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a b s t r a c t

Multiprocessor real-time scheduling is an important issue in many applications. A neural
network provides a highly effective method to obtain good solutions for real-time sched-
uling problems. However, multiprocessor real-time scheduling problems include multiple
variables; processor, process and time, and the neural networks have to be presented in
three dimensions with these variables. Hence, the corresponding neural networks have
more neurons, and synaptic weights, and thus associated network and computational com-
plexities increase. Meanwhile, a neural network using the competitive scheme can provide
a highly effective method with less network complexity. Therefore, in this study, a simpli-
fied two-dimensional Hopfield-type neural network using competitive rule is introduced
for solving three-dimensional multiprocessor real-time scheduling problems. Restated, a
two-dimensional network is proposed to lower the neural network dimensions and
decrease the number of neurons and hence reduce the network complexity; an M-out-of-
N competitive scheme is suggested to greatly reduce the computational complexity. Sim-
ulation results reveal that the proposed scheme imposed on the derived energy function
with respect to process time and deadline constraints is an appropriate approach to solving
these class scheduling problems. Moreover, the computational complexity of the proposed
scheme is greatly lowered to O(N � T2).

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Generally speaking, scheduling problems are seen as involving allocation of resources (like machines or processors) to
execute a set of activities (like processes or tasks) satisfying given constraints and optimizing given criteria. Processes or
tasks have time constraints, like ready time, execution time, precedence, and deadline. A scheduling algorithm determines
a schedule for a set of processes, satisfying the prerequisite constraints. Scheduling problems differ markedly from case to
case. Many different types of scheduling problems are widely studied such as job-shop, flow-shop, open-shop, task assign-
ment, real-time, and other scheduling problems. Among these scheduling problems, the flow-shop problem (FSP), resource-
constrained project scheduling problem (RCPSP), and real-time scheduling problem have recently attracted the attention of
many researchers. The FSP has been studied by many researchers [1–5] and is a real world combinational optimization (CO)
problem The FSP considers that a set of independent jobs has to be assigned to run on a set of different machines. Every job
requires a given fixed, non-negative processing time on every machine. In a flow-shop, all jobs are to be processed on all the
machines in the same order, that is, the jobs follow the same machine order in the shop starting from the first machine and
finishing on the last machine. Meanwhile, RCPSP is an interesting scheduling problem which includes both resource and
precedence constraints [6–9]. There are different types of resources available in a RCPSP system. The resource constraints
. All rights reserved.
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assume that the total amount of a resource type required by scheduled activities cannot exceed available quantity at any
time. A feasible schedule is an assignment of activities to processors such that an activity comes in the schedule when all
of its predecessors have finished. Additionally, the real-time scheduling problem is concerned with all activities in the sys-
tem having to be finished prior to the task-specific deadline. The real-time scheduling problem is at the heart of many sched-
uling problems in various applications. Examples of real-time scheduling include: nuclear power plant control systems,
traffic control systems, flight mission control systems, and embedded tactical systems for military applications. Failure to
meet the timing constraints in such systems not only degrades the system but is also dangerous. Therefore, the real-time
scheduling algorithm is a vital component of these systems. Many applications involve scheduling notion, such as generating
unit planning of power plants [10], grid computing [11,12], control systems [13], the food industry [14], network packet
switching [15], museum visitor routing problem [16], transit vehicle scheduling problem [17], classroom arrangement
[18] and manpower scheduling [19]. However, most scheduling problems are confirmed to be NP-complete problems. Hence,
many schemes have been developed to solve a variety of scheduling applications. Heuristics like the (shifted) shortest pro-
cessing time ((S) SPT), shortest remaining processing time (SRPT) and the earliest deadline first (EDL) policies are often used
for system scheduling [20–22]. Approximation techniques [23,24], iterative search techniques such as the Tabu Search
[25,26], and Genetic Algorithms [27,28] have been applied to various scheduling problems. Moreover, ant colony optimiza-
tion (ACO) is frequently utilized to solve various scheduling problems [29,30]. Additionally, an immune algorithm (IA) was
used to tackle complex problems and produce a reasonable manufacturing schedule within an acceptable time [31]. More
recently, particle swarm optimization (PSO) based schemes have become popular algorithms for solving scheduling prob-
lems [32,33]. However, most of the above approaches require adequate parameter settings, and have difficulty providing
good solutions as the problem size grows. Additionally, the advancement of hardware and software technologies enables
neural networks to be applied to exploding NP-complete problems [34]. In one study [35], two neural network models
are integrated to solve multiprocessor (parallel resources) deadline problems. Feng et al. applied generic neural networks
to solve independent and non-preemptive tasks with deadline requirements for real time scheduling problems [36]. Neural
networks have been widely applied to many different fields such as engineering, physics, mathematics, computer science
and medicine. Moreover, neural networks have been applied to various real-world applications including: prediction and
forecasting, control, clustering, speech recognition, pattern recognition, classification, grid computing, scheduling, etc. Re-
stated, neural networks have attracted the attention of many researchers. Meanwhile, a neural scheduler has a very fast con-
vergence rate. Hence, various neural networks related investigations are presented for solving different scheduling problems.
Shen and Wang used a neural network to explore a satellite broadcast scheduling problem [37]. Moreover, Wang and Zhao
[38] also presented a Hopfield type neural network for packet scheduling algorithm in the HSDPA System. Ma et al. [39] pro-
vided an efficient method for power-line communication channel based on neural networks.

Most studied scheduling problems (such as job-shop, flow-shop, MRCPSP, task assignment, and some soft real-time prob-
lems) are focused on minimizing the maximum completion time (makespan) or minimizing tardiness. Nevertheless, the ma-
jor concern of real-time task scheduling is to meet task deadline constraints rather than optimizing a given target. Restated,
any solution satisfying the system constraints (processing time, deadline, etc.) is a solution of the studied real-time sched-
uling problem. Moreover, most studied real-time scheduling problems consider that jobs can be executed on a single ma-
chine with one resource only [22,40,41]. Additionally, many real-time scheduling problems consider only non-preemptive
activities within the scheduling system [24,35,36]. In some multiprocessor systems, for instance, the display system on an
advanced avionics system may consist of two or more display processors. Each processor is responsible for different tasks
containing the timing constraint without allowing task migration between processors. To facilitate the pilot’s control action,
all tasks must be properly scheduled to provide the pilot with useful information. Otherwise, a hazardous situation becomes
inevitable. Therefore, this study focuses mainly on resolving the generic problem similar to the above situation.

In this study, a multiprocessor real-time scheduling problem involving preemptive multi-processing with processing
time, deadline constraints, and no process migration allowed is investigated. An integrating competitive mechanism with
modified Hopfield type two-dimensional neural network scheme leading to simplified structure and less computational
complexity is constructed for solving applicable real-time scheduling problems.

Hopfield and Tank employed neural networks to solve optimization problems involving constraint satisfaction. Thus,
many researchers have applied this method to various applications [42,43]. Our previous work [44] also solved multiproces-
sor schedule problems based on the typical Hopfield neural network.

A competitive Hopfield neural network applies a competitive learning mechanism instead of using deterministic rules to
update the neuron states in the network. A competitive scheme provides a highly effective method with less network struc-
ture complexity and has been applied in various fields. A typical competitive neural network scheme was applied to the
scheduling problem in Chen and Huang [45]. Including the 1-out-of-N competitive architecture into the network to assist
in problem solving has a unique activated neuron in each column or row of the network. Hence, the energy function is sim-
plified and the network complexity is lowered. Nevertheless, the used neural networks are usually built in three or more
dimensions as the application problems have multiple variables. Similarly, the studied multiprocessor real-time scheduling
problems also have multiple variables: processor, processes and time. Therefore, the corresponding neural networks have
three or more dimensions [44,45]. A three-dimensional neural network then has more neurons and synaptic weights as
the problem size increases. Furthermore, the computation time of neuron state updates depends on the number of neurons
and interconnections between them. Restated, three-dimensional neural networks yield high network complexity as well as
computational complexity. Accordingly, the performance of a neural scheduler is limited on large scale problems.
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In light of the above mentioned developments, this work explores the scheduling problems in multiprocessor real-time
systems, including processing time and deadline constraints. A scheduling problem with multiple variables is represented by
our suggested two-dimensional neural network structure. This two-dimensional neural network is then sent to an M-out-of-
N competitive algorithm to determine the neuron states and obtain the solution. Moreover, an associated energy function is
designed to illustrate the timing constraints. Hence, the studied scheduling problem is then aimed at minimizing this de-
signed energy function. Consequently, a proposed M-out-of-N competitive neural network can be employed to calculate
the weighting and threshold matrices, and a solution can be derived using the M-out-of-N competition processes. The sim-
ulation results show that the proposed method can provide a highly effective method with less network complexity and low
computational complexity in solving multiprocessor real-time scheduling problems. Moreover, the proposed model can be
extended to solve scheduling problems with more complex, multiple constraints.

The rest of this paper is organized as follows: Section 2 derives the corresponding energy function of the scheduling prob-
lem according to the intrinsic constraints. Section 3 reviews the M-out-of-N competitive algorithm and translates the derived
energy functions to the proposed algorithm. The computational complexity of the presented model is analyzed in Section 4.
The simulation examples and experimental results are presented in Section 5. Finally, conclusions and suggestions for future
work are given in Section 6.

2. Energy formulation of two-dimensional neural networks

The scheduling problem domain to be considered in this paper is defined as follows. Assume that there are N processes
and M processors in the system. First, a process can be segmented, and the execution of each process is preemptive. Second,
the various segments of a process cannot be assigned to different machines. Third, each process’s execution time and dead-
line are predetermined.

This study involves the optimization application of neural networks to solve real-time scheduling problems including
three variables: job (or process), machine (or processor), and time. These three variables are the axes in three-dimensional
networks and a neuron state is represented by Vijk as shown in Fig. 1. This Vijk state variable is defined as representing
whether or not process i is executed on processor j at a specific time k. The activated neuron Vijk = 1 denotes that the process
i runs on processor j at time k; otherwise, Vijk = 0. In this investigated scheduling problem, N is the total number of processes
to be scheduled, M denotes the total number of processors to be operated, and T is the job’s deadline. Thus, the total neurons
in the three-dimensional neural network are N �M � T.

A three-dimensional neural network can be visualized as a neural network which is composed of M layers (M 2-
dimensional neural networks); each layer contains N � T neurons. In this work, those M layers are overlapped and become
one layer network. Restated, the total neurons in the resulting one layer two-dimensional neural network are (N � T). The
compressed two-dimensional neural networks for the scheduling problem require only two variables: process and time.
These two variables are the axes n the two-dimensional networks, and Vik or Vxz represents the neuron state as shown in
Fig. 2. The x-axis denotes the process variable, with i representing a specific process with a range from 1 to N, where N is
the total number of processes to be scheduled. The z-axis denotes the time variable, with k representing a specific time which
should be less than or equal to T, where T is the job’s deadline. Thus, a state variable Vik is defined as representing whether or
not process i is being executed at a certain time k. The activated neuron Vik = 1 denotes that the process i runs on a processor
at time k; otherwise, Vik = 0. Each Vik corresponds to a neuron of the two-dimensional neural network. The defined neuron
state Vik or Vxz is then used to construct the energy function which is made up of three energy terms stated as follows. The
first energy term expresses the M-out-of-N constraint, since M processors can run a maximum of M processes at a certain
time k. If M processes among N total processes are handled on associated M processors at time k (Vik = 1), then there can
be no other processes (N-M) handled at time k. This energy is defined as
x (process)

y (processor)

z (time)

i

j

k

Vijk
(0/1)

Fig. 1. 3-D neural networks.
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Fig. 2. A condensed 2-D neural network by overlapping multiple neural networks.
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where N, M, T, i, k, and Vik are defined as above. The rest of this study employs the same notations. This term has a minimum
value of zero when it meets this M-out-of-N constraint, which arises when

PN
i¼1Vik ¼ M. The second energy term is defined as
XN

i¼1

XT

k¼1

Vik � Pi

 !2

; ð2Þ
where Pi is the total execution time needed by process i. This energy term indicates that the time consumed by process i must
equal Pi, such that

PT
k¼1Vik ¼ Pi and Eq. (2) becomes zero. The following energy term is defined to meet the real-time require-

ment of each process i:
XN

i¼1

XT

k¼1

VikD2
ikHðDikÞ;

HðDikÞ ¼
1; if Dik > 0;
0; if Dik 6 0;

�
; Dik ¼ k� di;

ð3Þ
where di is the deadline of process i and H(Dik) is the unit step function. The energy term will exceed zero when a segment of
the process is assigned to run at a time later than di, i.e., when Vik = 1, k � di > 0, and hence H(Dik) > 0. Therefore, the energy
value grows exponentially with the associated time lag between k and di, given by k-di. Conversely, this energy term has a
value of zero if Vik = 1 and k-di 6 0. Accordingly, the energy function corresponding to the studied scheduling problem with
all constraints can be derived, as shown in Eq. (4).
E ¼ C1
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VikD2
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C1, C2, and C3 represent weighting factors which are assumed to be positive constants. Based on the discussion above, the
derived energy function has a minimum value of zero when all constraints are met.

3. M-out-of-N competitive algorithm

In this section, the scheduling problem and the defined energy function are mapped onto the M-out-of-N competitive
neural networks to yield solutions.

Hopfield and Tank originally used the neural network method to solve optimization problems [46]. The Hopfield neural
network (HNN) algorithm is based on the gradient technique to get the problem’s solution and thus provide rapid conver-
gence. Based on the Dynamic system theory, the Lyapunov function used in HNN as shown in Eq. (5) has verified the
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existence of stable states of a network system. Restated, the derived energy function representing the scheduling problem
must be in the same format as the Lyapunov function when applying HNN. The Lyapunov function used in a two-dimen-
sional HNN model is shown as below.
E ¼ �1
2

X
x

X
z

X
i

X
k

VxzWxzikVik þ
X

i

X
k

hikVik; ð5Þ
Vxz and Vik denote the neuron states; Wxzik represents the synaptic weight indicating the interconnection strength among
neurons. The hik denotes the bias input of the neuron (i,k). Additionally, the conventional HNN uses the deterministic rule
displayed in Eq. (6) to update the neuron state. This deterministic rule is
Vnþ1
ik ¼

1; if Netik > 0;
Vn

ik; if Netik ¼ 0;
0; if Netik < 0:

8><
>: ð6Þ
Restated, the neuron state is decided by the Netik value. The Netik represents the net value of the neuron (i,k) obtained
using the interconnection strength Wxzik to the other neurons (x,z) and the bias input hik. The Netik definition is as follows.
Netik ¼ �
@E
@Vik

¼
X

x

X
z

Wxzik � hik: ð7Þ
Instead of applying conventional deterministic rules to update the neuron states, this study uses the competition rule to
decide the active neurons among a set of neurons. Instead of using a deterministic rule, an M-out-of-N competitive rule is
adopted in this work to meet neural network evolution while satisfying constraints. The M-out-of-N constraint indicates that
‘‘exactly M neurons among N neurons’’ should be activated when the network reaches a stable state. Restated, the number of
activated neurons during each time unit has to be exactly the same as the number of processors when the neural network
reaches a convergent state. This M-out-of-N Competitive Hopfield Neural Network is referred to as MCHNN herein.

Since at a specific time, M processors can at most execute M processes in a subject scheduling problem, the first C1 energy
term can be handled implicitly while applying the M-out-of-N competitive rule. Restated, the first C1 energy term can be
omitted from the energy function Eq. (4) and a simplified energy function is generated. The resulting energy function after
simplification is given as follows:
E ¼ C2
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Therefore, the synaptic interconnection strength Wxzik and the bias input hik corresponding to HNN can be obtained by com-
paring Eq. (8) with Eq. (5) where
Wxzik ¼ �C2dðx; iÞ ð9Þ
and
hik ¼ �C2Pi þ
C3

2
D2

ikHðDikÞ; ð10Þ
respectively, where
dða; bÞ ¼
1 if a ¼ b;

0 if a – b;

�
is the Kronecker delta function:
The MCHNN imposes an M-out-of-N competitive rule to update the neuron states. Neurons in the same column at a given
time compete with one another to determine the activated neurons. According to net value, the M neurons corresponding to
the largest M net values in a column are selected as the activated neurons of a network. Accordingly, the output states of the
activated neurons are set to 1, and the output states of all the other neurons in the same column are set to 0. The neuron state
update of the proposed M-out-of-N competitive rule for the kth column is illustrated as follows:
Vik ¼
1; if Netik 2 Ranks among the M largest;
0; otherwise :

�
ð11Þ
Restated, the neuron (i,k) is set to activated (Vik = 1) if the corresponding net value Netjk is one of the largest M net values.
For example, there are four jobs to be processed in two processors as displayed in Fig. 2. Suppose that processes 2 and 3 are
assigned to run at the same specific time, k. Then, the net values, Net2k and Net3k corresponding to neurons (2,k) and (3,k) are
the 2 largest net values in the same column. Therefore, the final network state has exactly two neurons at a time. The acti-
vated neurons (Vik = 1) are shown by solid nodes in Fig. 2. The term Netjk denotes the net value of neuron (j,k).
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4. Computational complexity

The main advantage of artificial neural networks is that few iterations are needed to find an optimal solution. However, an
iteration involves the state update computations of all neurons in the networks. Meanwhile, the computation time of each
neuron update is proportional to the number of connections to that neuron. Restated, network and computational complex-
ities decide the execution time of each iteration. Thus, great effort has been made to seek better algorithms and thereby
reduce these complexities.

Within three-dimensional neural networks, the number of neurons in the network is (N �M � T). The suggested two-
dimensional neural network in this study consist of only (N � T) neurons. Hence, the bounded computational network com-
plexity is reduced to O(N � T) in this approach. Moreover, reducing the number of neurons in the network further decreases
the number of connections to each neuron. The computation time of each neuron update is related to the interconnections
among neurons. Hence, the yield computation time for each neuron is proportional to (N �M � T) in three-dimensional neu-
ral networks. However, this work proposed two-dimensional neural networks, which lowers the interconnections to (N � T)
for each neuron. Accordingly, the computation time for each iteration is equal to the total number of neurons (N � T) times
the computational time of each neuron (N � T) which makes the upper bounded computational complexity O(N2 � T2).

Nevertheless, the scheduling algorithm may need to invest very significant computation time to determine the proper
synaptic weight (interconnection) strengths and neural biases. The programming complexity is defined as the number of
arithmetic operations that must be performed to determine these synaptic weight strengths and neural biases for the prob-
lem to be solved. For example, for a combinatorial optimization problem known as the Hitchcock problem to be solved on a
neural network, the program must re-determine the interconnection strengths and/or neural biases each time the program
computes new net values and decides the new neuron states. This is because the computation of interconnections and/or
neural biases involves data terms (neuron states), and in such an environment the programming complexity becomes an
important measure of the efficiency of neural computing. However, the programming complexity in this investigation is
ignored, since the computation of the interconnection strengths and neural biases does not depend on the data terms as
displayed in Eqs. (9) and (10). Restated, the interconnection and neural biases need not be re-determined for each iteration,
thus the proposed scheme is independent of programming complexity.

Eq. (4) is the energy function for the two-dimensional HNN. The synaptic weight yielded based on Eq. (4) is Wxzik = �C1d-
(x, i) � C2d(z,k). Thus, the number of interconnections of each neuron is (N + T), and the computational complexity is
O((N � T)(N + T)). However, the synaptic weight of the proposed scheme is Wxzik = �C2d(z,k) as displayed in Eq. (9), which
is derived from the simplified energy function of Eq. (8). Restated, the method developed in this study further reduces
the interconnections to T, and therefore the computational complexity is O(N � T2) instead of the upper bounded value of
O(N2 � T2). One iteration involves updating every neuron’s state within the neural network. Moreover, an important feature
of an investigated scheduling algorithm is its efficiency or performance, i.e., how its calculation time increases with the prob-
lem size. Finding the solution for a large-scale (very large N and/or very large M) scheduling problem is very time-consuming
when a three-dimensional neural network is applied. The computational complexity for a three-dimensional network is pro-
portional to O((M2 � N � T)(N + T)). However, this algorithm resulted in a significantly smaller computational complexity of
O(N � T2), an obviously more effective method especially for large-scale scheduling problems.
Table 1
Three simulation cases.

Time required Time limit

(a) Case1
Process1 4 6
Process2 3 4
Process3 3 6
Process4 2 3

(b) Case2
Process1 2 3
Process2 5 8
Process3 3 4
Process4 4 8
Process5 2 5

(c) Case3
Process1 5 10
Process2 3 5
Process3 3 9
Process4 2 5
Process5 3 9
Process6 2 6
Process7 3 10
Process8 2 5
Process9 3 9
Process10 4 10
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5. Experimental simulations

The simulations involve classes of scheduling problems with timing constraints. Several different timing constraints and
various weighting factors were applied. Table 1 shows the different timing constraints of the simulation examples. Cases 1
and 3 are the same simulation examples as performed in [45]. Finally, the resulting overlapped neural network is decom-
posed into M neural networks. To decompose overlapped neural networks, a job sequence set is maintained for the jobs
to be scanned. Restated, scanning the active neuron of a job in the job sequence set by time step identifies a process to
be allocated to a processor. A job is identified as exactly M processes at specific time. Then, this identified job number is
put into the end of the job sequence set for further scanning. Meanwhile, a scanned job will be removed from the job se-
quence set. The job scanning process for identification stops when the job sequence set is empty. The simulation results
are displayed by using Gantt charts to graphically represent the process schedules. Figs. 3–5 illustrate the resulting schedules
Processor1 P2 P2 P3 P2 P3 P3

Processor2 P1 P4 P4 P1 P1 P1

(a)

Processor1 P2 P2 P3 P2 P3 P3

Processor2 P1 P4 P4 P1 P1 P1

(b)

Fig. 3. Simulation results of case 1 with different initial states.

Processor1 P3 P3 P3 P2 P2 P2 P2 P2

Processor2 P1 P5 P1 P4 P5 P4 P4 P4

(a) 

Processor1 P3 P3 P3 P2 P2 P2 P2 P2

Processor2 P1 P5 P1 P4 P5 P4 P4 P4

(b)

Fig. 4. Simulation results of case 2 with different initial states.

Processor1 P6 P1 P3 P1 P1 P6 P3 P3 P1 P1

Processor2 P2 P2 P10 P5 P2 P10 P10 P5 P5 P10

Processor3 P4 P4 P8 P9 P8 P9 P7 P9 P7 P7

(a)

Processor1 P6 P6 P9 P9 P1 P1 P1 P9 P1 P1

Processor2 P2 P2 P2 P10 P10 P10 P3 P3 P3 P10

Processor3 P8 P5 P6 P8 P6 P5 P5 P7 P7 P7

(b)

Fig. 5. Simulation results of case 3 with different initial states.



Fig. 6. Energy evolutions of the simulation cases.

Fig. 7. Simulation results of the two studied methods.
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Table 2
Computational complexity comparison between different methods.

3-D HNN in [44] 3-D CHNN in [45] 2-D HNN 2-D M-out-of-N competitive HNN

Energy terms 6 5 3 2
Neurons N �M � T N �M � T N � T N � T
Interconnections O(N �M � T) O(N �M � T) O(N + T) O(T)
Computational complexity O((N �M2 � T)(N + T)) O((N �M2 � T)(N + T)) O((N � T)(N + T)) O(N � T2)
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of cases 1 to 3 for the proposed algorithm. In these figures, P1 represents process 1, P2 indicates process 2, and so on. More-
over, different initial neuron states were simulated to better understand the response of the neural network to the sched-
uling problem, and Figs. 3–5 also display such cases. Additionally, Fig. 6 shows the significant parts of the energy curves
during neural network evolution, as well as that the initial states are all set to all 0 or 1 for the three studied cases. Different
initial states of neurons will all still generate feasible solutions. Moreover, in order to probe the feasibility and computational
efficiency of the proposed scheme for large-scale problems, the simulation cases are set from 10 processes to 100 processes
with intervals of 10 processes, on two processors. Each case is carried out 10 times to calculate its average iteration number.
The same cases are also examined with HNN. Fig. 7 shows the comparison of simulation results between two methods which
are two-dimensional HNN and the proposed M-out-of-N competitive HNN in the study; they are denoted as 2-D HNN and
2-D MCHNN respectively in the figure. Finally, Table 2 lists the comparison among the number of neurons, connections
and computational complexity in different schemes.

In the simulations, each process has the constraints of a processing time and deadline, which were given in advance.
These results show that the proposed scheme can solve real-time process scheduling problems with multiple constraints.

6. Conclusions and discussion

The simulation results demonstrated some significant consequences when applied to the scheduling domain. These were
as follows:

(1) The proposed M-out-of-N competitive scheme simplifies the three-dimensional neural network problem into a two-
dimensional neural network. Restated, the two-dimensional MCHNN is able to solve multi-variable real-time system
scheduling problems. Additionally, weighting factor determination is a laborious task, and the reduction of energy
terms by the M-out-of-N competitive rule can assist in easing this burden.

(2) The competitive scheme eliminated the M-out-of-N constraint term in the energy function, simplifying the network
structure by reducing the interconnections among neurons. Hence, the competitive scheme can help overcome scaling
problems.

(3) Convergence is almost independent of the large number of processes as shown in Fig. 7. Thus, the model adopted in
this approach is more effective for large scale problems.

(4) Convergence is initially state dependent, as displayed in Fig. 6. Distributing the initial states randomly can generally
produce feasible schedules for the investigated scheduling problem.

(5) The entailed synaptic weight matrix in Eq. (9) has a symmetric (i.e., Wxzik = Wikxz) property, and nevertheless has a self-
feedback interconnection, indicating that Wxzik – 0. Therefore, the network may oscillate during evolution.

(6) Moreover, the computational complexity of the proposed scheme for the investigated scheduling problem in this work
is greatly reduced to O(N � T2) for one iteration.

The parameter most relevant to the time a neural network takes to find a solution is the number of iterations needed to
converge to a solution. According to the simulation results, the proposed algorithm required an average of 5 � 25 iterations
to converge. The energy function proposed herein works efficiently and can be applied to similar cases of scheduling prob-
lems as long as the processes are independent, without requiring communication or utilizing memory resources to exchange
data. However, the required network implementation depends on the intended application.

This work focuses on full processor utilization scheduling, in that the number of activated processes at a specific time unit
is equal to the total number of processors. However, full process utilization is a limited situation. To apply the proposed
scheme to non-full utilization cases, some extra neurons can be added to the networks to satisfy this inequality constraint.
The added neurons are called slack neurons. Restated, the presented M-out-of-N competitive scheme combined with slack
neurons suggests that the way to apply the scheduling problems have inequality constraints [7]. However, the proposed
scheme concept allows expansion in any of the two-dimensional neural networks, and it can readily be adopted for any
number of processes and any number of processors. Moreover, this work concentrated mainly on solving process scheduling
without ready time consideration or resource constraints. For more practical implementations, different and more compli-
cated scheduling problems can be further investigated in future research by applying the proposed algorithm. Such problems
include preemptive multi-process scheduling on multiprocessor systems with multiple constraints, such as deadline and re-
source constraints, or processes with precedence relationships and synchronization considerations. The problem can be fur-
ther extended to involve the temporal relationship of ready time, priority for each process or temporal relationship of



6388 R.-M. Chen / Applied Mathematics and Computation 217 (2011) 6379–6389
required resources for each process. Correspondingly, it is possible to modify the energy function in our work by using addi-
tional energy terms to satisfy any further requirements. Future research endeavors should address these issues more
thoroughly.
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