
Expert Systems with Applications 38 (2011) 7102–7111
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Particle swarm optimization with justification and designed mechanisms
for resource-constrained project scheduling problem

Ruey-Maw Chen
Department of Computer Science and Information Engineering, National Chin-yi University of Technology, Taichung 411, Taiwan, ROC
a r t i c l e i n f o a b s t r a c t
Keywords:
Scheduling
Particle swarm optimization
Justification
Resource-constrained project scheduling
problem
0957-4174/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.eswa.2010.12.059

E-mail address: raymond@mail.ncut.edu.tw
The studied resource-constrained project scheduling problem (RCPSP) is a classical well-known problem
which involves resource, precedence, and temporal constraints and has been applied to many applica-
tions. However, the RCPSP is confirmed to be an NP-hard combinatorial problem. Restated, it is hard to
be solved in a reasonable time. Therefore, there are many metaheuristics-based schemes for finding near
optima of RCPSP were proposed. The particle swarm optimization (PSO) is one of the metaheuristics, and
has been verified being an efficient nature-inspired algorithm for many optimization problems. For
enhancing the PSO efficiency in solving RCPSP, an effective scheme is suggested. The justification tech-
nique is combined with PSO as the proposed justification particle swarm optimization (JPSO), which
includes other designed mechanisms. The justification technique adjusts the start time of each activity
of the yielded schedule to further shorten the makespan. Moreover, schedules are generated by both for-
ward scheduling particle swarm and backward scheduling particle swarm in this work. Additionally, a
mapping scheme and a modified communication mechanism among particles with a designed gbest ratio
(GR) are also proposed to further improve the efficiency of the proposed JPSO. Simulation results demon-
strate that the proposed JPSO provides an effective and efficient approach for solving RCPSP.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many applications involve scheduling notion, such as generat-
ing units planning of power plants (Saksornchai, Lee, Methapray-
oon, Liao, & Ross, 2005), grid computing (Hou, Zhou, & Wang,
2006; Liu, Yang, Shi, Lin, & Li, 2005), control system (Park, Kim,
Kim, & Kwon, 2002), food industrial (Simonov & Simonovov’a,
2002), network packet switching (Symington, Waddie, Taghizadeh,
& Snowdon, 2003), classroom arrangement (Vejzovic & Humo,
2007) and manpower scheduling (Ohki, Morimoto, & Miyake,
2008). Generally, these problems commonly accompany the cost
considerations related to certain constraints. A scheduling algo-
rithm determines a schedule for a set of processes, satisfying the
prerequisite constraints and minimizing cost. Scheduling problems
differ markedly from case to case. One of the well studied schedul-
ing problems is the resource-constrained project scheduling prob-
lem (RCPSP) (Hartmann, 2002); a variety of applications are part of
RCPSP. RCPSP is a combinatorial optimization problem to schedule
the activities such that the makespan (total completion time) of
the schedule can be minimized, while satisfying given precedence
constraint between the activities and resource constraint. The
resource requirements of the scheduled activities per time unit
ll rights reserved.
do not exceed the given capacity limit of different types resources.
However, the minimum makespan is hard to obtain since the
inestimable situation of constraints. And RCPSP has been
confirmed to be an NP-hard combinatorial problem (Blazewicz,
Lenstra, & Rinooy Kan, 1983); it is hard to solve RCPSP in a reason-
able time especially for large-scale scheduling problems. Restated,
solving RCPSP requires considerable computation times for large
instances.

Although there are some exactly algorithms such as branch-
and-bound method (Brucker, Knust, Schoo, & Thiele, 1998;
Jalilvand et al., 2005) is able to find optimal solutions of RCPSP.
However, the execution time required is impractical when the
number of activities increases. Comparatively, several priority-
based heuristics (Buddhakulsomsiri & Kim, 2007; Li, Bettati, &
Zhao, 1997) such as the latest finish time (LFT) and minimum slack
(MSLK) (Edward & James, 1975), can solve RCPSP with shorter
time, but they are hard to adapt to the constraints of problems
dynamically. Hence, the sound solution is seldom obtained via
heuristics.

Many studies solve the RCPSP by applying the metaheuristics-
based schemes, such as genetic algorithm (GA) (Hartmann,
2002), simulated annealing algorithm (SA) (Bouleimen & Lecocq,
2003; Rutenbar, 1989), tabu search (TS) (Glover, 1989, 1990;
Thomas & Salhi, 1998), ant colony optimization (ACO) (Lo, Chen,
Huang, & Wu, 2008; Merkle, Middendorf, & Schmeck, 2002) and

http://dx.doi.org/10.1016/j.eswa.2010.12.059
mailto:raymond@mail.ncut.edu.tw
http://dx.doi.org/10.1016/j.eswa.2010.12.059
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Table 1
30 activities case (j301_6) with precedence and resource requirement constraints.

Activity# Successors Activity# Duration Required resources

R 1 R 2 R 3 R 4

1 2 3 4 1 0 0 0 0 0
2 5 7 8 2 10 0 0 0 4
3 11 3 1 0 0 0 10
4 6 16 4 9 4 0 0 0
5 15 23 5 3 6 0 0 0
6 10 12 6 1 3 0 0 0
7 9 14 25 7 7 0 4 0 0
8 13 8 1 0 0 0 2
9 24 9 4 10 0 0 0
10 22 10 10 0 0 0 2
11 14 16 24 11 6 0 0 10 0
12 13 21 12 2 0 0 0 6
13 17 24 30 13 3 0 7 0 0
14 18 14 1 0 0 3 0
15 16 29 15 3 0 0 0 6
16 19 16 1 0 0 10 0
17 18 17 3 0 0 0 7
18 20 31 18 10 0 0 0 9
19 28 19 1 0 6 0 0
20 26 20 3 5 0 0 0
21 28 21 4 0 3 0 0
22 28 22 2 8 0 0 0
23 27 23 4 1 0 0 0
24 26 31 24 2 3 0 0 0
25 30 25 4 0 9 0 0
26 29 26 6 0 0 0 7
27 30 27 9 0 0 0 7
28 31 28 2 0 0 0 5
29 32 29 1 0 0 9 0
30 32 30 1 0 0 9 0
31 32 31 9 0 0 4 0
32 32 0 0 0 0 0

Available resources 12 10 10 12

R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111 7103
the particle swarm optimization (PSO) (Zhang, Li, & Tam, 2006),
etc. The GA mimics the mechanism of natural selection as global
evolution (Holland, 1987); then part of more superior solution is
inherited via crossover operation, and increasing the diversity of
solution via mutation process. Originally, simulated annealing
was investigated by Kirkpatrick, Gelatt, and Vecchi (1983) as a sto-
chastic method for combinatorial optimization problem. The opti-
mal solution is a stable state when the thermal energy of the
system minimized. The thermal energy is decreased by cooling
down temperature parameter. Noteworthy, the SA applies a mech-
anism to avoid trapped on the local optimum by a probability dur-
ing cooling down procedure. Tabu search is an approach proposed
to prevent the search from sinking into the local minimum by
recording the solutions which have been ever obtained. Therefore,
the already obtained solutions in the following search can be
avoided (Glover, 1989, 1990).

The ACO emulates the foraging behavior of ants (Dorigo & Gam-
bardella, 1997). The ant left pheromone on the trail of the searched
path from nest to the food source. The pheromone deposited on the
way is for other ants to identify and communicate with each other.
Additionally, the amount of pheromone is inverse proportional to
the length of path; a large amount of pheromone is accumulated
on the shorter path. The maximum amount of pheromone on the
path can be regarded as an ant notification signal indicating where
the shorter path is located at.

The particles swarm optimization (PSO) is first proposed by
Kennedy and Eberhart (1995). In PSO, a swarm of particles spreads
in the space and the position of a particle represents a solution of a
dedicated problem. Each particle would move to a new position for
the global optimal solution based on the global experience of the
swarm and the individual experience of the particle. The PSO has
been widely applied to solve the scheduling problems. Liu and
Wang (2006) and Zhang, Sun, Zhu, and Yang (2008) solved flow-
shop scheduling problem (FSP) by means of the PSO, and Chen,
Zhang, Hao, and Dai (2006) solved task scheduling in grid based
on PSO. Zhang et al. (2006) used PSO to solve RCPSP; they showed
that the PSO is applicable to various combinatorial problems and
scheduling problems.

Besides the algorithm itself, some other schemes are combined
with the algorithm to enhance the effectiveness and efficiency.
There is a scheme named ‘‘justification’’ proposed by Valls, Ballest,
and Quintanilla (2005), which is effective for improving the solu-
tion quality of the scheduling problems. The justification technique
adjusts the start time of each activity in scheduling, and guarantees
that the scheduling after justification is not worse even possible
better than before one. Moreover, the efficiency of justification
technique has been verified, it can apparently improve popula-
tion-based algorithms such as GA while applying for RCPSP. In
Valls et al. (2005), the justification implemented by double justify
(DJ) applied to population-based algorithms, GA and SA have been
tested, respectively, and the DJGA (GA applying DJ) and DJSA (SA
applying DJ) outperform than all the state-of-the-art algorithms
(such as GA, ACO). The performance evaluation comparison was
also listed in Valls et al. (2005). Restated, the justification is able
to promote the performance of population-based algorithms. Nev-
ertheless, relatively few PSO studies with the combination of justi-
fication were devoted to solve RCPSP (no related literature was
found). Hence, this study focuses on improving PSO algorithm
based on the combination of PSO and justification for RCPSP, this
proposed scheme is named justification particle swarm optimiza-
tion (JPSO) herein.

Moreover, the suggested JPSO integrates two other designed
mechanisms to further improve the efficiency, one is the mapping
technique for enhancing the exploitation efficiency of justification,
and the other is the adjusting ratio of communication topology of
PSO for trade-off between exploration and exploitation. The simu-
lation results demonstrate that both of these two schemes have
significant improvement for solving RCPSP.

This article is organized as follows. Section 2 introduces the
RCPSP. Section 3 presents the PSO. Section 4 presents the schemes
of JPSO and how to solve RCPSP by JPSO. The simulated cases and
results of experiments are displayed in Section 5. In Section 5, a
complete comparative evaluation of the effectiveness and effi-
ciency of the proposed JPSO algorithm as well as a comparison to
other state-of-the-art approaches were presented. Finally, Section
6 presents the conclusions and discussions.

2. Resource-constrained project scheduling problem (RCPSP)

The scheduling problems have been applied in various fields.
Among them, the resource-constrained project scheduling problem
(RCPSP) is a general scheduling problem which involving activities
need to be scheduled. Moreover, the RCPSP is confined to meet var-
ious constraints and achieves a certain objective. The studied
RCPSP in this investigation is defined as follows:

1. The objective is to find the minimal makespan schedule.
2. There’re N + 2 activities, and each activity j has processing dura-

tion dj (j = 0, . . . , N + 1). Meanwhile, activities are non-preemp-
tive in the schedule. The activity 0 and activity N + 1 are
pseudo activities for indicating the start and end of schedule,
respectively.

3. Activities have precedence constraint, let Pj be the set of imme-
diate predecessors of activity j; the activity j cannot start to
work until all of its immediate predecessors finished. Activity
0 is the source (start activity) that has no predecessors.

4. There are various renewable resources, constant amount
renewable resources are provided at each time or period. Let



7104 R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111
Q be a set of renewable resources with q types, and Rk

(k = 1, . . . , q) is the available amount of resource type k. Each
activity j requires various resources rj,1, rj,2, . . . rj,q, where rj,k

denotes the required amount of resource type k by activity j
when activity j is processing. And the resource constraint con-
fines the total amount of resources type k required by activities
cannot exceed Rk at any time or period, such that

P
j2SðtÞrj;k �

Rk, where the S(t) is the set of activities to be processed at time
or period t. The 30 activities example instance j301_6 of RCPSP
in RCPSP is illustrated in Table 1.

3. The particle swarm optimization (PSO)

The particle swarm optimization (PSO) is first proposed by Ken-
nedy and Eberhart (1995). It is a multi-agent general metaheuris-
tic, and can be applied extensively in solving many complex
problems. The PSO consists of a swarm of particles in the space;
the position of a particle is indicated by a vector which presents
a solution. PSO is initialized with a population of randomly posi-
tioned particles and searches for the best position with best fitness
(usually minimum fitness).

In each generation or iteration, every particle moves to a new
position and this new position is guided by a velocity (which is a
vector), then the fitness corresponding to the new position of the
particle would be calculated. Thus, the velocity plays an important
role in searching solution with the better fitness. There are two
experience positions are used in the PSO for updating the velocity;
one is the global experience position of all particles, which memo-
rizes the global best solution obtained through all particles; the
other is each particle’s individual experience, which memorizes
the best position that particle has ever moved to. These two expe-
rience positions are used to determining the velocity.

Let an N dimension space (the number of dimension is typically
concerned with the definition of problem) has M particles. For the
ith particle (i = 1, . . . , M), its position consists of N components Xi

= {Xi1, . . . , XiN}, where Xij is the jth component of the position. And
the velocity of particle i is Vi = {Vi1, . . . , ViN}, particle individual
experience is Li = {Li1, . . . , LiN}. Additionally, G = {G1, . . . , GN} repre-
sents the global best experience shared among all the particles. The
updating of the jth component of the position and velocity of the
ith particle are according to the following equation as shown in
Eq. (1)

Vnew
ij ¼ w� Vij þ c1 � r1 � ðLij � XijÞ þ c2 � r2 � ðGj � XijÞ

Xnew
ij ¼ Xij þ Vnew

ij

(
ð1Þ

where w is an inertia weight used to determine the influence of the
previous velocity to the new velocity. The c1 and c2 are learning fac-
tors used to derive how the ith particle approaches either closes to
the individual experience position or the global experience position.
Furthermore, the r1 and r2 are the random numbers uniformly dis-
tributed in [0, 1], influencing the tradeoff between the global
exploitation and local exploration abilities during search. There
are many variations of PSO have been proposed, and one of them
is named the ‘‘standard’’ PSO proposed by Bratton and Kennedy
Table 2
The pseudo-code of PSO algorithm

PSO algorithm

Initialize
While End condition is not reached

For each particle i in the swarm do
Update position Xnew

i using Eq. (2)
Calculate particle’s fitness f Xnew

i

� �
Update Li & G

End for
End while
(2007) indicating that PSO can be significantly improved as
required.

In the standard PSO, a constriction version of velocity update
rule is suggested as shown in Eq. (2). Moreover, this velocity up-
date rule is suggested for its stability as indicated in the ‘‘standard’’
PSO. Hence, this constriction velocity update rule is applied in this
study

Vnew
ij ¼ v� ðVij þ c1 � r1 � ðLij � XijÞ þ c2 � r2 � ðGj � XijÞÞ

Xnew
ij ¼ Xij þ Vnew

ij

(
ð2Þ

where the v is the constriction factor used for adjusting the veloc-
ity, where the values v � 0.72984 (0.73) and c1 = c2 = 2.05 are sug-
gested in Bratton and Kennedy (2007).

The typical procedure of the PSO is shown as Table 2.
4. Justification particle swarm optimization (JPSO) for solving
resource-constrained project scheduling problem (RCPSP)

4.1. Communication topology adjusting

There are two swarm communication topologies utilized in PSO
(Bratton & Kennedy, 2007). One is the ‘‘gbest’’ topology as dis-
played in Fig. 1a which has been studied in most researches. The
gbest is the global best model where every particle is able to
acquire the information from others quickly because of it’s fully
connection with the others. However, the gbest’s global communi-
cation ability usually leads to the premature convergence. The
other is the ‘‘lbest’’ topology as displayed in Fig. 1b; the lbest has
greatly attracted researcher’s attention recently. The feature of
lbest is the limited communication with others; every particle
can just communicate with a part of swarm. Meanwhile, the lbest
topology can be varied such as ring, star and Von Neumann neigh-
borhood. Obviously, the lbest has slower convergence rate com-
pared to the gbest.

Bratton and Kennedy (2007) observes that the gbest is usually
resulting in better performance on simple unimodal problems than
using lbest, since the situation of falling into local optimal is not
happened frequently in such unimodal problems. However, the
lbest surpasses the gbest in some evaluated functions, especially
in the multimodal problems.

For the trade-off between gbest and lbest, a complement
scheme is proposed to adjust the ratio of applying gbest and lbest
in the process of PSO. In this study, there is a random variable
named gbest ratio (GR) for the ratio of applying gbest in PSO, the
GR denotes the probability of using gbest to update particle’s
velocity. Restated, a certain particle updates its velocity by gbest
is determined by GR. Hence, the probability of lbest is (1-GR).
Meanwhile, for simple implementation, the lbest topology is
designed as the ring topology in this study as represented in
Fig. 1b. Therefore, the velocity update rule can be defined as
Eq. (3), where rand is a random variable uniformly distributed in
[0, 1], and the better neighbor (i) is the set of the neighbors of
particle i with better performance (since the lbest topology is ring
(a) The gbest topology (b) The lbest topology 

Fig. 1. Two topologies of PSO.



R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111 7105
topology in the work, the number of the better neighbors is 2).
Hence, in the velocity update rule, the global best experience Gj

in Eq. (2) is replaced by Yj as indicated in Eq. (3)

Yj ¼
Gj; rand < GR

Xkj; k 2 better neighborðiÞ; otherwise

�
Vnew

ij ¼ v� ðVij þ c1 � r1 � ðLij � XijÞ þ c2 � r2 � ðYj � XijÞÞ
ð3Þ
4.2. Schedule generation schemes and encoding scheme

4.2.1. Schedule generation schemes (SGS)
Schedule generation schemes (SGS) (Hartmann & Kolisch, 1999)

are usually used for generating the schedule of RCPSP, and there
are two types of SGS, one is the serial schedule generation scheme
(SSGS), and the other is parallel schedule generation scheme
(PSGS). In this study, the SSGS is adopted, since the PSGS has been
verified that it can only generates non-delay schedules, and the
set of non-delay schedules is just a sub set of all schedules, hence
the SSGS is suggested for RCPSP. In SSGS, the activity list
A = {a1, a2, . . . , aN+2} consisting of N + 2 activities is the solution of
RCPSP, it is used for deciding the priorities of N + 2 activities. The
a1 is the activity which is the first start in schedule, i.e., the activity
with the highest priority. Conversely, the aN+2 has the lowest prior-
ity and is the last activity in schedule. Furthermore, the activities
order in the activity list A needs to meet the precedence constraint.

4.2.2. Encoding scheme
In PSO, the position of a particle is indicated by a vector which

presents the solution of the investigated problem. And how to map
the solution to the position vector, X, is significant for PSO process.
Since the RCPSP can be solved by using activity list A, when apply-
ing SSGS to generate schedule, hence the scheme of encoding activ-
ity list into the position vector X is necessary. The components of
position vector are typically real number values. Noteworthy, the
activity list is a permutation of activities, the permutation with
the same value is not allowed. Thus, the key representation (Hart-
mann & Kolisch, 1999) is suitable for permutation type solution.
For example, assume there are 5 keys correlated to 5 activities,
and the position vector X with 5 components is given as following:
Key
 1
 2
 3
 4
 5
X
 0.5
 0.6
 0.15
 0.9
 0.2
After sorting X by decreasing order, the keys are also rearranged
as following:
Key
 4
 2
 1
 5
 3
X
 0.9
 0.6
 0.5
 0.2
 0.15
Then the order of keys can be treated as the activity list, i.e., activity
list A = {4,2,1,5,3}. Restated, the solution of RCPSP is generated by
SSGS based on this activity list, and the activity list is encoded
through the sorting operation on the components of the position
vector.

4.3. Priority rule based heuristics for initial solution

Generally, for solving scheduling problem efficiently, the corre-
sponding heuristics are often studied and integrated into metaheu-
ristics in most researches.
In RCPSP, the latest finish time (LFT) heuristic (Edward & James,
1975) is often used for deciding the priority of activities. The LFT
heuristic is applied in this study to give the higher priority to the
activity which has the smaller latest finish time; the definition of
the priority is displayed in Eq. (4). Meanwhile, in this study, the lat-
est finish time (LFT) heuristic, which is also used for PSO to initial-
ize the position vectors X

pðjÞ ¼ ðLFjÞ�1 ð4Þ

where LFj is the latest finish time of activity j, and the priority of
activity j (p(j)) in activity list is inverse proportional to the LFj.

For mapping the result of LFT to the initial position vectors X,
the X(j) corresponding to the activity j can be assigned by p(j) di-
rectly as listed in Eq. (5). In this way, the activity with higher pri-
ority would with higher value in position vectors X, once the
random key scheme is based on decreasing order, this activity
can start earlier

XðjÞ ¼ pðjÞ ð5Þ

Moreover, the LFT can be calculated based on the upper bound of
scheduling completion time, T as follows:

T ¼
XNþ1

j¼0

dj ð6Þ

Then, a traditional backward recursion computation is performed to
determine LFj for activity j. For example, an initial position vector is
X = {0.5, 0.6, 0.15, 0.9, 0.2}, where the component X(j) is computed
based on Eqs. (4) and (5). However, the drawback of LFT heuristic is
without the consideration of resource constraint.

4.4. Forward–backward improvement

The forward–backward improvement (FBI) is a scheme that
uses SGS to generate schedule by forward scheduling and back-
ward scheduling, it has been proposed by Li and Willis (1992).
The forward scheduling is applying SGS to ordinary precedence
network when scheduling, somewhat differently, the backward
scheduling would apply SGS to reversed precedence network.
Hence, in backward scheduling, the start (source) activity is activ-
ity N + 1, and the end (drain) activity is activity 0. When given an
activity list for SGS to generate schedule, it is possible that back-
ward scheduling obtains schedule different from that using for-
ward scheduling. Restated, the forward scheduling and backward
scheduling would search for solutions in different searching area
of the solution space. Some scheduling cases are appropriate by
forward scheduling, and some scheduling cases are suitable using
backward scheduling. Therefore, in some cases, the backward
scheduling outperforms forward scheduling.

In this study, the FBI is involved in the JPSO as two particle
swarms, these two particle swarms are labeled forward and back-
ward, respectively. Once a certain particle belongs to the forward
particle swarm, then the particle would generate schedule by for-
ward scheduling at each iteration, and updating velocity via those
particles in forward particle swarm, and vice versa. After all itera-
tion finished, the best solution can be obtained from both particle
swarms.

4.5. Justification and mapping

4.5.1. Justification
There is a simple and efficient scheme named ‘‘justification’’

proposed by Valls et al. (2005). The justification is simply adjusts
the start time of each activity in scheduling for shorting the make-
span. Restated, after justification, the makespan of the justified
schedule would not larger than that before justification, but even



Table 3
The pseudo-code of JPSO algorithm

JPSO algorithm

Initialize the position vector of particles by LFT
While End condition is not met

For each particle i in the forward or backward particle swarm do
Update position Xnew

i using Eq. (3) (the update rule with gbest ratio (GR))
Generating schedule S using position Xnew

i and SSGS
Double justify S and mapping it to position Xnew

i

Calculate particle’s fitness f(S)
Update Li & G

End for
End while

7106 R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111
possible shorter. Moreover, the efficiency of justification technique
has been verified, it has been applied to GA for RCPSP as hybrid ge-
netic algorithm (HGA) and performs well (Valls, Ballest, & Quinta-
nilla, 2008).

Hence, in this study, one type of justification called double jus-
tification (DJ) is combined with the PSO as the proposed JPSO for
solving RCPSP. In JPSO, the DJ is applied to double justify all solu-
tions (schedules) obtained by particles (including forward and
backward particles) in each iteration. The definitions of the justifi-
cation can be shown as follows:

1. Right (Left) justification: for a schedule with more than one
activity, sequencing these activities by finish time (start time)
of activities in decreasing (increasing) order. At each step, the
right (left) justification adjusts the start time Si of the ith activ-
ity in sequence such that the adjusted start time S0i = Si S0i 5 Si

� �
and make the S0i as large (small) as possible (still meets con-
straints). When all activities have been justified, the justifica-
tion is finished. Restated, after right (left) justification, the
start time of activities is as late (early) as possible, and once
the start (end) activity is later (earlier) than before justification,
that is, the makespan of schedule is shortened by right (left)
justification.

2. Double justification (DJ): for a schedule S after right justifica-
tion, it can be denoted as SR, and then left justifying the SR,
hence the schedule of double justification DJ(S) = (SR)L can be
obtained. The makespan of S and DJ(S) can be denoted as T(S)
and T(DJ(S)), respectively, and the most significant is that the
T(DJ(S)) 5 T(S) can be guaranteed.

Since the double justification (DJ) has double justifying opera-
tions, it can be treated as two extra schedules generated form
source schedule. In Valls et al. (2005), the DJ combined popula-
tion-based algorithms, SA and GA are simulated and evaluated.
The DJ is simple to implement and can greatly improve the quality
of the solution of RCPSP. Furthermore, the DJ is able to yield more
schedules with less execution time.

4.5.2. Mapping
In JPSO, after a particle generates new solution (schedule), the

double justification (DJ) would improve the solution quality. How-
ever, once this particle’s solution is improved by DJ, the related po-
sition vector of this particle still remains unchanged as before DJ.
And then, other particles cannot acquire the information about jus-
tified solutions while updating their velocity. Therefore, it is neces-
sary to synchronize the justified solution with the corresponding
position vector of particle. Restated, consistence between the
new generated solution by particle and the justified solution by
DJ is required.

In this study, this synchronization scheme is called ‘‘mapping’’.
This mapping scheme maps the start time of each activities of jus-
tified solution to value of position vector of particle, the mapping
function can be defined as Eq. (7):
XðjÞ ¼ ðSjÞ�1 ð7Þ
where the Sj is the start time of activity j in justified solution, if the
Sj is small, the X(j) corresponding to the activity j would be large
after mapping. Restated, a certain activity with small start time in
justified solution indicates that this activity needs to start earlier.
Hence, the corresponding component of position vector would be
associated with a lager value, and then this activity has higher pri-
ority. This mapping scheme is used for mapping the double justified
solution to the corresponding position of particle. The updated
position information of particle after mapping can then be used to
communicate with others immediately in the next iteration.

The proposed JPSO algorithm for RCPSP is summarized as
shown in Table 3.
5. Experimental results and comparisons

In this section, for comparing the JPSO to the state-of-the-art
heuristic metaheuristics, the instances in the well-known PSPLIB
(Project Scheduling Problem Library http://129.187.106.231/psp-
lib/) are used as the benchmark (Kolisch & Sprecher, 1997) and
simulated. In PSPLIB benchmark, the number of RCPSP instances
for 30, 60 activities are 480, respectively, and that for 120 activities
is 600. Hence, there are total 1560 RCPSP instances are simulated
in this study. For reasonable comparison with other studies, the
termination condition for each instance in simulation is the limits
of the number of generated solutions (schedules) such as 1000,
5000 and 50,000. Hence, the comparison among algorithms has
no concern with the performance of the hardware, programming
language and programming technique.

The simulation parameters are set as follows: once the heuris-
tics for initial solution in Section 4.3 is not activated, and then
the initial position and velocity of particles are random assigned.
And the learning factors c1 and c2 are set to 2 due to the suggested
value 2.05 in ‘‘standard’’ PSO (Bratton & Kennedy, 2007). The
remaining parameters such as the number of particles and con-
striction factor v are given either based on suggested value in
‘‘standard’’ PSO or by trial-and-error approach. Moreover, the value
for designed gbest ratio (GR) is tested by trial-and-error approach.

For comparison, the quality of solution can be obtained via the
deviation from the best so far. In Eq. (8), the DEVi is the deviation
between the obtained fitness and the ‘‘best’’ of instance i. The opti-
mal makespans for all instances in 30 activities are known; hence
the ‘‘best’’ in Eq. (8) is the optimal solution provided in PSPLIB.
However, optimal makespans for some instances in 60 and 120
activities are unknown; then lower bounds (determined by the
critical path) were used instead as the ‘‘best’’ in Eq. (8). Moreover,
ADEV is the average deviation which is obtained by averaging the
deviation of simulated instances as defined in Eq. (9)

DEVi ¼
fitnessi � besti

besti
� 100% ð8Þ
ADEV ¼
P

i2instances
fitnessi�besti

besti
� 100%

� �
jinstancesj ð9Þ

In the following paragraphs, the simulation results for instances of
30, 60 and 120 activities would be presented. Since the optimal
solutions of 30 activities are known, the OPT ADEV (average devia-
tions from optimal makespan) is used for comparison. However, the
optimal solutions of 60 and 120 activities are still undetermined,

http://129.187.106.231/psplib/
http://129.187.106.231/psplib/


R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111 7107
the CP ADEV (average deviations from critical path) is used for
comparison.

5.1. The 30 activities results

The RCPSP instances for 30 activities are labeled ‘‘J30’’. In J30,
there are 480 instances and the optimal schedules are used for
OPT ADEV (average deviations from optimal makespan) calcula-
tion. There are numerous tests with 1000, 5000 and 50,000 sched-
ules limits were experimented, part of simulation results are
displayed in Table 4. And the number of generated schedules, iter-
ations (Iter.), constriction factor v, gbest ratio (GR), number of par-
ticles in forward particle swarm (For.) and backward particle
swarm (Back.) are also listed in Table 4.

Once the LFT heuristic and mapping schemes are adopted in
simulation, they would be marked by ‘‘s’’, otherwise marked by
‘‘�’’. And the DJ column denotes whether the double justification
is applied for each solution generated by particle in each iteration.
The indication for ‘‘0’’ or ‘‘1’’ denoted that the DJ is ‘‘unused’’ or
‘‘used’’, respectively. Since the DJ would generate extra two sched-
ules, the number of generated schedules can be calculated by Eq.
(10)

Generated schedules ¼ ðFor:þ Back:Þ � ð1þ DJ� 2Þ
� Iter: 5 schedule limit ð10Þ

In Table 4, the no. 1–14 tests are limited by 1000 schedules. The
LFT heuristic is evaluated by no. 1 and 2 tests. The v is set to the
suggested 0.73 for no. 1 and 2 tests. It can be found that when
the LFT is adopted in no. 2 test, the OPT ADEV decreases appar-
ently. Moreover, DJ was involved to test the effect on the perfor-
mance. Whenever the DJ applied, only one-third iterations are
needed to acquire the same number of schedules. Better perfor-
mance of DJ was produced as indicated by the decreasing of OPT
ADEV for no. 3 through no. 5 tests in Table 4. Furthermore, the pro-
posed scheme including mapping scheme and forward–backward
improvement (FBI) were further tested. In Table 4, the no. 6
through 14 tests reveal that the further better quality solution with
Table 4
J30 simulation results.

J30:480 instances Heuristic

No. Schedules Limit Iter. v LFT

1 1000 1000 50 0.73 �
2 1000 1000 50 0.73 s

3 960 1000 16 0.73 s

4 960 1000 16 0.6 s

5 960 1000 16 0.5 s

6 960 1000 16 0.73 s

7 960 1000 16 0.6 s

8 960 1000 16 0.5 s

9 960 1000 16 0.4 s

10 960 1000 16 0.73 s

11 960 1000 16 0.6 s

12 960 1000 16 0.5 s

13 960 1000 16 0.4 s

14 960 1000 16 0.3 s

15 4920 5000 41 0.6 s

16 4920 5000 41 0.5 s

17 4920 5000 41 0.4 s

18 49,920 50,000 416 0.5 s

19 49,920 50,000 416 0.5 s

20 49,920 50,000 416 0.5 s

21 49,920 50,000 416 0.5 s

22 49,920 50,000 416 0.5 s

23 49,920 50,000 416 0.4 s

24 49,920 50,000 416 0.4 s

25 49,920 50,000 416 0.4 s

26 49,920 50,000 416 0.4 s

27 49,920 50,000 416 0.4 s
decreased OPT ADEV is also obtained as expected. However, to
evaluate the affection of v on the solution, different v values were
simulated; 0.4 and 0.5 seem to be the best v for J30 based on the
tests results, as displayed in Table 4. Restated, according to the
above experiments results, the proposed JPSO with LFT heuristic,
DJ and mapping schemes and FBI mechanism provides good per-
formance for instances of J30.

The performance of most heuristic and schemes of JPSO are ver-
ified on the basis of tests with 1000 schedules on J30. Hence,
experiments with 5000 schedules limit were performed based on
the parameter setting in no. 13 test (the best parameter setting
of tests with 1000 schedules) except for the possible best v values
and particles number. The simulation results are presented on no.
15 through 17 tests in Table 4.

In no. 18–27 tests, the number of generated schedules is set to
50,000. Hence, for verifying the effects of the gbest and lbest on
trapping in local optima under numerous iterations, experiments
were tested. The parameter GR is set to 1, 0.75, 0.5, 0.25 and 0,
respectively, associated with the possible best v values were tested
for assessment. The best simulation result of OPT ADEV 0.04% is
produced when v = 0.4 and the GR = 0, i.e., the lbest seems to con-
tribute better performance than the gbest for J30.

Moreover, for comparing the proposed JPSO with other state-of-
art algorithms demonstrated in (Kolisch & Hartmann 2006), the 30
activities simulation results are also shown in Table 5.

In Table 5, different algorithms for comparisons have been
introduced in Kolisch and Hartmann (2006), and they are ranked
according to the OPT ADEV when schedule limit is 50,000. The JPSO
proposed in this study presently ranks the 7th on the comparison
table. Although the performance of JPSO is not the best apparently,
the rating of JPSO is fairly good.
5.2. 60 activities results

The RCPSP instances for 60 activities are labeled ‘‘J60’’, and J60
also has 480 instances. However, the optimal solutions of J60 are
unknown and the provided lower bound in PSPLIB would changes
Schemes Particles OPT ADEV (%)

DJ Mapping GR For. Back.

0 � 1 20 0 1.69
0 � 1 20 0 1.13
1 � 1 20 0 0.61
1 � 1 20 0 0.61
1 � 1 20 0 0.67
1 s 1 20 0 0.50
1 s 1 20 0 0.46
1 s 1 20 0 0.35
1 s 1 20 0 0.40
1 s 1 10 10 0.52
1 s 1 10 10 0.43
1 s 1 10 10 0.34
1 s 1 10 10 0.29
1 s 1 10 10 0.38
1 s 1 20 20 0.20
1 s 1 20 20 0.14
1 s 1 20 20 0.16
1 s 1 20 20 0.07
1 s 0.75 20 20 0.06
1 s 0.5 20 20 0.06
1 s 0.25 20 20 0.06
1 s 0 20 20 0.09
1 s 1 20 20 0.17
1 s 0.75 20 20 0.14
1 s 0.5 20 20 0.13
1 s 0.25 20 20 0.07
1 s 0 20 20 0.04



Table 5
J30 comparison of different algorithms in Kolisch and Hartmann (2006) (OPT ADEV%)

Algorithm SGS Author(s) Schedule limits

1000 5000 50,000

GA, TS – path relinking Both Kochetov and Stolyar 0.10 0.04 0.00
Scatter search – FBI Serial Debels et al. 0.27 0.11 0.01
GA – hybrid, FBI Serial Valls et al. 0.27 0.06 0.02
GA – FBI Serial Valls et al. 0.34 0.20 0.02
GA – forw.–backw., FBI Both Alcaraz et al. 0.25 0.06 0.03
GA – forw.–backw. Serial Alcaraz and Maroto 0.33 0.12 –
JPSO Serial This study 0.29 0.14 0.04
Sampling – LFT, FBI Both Tormos and Lova 0.25 0.13 0.05
TS – activity list Serial Nonobe and Ibaraki 0.46 0.16 0.05
Sampling – LFT, FBI Both Tormos and Lova 0.30 0.16 0.07
GA – self-adapting Both Hartmann 0.38 0.22 0.08
GA – activity list Serial Hartmann 0.54 0.25 0.08
Sampling – LFT, FBI Both Tormos and Lova 0.30 0.17 0.09
TS – activity list Serial Klein 0.42 0.17 –
Sampling – random, FBI Serial Valls et al. 0.46 0.28 0.11
SA – activity list Serial Bouleimen and Lecocq 0.38 0.23 –
GA – late join Serial Coelho and Tavares 0.74 0.33 0.16
Sampling – adaptive Both Schirmer 0.65 0.44 –
TS – schedule scheme Related Baar et al. 0.86 0.44 –
Sampling – adaptive Both Kolisch and Drexl 0.74 0.52 –
GA – random key Serial Hartmann 1.03 0.56 0.23
Sampling – LFT Serial Kolisch 0.83 0.53 0.27
Sampling – global Serial Coelho and Tavares 0.81 0.54 0.28
Sampling – random Serial Kolisch 1.44 1.00 0.51
GA – priority rule Serial Hartmann 1.38 1.12 0.88
Sampling – WCS Parallel Kolisch 1.40 1.28 –
Sampling – LFT Parallel Kolisch 1.40 1.29 1.13
Sampling – random Parallel Kolisch 1.77 1.48 1.22
GA – problem space Mod. par. Leon and Ramamoorthy 2.08 1.59 –

Table 6
J60 simulation results.

J60:480 instances Heuristic Schemes Particles CP ADEV (%)

No. Schedules Limit Iter. v LFT DJ Mapping GR For. Back.

1 960 1000 16 0.73 s 1 s 1 10 10 13.00
2 960 1000 16 0.6 s 1 s 1 10 10 12.90
3 960 1000 16 0.5 s 1 s 1 10 10 12.72
4 960 1000 16 0.4 s 1 s 1 10 10 12.10
5 960 1000 16 0.3 s 1 s 1 10 10 12.03
6 960 1000 16 0.2 s 1 s 1 10 10 12.27
7 4920 5000 41 0.5 s 1 s 1 20 20 12.12
8 4920 5000 41 0.4 s 1 s 1 20 20 11.43
9 4920 5000 41 0.3 s 1 s 1 20 20 11.67
10 49,920 50,000 416 0.4 s 1 s 1 20 20 11.41
11 49,920 50,000 416 0.4 s 1 s 0.75 20 20 11.29
12 49,920 50,000 416 0.4 s 1 s 0.5 20 20 11.12
13 49,920 50,000 416 0.4 s 1 s 0.25 20 20 11.00
14 49,920 50,000 416 0.4 s 1 s 0 20 20 11.00
15 49,920 50,000 416 0.3 s 1 s 1 20 20 11.66
16 49,920 50,000 416 0.3 s 1 s 0.75 20 20 11.66
17 49,920 50,000 416 0.3 s 1 s 0.5 20 20 11.57
18 49,920 50,000 416 0.3 s 1 s 0.25 20 20 11.41
19 49,920 50,000 416 0.3 s 1 s 0 20 20 11.48

7108 R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111
with time as more studies involved. Hence, the lower bounds from
critical path are used as the ideal standard. Restated, CP ADEV
(average deviations from critical path) is calculated and as the ba-
sis of comparison. There are 19 test results with 1000, 5000 and
50,000 schedules limits for J60 displayed as shown in Table 6.

The performance of most heuristics and schemes has been ver-
ified in J30. In Table 6, the main tests of no. 1 through 9 tests focus
on the best v measurement. The possible best v values are 0.3 and
0.4 as the experiment results as shown in Table 6. Moreover, the
best GR was also estimated. The GR is set to 1, 0.75, 0.5, 0.25 and
0, respectively, associated with the possible best values were sim-
ulated for evaluation. The best CP ADEV 11.00% is obtained when
the v = 0.4 and GR = 0 (or GR = 0.25), i.e., for instances of J60, the
lbest seems to provide better performance than the gbest.

As stated above, the J60 simulation results are also shown in
Table 7, and these algorithms for comparisons have been also
introduced in Kolisch and Hartmann (2006), and they are ranked
according to the CP ADEV when schedules limit is 50,000. The JPSO
proposed in this study ranks the 6th on the comparison table, it
indicates that the JPSO can performs well for instances of J60.



R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111 7109
5.3. 120 activities results

The RCPSP instances for 120 activities are labeled ‘‘J120’’, it has
600 instances. And as the same as J60, the CP ADEV (average devi-
ations from critical path) can be the ideal standard for comparison.
There are 14 test results with 1000, 5000 and 50,000 schedules
limits for J120 illustrated as shown in Table 8.

In Table 8, the tests of no. 1 through 9 focus on the best v mea-
surement. The best v value is 0.3. Moreover, the best GR was also
estimated via tests of no. 10 through 14. The GR is set to 1, 0.75,
0.5, 0.25 and 0, respectively, and the best CP ADEV 32.89% is gained
when the GR = 0.25. Restated, simulation results indicate that lbest
seems to provide better performance again for instances of J120.

As J30 and J60, the J120 simulation results are also shown in
Table 9, and these algorithms for comparisons have been also
introduced in Kolisch and Hartmann (2006), and they are ranked
based on the CP ADEV when schedules limit is 50,000. The JPSO
Table 7
J60 comparison of different algorithms in Kolisch and Hartmann (2006) (CP ADEV%).

Algorithm SGS Author(s)

Scatter search – FBI Serial Debels et al.
GA – hybrid, FBI Serial Valls et al.
GA, TS – path relinking Both Kochetov and S
GA – FBI Serial Valls et al.
GA – forw.–backw., FBI Both Alcaraz et al.
JPSO Serial This study
GA – self-adapting Both Hartmann
GA – activity list Serial Hartmann
Sampling – LFT, FBI Both Tormos and Lov
Sampling – LFT, FBI Both Tormos and Lov
GA – forw.–backw. Serial Alcaraz and Ma
Sampling – LFT, FBI Both Tormos and Lov
SA – activity list Serial Bouleimen and
TS – activity list Serial Klein
TS – activity list Serial Nonobe and Iba
Sampling – random, FBI Serial Valls et al.
Sampling – adaptive Both Schirmer
GA – late join Serial Coelho and Tav
GA – random key Serial Hartmann
GA – priority rule Serial Hartmann
Sampling – adaptive Both Kolisch and Dre
Sampling – WCS Parallel Kolisch
Sampling – global Serial Coelho and Tav
Sampling – LFT Parallel Kolisch
TS – schedule scheme Related Baar et al.
GA – problem space Mod. par. Leon and Rama
Sampling – LFT Serial Kolisch
Sampling – random Parallel Kolisch
Sampling – random Serial Kolisch

Table 8
J120 simulation results.

J120:600 instances Heuristic

No. Schedules Limit Iter. v LFT

1 960 1000 16 0.73 s

2 960 1000 16 0.6 s

3 960 1000 16 0.5 s

4 960 1000 16 0.4 s

5 960 1000 16 0.3 s

6 960 1000 16 0.2 s

7 4920 5000 41 0.4 s

8 4920 5000 41 0.3 s

9 4920 5000 41 0.2 s

10 49,920 50,000 416 0.3 s

11 49,920 50,000 416 0.3 s

12 49,920 50,000 416 0.3 s

13 49,920 50,000 416 0.3 s

14 49,920 50,000 416 0.3 s
proposed in this study is presently ranked the 7th on the compar-
ison table. Restated, the proposed JPSO can solve the instances of
J120 efficiently.

The experiment results are summarized as listed in Table 10. In
Table 10, the best values of adjustable parameters v and GR used
for proposed JPSO are suggested.
6. Conclusions and discussion

This study proposes a novel JPSO scheme with designed mech-
anisms to solve the resource-constrained project scheduling prob-
lem (RCPSP). The suggested JPSO also involves the LFT heuristic,
double justification (DJ), mapping, forward and backward particle
swarms for forward–backward improvement (FBI), and adjusting
communication topology by gbest ratio (GR). And those designed
mechanisms of JPSO have been verified through the experiments.
Schedule limits

1000 5000 50,000

11.73 11.10 10.71
11.56 11.10 10.73

tolyar 11.71 11.17 10.74
12.21 11.27 10.74
11.89 11.19 10.84
12.03 11.43 11.00
12.21 11.70 11.21
12.68 11.89 11.23

a 11.88 11.62 11.36
a 12.14 11.82 11.47
roto 12.57 11.86 –
a 12.18 11.87 11.54
Lecocq 12.75 11.90 –

12.77 12.03 –
raki 12.97 12.18 11.58

12.73 12.35 11.94
12.94 12.58 –

ares 13.28 12.63 11.94
14.68 13.32 12.25
13.30 12.74 12.26

xl 13.51 13.06 –
13.66 13.21 –

ares 13.80 13.31 12.83
13.59 13.23 12.85
13.80 13.48 –

moorthy 14.33 13.49 –
13.96 13.53 12.97
14.89 14.30 13.66
15.94 15.17 14.22

Schemes Particles CP ADEV (%)

DJ Mapping GR For. Back.

1 s 1 10 10 39.30
1 s 1 10 10 39.25
1 s 1 10 10 38.96
1 s 1 10 10 37.76
1 s 1 10 10 35.71
1 s 1 10 10 36.01
1 s 1 20 20 34.82
1 s 1 20 20 33.88
1 s 1 20 20 34.36
1 s 1 20 20 33.72
1 s 0.75 20 20 33.46
1 s 0.5 20 20 33.12
1 s 0.25 20 20 32.89
1 s 0 20 20 33.21



Table 9
J120 comparison of different algorithms in Kolisch and Hartmann (2006) (CP ADEV%)

Algorithm SGS Author(s) Schedule limits

1000 5000 50,000

GA – hybrid, FBI Serial Valls et al. 34.07 32.54 31.24
GA – forw.–backw., FBI Both Alcaraz et al. 36.53 33.91 31.49
Scatter Search – FBI Serial Debels et al. 35.22 33.10 31.57
GA – FBI Serial Valls et al. 35.39 33.24 31.58
GA, TS – path relinking Both Kochetov and Stolyar 34.74 33.36 32.06
Population-based – FBI Serial Valls et al. 35.18 34.02 32.81
JPSO Serial This study 35.71 33.88 32.89
GA – self-adapting Both Hartmann 37.19 35.39 33.21
Sampling – LFT, FBI Both Tormos and Lova 35.01 34.41 33.71
Ant system Serial Merkle et al. – 35.43 –
GA – activity list Serial Hartmann 39.37 36.74 34.03
Sampling – LFT, FBI Both Tormos and Lova 36.24 35.56 34.77
Sampling – LFT, FBI Both Tormos and Lova 36.49 35.81 35.01
GA – forw.–backw. Serial Alcaraz and Maroto 39.36 36.57 –
TS – activity list Serial Nonobe and Ibaraki 40.86 37.88 35.85
GA – late join Serial Coelho and Tavares 39.97 38.41 36.44
Sampling – random, FBI Serial Valls et al. 38.21 37.47 36.46
SA – activity list Serial Bouleimen and Lecocq 42.81 37.68 –
GA – priority rule Serial Hartmann 39.93 38.49 36.51
Sampling – adaptive Both Schirmer 39.85 38.70 –
Sampling – LFT Parallel Kolisch 39.60 38.75 37.74
Sampling – WCS Parallel Kolisch 39.65 38.77 –
GA – random key Serial Hartmann 45.82 42.25 38.83
Sampling – adaptive Both Kolisch and Drexl 41.37 40.45 –
Sampling – global Serial Coelho and Tavares 41.36 40.46 39.41
GA – problem space Mod. par. Leon and Ramamoorthy 42.91 40.69 –
Sampling – LFT Serial Kolisch 42.84 41.84 40.63
Sampling – random Parallel Kolisch 44.46 43.05 41.44
Sampling – random Serial Kolisch 49.25 47.61 45.60

Table 10
The performance of JPSO for RCPSP

Schedules J30 (480 instances) J60 (480 instances) J120 (600 instances)

v GR OPT ADEV (%) v GR CP ADEV (%) v GR CP ADEV (%)

1000 0.4 1 0.29 0.3 1 12.03 0.3 1 35.71
5000 0.5 1 0.14 0.4 1 11.43 0.3 1 33.88
50,000 0.4 0 0.04 0.4 0/0.25 11.00 0.3 0.25 32.89

7110 R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111
The resulting ADEV is decreased after applying those schemes as
indicated in the experiment results. Additionally, the resulting
OPT ADEV and CP ADEV by applying JPSO are also compared with
the top state-of-art algorithms (Kolisch & Hartmann, 2006).

The efficiency of proposed JPSO for solving the resource-con-
strained project scheduling problems ranks the 7th (on average)
as demonstrated in the comparison Tables 5, 7 and 9. Hence, the
performance of proposed JPSO is stable for instances of J30, J60
and J120 in PSPLIB. Restated, the suggested JPSO scheme is an
effective and efficient algorithm for solving the class of RCPSP
problems. Meanwhile, according to the simulation results, a small
constriction factor is recommended for RCPSP instead of using sug-
gested value 0.73 in Bratton and Kennedy (2007) when the pro-
posed JPSO is applied, as indicated in Table 10. Moreover, the
designed gbest ratio (GR) is suggested to be a lower value for situ-
ation with more schedules, such as 50,000 schedules instances, as
demonstrated in Table 10.

Furthermore, some other important features of this study are
summarized below.

� The DJ is simple to implement and can greatly improve the
quality of the solution of RCPSP, i.e., shorten the resulting sche-
dule makespan. And the DJ is able to yield more schedules with
less execution time.
� The latest finish time (LFT) heuristic is used to initialize the

position vectors X. Therefore, worse solutions are excluded
before starting JPSO process; and hence more good schedules
can be obtained while under the schedules limit. Restated,
increases the probability of finding optimal solutions.
� Additionally, forward–backward improvement applying for-

ward and backward particle swarms increases the efficiency
while searching for the optimal solution in different area in
the solution space. Therefore, more optimal solutions can be
yielded.

This study mainly focuses on the solving of RCPSP. In the future,
the more complex conditions or situations could be considered,
such as the preemptive activity setting, setup time between
activities when they are in certain situation, and even the commu-
nication cost between two activities due to some relationship of
them. Furthermore, there are many studies have been applied on
the more general type RCPSP, i.e., the multi-mode resource-
constrained project scheduling problem (MRCPSP). Hence, the
MRCPSP is also the significant topic for the future study, the more
schemes for improving the solution of RCPSP and MRCPSP is the
main goal we are pursuing.
Acknowledgements

This work was partly supported by the National Science Coun-
cil, Taiwan (ROC), under contract NSC 97-2511-S-167-004-MY3.



R.-M. Chen / Expert Systems with Applications 38 (2011) 7102–7111 7111
References

Blazewicz, J., Lenstra, J. K., & Rinooy Kan, A. H. G. (1983). Scheduling subject to
resource constraints: Classification and complexity. Discrete Applied
Mathematics, 5, 11–24.

Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm
for the resource-constrained project scheduling problem and its multiple mode
versions. European Journal of Operational Research, 140(2), 268–281.

Bratton, D., & Kennedy, J. (2007). Defining a standard for particle swarm
optimization. In 2007 IEEE swarm intelligence symposium, SIS 2007 (pp. 120–
127).

Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998). A branch and bound algorithm
for the resource-constrained project scheduling problem. European Journal of
Operational Research, 107, 272–288.

Buddhakulsomsiri, J., & Kim, D. S. (2007). Priority rule-based heuristic for multi-
mode resource-constrained project scheduling problems with resource
vacations and activity splitting. European Journal of Operational Research, 178,
374–390.

Chen, T., Zhang, B., Hao, X., & Dai, Y. (2006). Task scheduling in grid based on particle
swarm optimization. In The 5th international symposium on parallel and
distributed computing, 2006 (ISPDC ‘06) (pp. 238–245).

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53–66.

Edward, W. D., & James, H. P. (1975). A comparison of heuristic and optimum
solutions in resource-constrained project scheduling. Management Science,
21(8), 944–955.

Glover, F. (1989). Tabu search – Part I. Orsa Journal on Computing, 1(3),
190–206.

Glover, F. (1990). Tabu search – Part II. Informs Journal on Computing, 2, 4–32.
Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under

resource constraints. Naval Research Logistics, 49, 433–448.
Hartmann, S., & Kolisch, R. (1999). Heuristic algorithms for solving the resource-

constrained project scheduling problem: Classification and computational
analysis. In J. Weglarz (Ed.), Project scheduling. Recent models, algorithms and
applications (pp. 147–178). Boston, MA: Kluwer Academic Publishers.

Holland, John H. (1987). Genetic algorithms and classifier systems: Foundations and
future directions. In Proceedings of the second international conference on genetic
algorithms on genetic algorithms and their application (pp. 82–89).

Hou, Z., Zhou, X., & Wang, Y. (2006). An application-oriented on-demand scheduling
approach in the computational grid environment. In The 5th international
conference on grid and cooperative computing (GCC 2006), pp. 66–70.

Jalilvand, A., Khanmohammadi, S., & Shabaninia, F. (2005). Scheduling of sequence-
dependant jobs on parallel multiprocessor systems using a branch and bound-
based Petri net. Emerging technologies. In Proceedings of the IEEE symposium
(pp. 334–339).

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE international
conference on neural networks, 1995. Proceedings (Vol. 4, pp. 1942–1948).

Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598), 671–680.

Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for
resource-constrained project scheduling: An update. European Journal of
Operational Research, 174, 23–37.
Kolisch, R., & Sprecher, A. (1997). PSPLIB – A project scheduling problem library: OR
software – ORSEP operations research software exchange program. European
Journal of Operational Research, 96, 205–216.

Li, C., & Bettati, R., & Zhao, W. (1997). Static priority scheduling for ATM networks.
In 18th IEEE real-time systems symposium (RTSS ‘97) (pp. 264–273).

Li, K. Y., & Willis, R. J. (1992). An iterative scheduling technique for resource-
constrained project scheduling. European Journal of Operational Research, 56,
370–379.

Liu, Z., & Wang, S. (2006). Hybrid particle swarm optimization for permutation flow
shop scheduling. In The 6th world congress on intelligent control and automation,
2006. WCICA 2006 (pp. 3245–3249).

Liu, L., Yang, Y., Shi, W., Lin, W., & Li, L. (2005). A dynamic clustering heuristic for
jobs scheduling on grid computing systems. In First international conference on
semantics, knowledge and grid (SKG ‘05).

Lo, S. T., Chen, R. M., Huang, Y. M., & Wu, C. L. (2008). Multiprocessor system
scheduling with precedence and resource constraints using an enhanced ant
colony system. Expert Systems with Applications, 34(3), 2071–2081.

Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for
resource-constrained project scheduling. IEEE Transactions on Evolutionary
Computation, 6, 333–346.

Ohki, M., Morimoto, A., & Miyake, K. (2008). Simulated annealing algorithm for
scheduling problem in daily nursing cares. In 2008 IEEE international conference
on systems, man and cybernetics (pp. 1681–1687).

Park, H. S., Kim, H. O., Kim, D. S., & Kwon, W. H. (2002). A scheduling method for
network-based control systems. IEEE Transactions on Control Systems Technology,
10(3), 318–330.

Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. Circuits and
Devices Magazine, IEEE, 5, 19–26.

Saksornchai, T., Lee, W., Methaprayoon, K., Liao, J. R., & Ross, R. J. (2005). Improve
the unit commitment scheduling by using the neural-network-based short-
term load forecasting. IIEEE Transactions on Industry Applications, 41(1),
169–179.

Simonov, S., & Simonovov’a, J. (2002). Simulation scheduling in food industry
application. Czech Journal on Food Science, 20(1), 31–37.

Symington, K. J., Waddie, A. J., Taghizadeh, M. R., & Snowdon, J. F. (2003). A neural-
network packet switch controller: Scalability, performance, and network
optimization. IEEE Transactions on Neural Networks, 14(1), 28–34.

Thomas, P. R., & Salhi, S. (1998). A tabu search approach for the resource constrained
project scheduling problem. Journal of Heuristics, 4(2), 123–139.

Valls, V., Ballest, F., & Quintanilla, S. (2005). Justification and RCPSP: A technique
that pays. European Journal of Operational Research, 165, 375–386.

Valls, V., Ballest, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the
resource-constrained project scheduling problem. European Journal of
Operational Research, 185(2), 495–508.

Vejzovic, Z., & Humo, E. (2007). A software solution for a mathematical model of
classroom-period schedule defragmentation. EUROCON: The International
Conference on Computer as a Tool, 2034–2038.

Zhang, H., Li, H., & Tam, C. M. (2006). Particle swarm optimization for resource-
constrained project scheduling. International Journal of Project Management,
24(1), 83–92.

Zhang, C., Sun, J., Zhu, X., & Yang, Q. (2008). An improved particle swarm
optimization algorithm for flowshop scheduling problem. Information
Processing Letters, 108(4), 204–209.


	Particle swarm optimization with justification and designed mechanisms for resource-constrained project scheduling problem
	Introduction
	Resource-constrained project scheduling problem (RCPSP)
	The particle swarm optimization (PSO)
	Justification particle swarm optimization (JPSO) for solving resource-constrained project scheduling problem (RCPSP)
	Communication topology adjusting
	Schedule generation schemes and encoding scheme
	Schedule generation schemes (SGS)
	Encoding scheme

	Priority rule based heuristics for initial solution
	Forward–backward improvement
	Justification and mapping
	Justification
	Mapping


	Experimental results and comparisons
	The 30 activities results
	60 activities results
	120 activities results

	Conclusions and discussion
	Acknowledgements
	References


