function without the error correction part.

Fig. 9. Error between the representative Gaussian function and an approximation
method of a second order non-linear function with the error correction part.

Table 3
Resource requirement for a multiplier implementation.

Device selected XC2V6000

Features Supply Utilized %

Number of Slices 33792 17 0.05
Number of Slice Flip Flops 67584 30 0.04
Number of bonded IOBs 824 62 7.52
Number of MULT18X18s 144 1 0.69
Number of GCLKs 16 1 6.25

Table 4
Resource requirement for a divider implementation.

Device selected XC2V6000

Features Supply Utilized %

Number of Slices 33792 821 2.43
Number of Slice Flip Flops 67584 24 0.36
Number of 4 input LUTs 67584 1455 2.15
Number of bonded IOBs 824 72 8.74
Number of GCLKs 16 1 6.25

678 C.-J. Lin, C.-Y. Lee / Expert Systems with Applications 38 (2011) 673–681
4.4. Defuzzifier unit

The defuzzifier unit implements Eq. (5) and is shown in Fig. 12.
First, signal uð3Þj and all wj parameters are multiplied by multipliers.
All initial wj parameters are random using a linear feedback shift
register (LFSR). After multiplication, an adder is still needed to
sum all the values. If the number of rules is R, there will be R mul-
tipliers and one accumulator in total.

4.5. Learning unit module

The learning unit is shown in Fig. 13. This unit achieves the
learning ability using simultaneous perturbation. The equation
is represented in Eq. (14). The different perturbation factors are
added in each parameter, so each parameter has different modi-
fied values. The perturbation c is an uniformly random number in
the interval [�cmax,cmax] and in the interval[�cmin,cmin]. Using
LFSR counters to address the RAM makes the design even sim-
pler. An n-bit LFSR counter has a maximum sequence of 2n � 1
states.

First, the learning unit is a calculation that calculates part of
f(ul + cl) and el. We can calculate the error between the output of
the NFN and the teaching signal. The next multiplication in
Fig. 13 is f(ul + cl)*el

*a. It is worth mentioning that in our circuit,
and a is chosen to be 0.9 � 0.001. Finally, the signal is divided by
a randomly generated number and then the modified value can
be calculated using Eq. (14).

4.6. Parameter modification part

The updated parameter values are calculated in the parameter
modification part. The block diagram of the parameter modifica-
tion for the NFN is shown in Fig. 14. The sum of the parameters
(w,m,r) and modified quantity (Dw,Dm,Dr) uses an adder for
the NFN. In Fig. 14, after the parameters are refreshed, the re-
freshed parameters may result in an overflow of the data represen-
tation. Therefore, we must use a limiter in the refresher. The
limited numerical value of the parameters is in the range [�16,
+16]. Finally, the output of this part is equal to the new parameter
value.
5. Illustrative examples

In this study, we present the implementation of the XOR
problem and a prediction of a chaotic signal problem. Neural
fuzzy networks are designed to solve these two problems. The
FPGA chip design is checked and configured using the software
XILINX ISE6.2i. The chip circuit of the FPGA uses Xilinx Virtex-
II XC2V6000-4FF1152C, which contains 6,000,000 logic gates.
The perturbation value c is an uniformly random number in
the interval [�0.01,0.01] except an interval [�0.001,0.001].

Example 1 (Exclusive OR). The decision-plane dichotomization
mentioned above does not always exist for a given set of patterns.
A famous example is the XOR problem. The desired output is 1
when one of the inputs is 1, and the desired output is 0 when both
inputs are 1 or 0. The input patterns and the corresponding desired
output are

xð1Þ ¼
0

0

 !
;dð1Þ ¼ 0

 !
; xð2Þ ¼

0

1

 !
;dð2Þ ¼ 1

 !
;

xð3Þ ¼
1

0

 !
;dð3Þ ¼ 1

 !
; xð4Þ ¼

1

1

 !
;dð4Þ ¼ 0

 !
:



Table 5
Resource requirement for our utilization method and an adopted Taylor series method with look-up table.

Device selected XC2V6000

Features Supply Utilized % Taylor + LUT
(Lin & Tsai, 2007)

%

Number of Slices 33792 935 2.77 1682 4.98
Number of Slice Flip Flops 67584 133 0.19 887 1.31
Number of 4 input LUTs 67584 1725 2.6 3110 4.6
Number of bonded IOBs 824 109 13.2 106 12.9
Number of MULT18X18s 144 2 1.4 9 6.25
Number of GCLKs 16 1 6.25 1 6.25

Product

u1j
(2)

u2j
(2)

uj
(3)

unj
(2)

Fig. 10. Inference processing unit module.

Multiplier
w1

uj
(4)

Multiplier

Adder

wj

uj
(3)

u1
(3)

Fig. 12. Defuzzifier unit module.

C.-J. Lin, C.-Y. Lee / Expert Systems with Applications 38 (2011) 673–681 679
In this example, the NFN contains only two input nodes and two
output nodes using four configured fuzzy rules to perform the XOR
problem. The hardware implementation of the NFN uses about
511,000 logic gates. The maximum frequency is 12.618 MHz. The
learning rate of g = 0.046875 was set in the hardware. Initial
parameters are random in the interval [0,1]. The random num-
ber generation part uses a linear feedback shift register (LFSR).
Table 6 shows a comparison between the results of the XOR prob-
lem using hardware and software implementation. In the table, we
can see the expected output result of the NFN implemented in
hardware and software using the simultaneous perturbation meth-
od. Table 6 shows that the results of the NFN implementation in
hardware and software are similar.
Example 2 (Prediction of a Chaotic Signal). In this example, the
implemented NFN model was used to predict a chaotic signal. The
classical time series prediction problem is an one-step-ahead
prediction (Lin & Lee, 1996). The following equations describe the
logistic function:

xðkþ 1Þ ¼ axðkÞð1� xðkÞÞ:

The behavior of the time series generated by this equation depends
critically upon the value of the parameter a. If a < 1, the system has
a single fixed point at the origin, and from a random initial value be-
tween [0,1] the time series collapses to a constant value. For a > 3,
the system generates a periodic attractor. Beyond the value a = 3.6,
the system becomes chaotic. In this study, we set the parameter
Fig. 11. Multipl
value a to 3.8. The first 60 pairs (from x(1) to x(60)), with the initial
value x(1) = 0.001, were the training data set, while the remaining
100 pairs (from x(1) to x(100)), with initial value x(1) = 0.9, were
the testing data set used for validating the proposed method.

The learning rate g = 0.0396875 was used in the hardware
implementation of the NFN. Initial parameters are random using
LFSR in the interval [0,1]. The implementation of the NFN in hard-
ware and the software uses five fuzzy logic rules. The NFN imple-
mentation requires approximately 377,000 logic gates on a FPGA
chip. The maximum frequency is 12.679 MHz.

Fig. 15 shows the prediction results from the software imple-
mentation of the NFN and desired output to learning process for
1000 generations. The ‘‘+” represents the desired output of the time
series, and the notation ‘‘�” represents the NFN output of the soft-
ware implementation. The prediction errors of both outputs above
are shown in Fig. 16. The experimental results demonstrate the
prediction capability of the NFN.

Now we discuss the performance of the NFN output from the
hardware implementation and compare it with the performance
of the NFN output from the software implementation. Fig. 17
shows the prediction results of the desired output and the NFN
output from hardware implementation. The prediction errors of
both outputs above are shown in Fig. 18. From the error value,
ier module.



Fig. 13. Learning unit.

LimiterAdder
Latch

Modify quantity w(k+1)

w(k)

Fig. 14. Parameter modification part.

Table 6
Simulation results with hardware implementation and software implementation.

Input
1

Input
2

Desired
output

The hardware
implementation of NFN
output

The software
implementation of
NFN output

0 0 0 0.02493 0.00235
0 1 1 0.97348 0.99865
1 0 1 0.98535 0.99933
1 1 0 0.01934 0.00549

Fig. 15. Prediction results of the NFN output from software implementation.

Fig. 16. Error between the NFN output from software implementation and the
desired output.

Fig. 17. Prediction results of the NFN output from hardware implementation.

680 C.-J. Lin, C.-Y. Lee / Expert Systems with Applications 38 (2011) 673–681
the differences between the NFN output from the hardware imple-
mentation and the NFN output from the software implementation
are similar.

6. Conclusion

In this study, the NFN was successfully implemented in hard-
ware on a FPGA chip using the simultaneous perturbation
algorithm. We replaced the difficult to implement MP method
with the simple and easy simultaneous perturbation method. In
order to reduce chip area, we utilized the traditional non-linear
activation function to implement the Gaussian function. The re-



Fig. 18. Error between the NFN output from hardware implementation and the
desired output.

C.-J. Lin, C.-Y. Lee / Expert Systems with Applications 38 (2011) 673–681 681
sults of experiments with samples show that hardware imple-
mentation of the NFN with simultaneous perturbation algorithm
using FPGA was successful. In the future, we will develop other
techniques to implement the NFN on a FPGA chip with fewer chip
area, and extend the methodology to implement recurrent neural
networks.

References

Blake, J. J., & Maguire, L. P. (1998). The implementation of fuzzy systems, neural
networks and fuzzy neural networks using FPGAs. Information Sciences,
112(Dec.), 151–168.

Ewe, C. T., Cheung, P. Y. K., & Constantinides, G. A. (2004). Dual fixed-point: An
efficient alternative to floating-point computation. Lecture Notes in Computer
Science, 3203, 200–208.
Hannan Bin Azhar, M. A., & Dimond, K. R. (2002). Design of an FPGA based adaptive
neural controller for intelligent robot navigation. Proceedings of the euromicro
symposium on digital system design, 283–290.

Inacio, C., & Ombres, D. (1996). The DSP decision: Fixed point or floating? IEEE
Spectrum, 33(9), 72–74.

Juang, C. F., & Lin, C. T. (1998). An on-line self-constructing neural fuzzy inference
network and its applications. IEEE Transactions on Fuzzy Systems, 6(1), 12–31.

Krips, M., Lammert, T., & Kummert, A. (2002). FPGA implementation of a neural
network for a real-time hand tracking system. Proceedings of the first IEEE
international workshop on electronic design, test and applications, 313–317.

Lin, C. T., & Lee, C. S. G. (1996). Neural fuzzy systems: A neuro-fuzzy synergism to
intelligent systems. NJ: Prentice-Hall.

Lin, C. J., & Lin, C. T. (1997). An ART-based fuzzy adaptive learning control network.
IEEE Transactions on Fuzzy Systems, 5(4), 477–496.

Lin, F. J., Lin, C. H., & Shen, P. H. (2001). Self-constructing fuzzy neural network
speed controller for permanent-magnet synchronous motor drive. IEEE
Transactions on Fuzzy Systems, 9(5), 751–759.

Lin, C. J., & Tsai, H. M. (2007). FPGA implementation of a wavelet neural network
with particle swarm optimization. Mathematical and Computer Modelling: An
International Journal.

Maeda, Y. (1993). Learning rule of neural networks for inverse systems. Electronic
Communication of Japan, 76, 17–23.

Maeda, Y., & De Figueiredo, R. J. P. (1997). Learning rules for neuro-controller via
simultaneous perturbation. IEEE Transactions on Neural Networks, 8(5).

Maeda, Y., Hirano, H., & Kanata, Y. (1995). A learning rule of neural networks via
simultaneous perturbation and its hardware implementation. Neural Networks,
8, 251–259.

Maeda, Y., & Kanata, Y. (1993). Learning rules for recurrent neural networks using
perturbation and their application to neuro-control. Transactions on Institute of
Electronic Engineering of Japan, 113-C, 402–408.

Mohd-Yasin, F., Tan, A. L., & Reaz, M. I. (2004). The FPGA prototyping of IRIS
recognition for biometric identification employing neural network. Proceedings
of the 16th international conference on microelectronics, 458–461.

Paul, S., & Kumar, S. (2002). Subsethood-product fuzzy neural inference system
(SuPFuNIS). IEEE Transactions on Neural Networks, 13(3), 578–599.

Sheu, B. J., & Choi, J. (1995). Neural information processing and VLSI. Boston, MA:
Kluwer.

Spall, J.C. (1987). A stochastic approximation technique for generating maximum
likelihood parameter estimates. In Proceedings of 1987 American control
conference (pp. 1161–1167).

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications
to modeling and control. IEEE Transactions on System, Man, and Cybernetics, SMC-
15, 116–132.

Tommiska, M. T. (2003). Efficient digital implementation of the sigmoid function for
reprogrammable logic. Computers and Digital Techniques, 150(Nov.), 403–411.

Zhang, Y. Q., & Kandel, A. (1998). Compensatory neuro-fuzzy systems with fast
learning algorithms. IEEE Transactions on Neural Networks, 9(1), 83–105.


	Implementation of a neuro-fuzzy network with on-chip learning and its applications
	Introduction
	The structure of NFN
	Simultaneous perturbation algorithm
	Hardware implementation of NFN
	Data representation
	Fuzzifier unit
	Inference processing unit
	Defuzzifier unit
	Learning unit module
	Parameter modification part

	Illustrative examples
	Conclusion
	References


