
N
w

C
a

b

a

A
R
R
A
A

K
N
R
P
C

1

t
t
n
f
i
v
o
a
o
s
h
o
v
o

1
d

Applied Soft Computing 11 (2011) 5463–5476

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

onlinear system control using self-evolving neural fuzzy inference networks
ith reinforcement evolutionary learning

heng-Jian Lina,∗, Cheng-Hung Chenb

Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan, ROC
Department of Electrical Engineering, National Formosa University, No. 64, Wunhua Rd., Huwei Township, Yunlin County 632, Taiwan, ROC

 r t i c l e i n f o

rticle history:
eceived 17 November 2008
eceived in revised form 9 September 2010
ccepted 1 May 2011
vailable online 14 May 2011

eywords:
eural fuzzy inference network
einforcement learning
article swarm optimization
ultural algorithm

a b s t r a c t

This study presents a reinforcement evolutionary learning algorithm (REL) for the self-evolving neural
fuzzy inference networks (SENFIN). By applying functional link neural networks (FLNN) as the conse-
quent part of the fuzzy rules, the proposed SENFIN model combines orthogonal polynomials and linearly
independent functions in a functional expansion of the FLNN. The SENFIN model can generate the con-
sequent part of a nonlinear combination of the input variables. An efficient reinforcement evolutionary
learning algorithm (REL), which consists of structure learning and parameter learning, is also presented.
The structure learning is to determine the number of fuzzy rules. It adopts a subgroup symbiotic evolu-
tion to yield several variable fuzzy systems and uses an elite-based structure strategy to find the suitable
number of fuzzy rules for solving a specific problem. The parameter learning is to adjust parameters of
the SENFIN. It is a hybrid evolutionary algorithm, i.e., combining the cooperative particle swarm opti-

mization and the cultural algorithm, called the cultural cooperative particle swarm optimization (CCPSO).
As the result, the CCPSO approach can increase the global search capacity by using the belief space. In
this paper the proposed NFIN with an efficient reinforcement evolutionary learning algorithm had been
evaluated by two reinforcement learning applications, i.e., to balance the cart–pole system and the ball
and beam system. Experimental results have demonstrated that the proposed approach performs well in
reinforcement learning problems.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

With the ability to combine the low-level learning and compu-
ational power of neural networks and the high-level human-like
hinking and reasoning of fuzzy systems, neural fuzzy inference
etworks (NFINs) have become a popular research topic, see [1–9]

or example. In traditional approaches, the inference processes of
f-then rules often rely on a substantial amount of heuristic obser-
ations in order to express knowledge of proper strategies. It is
bvious that, for human experts, it is extremely difficult to examine
ll the input–output data from a complex system for the purpose
f finding the proper rules for a NFIN. To cope with this difficulty,
everal approaches to generating if-then rules from numerical data
ave been proposed [4–9]. However, these approaches were devel-
ped for supervised learning; that is, the correct “target” output

alues should be specified for each corresponding input pattern in
rder to guide the network’s whole learning procedure.

∗ Corresponding author.
E-mail address: cjlin@ncut.edu.tw (C.-J. Lin).

568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2011.05.012
In general, parameter training is the main issue in designing a
NFIN. Backpropagation (BP) training is commonly adopted to solve
this problem, while it is a powerful training technique that can
be applied to networks with a forward structure. Since the steep-
est descent approach is used in BP training to minimize the error
function, the BP-based algorithms may reach the local minima very
quickly and never find the global solution. Additionally, the perfor-
mance of BP training highly depends on the initial values of the
system parameters. In general, for different networking topologies
one has to derive new mathematical expressions for each network
layer. If precise training data can be easily obtained, the supervised
learning algorithm may be efficient enough in many applications.
Unfortunately, for some real-world applications precise training
data are usually difficult and expensive to obtain. Hence, there
has been a growing interest in reinforcement learning applications
[10–18], while the relative training data are very rough and coarse
and only “evaluative”, when compared with the “instructive” feed-
back in the supervised learning problem.
As to a favorable NFIN topology, technologies that can be used
to train the system parameters and find the global solution while
optimizing the overall structure are required. Many recent develop-
ments in evolutionary algorithms have provided such strategies for

dx.doi.org/10.1016/j.asoc.2011.05.012
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:cjlin@ncut.edu.tw
dx.doi.org/10.1016/j.asoc.2011.05.012

5 ft Computing 11 (2011) 5463–5476

N
m
t
t
e
f
o
l
f
i
a
t
p
a
l
t
a
s
s
s
t
v

c
a
d
i
s
a
o
f
f
a
[
t
t
t
t
m
t
o
c
h
a

l
S
w
o
t
S
r
a
r
v
S
m
t

t
t
e
r
i
o
d

THEN ŷj = wkj�k (1)
464 C.-J. Lin, C.-H. Chen / Applied So

FINs design. Moriarty and Miikkulainen [17] proposed a reinforce-
ent learning method called symbiotic, adaptive neural evolution

hat evolves a population of neurons through genetic algorithms
o form a neural network. The genetic algorithm adopted by Juang
t al. [18] is based upon symbiotic evolution which, when applied in
uzzy controller design, complements the local mapping property
f a fuzzy inference rule. Lin et al. [19] presented a symbiotic evo-
ution learning method that uses group-based population to assess
uzzy rules locally, whereas each group that represents a set of the
ndividuals performs the evolution process in each generation. In
ddition, the compact genetic algorithm that represents a popula-
ion as a probability distribution over the set of solutions and uses
robability vectors to estimate the gene is suitable to 1 or 0 was
pplied by Harik et al. [20]. Lin and Xu [21] proposed a hybrid evo-
utionary learning algorithm that uses probability vectors to keep
hat the best group can be reproduced many times in each gener-
tion. Deriving from the mentioned works, a novel strategy of the
tructure learning is proposed in this study. The strategy adopts a
ubgroup symbiotic evolution (SSE) to yield several varied fuzzy
ystems and applies an elite-based structure strategy (ESS) to find
he most suitable number of fuzzy rules by using their probability
alues.

Simultaneously, a new optimization algorithm, called parti-
le swarm optimization (PSO), appears to be better than the BP
lgorithm. It is an evolutionary computation technique that was
eveloped by Kennedy and Eberhart in 1995 [22,23]. The underly-

ng motivation for the development of the PSO algorithm is the
ocial behavior of animals, such as bird flocking, fish schooling
nd swarm theory. The PSO has been successfully applied to many
ptimization problems, such as control problems [24,25] and feed-
orward neural network design [26,27]. However, the PSO suffers
rom the burden of high dimensions, such that its performance falls
s the dimensionality of the search space increases. Bergh et al.
28] then proposed a cooperative approach that employs coopera-
ive behavior, called CPSO, which uses multiple swarms to improve
he drawback of the traditional PSO. However, the CPSO still uses
he traditional PSO formula, i.e., the local best position of each par-
icle and global best position in the swarm. Therefore, the CPSO

ay only find a suboptimal solution. As the result, the parame-
er learning strategy, called cultural cooperative particle swarm
ptimization (CCPSO), which combines the cooperative PSO and
ultural algorithm, to increase global search capacity, is proposed
erein to avoid trapping in a suboptimal solution and to ensure that

 nearby global optimal solution can be found.
This study proposes an efficient reinforcement evolutionary

earning (REL) algorithm for the self-evolving NFIN (SENFIN). The
ENFIN is based on our previous work [9], which combines a NFIN
ith a functional link neural network (FLNN). The consequent part

f the fuzzy rules that corresponds to an FLNN comprises the func-
ional expansion of input variables. The advantages of the proposed
ENFIN-REL approach are as follows: (1) the proposed REL algo-
ithm can dynamically determine the number of fuzzy rules and
djust parameters of a SENFIN, (2) the consequent of the fuzzy
ules of SENFIN model involves a nonlinear combination of input
ariables, and (3) as demonstrated in Section 6 of this paper, the
ENFIN-REL method is more effective than the other compared
ethods, in terms of relative shorter values of required balanced

ime.
The rest of this paper is organized as follows. Section 2 describes

he basic concept of cultural algorithm and Section 3 proposes
he structure of the SENFIN. Next, Section 4 presents the efficient
volutionary learning algorithm, while Section 5 introduces the
einforcement evolutionary learning algorithm used for construct-
ng the SENFIN model. After exhibited the experimental results

f the system-balancing simulations in Section 6, conclusions are
rawn in the last section.
Fig. 1. Framework of cultural algorithm.

2. Basic concept of the cultural algorithm

The cultural algorithms [29–31] involve acquiring the belief
space from the evolving population space and then exploiting that
information to guide the search. Fig. 1 presents the cultural algo-
rithm components. Cultural algorithms can be described in terms
of two basic components—belief space and the population space.
The belief space is the information repository in which the individ-
uals can store their experiences for other individuals to learn from
them indirectly. In cultural algorithms, the information acquired
by an individual can be shared with the entire population, unlike
in most evolutionary techniques, in which the information can be
shared only with the offspring of individual. The population space
comprises a set of possible solutions to the problem, and can be
modeled using any population-based approach. The belief space
and the population space are linked using a scheme that states
rules that govern the individuals of the population space that can
contribute to the belief space based on its experiences (according
to the acceptance function), and the belief space can influence the
new individuals of the population space (according to the influence
function).

3. Structure of self-evolving neural fuzzy inference
networks

This section describes the SENFIN model, which uses a nonlinear
combination of input variables. Each fuzzy rule corresponds to a
sub-FLNN [32,33], comprising a functional link. The SENFIN model
is based on our previous research [9]. Fig. 2 presents the structure of
the proposed SENFIN model. Nodes in layer 1 are input nodes, which
represent input variables. Nodes in layer 2 are called membership
function nodes and act as membership functions, which express
the input fuzzy linguistic variables. Nodes in this layer are adopted
to determine Gaussian membership values. Each node in layer 3
is called a rule node. Nodes in layer 3 are equal to the number of
fuzzy sets that correspond to each external linguistic input variable.
Links before layer 3 represent the preconditions of the rules, and
links after layer 3 represent the consequences of the rule nodes.
Nodes in layer 4 are called consequent nodes, each of which is a
nonlinear combination of input variables. The node in layer 5 is
called the output node; it is recommended by layers 3 and 4, and
acts as a defuzzifier.

The SENFIN model realizes a fuzzy if-then rule in the following
form [9].

Rulej: IF x1 is A1j and x2 is A2j . . . and xi is Aij . . . and xN is ANj

M∑

k=1

= w1j�1 + w2j�2 + ... + wMj�M

C.-J. Lin, C.-H. Chen / Applied Soft Computing 11 (2011) 5463–5476 5465

propo

w
t
G
w
r
a

m
t

E
i
d

u

r
T
w
m

u

w
b
v

d
m
i

Fig. 2. Structure of

here xi and ŷj are the input and local output variables, respec-
ively; Aij is the linguistic term of the precondition part with
aussian membership function; N is the number of input variables;
kj is the link weight of the local output; �k is the basis trigonomet-

ic function of input variables; M is the number of basis function,
nd Rulej is the j-th fuzzy rule.

The operation functions of the nodes in each layer of the SENFIN
odel are now described. In the following description, u(l) denotes

he output of a node in the l-th layer.
Layer 1 (Input node): No computation is performed in this layer.

ach node in this layer is an input node, which corresponds to one
nput variable, and only transmits input values to the next layer
irectly:

(1)
i

= xi (2)

Layer 2 (Membership function node): Nodes in this layer cor-
espond to a single linguistic label of input variables in Layer 1.
herefore, the calculated membership value specifies the degree to
hich an input value belongs to a fuzzy set in layer 2. The imple-
ented Gaussian membership function in layer 2 is

(2)
ij

= exp

(
− [u(1)

i
− mij]

2

�2
ij

)
(3)

here mij and �ij are the mean and variance of the Gaussian mem-
ership function, respectively, of the j-th term of the i-th input
ariable xi.
Layer 3 (Rule Node): Nodes in this layer represent the precon-
itioned part of a fuzzy logic rule. They receive one-dimensional
embership degrees of the associated rule from the nodes of a set

n layer 2. Here, the product operator described above is adopted
sed SENFIN model.

to perform the IF-condition matching of the fuzzy rules. As a result,
the output function of each inference node is

u(3)
j

=
∏

i

u(2)
ij

(4)

where the
∏

i

u(2)
ij

of a rule node represents the firing strength of its

corresponding rule.
Layer 4 (Consequent Node): Nodes in this layer are called conse-

quent nodes. The input to a node in layer 4 is the output from layer
3, and the other inputs are nonlinear combinations of input vari-
ables from a functional link neural network, where the nonlinear
combination function has not used the function tanh(·), as shown
in Fig. 3. For such a node,

u(4)
j

= u(3)
j

·
M∑

k=1

wkj�k (5)

where wkj is the corresponding link weight of func-
tional link neural network and �k is the functional
expansion of input variables. The functional expansion
uses a trigonometric polynomial basis function, given by
[1, x1, sin(�x1), cos(�x1), x2, sin(�x2), cos(�x2), x1x2] for two-
dimensional input variables. Therefore, M is the number of basis
functions, M = 3 × N, where N is the number of input variables.

Layer 5 (Output Node): Each node in this layer corresponds to a
single output variable. The node integrates all of the actions rec-
ommended by layers 3 and 4 and acts as a defuzzifier with,

(5)

∑R
j=1u(4)

j

∑R
j=1u(3)

j

(∑M
k=1wkj�k

) ∑R
j=1u(3)

j
ŷj
y = u = ∑R
j=1u(3)

j

= ∑R
j=1u(3)

j

= ∑R
j=1u(3)

j

(6)

where R is the number of fuzzy rules, and y is the output
of the SENFIN model. As described above, the number of tun-

5466 C.-J. Lin, C.-H. Chen / Applied Soft Com

i
w
r

4

i
a
a
c
b
t
c
s
m
fi
a

c
m
b
c
s

Fig. 3. Framework of the (a) PSO and (b) CPSO.

ng parameters for the SENFIN model is known to be 5 × N × R,
here N and R denote the number of inputs and existing rules,

espectively.

. An efficient evolutionary learning algorithm

This section describes the proposed efficient evolutionary learn-
ng algorithm. The learning algorithm comprises structure learning
nd parameter learning. The structure learning consists of the SSE
nd ESS. In the SSE, the fitness value of a rule (a sub-particle) is
omputed as the sum of the fitness values of all the feasible com-
inations of that rule with all other randomly selected rules, and
hen dividing this sum by the total number of combinations. The
oncept of ESS is similar to mimic the maturing phenomenon in
ociety, where individuals become more suitable to the environ-
ent as they acquire more knowledge from society. The ESS can

nd suitable the number of rules and the combinations of rules
ccording to probability values.

The parameter learning adopts a cultural cooperative parti-
le swarm optimization (CCPSO) to adjust parameters of SENFIN

odel. The traditional PSO uses one swarm of particles defined

y the P-dimension vectors to evolve. The CPSO method [28] can
hange traditional PSO into P swarms of one-dimension vectors,
uch that each swarm represents a dimension of the original prob-
puting 11 (2011) 5463–5476

lem. Fig. 3(a) and (b) shows the framework of the traditional PSO
and CPSO method. The key point is that, instead of using one swarm
(of I particles) to find the optimal P-dimension vector, the vector
is split into its components so that P swarms (of I particles each)
optimize a one-dimension vector. Notably, the function that is
being optimized still requires a P-dimension vector to be evaluated.
Additionally, each swarm aims to optimize a single component of
the solution vector essentially solving a one-dimension optimiza-
tion problem. Unfortunately, the CPSO still employs just the local
best position and the global best position of the traditional PSO to
evolution process. Therefore, the CPSO may fall into a suboptimal
solution. The CCPSO method, which combines the cooperative par-
ticle swarm optimization and the cultural algorithm to increase the
global search capacity, is proposed to avoid trapping in a subopti-
mal solution and to ensure the ability to search for a near global
optimal solution.

The CCPSO method is characteristic of the cooperative particle
swarm optimization and cultural algorithm. Fig. 4 shows the frame-
work of the proposed CCPSO method, which is based on a CPSO all of
whose parameters are simultaneously tuned using the belief space
of the CA. The CCPSO method can strengthen the global search capa-
bility. If 50-dimension vectors are used in the original PSO, then the
vectors in CCPSO can be changed into 50 swarms of one-dimension
vectors. In the original PSO, the particle can Exhibit 50 variations in
each generation, whereas the CCPSO offers 50 × 50 = 2500 different
combinations in each generation. Additionally, each position of the
CCPSO can be adjusted not only using the belief space which stores
the paragons of each swarm, but also by searching around the local
best solution and the global best solution. In the aforementioned
scheme, the proposed CCPSO method can avoid falling into a sub-
optimal solution and ensure that the approximate global optimal
solution can be found.

The detailed flowchart of the proposed efficient evolutionary
learning algorithm is presented in Fig. 5. The foremost step in the
proposed efficient evolutionary learning algorithm is the coding of
a fuzzy rule into a sub-particle. Fig. 6 shows an example of the cod-
ing of parameters of a fuzzy rule into a sub-particle where i and j
represent the i-th input variable and the j-th rule, respectively. In
this study, a Gaussian membership function is adopted with vari-
ables that represent the mean and deviation of the membership
function. Fig. 6 represents a fuzzy rule given by Eq. (1), where mij
and �ij are the mean and deviation of a Gaussian membership func-
tion, respectively, and wkj represents the corresponding link weight
of the consequent part that is connected to the j-th rule node. In this
study, a real number represents the position of each sub-particle.

The learning algorithm process is described step-by-step below.

Step 1. Create initial swarms

Before the proposed efficient evolutionary learning algorithm
is applied, every position xp,i(t) must be created randomly in the
range [0,1] in each subgroup, where p = 1, 2, . . ., P represents the
p-th swarm, i = 1, 2, . . ., I represents the i-th particle, and t denotes
the t-th generation.

Step 2. Create initial belief space

The belief space is the information repository in which the par-
ticles can store their experiences for other particles to learn from
them indirectly. Create P belief space, Bp (p = 1, 2, . . ., P). Each initial
Bp is defined as an empty set.

Step 3. Subgroup symbiotic evolution (SSE)

In order to keep the same number of each fuzzy system in each

group, this size � needs to be defined in each group, that is, the
size of each group is �. Therefore, the size of group must be set to

 ̨ · (Rmax − Rmin + 1), where Rmax and Rmin represent the maximum
number of rules and the minimum number of rules, respectively.

C.-J. Lin, C.-H. Chen / Applied Soft Computing 11 (2011) 5463–5476 5467

rk of p

I
a
t
t

Fig. 4. Framewo

n this step, the fitness value of a rule (a sub-particle) is computed

s the sum of the fitness values of all the feasible combinations of
hat rule with all other randomly selected rules, and then dividing
his sum by the total number of combinations. Fig. 7 shows the

Fig. 5. Flowchart of the proposed efficient evolutionary learning algorithm.
roposed CCPSO.

structure of the sub-particle in the subgroup symbiotic evolution.
The stepwise assignment of the fitness value is as follows.

• Step 3.1: Randomly select R fuzzy rules (sub-particle) from each of
the above subgroups, and compose the fuzzy system using these
R rules.

• Step 3.2: Calculate fitness value of the particles using the SENFIN
thus composed. In this study, the fitness function is used by a
reinforcement signal in Eq. (14) that we will introduce in the next
section.

• Step 3.3: Divide the fitness value by R and accumulate the divided
fitness value to the fitness record of the R selected rules with their
recorded fitness values initially set to zero.

• Step 3.4: Repeat the above steps until the space of each group has
been filled a sufficient number of times, and record the number
of fuzzy systems to which each sub-particle has contributed.

• Step 3.5: Divide the accumulated fitness of each sub-particle by
the number of times it has been selected.

• Step 3.6: Sort these sub-particles in each subgroup in order of
increasing fitness.

Step 4. Elite-based structure strategy (ESS)

The foremost step in ESS is the coding of the probability value Vj
into building blocks (BBs), as shown in Fig. 8, where each probability
value represents the suitability of rules of a fuzzy system. In Fig. 8,

Rmax and Rmin are predefined to prevent less or more fuzzy rules
from being generated in a fuzzy system. According to the results of
the ESS, suitable the number of rules and combination of rules can
be found. The details of ESS are as follows.

Fig. 6. Coding a fuzzy rule into a sub-particle.

5468 C.-J. Lin, C.-H. Chen / Applied Soft Computing 11 (2011) 5463–5476

le in s

•

{
w

A

U

w
o
v
s

•

Gp

The local best position Lp,i is the best previous position that
yielded the best fitness value of the p-th swarm of the i-th parti-
Fig. 7. Structure of sub-partic

Step 4.1: Update probability values of BBs according to the fol-
lowing equations;

Vj(ts + 1) = Vj(ts) + (Upt valuej · �)

Vj(ts + 1) = Vj(ts)

, if Avgj is the best performance
, otherwise

(7)

here j = [Rmin,Rmax]

vgj =
∑˛

˛′=1F˛′

˛

pt valuej =
∑˛

˛′=1F˛′∑Rmax
R′=Rmin

∑˛
˛′=1F˛′

here Vj is a probability value in the BBs and presents the suitability
f rules of a fuzzy system; � is a constant; Avgj is a average fitness

alue in the j-th group; F˛′ is a fitness value of each composed fuzzy
ystem in each group and ̨ is the size of each group.

Step 4.2: Find the best suitable the number of rules
ubgroup symbiotic evolution.

The probability values of BBs initially set to zero. Repeat the step
4.1 until Vj is greater than or equal to one. The finished above step
is called one structure learning. Therefore, the number of struc-
ture learning must set to Ns. Accumulate probability values of each
structure learning in BBs and divide the accumulated probability
values by Ns to find the suitable number of rules and the combina-
tions of rules.

Step 5. Update all parameters of the CCPSO method

• Step 5.1: Update local best position Lp,i and global best position
Fig. 8. Coding probability values into building blocks.

C.-J. Lin, C.-H. Chen / Applied Soft Computing 11 (2011) 5463–5476 5469

Procedure of the CCPSO method
Begin

Let k=0;
Repeat

Let j=Rmin;
Repeat

Calculate fitness value by SSE;
Update Vj by ESS;
If Vj>=1 then

Break;
End if

Until j=Rmax;
k=k+1;

Until k=Ns ;

Repeat
Let p=1;
Repeat

Update all parameters of the CCPSO method by (8) to (12) ;
Generate each new Swarmp;

Until p=P;
Until termination condition is reached;

ode of

c
b
t
o
e
i
s
a
t
b
p
l

•

i
p
y
s
a

N

w
t

End

Fig. 9. The pseudo c

le, and the global best position Gp is generated by the whole local
est position. In step 5.1, the first step updates the local best posi-
ion. Compare the fitness value of each current particle with that
f its local best position. If the fitness value of the current particle
xceeds those of its local best position, then the local best position
s replaced with the position of the current particle. The second
tep updates the global best position. Compare the fitness value of
ll particles in their local best positions with that of the particle in
he global best position. If fitness value of the particle in the local
est position is better than those of the particles in the global best
osition, then the global best position is replaced with the current

ocal best position.

Lp,i(t + 1) =
{

xp, i(t),
Lp,i(t),

if F(xp,i(t)) < F(Lp,i(t))
if F(xp,i(t)) ≥ F(Lp,i(t))

Gp(t + 1) = argmin
Lp,i

F(Lp,i(t + 1)), 1 ≤ i ≤ I
(8)

Step 5.2: Adjust each belief space Bp using an acceptance function

The first part of step 5.2 sorts these particles in each Swarmp

n order of increasing fitness. Then, the paragon of each Swarmp is
ut into belief space Bp using an acceptance function. This function
ields the number of particles that are used to adjust each belief
pace, and is as follows. The number of accepted particles decreases
s the number of generations increases.
accepted = n% · I + n%
t

· I (9)

here n% is a parameter that is set by user, and must specify the
op performing 20% [31]; I is the number of particles, and t repre-
 the CCPSO method.

sents the t-th generation. The acceptance function uses temporal
information about the current number of generations to determine
Naccepted, the number of individuals, accepted at generation (gen-
eration number) t. However, it will select more than that in the
beginning of the search process and gradually reduces the number
as the process proceeds. As in simulated annealing, more variability
is allowed in the belief space at the beginning than at the end. The
second step adjusts Bp. The interval of belief space BIp is defined
BIp = [lp, up] = {x|lp ≤ x ≤ up, x ∈ �}, where lp is the lower bound on
belief space Bp and up is the upper bound on belief space Bp. Then,
the position of each particle in Bp is compared with the lower bound
lp. If the position of the particle is smaller than the lower bound lp,
then the lower bound lp is replaced with the current position. Fur-
thermore, the position of each particle in the Bp is compared with
the upper bound up. If the position of the particle is greater than
the upper bound up, then the upper bound up is replaced with the
current position. These rules are given below.

lp =
{

xp , i if xp,i ≤ lp
lp otherwise

up =
{

xp , i if xp,i ≥ up

up otherwise

(10)

Step 6. Generate each new Swarmp using lp, up, Lp,i, and Gp
In step 5.3, the first step adjusts every position of each Swarmp

using an influence function Eq. (11). This step can change the direc-
tion of each particle in solution space, not easily being trapped at a
local optimum. Then, the second step updates velocity and position

5 ft Computing 11 (2011) 5463–5476

o
a

x

x

w
a
t

t
a

a
o
c
r
d
b
2
t
d

5

“
f
“
a
o
F
a
m
i

m
p
r
t
a
m
s
s

SENFIN Model Builder

Accumlator

Plant

An efficient evolutionary
learning algorithm

SENFIN Model

Reinforcement
Signal

Particles

fState

x

long-time steps before failure occurs (to keep the desired control
goal longer) means a higher fitness of the REL method.
470 C.-J. Lin, C.-H. Chen / Applied So

f each particle to generate the each new Swarmp using Eqs. (12)
nd (13).

p,i(t) =
{

xp,i(t) +
∣∣Rand() · (up − lp)

∣∣ if xp,i < lp

xp,i(t) −
∣∣Rand() · (up − lp)

∣∣ if xp,i > up

(11)

vp,i(t + 1) = w · vp,i(t) +c1 · Rand() · [Lp,i(t + 1) − xp,i(t)]
+c2 · Rand() · [Gp(t + 1) − xp,i(t)]

(12)

p,i(t + 1) = xp,i(t) + vp,i(t + 1) (13)

here c1 and c2 denote acceleration coefficients; Rand() is gener-
ted from a uniform distribution in the range [0,1], and w controls
he magnitude of vp,i(t).

The pseudo-code for the CCPSO method is listed in Fig. 9. Finally,
hese parameters of the proposed efficient evolutionary learning
lgorithm are explained as follows:
Notation Description Function

Rmin The minimum number of fuzzy
rules in SSE and ESS

Avoid too few fuzzy rules

Rmax The maximum number of fuzzy
rules in SSE and ESS

Avoid too many fuzzy rules

˛ The size of each group in SSE
and ESS

Determine the size of each
group

� A constant in Eq. (7) Influences the updated rate of
Vj

Ns The maximum number of
generations of structure
learning

Decide the number of
generations of structure
learning

n% A parameter of acceptance
function in Eq. (9)

Determine the number of
individuals that can enter
belief space

w The coefficient of the inertia
term in Eq. (12)

Control the magnitude of
velocity

c1 The coefficient of the cognitive
term in Eq. (12)

Acceleration for local best

c2 The coefficient of the society
term in Eq. (12)

Acceleration for global best

Rmin, Rmax, ˛, �, and Ns influence structure learning, and n%, w, c1,
nd c2 influence parameter learning. Rmin, Rmax, �, and Ns depend
n the complexity of the problem. The selection of parameter �
ritically affects the analysis of Vj. The parameter �, which uses the
ange (0, 1], was carefully examined in extensive experiments, and
efined as [0.01,0.5]. n% is a parameter of acceptance function given
y the user, in (0, 50%]; Saleem and Reynolds [31] suggests using
0%. w, c1, and c2 are three coefficients of updated velocity. The
hree coefficients are based on practical experimentation, and then
efined by the user, in [0.4,0.9], [1,2], and [1,2].

. Reinforcement evolutionary learning for a SENFIN model

Unlike the supervised learning problem, in which the correct
target” output values are given for each input pattern, the rein-
orcement learning problem has only very simple “evaluative” or
critical” information, rather than “instructive” information, avail-
ble for learning. In the extreme case, there is only a single bit
f information to indicate whether the output is right or wrong.
ig. 10 shows the efficient reinforcement evolutionary learning
lgorithm (REL). Its training environment interacts with reinforce-
ent learning problems. In this study, the reinforcement signal

ndicates whether a success or a failure occurs.
As shown in Fig. 10, the proposed REL consists of a SENFIN

odel, which acts as the control network that determines the
roper action to take according to the current input vector (envi-
onment state). The structure of the proposed REL is different from
he actor-critic architecture of Barto et al. [10], which consists of
 control network and a critic network. The input to the SENFIN
odel is the state of a plant, and the output is a control action of the

tate, denoted by f. The only available feedback is a reinforcement
ignal that notifies the SENFIN model only when a failure occurs.
Fig. 10. Flowchart of the REL for the SENFIN model.

An accumulator plays a role which is a relative performance
measure, as shown in Fig. 10. It accumulates the number of time
steps before a failure occurs. In this study, the feedback takes the
form of an accumulator that determines how long the experiment
is still a “success”; this is used as a relative measure of the fitness of
the proposed REL method. That is, the accumulator will indicate the
“fitness” of the current SENFIN model. The key to the REL is formu-
lating a number of time steps before failure occurs and using this
formulation as the fitness function for the REL method. The advan-
tage of the proposed method need not use the critical network as
either a multi-step or single-step predictor.

Fig. 11 shows the flowchart of the REL method. The proposed
REL method runs in a feed forward fashion to control the envi-
ronment (plant) until a failure occurs. Our relative measure of the
fitness function takes the form of an accumulator that determines
how long the experiment is a “success”. In this way, according to a
defined fitness function, a fitness value is assigned to each string in
the population where a high fitness value means a good fit. In this
study, we use a number of time steps before failure occurs to define
the fitness function. The goal of the REL method is to maximize the
fitness value. The fitness function is defined by:

Fitness Function(i) = TIME STEP(i) (14)

where TIME STEP(i) represents how long the experiment is a “suc-
cess” with the i-th population. Eq. (14) reflects the fact that
Fig. 11. Flowchart of the REL method.

C.-J. Lin, C.-H. Chen / Applied Soft Computing 11 (2011) 5463–5476 5471

Table 1
Initial parameters before training.

Parameter Value

w 0.4
c1 1.6
c2 2
Rmin 2
Rmax 12
� 0.05
˛ 10
Ns 10

6

m
a
c
e
t
t
b

E

t
a
s
r
a
p

control problem is to determine a sequence of forces that is applied
to the cart to balance the pole upright. The equations of motion that
n% 20%
Coding Type Real Number

. Experimental results

In this section, we compare the performance of the SENFIN
odel using the REL method with some existing models for two

pplications. The first simulation was performed to balance the
art–pole system that was described in [33], while the second
xperiment was to balance the ball and beam system [34]. The ini-
ial parameters for the two simulations are given in Table 1. Note
hat these used initial parameters in this paper were determined
y practical experimentation or trial-and-error tests.

xample 1. Control of a cart–pole balancing system

In this example, we apply the REL method to the classic con-
rol problem of a cart–pole balancing. This problem is often used as
n example of inherently unstable and dynamic systems to demon-

trate both modern and classic control techniques [11,33,34], or the
einforcement learning schemes [12,18], and has been applied as

 control benchmark. As shown in Fig. 12, the cart–pole balancing
roblem is the application of learning how to balance an upright

Fig. 13. The performance of (a) the REL method, (b) the R-PSO method [22]
Fig. 12. The cart–pole balancing system.

pole. The bottom of the pole is hinged to a cart that travels along a
finite-length track to its right or left. Both the cart and the pole can
move only in the vertical plane; that is, each has only one degree
of freedom.

There are four state variables in the system: �, the angle of the
pole from an upright position (in degrees); �̇, the angular velocity of
the pole (in degrees/s); x, the horizontal position of the cart’s center
(in meters); and ẋ, the velocity of the cart (in meters/seconds). The
only control action is f, which is the amount of force (in Newtons)
applied to the cart in order to move it toward left or right. The
system fails when the pole falls past a certain angle (± 12◦ is used
here) or the cart runs into the bounds of its track (the distance is
2.4 m from the center to each bound of the track). The goal of this
we used are:

�(t + 1) = �(t) + ��̇(t) (15)

, and (c) the R-CPSO method [28] on the cart–pole balancing system.

5 ft Computing 11 (2011) 5463–5476

�

x

x

w
o
a
o
p

−
d

m
�
m
m
i
m
i
s
a
t
(

A
t
l
t
c
s
b
t
r
fi
r
R 59, 0.146663)

91, 0.012762)
os(�x1) + 0.177318 sin(�x1)

 0.911939 sin(�x2)
 1.05748 sin(�x3)

 0.19016 sin(�x4)

R 15, 0.961607)
18, 0.461347)
cos(� x1) + 1.83531 sin(� x1)
.027012 sin(�x2)
.41398 sin(� x3)

− 0.73245 sin(� x4)

R , 0.108291)
9944, 0.13257)
s(�x1) + 0.235678 sin(�x1)

Table 2
Performance comparison of various existing models in Example 1.

Method Mean Best Worst

GENITOR [11] 3268 415 18,743
TDGAR [12] 186 18 310
CQGAF [15] 133 12 288
SANE [17] 1984 46 5865
R-SE [18] 214 15 380
R-PSO [22] 125 27 845

the GA-based fuzzy system design in a reinforcement learning envi-
ronment, where only weak reinforcement signals, such as “success”
and “failure” are available. The network consists of five input, five
472 C.-J. Lin, C.-H. Chen / Applied So

˙ (t + 1) = �̇(t) + �
(m + mp)g sin �(t)

(4/3)(m + mp)l − mpl cos2 �(t)

− cos �(t)[f (t) + mpl�̇(t)2 sin �(t) − 	csgn(ẋ(t))]
(4/3)(m + mp)l − mpl cos2 �(t)

− 	p(m + mp)�̇(t)/mpl

(4/3)(m + mp)l − mpl cos2 �(t)
(16)

(t + 1) = x(t) + �ẋ(t) (17)

(t + 1) = ẋ(t) + �
f (t) + mpl[�̇(t)2 sin �(t) − �̈(t) cos �(t)]

(m + mp)

− 	csgn(ẋ(t))
(m + mp)

(18)

here, l = 0.5 m, the length of the pole; m = 1.1 kg, combined mass
f the pole and the cart; mp = 0.1 kg, mass of the pole; g = 9.8 m/s,
cceleration due to the gravity; 	c = 0.0005, coefficient of friction
f the cart on the track; 	p = 0.000002, coefficient of friction of the
ole on the cart; � = 0.02 s, sampling interval.

The constraints on the variables are −12◦ ≤ �12◦,
2.4 m ≤ x ≤ 2.4 m, and −10 N ≤ f ≤10 N. A control strategy is
eemed successful if it can balance a pole for 100,000 time steps.

The four input variables (�, �̇, x, ẋ) and the output ft are nor-
alized between 0 and 1 over the following ranges: �:[−12,12],

˙
 : [−60, 60], x:[−2.4,2.4], ẋ : [−3, 3], and ft:[−10,10]. The four nor-
alized state variables are used as inputs to the proposed SENFIN
odel. The coding of a rule in a sub-particle is the form illustrated

n Fig. 6. The values are floating-point numbers assigned by the REL
ethod initially. The fitness function in this example is defined as

n Eq. (14) to train the SENFIN model, where Eq. (14) also repre-
ents how long the cart–pole balancing system fails and receives

 penalty signal of −1, when the beam deviates beyond a cer-
ain angle (|�| > 12 ◦) and the cart runs off the bounds of its track
|x| > 2.4 m).

In this experiment, the initial values were set to (0, 0, 0, 0).
 total of ten runs were performed and each run started from

he same initial state. Fig. 13(a) shows that the SENFIN model
earned on average to balance the pole at the 7th generation. In
his figure, each run represents that largest fitness value in the
urrent generation being selected before the cart–pole balancing
ystem fails. When the REL method was stopped, we chose the
est strings in the population in the final generation and tested
hem on the cart–pole balancing system. Fig. 14 presents the
esults of the probability vectors in the ESS. In this figure, the
nal average optima number of rules is 3. The obtained fuzzy
ules of the SENFIN using the REL method are exhibited as follows:
ule1: IF x1 is 	(0.284411, −0.01446) and x2 is 	(0.7279

and x3 is 	(0.694891, 1.43122) and x4 is 	(0.9321
THEN ŷ1 = −1.44628 − 0.13254x1 − 0.04798 c

+0.382741x2 − 0.79246 cos(�x2) +
−0.17453x3 + 0.263316 cos(�x3) −
+0.763629x4 + 0.336507 cos(�x4) +
+0.776083x1x2x3x4

ule2: IF x1 is 	(0.813759, 0.033526) and x2 is 	(−0.009
and x3 is 	(0.002588, 0.57906) and x4 is 	(0.5925
THEN ŷ1 = −0.27423 − 0.32326x1 + 0.919114

−0.9622x2 + 0.410156 cos(�x2) + 0
+1.0483x3 + 0.455301 cos(� x3) + 2
+0.670275x4 + 0.323742 cos(� x4)

−1.10604x1 x2 x3 x4

ule3: IF x1 is 	(1.19906, 1.78198) and x2 is 	(−0.43297
and x3 is 	(−0.65957, −0.40318) and x4 is 	(0.27
THEN ŷ1 = −0.36624 − 0.13325x1 − 1.8409 co
+0.062486x2 + 1.30283 cos(�x2) + 0.881
−0.15466x3 + 0.485734 cos(�x3) + 0.720
+0.560237x4 + 1.2791 cos(� x4) − 1.4456
+0.771205x1x2x3x4
R-CPSO [28] 8 3 13
R-GA [34] 324 26 550
REL 7 2 13

Fig. 15(a) displays the angular deviation of the pole when
the cart–pole balancing system was controlled by a well-trained
SENFIN model started from the initial state with x(0) = 0, ẋ(0) =
0, �(0) = 0 and �̇(0) = 0. The simulated results show that the
trained SENFIN model has good control ability for the cart–pole
balancing system.

As shown in Fig. 13, the performance comparison of our pro-
posed model with the reinforcement particle swarm optimization
(R-PSO) [22] (see Fig. 13(b)) and the reinforcement cooperative
particle swarm optimization (R-CPSO) [28] (see Fig. 13(c)) are
demonstrated as well. In the R-PSO and R-CPSO approaches, the
coefficient w, cognitive coefficient c1, and society coefficient c2 was
set to 0.4, 1.6 and 2, respectively. Fig. 13(b) and (c) illustrate that
the R-PSO and the R-CPSO methods learned to balance the pole on
average at the 120th and 8th generations. Furthermore, Fig. 15(b)
and (c) accordingly show the angular deviations of the pole when
the cart–pole balancing system was controlled by [22,28]. As pre-
sented in Figs. 13 and 15, the control capabilities of the trained
SENFIN model with the REL algorithm are much better than the
ones of [22,28] in the cart–pole balancing system.

In addition, the GENITOR [11], TDGAR [12], CQGAF [15], and
SANE (Symbiotic Adaptive Neural Evolution) [17] have been applied
to this controlling benchmark problem, while the simulated results
are summarized in Table 2, by the numbers of pole-balancing tri-
als, i.e., to reflect the number of training episodes required). In
the GENITOR method [11], the normal evolution algorithm was
used to evolve the weights in a fully-connected, two-layer neu-
ral network, with additional connections from each input unit to
the output layer. The TDGAR [12] learning scheme is a new hybrid
GA, which integrates the TD prediction method and the GA to ful-
fill the reinforcement learning task. The CQGAF [15] accomplishes
228 sin(�x2)
555 sin(�x3)
5 sin(�x4)

C.-J. Lin, C.-H. Chen / Applied Soft Computing 11 (2011) 5463–5476 5473

0.7392

1.0000

0.7415

0.4249

0.6378
0.5332

0.4510 0.5080
0.6270

0.8675

0.5684

0.0

0.2

0.4

0.6

0.8

1.0

12111098765432

The number of rules
Pr

ob
ab

ili
ty

Fig. 14. The probability vectors of the ESS step in the proposed REL.

Fig. 15. Angular deviation of the pole by a trained (a) the REL metho

h
b
n
i
c
t

E

m
c
r

�4(x) = − BGx4 cosx3, and ˛i is chosen so that
s4 + ˛3s3 + ˛2s2 + ˛1s + ˛0 is a Hurwitz polynomial. Com-
Fig. 16. The ball and beam system.

idden, and one output units. In the SANE approach [17], the sym-
iotic evolution algorithm is used to evolve a two-layer neural
etwork with five input, eight hidden, and two output units. An

ndividual in the SANE represents a hidden unit with five specified
onnections to the input and output units. As indicated in Table 2,
he proposed REL algorithm is feasible and effective.

xample 2. Control of a ball and beam system

A ball and beam system [34] is shown in Fig. 16. The beam is
ade to rotate in a vertical plane when a torque is applied at the
enter of rotation. The ball is free to roll along the beam, while it is
equired that the ball remains in contact with the beam.
d, (b) the R-PSO method [22], and (c) the R-CPSO method [28].

The ball and beam system can be written in the state-space form
as⎡
⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎦ =

⎡
⎢⎣

x2
B(x1x2

4 − G sin x3)
x4
0

⎤
⎥⎦+

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦u,

y = x1

(19)

where x = (x1, x2, x3, x4)T ≡ (r, ṙ, �, �̇)
T

is the state of the system
and y = x1 ≡ r represents the system output. The control parame-
ter u is the angular acceleration (�̈), and the parameters B = 0.7143
and G = 9.81 are chosen for this control system. The purpose of the
controller u is to determine u(x) such that the closed-loop system-
output y will converge to zero from different initial conditions.

According to the input/output-linearization algorithm [34], the
control law u(x) is determined as follows:

For state x, compute v(x) = −˛3�4(x) − ˛2�3(x) − ˛1�2(x) −
˛0�1(x), where �1(x) = x1, �2(x) = x2, �3(x) = − BG sin x3,
pute a(x) = − BG cos x3 and b(x) = BGx2
4 sin x3. Then u(x) =

[v(x) − b(x)]/a(x).

5474 C.-J. Lin, C.-H. Chen / Applied Soft Computing 11 (2011) 5463–5476

[22], a

m
[
p
u
f
F
f
b

Fig. 17. The performance of (a) the REL method, (b) the R-PSO method

The four input variables (r, ṙ, �, �̇) and the output u(k) are nor-
alized between 0 and 1 over the following ranges: r:[−5,5], ṙ :

−3, 3]:[–3,3], �:[–1,1], �̇ : [−2, 2], and u:[−70,70]. As stated in the
revious example, the initial floating-point values are assigned by
sing the REL algorithm. In the proposed REL method, the fitness
unction in this example is also defined in Eq. (14) to train the SEN-

IN model, where Eq. (14) states how long the ball and beam system
ails and receives a penalty signal of −1 when the beam deviates
eyond a certain angle (|�| > 12◦) and the ball reaches the end of

Rule1: IF x1 is 	(0.284411, −
and x3 is 	(0.075622,
THEN ŷ1 = −0.5719

−0.2550
−0.1806
−0.1008
−0.0168

Rule2: IF x1 is 	(0.764218, 1
and x3 is 	(0.606443,
THEN ŷ1 = −0.7883

+0.9948
−0.6126
−0.1005
+0.9050

Rule3: IF x1 is 	(1.42665, 0.3
and x3 is 	(−0.17628
THEN ŷ1 = −0.5015

+0.5637
−1.2245
−1.0874
−0.7089

Rule4: IF x1 is 	(0.07984, 1.4
and x3 is 	(0.769444,
THEN ŷ1 = 2.09824

+1.7739
−1.1891
+0.7960
+0.5382
nd (c) the R-CPSO method [28] on the ball and beam balancing system.

the beam (|r| > 2 m). A ten-run simulation is conducted, while each
run started from the same initialization state. Fig. 17(a) shows that
the SENFIN model learned on average to balance the ball at the 12th
generation. In this figure, each run results in the largest fitness value
in the current generation being selected before the ball and beam
system fails. After the learning process was stopped, we chose the
best string in the population of the final generation and tested it on
the ball and beam system. The simulated results of the probability
vectors for the ESS method are presented in Fig. 18, where the final
average optimal number of rules is 4. The obtained fuzzy rules of
the SENFIN using the REL method are summarized as follows:

0.01446) and x2 is 	(0.727959, 0.146663)
 0.696157) and x4 is 	(−0.16145, 1.05776)

 − 0.176952x1 + 0.695774 cos(�x1) + 0.53314 sin(�x1)
4x2 − 1.6741 cos(�x2) − 0.55762 sin(�x2)
6x3 + 1.06147 cos(�x3) + 0.393831 sin(�x3)
x4 + 0.322637 cos(�x4) + 1.88298 sin(�x4)
1x1x2x3x4

.13001) and x2 is 	(−0.00824, 0.547146)
 1.23632) and x4 is 	(1.23826, −1.02783)

 − 1.11792x1 + 1.8139 cos(�x1) − 0.10719 sin(�x1)
8x2 + 1.40969 cos(�x2) + 1.63694 sin(�x2)
6x3 + 0.878479 cos(�x3) − 0.17153 sin(�x3)
3x4 + 0.677443 cos(�x4) − 1.41097 sin(�x4)
48x1x2x3x4

73173) and x2 is 	(0.438513, −0.64736)
, 1.36622) and x4 is 	(1.25773, −0.27832)
6 − 0.1015x1 − 0.868533 cos(�x1) + 0.586759 sin(�x1)
45x2 + 0.376822 cos(�x2) − 0.64332 sin(�x2)
x3 + 0.246941 cos(�x3) + 0.1687 sin(�x3)
6x4 + 0.903228 cos(� x4) − 0.69598 sin(�x4)
9x1x2x3x4

1799) and x2 is 	(1.88053, 0.191622)
 −0.42783) and x4 is 	(0.780801, 0.532372)

 + 0.664375x1 + 1.02052 cos(�x1) + 0.469765 sin(�x1)

7x2 + 0.310921 cos(�x2) + 1.31612 sin(�x2)
8x3 + 0.119524 cos(�x3) + 0.56419 sin(�x3)
49x4 + 0.738078 cos(� x4) − 0.237018 sin(�x4)
03x1x2x3x4

C.-J. Lin, C.-H. Chen / Applied Soft Computing 11 (2011) 5463–5476 5475

0.2328 0.2869

1.0000

0.7407

0.1733

0.6387

0.8406

0.6656
0.58130.6798

0.7331

0.0

0.2

0.4

0.6

0.8

1.0

12111098765432
The number of rules

Pr
ob

ab
ili

ty

Fig. 18. The probability vectors of the ESS step in the proposed REL.

ethod

t
S
−
t
r
c

f
R
p

T
P

Fig. 19. Position deviation of the ball by a trained (a) the REL m

Fig. 19(a) demonstrates the position deviation of the ball, when
he ball and beam system was controlled by the well-trained
ENFIN model starting at the initial state that x(0) = −1.2,

.
x(0) =

0.01, �(0) = 0.58, and �̇(0) = 0.58. In this figure, the position of
he ball decays to zero gradually. Consequently, the experimental
esults prove that the trained SENFIN model has great capability of
ontrolling the ball and beam balancing system.

As well as in Example 1, in this example we compared the per-

ormances of our method with the R-PSO method [22] and the
-CPSO method [28], while the same settings as used in Exam-
le 1 are applied. Fig. 17(b) and (c) illustrate that the R-PSO and

able 3
erformance comparison of various existing models in Example 2.

Method Mean Best Worst

GENITOR [11] 4982 551 19,853
TDGAR [12] 210 30 324
CQGAF [15] 187 23 298
SANE [17] 2287 150 6217
R-SE [18] 274 32 492
R-PSO [22] 478 163 852
R-CPSO [28] 17 9 28
R-GA [34] 466 97 678
REL 12 7 22
, (b) the R-PSO method [21], and (c) the R-CPSO method [28].

R-CPSO methods learned, on average, to balance the ball in the 478-
th and 17-th generations, respectively. Fig. 19(b) and (c) present
the position deviations of the ball, when the ball and beam sys-
tem was controlled by the R-PSO and the R-CPSO methods, starting
by the initial state with r(0) = − 1.2, ṙ(0) = −0.01, �̇(0) = 0.58, and
�(0) = 0.58. As exhibited in Figs. 17 and 19, the control capabili-
ties of the trained SENFIN model using the REL algorithm are also
better than those in [22,28] in the ball and beam balancing sys-
tem. Table 3 summarizes a performance comparison of various
existing models ([11,12,17,18,22,28,15,34]) in Example 2. As the
result, the performance indices (i.e., mean, best, and worst gener-
ations) of the proposed learning method outperform the methods
in [11,12,17,18,22,28,15,34].

7. Conclusion and future works

This study proposes an efficient reinforcement evolutionary
learning algorithm (REL) for NFINs (SENFIN). The proposed REL con-
sists of structure learning that can determine the number of fuzzy
rules and parameter learning that can adjust parameters of SENFIN

model. The structure learning adopts a subgroup symbiotic evo-
lution (SSE) to yield several variable fuzzy systems and uses an
elite-based structure strategy (ESS) to find suitable the number of
fuzzy rules. The parameter learning uses CCPSO that employs coop-

5 ft Com

e
s
p
a
(
n
d
t
O
a
R
t
b
a

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[34] C.L. Karr, Design of an adaptive fuzzy logic controller using a genetic algo-
476 C.-J. Lin, C.-H. Chen / Applied So

rative behavior among multiple swarms can increase the global
earch capacity using the belief space. The advantages of the pro-
osed SENFIN-REL method are as follows; (1) the proposed REL can
utomatically construct SENFIN and adjust parameters of SENFIN;
2) the consequent of the fuzzy rules of SENFIN model involves a
onlinear combination of input variables. The experimental results
emonstrate that the proposed SENFIN-REL performs better than
he other methods for solving reinforcement learning problems.
ne advanced topics for the proposed REL method should be
ddressed in future research. The computational complexity of
EL method should be decreased in subgroup symbiotic evolu-
ion. The crowding distance operator [35] presented in NSGA-II, can
e adopted like fast non-dominated sorting in the solution space
ccording to each objective function.

eferences

[1] C.T. Lin, C.S.G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Synergism to Intelli-
gent Systems, Prentice-Hall, NJ, May 1996.

[2] N. Kasabov, Foundations of Neural Networks, Fuzzy Systems and Knowledge
Engineering, MIT Press, Cambridge, MA, 1996.

[3] J.-S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans.
Syst. Man Cybern. 23 (3) (1993) 665–685.

[4] C.F. Juang, C.T. Lin, An on-line self-constructing neural fuzzy inference network
and its applications, IEEE Trans. Fuzzy Syst. 6 (February (1)) (1998) 12–31.

[5] N.K. Kasabov, Q. Song, DESENFIN: dynamic evolving neural-fuzzy inference sys-
tem and its application for time-series prediction, IEEE Trans. Fuzzy Syst. 10
(April (2)) (2002) 144–154.

[6] F. Sun, Z. Sun, L. Li, H.X. Li, Neuro-fuzzy adaptive control based on dynamic
inversion for robotic manipulators, Fuzzy Sets Syst. 134 (February (1)) (2003)
117–133.

[7] C. Li, C.Y. Lee, Self-organizing neuro-fuzzy system for control of unknown
plants, IEEE Trans. Fuzzy Syst. 1 (February (1)) (2003) 135–150.

[8] C.J. Lin, C.C. Chin, Prediction and identification using wavelet-based recurrent
fuzzy neural networks, IEEE Trans. Syst. Man Cybern. Part B 34 (October (5))
(2004) 2144–2154.

[9] C.H. Chen, C.J. Lin, C.T. Lin, A functional-link-based neuro-fuzzy network for
nonlinear system control, IEEE Trans. Fuzzy Syst. 16 (October (5)) (2008)
1362–1378.

10] A.G. Barto, R.S. Sutton, C.W. Anderson, Neuron like adaptive elements that can
solve difficult learning control problem, IEEE Trans. Syst. Man Cybern. 13 (5)
(1983) 834-847.

11] D. Whitley, S. Dominic, R. Das, C.W. Anderson, Genetic reinforcement learning
for neuro control problems, Mach. Learn. 13 (1993) 259–284.

12] C.T. Lin, C.P. Jou, GA-based fuzzy reinforcement learning for control of a mag-
netic bearing system, IEEE Trans. Syst. Man Cybern. Part B 30 (April (2)) (2000)
276–289.

13] Y.H. Kim, L. Lewis, Reinforcement adaptive learning neural-net-based friction

compensation control for high speed and precision, IEEE Trans. Control Syst.
Technol. January (8) (1) (2000) 118–126.

14] H. Pingan, S. Jagannathan, Reinforcement learning neural-network-based con-
troller for nonlinear discrete-time systems with input constraints, IEEE Trans.
Syst. Man Cybern. Part B 37 (April (2)) (2007) 425–436.

[

puting 11 (2011) 5463–5476

15] C.F. Juang, Combination of online clustering and Q-value based GA for rein-
forcement fuzzy system design, IEEE Trans. Fuzzy Syst. 13 (June (3)) (2005)
289–302.

16] D. Zhao, J. Yi, D. Liu, Particle swarm optimized adaptive dynamic programming,
in: Proc. of IEEE Int. Symposium on Approximate Dynamic Programming and
Reinforcement Learning, April, 2007, pp. 32–37.

17] D.E. Moriarty, R. Miikkulainen, Efficient reinforcement learning through sym-
biotic evolution, Mach. Learn. 22 (1996) 11–32.

18] C.F. Juang, J.Y. Lin, C.T. Lin, Genetic reinforcement learning through symbiotic
evolution for fuzzy controller design, IEEE Trans. Syst. Man Cybern. Part B 30
(April (2)) (2000) 290–302.

19] C.J. Lin, Y.J. Xu, A self-adaptive neural fuzzy network with group-based symbi-
otic evolution and its prediction applications, Fuzzy Sets Syst. 157 (April (8))
(2006) 1036–1056.

20] G.R. Harik, F.G. Lobo, D.E. Goldberg, The compact genetic algorithm, IEEE Trans.
Evol. Comput. 3 (November (4)) (1999) 287–297.

21] C.J. Lin, Y.J. Xu, A hybrid evolutionary learning algorithm for TSK-type fuzzy
model design, Math. Comput. Model. 43 (March) (2006) 563–581.

22] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. of IEEE Int. Conf.
on Neural Networks, vol. 4, December, 1995, pp. 1942–1948.

23] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proc.
of the Sixth International Symposium on Micro Machine and Human Science,
October, 1995, pp. 39–43.

24] Z.L. Gaing, A particle swarm optimization approach for optimum design of PID
controller in AVR system, IEEE Trans. Energy Convers. 19 (June (2)) (2004)
384–391.

25] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle
swarm optimization for reactive power and voltage control considering volt-
age security assessment, IEEE Trans. Power Syst. 15 (November (4)) (2000)
1232–1239.

26] C.F. Juang, A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design, IEEE Trans. Syst. Man Cybern. Part B 34 (April (2))
(2004) 997–1006.

27] R. Mendes, P. Cortez, M. Rocha, J. Neves, Particle swarms for feedforward neural
network training, in: Proc. of IEEE Int. Joint Conf. on Neural Networks, 2002,
pp. 1895–1899.

28] F. van den Bergh, A.J.T.P. Engelbrecht, A cooperative approach to particle swarm
optimization, IEEE Trans. Evol. Comput. 8 (June (3)) (2004) 225–239.

29] R.G. Reynolds, An introduction to cultural algorithms, in: Proc. of the Third
Annual Conf. on Evolution Programming, February, 1994, pp. 131–139.

30] X. Jin, R.G. Reynolds, Using knowledge-based evolutionary computation
to solve nonlinear constraint optimization problems: a cultural algorithm
approach, in: Proc. of IEEE Congress on Evolutionary Computation, vol. 3, July,
1999, pp. 1672–1678.

31] S. Saleem, R. Reynolds, Cultural algorithms in dynamic environments, in:
Proc. of IEEE Congress on Evolutionary Computation, vol. 2, July, 2000, pp.
1513–1520.

32] J.C. Patra, R.N. Pal, B.N. Chatterji, G. Panda, Identification of nonlinear dynamic
systems using functional link artificial neural networks, IEEE Trans. Syst. Man
Cybern. Part B 29 (April (2)) (1999) 254–262.

33] J.C. Patra, R.N. Pal, A functional link artificial neural network for adaptive chan-
nel equalization, Signal Process. 43 (May) (1995) 181–195.
rithm, in: Proc. of the Fourth Int. Conf. on Genetic Algorithms, vol. 1, 1991,
pp. 450–457.

35] K. Deb, A. Pratap, S. Agrawal, T. Meyarian, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

	Nonlinear system control using self-evolving neural fuzzy inference networks with reinforcement evolutionary learning
	1 Introduction
	2 Basic concept of the cultural algorithm
	3 Structure of self-evolving neural fuzzy inference networks
	4 An efficient evolutionary learning algorithm
	5 Reinforcement evolutionary learning for a SENFIN model
	6 Experimental results
	7 Conclusion and future works
	References

