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a b s t r a c t

Nonlinear behavior and the chaos suppression problem are studied in a coronary artery
chaotic system. Based on the variable structure control (VSC) theory, the sliding mode
control scheme is used to design a chaos suppression controller in this study. A suitable
sliding surface is selected to ensure a sliding mode motion of error states when the
proposed control law is applied. As expected, the error state drives to zero with matched
external uncertainties or into a predictable neighborhood of zero with mismatched
external uncertainties. Therefore, suppressing the abnormal chaotic behavior of a coronary
artery system to a normal unstable periodic orbit of the nominal coronary artery system
can reduce the occurrence of heart disease. A modified continuous sliding mode controller
is also proposed to avoid chatter. Illustrative examples are given to demonstrate the
superiority of the proposed approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear science combined with biomedical engineering has yielded major advances in many areas of biological
and medical research, including ecology, brain function, the nervous system, macromolecular theory, and pathological
phenomena [1,2]. The coronary artery system is a biomathematical model of muscular blood vessels [3]. Due to the
nonlinear differences between changes in vessel diameter, the behaviors of this system are highly complex in diseases
such as myocardial infarction. Therefore, understanding its nonlinear behavior and suppressing undesired chaotic motion
in coronary artery systems when it occurs are essential tasks.

Due to its importance, both the medical and engineering communities have intensively studied the coronary artery.
Current work on the coronary artery involves the study blood flow dynamics, vessel wall mechanisms and the control of
the motion states of the muscular vessel [4–7]. For chaotic control of the coronary artery system, the biomedical model of
the chaotic coronary artery system must be synchronized with a prescribed chaotic or periodic system of a normal vessel.
From the medical perspective, chaotic control requires synchronization of motion states of the vessel with pathological
changes in the normal vessel so that treatment can be achieved. In 2006, Gong et al. used backstepping control technology
to synchronize the master and slave coronary artery system. They showed that a spastic vessel can be synchronized with
a normal vessel [8]. In 2011, Prof. Li developed an adaptive robust controller for tracking the control problem of chaotic
coronary systems with dynamic uncertainties and unknown parameters. It found that a chaotic coronary artery system can
be driven into the normal orbit [9].

The goal of this study was to synchronize the abnormal chaotic behavior of a slave coronary artery system with the
normally unstable periodic orbit of the nominal coronary artery system evenwhen they have different initial conditions and
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Fig. 1. The bifurcation diagrams obtained by varying parameter λ from −1 to 0.

external disturbances. The chaotic coronary artery system is then controlled with a variable structure control method by
using a switching surface to suppress control coronary artery chaos. Without using approximation methods, the proposed
sliding mode control law provides immunity to external disturbances, without chatter. Simulation results show that the
proposed controller drives the abnormal system to synchronize with the normal system despite different initial conditions
and external disturbances. It means that the control input u (e.g., nitroglycerin) is quickly absorbed; blood vessels dilate and
increase blood supply to the heart muscle, which effectively relieves or eliminates angina symptoms. Therefore, the control
of muscular vascular biological mathematical model is valid. In a disorder state and under any pre-specified suppression of
unstable orbit in a nominal chaotic system, this study demonstrated that, for therapeutic purposes, a blood vessel spasm in
a disorder state can theoretically be suppressed with normal blood vessels. The organization of this paper is as follows. The
nonlinear behavior of coronary artery system presented in Section 3; the control problem is described in Section 3; a VSC
design for chaos suppression is derived in Section 4; a modified continuous scheme for eliminating chattering phenomenon
is presented in Section 5; finally, simulation results are presented in Section 6.

2. System description and nonlinear behavior analysis

The coronary artery is a heart muscle that supplies oxygen and nutrients to blood vessels, also known as muscle-type
vessels. Obstructed transport of nutrients and oxygen to the heart due to a coronary artery obstruction can cause angina,
myocardial infarction and other diseases, and the pathology of myocardial infarction suggests that coronary atherosclerosis
and coronary artery spasm are common causes of morbidity.

The work by Ref. [7] showed that the coronary artery system can be mathematically modeled as

ẋ1 = −bx1 − cx2
ẋ2 = −(b + 1)λx1 − (c + 1)λx2 + λx31 + E cosωt

(1)

where x1 denotes the change in the inner radius of the vessel, x2 is the pressure change in the vessel, t is the non-dimensional
time variable, b, c and λ are the coronary artery system parameters, and E cosωt is a periodical disturbance term. A
myocardial infarction is caused by coronary vascular atherosclerosis and coronary artery spasm. Coronary artery spasm
is caused by a contraction of the epicedial artery in a transient conduction resulting in partial or complete occlusion of blood
vessels, which then causes myocardial ischemia. Fig. 1 shows the bifurcation diagram of system (1) with initial condition
(0.2, 0.2) and the parameters b = 0.15, c = −1.7, E = 0.3 and ω = 1. The diagram shows the disorder and subharmonic
motion in the system states of the coronary artery system during periods T, 2T, 3T, 5T and 6T (T = 2π ). Fig. 2 reveals that the
corresponding maximum Lyapunov exponent (MLE) [1] has positive values under some ranges of parameter λ. Therefore,
the inferred trajectory of the coronary artery system is a state of chaotic motion with these λ. Fig. 3 shows the very complex
dynamic behavior of the coronary artery systemwhenλ = −0.5. Under certain conditions, chaos can be characterized by the
static rheological characteristics of blood vessels caused by change in parameter λ, which represents vascular pathological
changes in the blood vessels when descending into chaos.

From themathematical perspective, the so-called vascular spasm is caused by blood vessels in a chaotic state. The causes
of vascular spasm, which is a form of ischemic heart disease, include variant angina, unstable angina, acute myocardial
infarction, and sudden vasomotor death. Such chaos immediately endangers health and must be controlled immediately.
The following section examines the problem of suppressing chaos in the coronary artery system and then proposes the
solution using VSC.

3. Control problem description

Consider the following uncertain coronary artery system:

ẋ1 = −bx1 − cx2 + d1(x, t)

ẋ2 = −(b + 1)λx1 − (c + 1)λx2 + λx31 + E cosωt + d2(x, t) + u(t),
(2)
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Fig. 2. The maximum Lyapunov exponents of coronary artery system with change of parameter λ.

Fig. 3. Time responses (a), (b), phase plane trajectory (c) and poincarè map (d) with λ = −0.5.

where x = [x1, x2]T is the system state vector and u(t) is the control input where controller u is the potency or dosage
of the single and double nitrate isosorbide nitrate (isosorbide mononitrate and dinitrate) or the nitroglycerin nitroglycerin
used for treating angina and other diseases, di(x, t), i = 1, 2 are uncertain terms representing the un-modeled dynamics or
structural variations of the system. Generally, the uncertainties dxi, i = 1, 2 are assumedly bounded, i.e.,

|dxi| ≤ αi, i = 1, 2 (3)

where αi ≥ 0 are given. The dynamics of system (2) exhibit chaotic motion without control input. Further,

˙̃x1 = −bx̃1 − cx̃2
˙̃x2 = −(b + 1)λx̃1 − (c + 1)λx̃2 + λx̃31 + E cosωt

(4)

is the nominal system corresponding to system (2). System (4) can be either chaotic or non-chaotic, depending on the system
parameters (4). Fig. 4 shows that the desired orbit is an unstable periodic trajectory of system (4). The control problem
considered in this paper is that, for an unstable periodic orbit shown in Fig. 4(a) VSC law u(t) is designed such that the
resulting state responses of system (2) satisfies

lim
t→∞

x(t) − x̃(t)
 → 0,

where ∥·∥ is the Euclidean norm of a vector.
The error states are then defined as

e1 = x1 − x̃1; e2 = x2 − x̃2. (5)
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Fig. 4. The desired unstable periodic trajectory belong to the nominal system (4) (Fig. 2(c)) with λ = −0.5.

The dynamics of the error system are determined directly by Eqs. (2) and (4) as follows:

ė1 = −be1 − ce2 + d1 (6a)

ė2 = −(b + 1)λe1 − (c + 1)λe2 + λ(x31 − x̃31) + d2 + u. (6b)

The considered goal of this study is that, for any given coronary artery systems as (2) and (4), a VSC is designed such that
the resulting tracking error can be driven to zero or into a predicable neighborhood of zero, i.e.,

lim
t→∞

|ei| ≤ γi, i = 1, 2 (7)

where γi ≥ 0 are constants depending on external uncertainties.
Therefore, this control goal for coronary artery systems with uncertainties is achieved in two major phases. First, an

appropriate switching surface for the system must be selected such that the sliding motion on the manifold results in
limt→∞ |ei| ≤ γi, i = 1, 2 in any initial state and with any bounded external uncertainties. Second, the control lawmust be
ensured the existence of the sliding mode.

4. Design of Chaos suppression controller

Consider the following switching function s(t) corresponding to e1 and e2 in the error space:

s(t) = e2 + ρe1 (8)

where s(t) ∈ R and ρ are design parameters that are easily determined later. In sliding mode, the system satisfies the
following equations [10–12]:

ṡ(t) = ė2 + ρė1 = 0 (9a)

and

s(t) = e2 + ρe1 = 0. (9b)

Therefore, the following sliding mode dynamics are

ė1 = −(b − cρ)e1 + d1 (10a)

ė2 = −(b + 1)λe1 − (c + 1)λe2 + λ(x31 − x̃31) + d2 + u. (10b)

Solving the differential equation (10a) for e1 results in

e1(t) = e−(b−cρ)te1(0) +

 t

0
e−(b−cρ)(t−τ)d1(τ )dτ . (11)

The design parameters ρ are easily determined such that b − cρ > 0. When the value for the ρ results in b − cρ > 0, the
bound for error state e1 is

|e1(t)| =

e−(b−cρ)te1(0) + e−(b−cρ)t
 t

0
e(b−cρ)τd1(τ )dτ


≤ e−(b−cρ)t

|e1(0)| +


max
ti∈[0,t]

|d1(ti)|
 e−(b−cρ)t

 t

0
e(b−cρ)τdτ


≤ e−(b−cρ)t

|e1(0)| + α1

1 − e−(b−cρ)t

b − cρ

 . (12)
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Eq. (12) with (b − cρ) > 0 shows that

lim
t→∞

|e1(t)| ≤ γ1 =
α1

b − cρ
. (13)

Eq. (9b) also gives the bound for e2(t) at time t → ∞:

lim
t→∞

|e2(t)| = lim
t→∞

|ρe1(t)| ≤ γ2 =
α1 |ρ|

b − cρ
. (14)

Since the above equations show that e1(t) and e2(t) converge to γ1 and γ2, there exist functions γ̃i(t), i = 1, 2 such
that

|ei(t)| ≤ γ̃i(t), i = 1, 2 (15)

and γ̃i(t) → γi, i = 1, 2, as t → ∞. Thus, given any γ̃i > 0, i = 1, 2, there exists a finite time t1 such that |ei(t)|
< γ̃i, i = 1, 2, for t ≥ t1.

Remark 1. Eqs. (13) and (14) show that, when the controlled nominal system, i.e., d1 = d2 = 0, is in sliding mode, the
tracking error is driven to zero, i.e., limt→∞ |ei| = 0, i = 1, 2.

Although the error bound of the dynamics in sliding mode is ensured, a variable structure controller (VSC) is still needed
to ensure that a sliding mode is available. Before presenting the controller scheme, the reaching condition of the sliding
mode is given below. The motion of the sliding mode (8) is asymptotically stable if the following reaching condition holds
true [11,12]

sṡ < 0. (16)

The s(t) is then asymptotically stable in the switching surface and in sliding mode (8).
The proposed scheme for achieving the reaching condition indicated in Eq. (16) is

u(t) = ((b + 1)λ + bρ)e1 + ((c + 1)λ + cρ)e2 − λ(x31 − x̃31) − β · k · sign(s), β > 1 (17)

where k = ρα1 + α2.
The following theorem then proves that the proposed scheme (17) can drive the uncertain error in dynamic system (10)

into sliding modes(t) = 0.

Theorem 1. For system (4), let the control u(t) be as in (17). The error state of system (10) then converges to sliding mode
s(t) = 0.

Proof. Substituting Eqs. (6a), (6b), (8) and the control (17) into the derivative sṡ

sṡ = s(ė2 + ρė1)
= s[−(b + 1)λe1 − (c + 1)λe2 + λ(x31 − x̃31) + d2 + u + ρ(−be1 − ce2 + d1)]
= s[d2 + ρd1] − βk |s|

≤ (1 − β)k |s| . (18)

Since β > 1 has been selected in Eq. (17), one can conclude that the reaching condition (sṡ < 0) is always satisfied. The
proof is then complete. �

Remark 2. According to Eq. (18) the choice of β affects the convergence rate of |s|.

5. A modified continuous scheme without chattering

The continuous control law for avoiding chatter is

u(t) = ((b + 1)λ + bρ)e1 + ((c + 1)λ + cρ)e2 − λ(x31 − x̃31) − β · k ·
s

|s| + δ
(19)

where k = ρα1 + α2, β > 1 and δ(> 0) is sufficiently small. The following theorem then ensures that the proposed
continuous scheme (19) drives the system (6) into a region arbitrarily close to the sliding mode s(t) = 0 without
chatter.

Theorem 2. Consider the error dynamics system (6). The error state of system (6) converges into an region arbitrarily close to
s(t) = 0 if the control u(t) is given by (19).
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a b

c d

Fig. 5. The responses of coronary artery system with match disturbance d2 = 0.1 cos(3t): (a) time response of x1 , (b) time response of x2 , (c) phase plane
trajectory of controlled system, and (d) error state responses.

Proof. Let the Lyapunov function of the system be V =
1
2 s

2(t). Substituting Eqs. (6a), (6b), (8) and the control (19) into the
derivative sṡ then obtains

sṡ = s(ė2 + ρė1)
= s[−(b + 1)λe1 − (c + 1)λe2 + λ(x31 − x̃31) + d2 + u + ρ(−be1 − ce2 + d1)]

= s[d2 + ρd1] − β · k ·


s2

|s| + δ


≤ k |s| − β · k ·


|s| −

|s| δ
|s| + δ


. (20)

Since
δ |s|

|s| + δ
≤ δ, (21)

we have
sṡ ≤ (1 − β)k |s| + βkδ

≤ (1 − β)k


|s| −
δβ

β − 1


. (22)

Since β > 1 has been selected in (19), (22) implies that V̇ (t) < 0 whenever |s| > δ
β

β−1 , i.e., |s| is certain to converge to

region |s| < δ
β

β−1 . Since δ is a design parameter, a sufficiently small δ can be selected such that |s| is arbitrarily bounded in
the neighborhood of zero. The proof is complete. �

Remark 3. Chatter is then eliminated, and all results in the above section are available.

6. Numerical experiments

This section presents numerical experiments to demonstrate and confirm the performance of the present design. For the
overall control system (1), the parameters are b = 0.15, c = −1.7, λ = −0.5, E = 0.3, ω = 1 and ρ = 3, and the initial
states of the controlled coronary artery system (2) are x1(0) = 0.2, x2(0) = 0.2.

Disturbance in the overall system is simulated first. Fig. 5(a)–(b) show the system time responses for the overall system
with matched disturbance d2 = 0.1 cos(3t) and mismatched disturbance d1 = 0. The responses show that the controlled
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Fig. 6. The responses of coronary artery system with mismatch disturbance d1 = 0.1 cos(3t): (a) time response of x1 , (b) time response of x2 , (c) phase
plane trajectory of controlled system, and (d) error state responses.

Fig. 7. The steady state error responses of controlled coronary artery system with mismatch disturbance d1 = 0.1 cos(3t).

coronary artery system (2) can be suppressed to an unstable periodic orbit of a nominal system (4) actively controlled for
t = 60 s. Fig. 5(c)–(d) also show the phase plane trajectories and time responses of error states. The trajectories and error
states show that the system error states are regulated to zero asymptotically, even under match disturbance in the overall
system.

Fig. 6(a)–(d) show that, in the second simulation, the overall system responses are mismatched with disturbance
d1 = 0.1 cos(3t) andmatchedwith disturbance d2 = 0.When control is active from t = 60 s, themismatcheddisturbance d1
causes the controlled system states tomanifest a trajectory close to, but not synchronouswith, the desired unstable periodic
orbit of the nominal system (4). Fig. 7 clearly shows the time responses of error states in the time interval t = 80 − 100 s.
A harmonic form of the error states e1 and e2 is clearly visible in the steady state, and they are all bounded in the ranges of
|d1| ≤ γ1 =

α1
b−cρ = 0.019 and |d2| ≤ γ2 =

α1ρ
b−cρ = 0.571.

7. Conclusion

A variable structure control for chaos suppression control of coronary artery system is proposed. Based on the Lyapunov
stability theory, a slidingmode controller is designed for regulating the error state vector to a desired point in the state space.
In a coronary artery systemwith bounded disturbance, error states are then driven to zero or into a predicable neighborhood
of zero in the steady state. The simulations confirm that the proposedmethod can solve synchronization problems in chaotic
coronary artery systems. The derived controllers are sufficiently robust tomaintain stability of the closed-loop system in the
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presence of uncertainties. The simulation results confirm that, since control input u (e.g., nitroglycerin) is quickly absorbed,
blood vessels dilate and increase blood supply to the heartmuscle,which effectively relieves or eliminates angina symptoms.
Therefore, theVSC ofmuscular vascular biologicalmathematicalmodel is valid. In a chaotic state andunder any pre-specified
suppression of unstable orbit in a nominal chaotic system, this study demonstrated that, for therapeutic purposes, a blood
vessel spasm in a chaotic state can theoretically be suppressed with normal blood vessels.
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