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a b s t r a c t

A nonlinear system for controlling flutter in an aeroelastic system is proposed. The dynamic
model describes the plunge and pitch motion of a wing. Interacting nonlinear forces such as
structural and aerodynamic forces cause destabilizing phenomena such as flutter and limit
cycle oscillation on the wing. Aeroelastic models have a wing section with only a single
trailing-edge control surface for suppressing limit cycle oscillation. When modeling a sin-
gle control surface, the controller design can achieve trajectory control of either plunge dis-
placement or pitch angle, but not both, and internal dynamics describe the residual motion
in closed-loop systems. Internal dynamics of aeroelasticity depend on model parameters
such as freestream velocity and spring constant. Since single control surfaces have limited
effectiveness, this study used leading- and trailing-edge control surfaces to improve control
of limit-cycle oscillation. Moreover, two control surfaces were used to provide sufficient
flexibility to shape both the plunge and the pitch responses. In this study, high order sliding
mode control (HOSMC) with backstepping design achieved system stability and eliminated
limit cycle phenomenon. Compared to the conventional sliding mode control design, the
proposed control law not only preserves system robustness, but also avoids chatter phe-
nomenon. Simulation results show that the proposed controller effectively regulate the
response to origin in state space even under saturated controller input.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

An aeroelastic system refers to an aircraft system in which interaction of the structure, inertia and aerodynamics cause
flutter and limit cycle oscillation. The cause of limit cycle oscillation remains uncertain but is presumably a nonlinear aero-
dynamic effect of the structure. Tests of spring stiffness show that limit cycle oscillation results mainly from the nonlinear
term, a constant deterioration of the wing structure. Therefore, an effective controller design is needed to suppress both flut-
ter and limit cycle oscillation. Since the emergence of the robust control field in 1950, one of the most important advances
has been in variable structure control, i.e., sliding mode control. Essentially, the design rule states that, because a confined
system must approach the origin of the sliding plane, it acquires robustness with respect to external disturbance or system
uncertainty. Nevertheless, an unsolved problem is chatter resulting from high frequency switching of the system trajectory
across the sliding mode due to bandwidth limitation during implementation or simulation. A sliding boundary layer usually
solves the problem but at the cost of system precision. Hence, the objective of this study was to improve sliding mode control
without causing chatter or loss of system precision.

The dynamics of an aeroelastic system vary with the external force exerted, i.e., lift and moment, due to the effects of
pitch angle and plunge displacement on the aerofoil. Numerous studies have performed experimental dynamic analyses.
. All rights reserved.
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For instance, a literature review by Singh and Brenner [1] applied describing function for experimentally validating plunge
displacement and for frequency prediction. Lee et al. [2] showed that limit cycle oscillation is common in subsonic flight. Lee
and LeBlanc [3] showed that plunge displacement caused by limit cycle oscillation increases with flight speed in the presence
of a hard spring in a pitch state. A study of stable and unstable regimes by O’neill and Strganac [4] showed that the location of
an elastic axis and flight speed could be used to predict limit cycle oscillation given flight speed and initial system conditions.
Zhao and Yang [5] also showed that the location of a specific elastic axis may induce chaotic effects when flight speed ex-
ceeds a threshold in an elastic system such as a nonlinear spring in a pitch state. Readers are referred to Kim and Lee [6] and
Price et al. [7] for additional references for system dynamics.

In addition to system dynamics, another line of research in aerolastic systems is the design of control laws that minimize
flutter. Many studies have proposed control law designs in which the system is modeled as simply a trailing edge control
input. A study of plunge displacement and pitch angle by Bhoir and Singh [8] showed that feedback linearization converges
the system to the origin. In a study of spring stiffness by Gujjula et al. [9], both states approached zero in a proposed adaptive
neural network, which demonstrated the enhanced design flexibility enabled by two control edges. Strganac et al. [10] effec-
tively controlled limit cycle in a nonlinear adaptive manner in a system that considered the input term of the trailing edge,
which resulted in a state determined by internal dynamics and system stability. To solve this problem, new aeroelastic sys-
tems with both leading and trailing edges have been developed to control both plunge displacement and pitch angle. Plata-
nitis and Strganac [11] applied an adaptive control law design in a system with uncertainty modeled as a two control edge
system. Feedback linearization effectively inhibited system flutter. Many other methods have been proposed for controlling
aeroelastic systems (e.g. [12–16] and references therein).

Sliding mode control (SMC) is an effective alternative for controlling nonlinear systems [17]. However, conventional SMC
assumes that control can be switched instantaneously from one value to another, which is impossible due to finite time de-
lays and the practical limitations of systems. This non-ideal switching causes an undesirable phenomena called chatter.
Chatter phenomenon boundary layers are generally effective for controlling nonlinear systems [18]. The backstepping ap-
proach is a nonlinear technique widely used in control design. The multiple advantages of this approach include its large
set of globally and asymptotically stabilizing control laws and its capability to improve robustness and solve adaptive prob-
lems. The method uses a recursive procedure to link a selected Lyapunov function with a controller design and can suppress
and synchronize nonlinear systems [19,20]. The scheme in this paper allows the controlled system to be robust to external
disturbances and incorporate backstepping design processes to give the designer to easily and systematically implement the
controller. Otherwise, the high order control scheme in the final step of backstepping design process can eliminate the chat-
tering phenomenon in the control input to make it can be achieved in real physical system. However, none of the proposed
methods in my surveyed papers can obtain such kind robust continuous controller for controlling flutter in an aeroelastic
system. Therefore, it is necessary and important to develop the sliding mode control of aeroelastic systems using backstep-
ping method with high order control scheme.

This work developed a strategy for use in aeroelastic systems to control unsteady phenomena such as flutter and limit
cycle oscillation. The proposed input–output control scheme comprises the sliding mode controller and the backstepping
feedback. The proposed method uses a high order sliding mode controller, which is introduced in the final step of the back-
stepping procedure, to provide a continuous input to a robust controller. Simulation results show that the proposed control-
ler can eliminate flutter in aeroelastic systems with continuous control input.
2. Mathematic modeling of aeroelastic systems

An aeroelastic system describes wing dynamics in the presence of a flow field. Interacting forces between the structure,
the moment of inertia and air flow destabilize aircraft by producing flutter and limit cycle oscillation [21,22]. Because flutter
can eventually damage a wing structure, flutter must be shed during flight.

Fig. 1 shows an aeroelastic system model in which the wing has two degrees of freedom, i.e., plunge displacement h and
pitch angle a, where c and b are angles of the leading and trailing edges, respectively. The wing structure includes a linear
spring oriented along the plunge displacement direction, a rotational spring along the pitch angle, and corresponding damp-
ers. Hence, in the presence of a flow field, the wing at a flight speed U oscillates along the plunge displacement direction and
rotates at the pitch angle about the elastic axis.

The dynamic equation for an aeroelastic system is
Ia mwxab

mwxab mt

� �
€a
€h

� �
þ

ca 0
0 ch

� �
_a
_h

� �
þ

kaðaÞ 0
0 kh

� � a
h

� �
¼

M

�L

� �
ð1Þ
where mt is the total weight of the main wing and supporter alike, mw is the weight of the main wing, xa is the dimensionless
distance between the center of mass and the elastic axis, Ia is the moment of inertia, b is the midchord, ca and ch are the
damping coefficients of the pitch angle and the plunge displacement respectively, kh and ka(a) are the spring stiffness coef-
ficients of the plunge displacement and the pitch angle respectively, and ka(a) is a nonlinear term. The nonlinear aka(a) of the
spring, a hard spring in fact, which is actually a hard spring, is defined as
akaðaÞ ¼ k1aþ k2a3 ð2Þ



midchord

elastic axis

Fig. 1. An aeroelastic system model with two freedoms, the plunge displacement and the pitch angle.
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The aerodynamic terms L and M (lift and moment, respectively), which are applicable in low frequency and subsonic
flight, are defined as in Theodorsen and Garrick [21]:
L ¼ qU2bcla sp aþ ð _h=U þ 1
2
� a

� �
bða=UÞÞ

� �
þ qU2bclb spbþ qU2bclc spc ð3Þ

M ¼ qU2b2cma�eff
sp aþ ð _h=U þ 1

2
� a

� �
bða=UÞÞ

� �
þ qU2b2cmb�eff

spbþ qU2b2cmc�eff
spc ð4Þ
where q is air density, U is the flight speed, a is the dimensionless distance between the elastic axis and the mid-chord, which
is a significant parameter in terms of system stability, sp is the Wind Span length, cla and cma are the lift coefficient and mo-
ment coefficient per unit angle of attack respectively, clb and cmb

are the lift coefficient and moment coefficient per unit angle
respectively against the trailing edge, respectively, and clc and cmc are the lift coefficient and moment coefficient per unit
angle, respectively, against the leading edge. The cma�eff

; cmb�eff
and cmc�eff

, which are the moment derivative coefficient per
unit angle of attack, trailing edge and leading edge, respectively, are defined as
cma�eff
¼ 1

2
þ a

� �
cla þ 2cma

cmb�eff
¼ 1

2
þ a

� �
clb þ 2cmb

cmc�eff
¼ 1

2
þ a

� �
clc þ 2cma

ð5Þ
This study experimentally validated the model in the case of a symmetric wing structure, i.e., cma ¼ 0, subjected to low fre-
quency, subsonic flight conditions.

This section describes the nonlinearity of an aeroelastic system. For convenience, the definitions used in numeric simula-
tions of its dynamics are c1 = qU2bsp and c2 = qU2b2sp, and the lift term in Eq. (3) and moment term in Eq. (4) are rewritten as
L ¼ c1cla aþ _h=U þ 1
2
� a

� �
bða=UÞ

� �� �
þ c1clbbþ c1clcc

M ¼ c2cma�eff
aþ _h=U þ 1

2
� a

� �
bða=UÞ

� �� �
þ c2cmb�eff

bþ c2cmc�eff
c

ð6Þ
Defining the state variables as x1 ¼ a; x2 ¼ _a; x3 ¼ h; x4 ¼ _h converts the dynamic equation into a state space
representation:
_x1 ¼ x2

_x2 ¼ ca1 x1 þ canon1 x3
1 þ c _a1

x2 þ ch1
x3 þ c _h1

x4 þ cb1 bþ cc1
c

_x3 ¼ x4

_x4 ¼ ca2 x1 þ canon2 x3
1 þ c _a2

x2 þ ch2
x3 þ c _h2

x4 þ cb2 bþ cc2
c

ð7Þ
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where parameters are defined as
Fig. 2.
trajecto
ca1 ¼ c2mtcma�eff
þ c1mwxabcla �mtk1

canon1 ¼ �mtk2

c _a1
¼ c2mtcma�eff

1
2
� a

� �
bð1=UÞ þ c1mwxabcla

1
2
� a

� �
bð1=UÞ � camt

ch1
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c _h1
¼ c2mtcma�eff
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Table 1
Simulation parameters for an aeroelastic system.

a �0.6719 cmc �0.1005
b 0.1905 m Ia ðmwx2

ab2 þ 0:009039Þ kg m2

ca 0.036 kg m2/s ka (a) 12.77 + 1003a2

ch 27.43 kg/s kh 2844.4 N/m
cla 6.757 mt 15.57 kg
clb 3.358 mw 4.34 kg
clc �0.1566 sp 0.5945 m
cma 0 xa �(0.0998 + a)
cmb �0.6719 q 1.225 kg/m3
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Open loop responses of an aeroelastic system. (a) Time response of the pitch angle. (b) Time response of the plunge displacement. (c) Phase plane
ry of the pitch angle. (d) Phase plane trajectory of the plunge displacement.
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ca2 ¼ �c2mwxabcma�eff
� c1Iacla þmwxabk1
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cc2
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� c1Iaclc
Given an initial condition xð0Þ ¼ ½h a _h _a� ¼ ½0:02 m 10 degree 0 m=s 0 degree=s� and a flight speed U of 19.0625 m/s,
Table 1 shows the simulated parameters, and Fig. 2 presents the simulation results.

As noted earlier, the simulations show that the long term effects of bounded limit cycle oscillation (flutter phenomenon)
on the wing structure include structural fatigue and deterioration of the flight response but that short term effects are neg-
ligible. Although the cause of the limit cycle oscillation remains worthy of investigation, the literature agrees that the non-
linear contribution of the wing structure as well as the aerodynamics definitely cause limit cycle oscillation. In most
simulations, such nonlinearity is modeled as a hysteresis or, alternatively, as a nonlinear term with stiffness in either pitch
angle or plunge displacement.

Eq. (2) defines a nonlinear spring, i.e., a hard spring, in the pitch angle. Tests show that a small value for the nonlinear
parameter k2 < 0 signifies a soft spring, which causes a large plunge displacement in the limit cycle oscillation. That is,
parameter k2 = 0 is one of many bifurcation points between system stability and instability. The parameter tuning toward
system stability is hence a major concern in an aeroelastic system.

As noted above, the wing is simulated to demonstrate a repeated flutter of invariant amplitude, leading to a need to de-
sign a controller as a means to amplitude. Therefore, a controller is needed to prevent the likely damage to the wing struc-
ture. An aeroelastic state space representation, as expressed in Eq. (7) above, requires angles b and c, against the trailing and
leading edges respectively, as control inputs for suppressing wing flutter. That is, both plunge displacement and pitch angle
converge from the initial conditions toward the origin, a condition formulated as
x ¼
a
h

� �
!

0
0

� �
¼ xd ð8Þ
This study showed how the controller design meets the stability requirement.

3. Backstepping design

A backsteeping design approach refers to a design technique, by use of which a complex nonlinear system is decomposed
into a number of subsystems, not greater than the order of the control system. The virtual control law is then designed using
the corresponding Lyapunov function associated with each individual subsystem, for the purpose of the respective Lyapunov
stability in each subsystem. This design procedure is repeated and augmented until the overall system is done, that is, the
entire control law is completed.

Consider a nonlinear system
_x ¼ f ðxÞ þ gðxÞn ð9aÞ
_n ¼ u ð9bÞ
Defining z = n � a(x), then Eq. (9) turns into
_x ¼ f ðxÞ þ gðxÞ½aðxÞ þ z�

_z ¼ u� @a
@x
½f ðxÞ þ gðxÞðaðxÞ þ zÞ�

ð10Þ
Defining Vaðx; nÞ ¼ VðxÞ þ 1
2 ½n� aðxÞ�2 where VðxÞ ¼ 1

2 x2, then
_Va ¼
@V
@x
ðf þ gaþ gzÞ þ z u� @a

@x
ðf þ gðaþ zÞÞ

� �
¼ @V
@x
ðf þ gaÞ þ z u� @a

@x
ðf þ gðaþ zÞÞ þ @V

@x
g

� �

6 �WðxÞ þ z u� @a
@x
ðf þ gðaþ zÞÞ þ @V

@x
g

� �
ð11Þ
Choosing u ¼ �cðn� aðxÞÞ � @aðxÞ
@x ðf ðxÞ þ gðxÞnÞ � @VðxÞ

@x gðxÞ� and c > 0, then
_Va 6 �WðxÞ � cz2 � �Waðx; nÞ 6 0 ð12Þ
Regarded as a control input in the above system, a(x) as well as n is expected to demonstrate identical dynamics. Besides, the
variable z can be seen as the variance index between a(x) and n, and n is expected to behave as intended through a conver-
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gent z. The stability of Eq. (9a) is proven through V, and the entire system stability proof in addition to (9a) is made through
Va. It is essentially the fundamental idea of the backstepping design approach that the system takes specific states as the
control inputs, and then the system stability is proven step by step. An insight reveals that the choice of a(x) is nothing short
of the key to the system performance, that is, if the choice of a(x) makes W(x) a semi-positive function, it then follows form
Lasalle Theorem [23] that the system states x and n can be ensured to behave globally bounded. Yet, with a positive W(x)
caused by an appropriate choice of a(x), i.e. _Va 6 �Waðx; nÞ 6 �WðxÞ, then Lasalle–Yoshizawa Theorem [23] assures that
x = 0 and n = 0 are the equilibrium point of the global uniformly asymptotically stable.

4. High order sliding mode control design

Stating the difference firstly between a high order and a conventional sliding mode controls, the advantage of such high
order control is applied to a control law design. As stated in [24,25], other than the mentioned boundary layer concept, a
dynamic sliding mode control is proven effectively as a way to eliminate the chattering. In most cases, a second order sliding
dynamics is employed as an auxiliary system for the purpose that the dynamic system trajectory is made able to approach
the origin and the system robustness is maintained. By use of an auxiliary system, it merely takes a conventional sliding
mode control to reach the goal of eliminating chattering with a maintained robustness.

Just as the second order sliding mode control (SOSMC), the high order sliding mode control (HOSMC) is an issue attracting
tremendous research attention in the past. As such, HOSMC is of an advantage of a conventional sliding mode control and
enables itself to suppress the chattering. The HOSMC designed is illustrated with an example as follows. Consider a system
_x ¼ Axþ Buþ d; x 2 Rn; u 2 R; d 2 R ð13Þ
A sliding plane is designed as
sðx; tÞ ¼ Cx ð14Þ
Generalization of Eq. (14) induces an rth order sliding dynamics, i.e. the auxiliary system, represented as
_sðx; tÞ ¼ CAxþ CBuþ Cd

€sðx; tÞ ¼ CA2xþ CABuþ CAdþ CB _uþ C _d

..

.

sðrÞðx; tÞ ¼ CArxþ
Xr

m¼1

CAm�1Buðr�mÞ þ
Xr

m¼1

CAm�1dðr�mÞ

ð15Þ
where s(�)(r) represents the rth derivative of the sliding function. The goal is to design an input such that s(x, t) together with
its (r � 1)th derivative converges to zero within a limited time frame, that is,
s ¼ _s ¼ €s ¼ � � � sðr�1Þ ¼ 0 ð16Þ
On the right hand side of the last in Eq. (15) are the system input, external disturbance and a function differentiable up to
(r � 1) order. By implication, Eq. (16) indicates the condition CAm�1B – 0. In the HOSMC design, applying the control law
u(r�1) to an integrator, a low pass filter, yields the control input u, a smooth control signal suitable for practical application.

5. Application of HOSMC to aeroelastic systems by backstepping design

It is intended in this section that an aeroelastic system is designed with a backstepping approach, and a control law is
designed through a high order sliding mode control technique. For the test whether such control law maintains the robust-
ness against the external disturbance, matched external disturbances d1(x, t) and d2(x, t) are introduced into Eq. (7) of the
control system. The physical meaning of external disturbances d1 and d2 denote the unstructured system models and uncor-
rected system parameters of aeroelastic system in this study. Then letting variables u1 ¼ cb1 bþ cc1

c and u2 ¼ cb2 bþ cc2
c, two

sets of strict nonlinear feedback systems are represented as
_x1 ¼ x2

_x2 ¼ ca1 x1 þ canon1 x3
1 þ c _a1

x2 þ ch1
x3 þ c _h1

x4 þ u1 þ d1
ð17Þ

_x3 ¼ x4

_x4 ¼ ca2 x1 þ canon2 x3
1 þ c _a2

x2 þ ch2
x3 þ c _h2

x4 þ u2 þ d2
ð18Þ
Firstly letting x2 be an independent input, there exists in Eq. (17) a state feedback control law
x2 ¼ /1ðx1Þ ¼ �k1x1 ð19Þ
where k1 > 0. Consider the Lyapunov function V1 ¼ x2
1=2 associated with the subsystem x1
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Fig. 3. Time responses of an unconstrained wing control in the HOSMC. (a) Time response of the pitch angle. (b) Time response of the plunge displacement.
(c) Phase plane trajectory of the pitch angle. (d) Phase plane trajectory of the plunge displacement. (e) Time response of the trailing edge angle. (f) Time
response of the leading edge angle. (g) Time response of the sliding plane. (h) Time response of the sliding plane.
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_V1 ¼ x1 _x1 ¼ �k1x2
1 6 0 ð20Þ
Introducing the virtual control law /1(x1) into the subsystem x1, with an error function defined as z1 = x2 � /1(x1), the sub-
system (x1,z1) is converted into
_x1 ¼ �k1x1 þ z1

_z1 ¼ ca1 x1 þ canon1 x3
1 þ c _a1

x2 þ ch1
x3 þ c _h1

x4 þ u1 � _/1 þ d1
ð21Þ
The control law is chosen as
u1 ¼ �ðca1 x1 þ canon1 x3
1 þ c _a1

x2 þ ch1 x3Þ þ c _h1
x4 þ _/1 � k2z1 þ

Z t

0
v1ds ð22Þ
A substitution of Eq. (22) into (21) yields
_z1 ¼ �k2z1 þ
Z t

0
v1dsþ d1ðtÞ ð23Þ
Letting _z1 = z2 and ½s1 s2� ¼ ½zn�1 zn�, the auxiliary extended second order sliding dynamics is represented as
_s1 ¼ s2

_s2 ¼ �k2s2 þ v1 þ _d1ðtÞ
ð24Þ
Given all the states of s2, an auxiliary sliding plane is chosen as
r1 ¼ s2 þ kns1 ð25Þ
Define a control law v1 as a constant approaching speed
v1 ¼ �n1sgnðr1Þ ð26Þ
Letting a Lyapunov function be Vr1 ¼ r2
1=2, then
_Vr1 ¼ r1 _r1 ¼ r1½_s2 þ kn _s1� ¼ r1½�kns2 þ v1 þ _d1ðtÞ þ kns2� 6 �jr1j½n1 � sup j _d1ðtÞj� ð27Þ
A choice of n1 P sup j _d1ðtÞj ensures _Vr1 < 0.
Likewise, designed for Eq. (18), x2, a state feedback control law, is defined as
x4 ¼ /3ðx3Þ ¼ �k3x3 ð28Þ
Introducing the virtual control law /3(x3) into the subsystem x3, with an error function defined as z3 = x4 � /3(x3), the sub-
system (x3,z3) is converted into
_x3 ¼ �k3x3 þ z3

_z3 ¼ ca2 x1 þ canon2 x3
1 þ c _a2

x2 þ ch2
x3 þ c _h2

x4 þ u2 � _/3 þ d2
ð29Þ
The control law is chosen as
u2 ¼ �ðca2 x1 þ canon2 x3
1 þ c _a2

x2 þ ch2
x3 þ c _h2

x4Þ þ _/1 � k3z3 þ
Z t

0
v2ds ð30Þ
A substitution of Eq. (30) into (29) yields
_z3 ¼ �k3z3 þ
Z t

0
v2dsþ d2ðtÞ ð31Þ
Letting _z3 = z4 and ½s3 s4� ¼ ½z3 z4�, the auxiliary extended second order sliding dynamics is represented as
_s3 ¼ s4

_s4 ¼ �k3s4 þ v2 þ _d2ðtÞ
ð32Þ
Given all the states of s4, an auxiliary sliding plane is chosen as
r2 ¼ s4 þ kms3 ð33Þ
Aeroelastic 
system

HOSMC
γβ , o25

o25−

output

Fig. 4. A block diagram of the wing constrained within [�25�,25�] in the HOSMC.
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Fig. 5. Time responses of a wing constrained between [�25�,25�] in the HOSMC. (a) Time response of the pitch angle. (b) Time response of the plunge
displacement. (c) Phase plane trajectory of the pitch angle. (d) Phase plane trajectory of the plunge displacement. (e) Time response of the trailing edge
angle. (f) Time response of the leading edge angle. (g) Time response of the sliding plane. (h) Time response of the sliding plane.

C.-L. Chen et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 1813–1823 1821



1822 C.-L. Chen et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 1813–1823
Define a control law v2 as a constant approaching speed
v2 ¼ �n2 sgnðr2Þ ð34Þ
Letting a Lyapunov function be Vr2 ¼ r2
2=2, then
_Vr2 ¼ r2 _r2 ¼ r2½_s4 þ km _s3� ¼ r3½�kms4 þ v2 þ _d1ðtÞ þ kms4� 6 �jr3j½n2 � sup j _d2ðtÞj� ð35Þ
A choice of n2 P sup j _d2ðtÞj ensures _Vr2 < 0. Therefore, it can be summarized as a theorem in the follows from the above
derivation.

Theorem 1. Consider the closed-loop system equations (17), (18), (22), and (30). Suppose that hd and ad are bounded and smooth
trajectories converging to zero, and the zero dynamics of the system are stable. Then the time responses of Eq. (1) beginning from
any initial condition xð0Þ ¼ ½h a _h _a� 2 R4 tends to the origin as t ?1.
Proof. A proof is shown in the above derivation. h

Following the completion of the design procedure, choosing the simulation parameters as k1 = 1, k2 = 3, k3 = 1, k4 = 3,
km = 3, kn = 3, n1 = 0.05, n2 = 0.01, the simulation results will be discussed in full in following section.

6. Simulation results

This section describes the numerical simulations performed to validate the above control law design. The aeroelastic sys-
tem parameters (Table 1) in a HOSMC by backstepping design are simulated under the following initial conditions:
xð0Þ ¼ ½h a _h _a� ¼ ½0:02 m 10 degree 0 m=s 0 degree=s�, flight speed U of 19.0625 m/s, and the choice between n1 = 0.05
and n2 = 0.01 with references hd = 0 and ad = 0 respectively.

Given external disturbances d1 = 0.01sin(t) and d2 = 0.002sin(t), Fig. 3 plots the simulations for unconstrained wing con-
trol. Figs. 3(a) and (b) are the pitch angle and plunge displacement states, respectively, at which the control law approaches
the origin at Time = 4 s. It then moves toward the origin at a slower pace, which is an advantage over the preceding HOSMC
in terms of the time response. However, the penalty is the increased control inputs, i.e., the trailing and leading edge angles
(Figs. 3(e) and (f), respectively) causing increased wing actuator deterioration. Thus, the choice of control law to meet the
system performance requirement involves a tradeoff. In the presence of external disturbance, system robustness is ensured
by the control law, which confines both pitch angle and plunge displacement to the vicinity of the origin.

As noted above, constraints are imposed on the controlled edge angles during the flight. Fig. 4 shows an HOSMC design with
controlled edge angles confined between ±25� used as the input to the aeroelastic system through a saturation function. Fig. 5
shows the simulation results given identical initial conditions and simulation parameters. Fig. 5 shows the time responses of
the wing controlled in a high order sliding mode with the angle confined to ±25�. In contrast with Figs. 3(a) and (b), Figs. 5(a)
and (b) indicate that the pitch angle and the plunge displacement cannot converge to the origin exclusive of a short period of
over/under shooting. Figs. 5(e) and (f) clearly show that both edges are confined as expected between ±25� during the tran-
sient response and do not approach zero until the steady state. The aeroelasticity maintains system stability by suppressing
external disturbance at the expense of a small amplitude oscillation in the steady state of both edge angles.

7. Conclusions

This work considered the performance of an aeroelastic system in which both controlled edges are inputs. The model
showed that, in a spring with nonlinear stiffness, limit cycle oscillation causes fatigue in the wing structure due to long term
vibration at a constant amplitude and at an invariant frequency. Thus, HOSMC is proposed for suppressing limit cycle oscil-
lation with a backstepping design. In terms of sliding mode control design, the main drawback is the chatter produced when
switching between functions. This work proposes a derivative input term to differentiate the original sliding function in the
high order sliding mode control designed by a backstepping technique. That is, the derivative term directly differentiates the
input term in the dynamic sliding mode control. Simulations then confirmed that the control law designs for the derivative
terms of the inputs in sliding mode effectively eliminate chatter and suppress limit cycle oscillation in wing structures.
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