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The  many  subfields  in  the  wireless  sensor  networking  literature  include  data  fusion,  data  aggregation,
remote  environmental  monitoring,  sensing  (temperature,  pressure  speed)  and  various  military  applica-
tions. The  distance  between  sensor  nodes  can  be measured  by  a  Received  Signal  Strength  Indicator  (RSSI).
This study  proposes  both  average  and  adaptive  fuzzy  logic  algorithms  for computing  temperature  in a
monitored  area.  The  main  advantages  of  these  methods  are their simplicity  and  accuracy  and  better  than
eywords:
SSI
uzzy logic
SN

emperature
onitoring

the standard  Manadni  fuzzy  logic  method.  Finally,  comparison  of  the  two  methods  in  terms  of  root  mean
square  error  shows  that  the  adaptive  fuzzy  logical  algorithm  with  RSSI  is  better  than  average  fuzzy  logical
algorithm  for  computing  monitoring  area  temperature.

© 2012  Elsevier  B.V.  All  rights  reserved.
. Introduction

Wireless sensor networks (WSNs) have attracted research inter-
st in recent years because of their many potential applications,
ncluding military target tracking and surveillance [1,2], natural
isaster relief [3],  biomedical health monitoring [4,5], hazardous
nvironment exploration and seismic sensing [6].  In military target
racking and surveillance, applications of WSNs include intrusion
etection and identification. Specific examples include spatially
orrelated and coordinated detection of troop and tank move-
ents. Sensor nodes can also sense and detect environmental

hange in disaster forecasting. Biomedical applications include
urgical implant sensors for monitoring patients. For seismic sens-
ng, ad hoc sensor deployment along a volcanic area can detect
arthquakes and eruptions. A wireless sensor network includes
umerous small, energy-constrained nodes. The basic components
f a sensor node include a single or multiple sensor modules, a wire-
ess transmitter–receiver module, a computational module and a
ower supply module. These nodes are usually small and inexpen-

ive to allow deployment on a large scale. These sensors usually
ave a wireless link that can be used to extract the information cap-
ured by the sensor. A sensor node has a small micro-controller and

∗ Corresponding author.
E-mail addresses: songchen@ncut.edu.tw, songchen@ms10.hinet.net

W.-T. Sung).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2012.01.001
an energy source, usually a battery. In order to meet the objective
of these sensors, resources in terms of energy, memory, computa-
tional speed and bandwidth are severely constrained. The sensors
use each other to transport data to a monitoring entity. Because
each sensor has a limited energy supply, the sensors must con-
serve energy if the network is to operate for a long time. Currently,
most sensors are wired. Although most sensors are wired, wireless
sensors provide significant advantages. Low-cost sensors and com-
munication networks enable quick and inexpensive deployment of
wired sensor networks.

Wireless Sensor standards have been developed to minimize
energy consumption, which is a key design requirement. The stan-
dard defines the functions and protocols needed for sensor nodes to
interface with various networks. The following paragraph describes
the ZigBee standard in detail. ZigBee is a simple, low cost, low power
wireless communication technology used in embedded applica-
tions to define the higher layer communication protocols built on
the IEEE 802.15.4 standards for WSN. ZigBee devices can form mesh
networks consisting of hundreds or even thousands of devices. Zig-
Bee devices use very little power and can operate on a cell battery
for many years. The three ZigBee devices are the coordinator, which
initiates network formation, stores information and bridges net-
works; routers, which link groups of devices and provide multi-hop

communication across devices, and end devices, which consist of
sensors, actuators and controllers that collect data and communi-
cate only with the router or coordinator. The ZigBee standard was
adopted in June 2005.

dx.doi.org/10.1016/j.asoc.2012.01.001
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:songchen@ncut.edu.tw
mailto:songchen@ms10.hinet.net
dx.doi.org/10.1016/j.asoc.2012.01.001
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In 1965, Zadeh introduced fuzzy set and fuzzy logic theory to
olve problems involving knowledge expressed in vague, linguistic
erms. A crisp set is a collection of elements in which some elements
ither do or do not belong to a set. In a crisp set, the elements in a
et are unambiguous. In a fuzzy set, however, each element has a
raded membership in the real interval [0,1]. That is, membership
s not an absolute. Fuzzy set theory can be defined as a collection of
lements in a universe of information in which the boundary of the
et contained in the universe is ambiguous, vague and otherwise
uzzy.

Fuzzification is the process of transforming crisp values into
uzzy linguistic variables. The membership function associates a
rade with each linguistic variable. The number of membership
unctions and their initial values are selected based on pro-
ess knowledge and intuition. A membership function has value
etween 0 and 1 over a crisp variable interval.

The benefit of fuzzy logic is its use in constructing mathematical
odels that are more robust than those constructed using classical
athematical models for plant parameter changes.
The four parts in the main configuration of the fuzzy logic

ontroller are fuzzification, inference engine, rule base and defuzzi-
cation. Initially, a fuzzification process converts the controller

nput into linguistic fuzzy variables that describe input behavior.
he dynamic behavior of the fuzzy system is described by a set of
inguistic description rules (IF–THEN rules). These rules describe
he relation between the linguistic inputs and the output variables
f the fuzzy system based on expert knowledge of system behav-
or. This set of linguistic IF–THEN rules for describing the system
re usually given in the following form:

IF (a set of conditions are satisfied) THEN (a set of consequences
an be inferred)

For example, IF (x1 is A1 AND x2 is A2, . . .,  xd is Ad) THEN (y is
1).

An inference mechanism then calculates the degree to which the
nput data matches the condition of the fuzzy rules. It also obtains

 conclusion by matching and combining all inferred rules. Finally,
he defuzzification process maps the fuzzy rule outputs to a crisp
single) point.

The motivation of this study is to develop a novel fuzzy logic
lgorithm for computing temperature in a monitored area of a WSN.
he objective is to use fuzzy logic algorithm to compute area tem-
erature based on known information about deployment nodes.
rea temperature was monitored by calculating root mean square
rror (RMSE). To our knowledge, this study is the first to apply fuzzy
ogic for simple and accurate area temperature monitoring. The
ontribution of this paper is to design both rules and inference of
he fuzzy logic system. The main advantage of the proposed method
s that it directly uses values of the temperatures in the reference
oints to calculate the outputs, allowing the number of rules to be
educed.

This paper is organized as follows: the next section discusses
he related literature and the motivation for the study. Section 3
escribes the experiment setup for the temperature computing sys-
em. Section 4 describes the proposed method. Section 5 presents
ome experimental results and discussion. Section 6 presents con-
luding remarks.

. Related literature

Wireless sensor networks have attracted research interest
ecause of their many potential applications, including envi-

onmental and habitat monitoring, industrial process control,
nfrastructure security [7],  and transportation automation. Demir-
as [8] presented a feasibility study of wireless sensor networks
or monitoring large public buildings and proposed several
ting 12 (2012) 1532–1541 1533

directions for research in using WSNs for event detection. In [9],  a
fuzzy inference system was proposed for detecting fires in aircraft
dry bays and engine compartment fire detection systems. Proposed
fire detection system used image analysis technique. Histogram
and successive frame subtraction data statistical measures enable
the use of fuzzy if–then rules to compute the probability of a fire.
In [10,11], a neural network and fuzzy inference system was pro-
posed for detecting fires by transmitting multi-sensor data to the
user through RS 232 cable.

A fuzzy controller module design creates a Knowledge Base con-
sisting of concept information in a Data Base and Rules Base. The
Knowledge Base has a static data structure with a predefined size
and installed content. The Knowledge Base structure should be
defined before starting the application work. The Data Base con-
tains fuzzy set information such as linguistic terms used in fuzzy
rules. To simplify a calculation, each fuzzy set membership func-
tion is presented as a piecewise-linear function with three or four
points. The point count depends on whether the membership func-
tion is triangular or trapezoidal. Moreover, medical applications
of fuzzy set theory have been developed to address uncertainty
when making decisions. Thus, fuzzy sets have attracted interest in
their potential use in modern information technology, production
techniques, decision making, pattern recognition, diagnostics, data
analysis, etc. [12–15].

Neuro-fuzzy systems are fuzzy ANNs that validate their prop-
erties (fuzzy sets and fuzzy rules) by processing data samples.
Neuro-fuzzy systems connect the power of the two  paradigms:
fuzzy logic and ANNs, by using the mathematical properties of
ANNs to tune rule-based fuzzy systems [16–18].

Some basic scientific categories are medical information,
anatomy, pathology, forensic medicine, genetics, physiology, phar-
macology, and education. Fuzzy logic was  first applied in medical
informatics in the early 1970s. Recent work in fuzzy controllers has
focused on stability, self-organizing, and synergies among comput-
ing techniques such as neural networks and genetic algorithms.
The potential use of fuzzy logic for managing and retrieving infor-
mation was discussed by Chiodo et al. [19]. Recently, a decision
support system running across the World-Wide Web  was designed
by McCall and Petrovski [20]. The client server contains a database
of treatment information that are optimized using genetic algo-
rithms; the system is currently undergoing trials in the United
Kingdom. Two recent studies by Sadegh-Zadeh [21,22] developed
a fuzzy theory for health, illness, and disease; an extensional-
recursive scheme for defining the controversial notion of disease
is also proposed to support the proposed concept of fuzzy disease.
Comparison of performance for a space fault detection application
with Takagi–Sugeno–Kang (TSK) [23,24] and Mandani-type fuzzy
inference systems was  proposed in [25]. The experiment results
show that the TPK method has smoother transitions than Man-
dani method. For control of a simple dynamic process with fuzzy
algorithms was  proposed in [26] used Mandani method to handle
nonlinear system.

Studies of fuzzy distance measurement by WSN  based on RSSI
include [27], which proposed a fuzzy inference system trained by
adaptive neural-fuzzy inference system to map RSSI into correct
T–R distance and performed experiments to confirm its feasibility.
A WSN  with a multi-sensor data fusion algorithm fuzzy logic for
fire detection is proposed in [28]. By improving the reliability and
accuracy of sensed information, the proposed method minimizes
the false alarm rate. One ZigBee Personnel Location system pro-
posed in [29] used a fuzzy logical model to reduce uncertainty
in the RSS character matrix. Extending the lifetime of the energy

constrained wireless sensor networks is a crucial challenge in
sensor network research [30], which proposed an interval type-2
fuzzy logic method to improve this problem. Fuzzy logic rules in
[31] adjusted the mutation rate and crossover rate of the genetic
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ig. 1. Experiment setup for temperature computing system. (For interpretation of
he references to color in this figure legend, the reader is referred to the web  version
f  this article.)

lgorithm according to best fitness, average fitness and variance in
tness. The proposed adaptive genetic algorithm with fuzzy logic
ethod performs better than a standard GA method does in terms

f solving convergence problems. Three techniques used in soft
omputing [32] are genetic algorithm, fuzzy logic algorithm and
euro computing. Hybrid soft computing techniques reportedly
utperform other methods. A two-phase learning method for fuzzy
rticle neural networks introduced in [33] demonstrated better
erformance compared to methods using basic genetic algorithms.

n [34], fuzzy technique was used to evaluate performance in
erms of similarity to ideal solution approach based on modified
erformance ratio and an efficient fuzzy distance measurement.
he authors also used this method to rank fuzzy closeness and
uzzy numbers for improved accuracy. In [35–37],  the authors
vercome complex uncertain concept with fuzzy set theory was
sed to evaluate linguistic vagueness.

. Experiment setup for temperature computing system

The experimental area was a room with dimensions 30 m
L) × 40 m (W) × 15 m (H). The monitored area in this study was
elineated by four ZigBee access points inside, coordinator, sever,
hree reference points and ten unknown test points (red block in
ig. 1). The temperatures at all 13 points are transmitted to the coor-
inator. The mobile user can compute temperature at ten points in
ed black for monitoring area when collecting data from the coor-
inator. First, only the temperature of unknown points 1, 2 and 3
f the ten points are computed. Fig. 1 depicts the distances from all
oints d1 to REF1, d2 to REF2 and d3 to REF3. The temperatures at

he three reference points are T1, T2 and T3.

Fig. 2 shows that WSN  node devices in this study included sens-
ng units, processing units, transceiver units and power units. Their
unctions were as follows:

Fig. 2. Sensor nodes in proposed temperature computing system.
ting 12 (2012) 1532–1541

(1) Sensing unit. Includes sensor and the analog-to-digital con-
verter for detecting and collecting environmental data, which
are represented using analog signals. The analog-to-digital con-
verter then converts the analog signals into digital data and
sends the data to the processing unit. The sensing unit provides
data for temperature, humidity, ultraviolet light and illumina-
tion.

(2) Processing unit. Contains a unit for processing data according
to the pre-defined program codes and a unit for storing the
collected environmental data.

(3) Transceiver unit. Communicates between the sensor devices.
(4) Power unit. Provides electrical power to WSN.

4. The fuzzy logical algorithm for computing temperature
system

4.1. System architecture for this system

The WSN  technologies are based on Received Signal Strength
Indicator (RSSI) and distance measurements. In [23], a novel dis-
tance measuring technology based on RSSI and fuzzy inference
dramatically improved the precision of distance measurements
between transmitter and receiver. Generally, the longer the dis-
tance between transmitter and receiver, the lower the receiving
power of the receiver provided by RSSI on RF chip. The relation-
ship between RSSI and distance can be determined by the following
formula based on Friis transmission equation:

RSSI [dBm] = −(10 × n × log10(d) + A) (1)

where initial signal strength A describes the absolute value of RSSI
at a distance of 1 m to the transmitter. The signal propagation coef-
ficient n shows the signal damping.

Fig. 3 shows the three parts of the fuzzy logic system for
computing test point temperature: the main parameters of this
system are the fuzzy rules for input variables, membership func-
tion for distance, and correlation coefficients of �A(di). Finally,
each fuzzy rule for test point temperature is an output variable.
However, choosing the correlation coefficients and membership
functions was the main objective of this study. The distances
between reference points and test points are classified as very
close, close, medium, far, and very far. The fuzzy membership func-
tions generally include Sigmoid-shaped function, Gaussian-shaped
function, triangle-shaped function, trapezoid-shaped function, S-
shaped function and Z-shaped function or combination of them.
The Friis transmission equation confirms the assertion that the
longer the distance between test points used as reference (T–R),
the lower the correlation coefficient. Therefore, the system has five
rules.

(1) If T–R distance is very far, then correlation coefficient is very
small.

(2) If T–R distance is far, then correlation coefficient is small.
(3) If T–R distance is medium, then correlation coefficient is mod-

erate.
(4) If T–R distance is close, then correlation coefficient is large.
(5) If T–R distance is very close, then correlation coefficient is very

large.

The correlation coefficients depend on distances between refer-
ence points and test points. Fig. 4 shows that correlation coefficients
calculated for the proposed fuzzy logic system with different mem-

bership function for distance. Therefore, correlation coefficients
were used to fix for fast and simple temperature calculations
instead of using a function for that. Because the distance between
the test points and reference points for membership function of
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Fig. 3. Fuzzy logic for tem

uzzy logic temperature computing system have five levels. (Very
lose, Close, Medium, Far and Very far.) Those values are between

 and 1 which divided into five equal portions and were calculated
y averaging, which were assigned values of 0.1, 0.3, 0.5, 0.7, and
.9 from the smallest to the largest, respectively and not arbitrary
or this system.

The fuzzy inference system has fuzzy rules (IF antecedent THEN
onsequent) derived from either an expert Knowledge Base or from
ystem input–output learning. Gaussian, triangle, trapezoid and
igmoid functions are the most common membership functions.
he Gaussian function has good local approximation ability for the
adial basis function (RBF) neural network. In the back-propagation
etwork (BPN), the Sigmoid function has a better ability of find-

ng the global optimum. In this study, choosing the membership
unctions for input variables based on the advantages of RBF and
PN. The Z-shaped (Very close), S-shaped (Very far) and Gaussian
embership functions (Close, Medium, Far) are therefore used as

ariables to simplify the computations and to obtain an RMSE bet-
er than that of other membership functions in the fuzzy logical
emperature computing system. As described above, the appropri-
te membership function and correlation coefficient are obtained.
inally, based on the flowchart, the test point transfer function with
uzzy rule for temperature is defined as FRj (T).

Rj (T) =
∑3

i=1Ti�A(di)˛(�i)∑3
i=1�A(di)˛(�i)

(2)

here Ti is the temperature of ith reference point; di is the distance
etween test point and ith reference point; �A(di) is membership
unction of di; ˛(�i) is correlation coefficient of the �A(di).

.2. The fuzzy logic algorithm for this system

The must commonly used fuzzy inference technique is Mandani
ethod. The Mandani method is also called Maximum–Minimum

omposition.
Max–min composition is defined as follow:

MoN(u, w) = ∪v(�M(u, v) ∩ �N(v, w)) (3)

In terms of use, the Mandani is more widely used, mostly

ecause it provides reasonable results with a relatively simple
tructure, and also due to the intuitive and interpretable nature
f the rule base.

ig. 4. The correlation coefficients were calculated by averaging between 0 and 1.
ture computing system.

For fuzzy logic (FL), the operators min, max and complement
correspond to and, or and not, and defined as:

�A∩B(u) = min(�A(u), �B(u)) (4)

�A∪B(u) = max(�A(u), �B(u)) (5)

�
A
(u) = 1 − �A(u) (6)

According (4) and (5),  we  can also display (3) as the follow:

�MoN(u, w) = maxv min(�M(u, v), �N(v, w)) (7)

A fuzzy control model for this system is established with the
distances between sensors nodes as input variables and each fuzzy
rule for test point temperature as output variable.

The input/output fuzzy relations rule Rj as the follow:

Rj = (d1k × d2k × d3k) × Tref (8)

where d1, d2, d3 is the distance between test point and reference
points 1, 2, and 3; Tref is the temperature at the reference point and
k = 1, 2, . . .,  5.

Fuzzy relationship matrix R is composed of n fuzzy relation rules
for this system

R =
n⋃

i=1

Rj (9)

There are many kinds of defuzzification methods, usually max-
imum membership and centroid techniques are used. In practice,
defuzzification is done using center gravity method. It is given by
the following formula:

y∗ =
∑n

i=1�A(y) × ydy∑n
i=1�A(y)dy

(10)

where �A(y) is the membership function of set A and
y = (d1 × d2 × d3) × R

In the proposed fuzzy logical algorithm temperature computing
system, the distances between the sensor nodes are input fuzzy
variables, and the temperature in the monitored area is the out-
put variable. This study directly calculates the monitoring point
temperature based on information about deployment of reference
points. The monitoring point temperature can be show as:

Toutput =
n∑

i=1

Ti

Woi
(11)

where Woi is the affect weight between reference i and output
point; n is reference points and in this study n = 3
The membership functions for each input variable are defined
as “Very Close”, “Close”, “Medium”, “Far” and “Very Far” (on short
VC, C, M,  F, VF) (A1, A2, A3, A4 and A5, respectively). Fig. 5 shows
the membership graph of the distances between sensor nodes for
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Table 1
Rules for fuzzy logic system.

Rule number Antecedent 1 Antecedent 2 Antecedent 3

1 Very Close Close Far
2 Very Close Close Very Far
3 Very Close Medium Far
4  Very Close Medium Very Far
5 Close Close Far
6  Close Close Very Far
Fig. 5. Membership functions for di .

he input variables. The membership functions A1, A2, A3, A4 and
5 are as follows:

�A1(di): Z-shaped function
The calculation for this function is

A1(di) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for di ≤ a

1 − 2(di − a)2

(a − b)2
for di > a and di ≤ a + b

2

2(b − di)
2

(a − b)2
for di >

a + b

2
and di ≤ b

0 for di > b

(12)

�A2(di), �A3(di), �A4(di): Gaussian-shape function
Those functions are given as

�A2(di) = e−((di−b)2/2�2)

�A3(di) = e−((di−c)2/2�2)

�A4(di) = e−((di−d)2/2�2)

(13)

here b, c, d: mean of membership function; �: standard deviation
f membership function; �A5(di): S-shaped function.

The function is formulated as:

A5(di) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for di ≤ d

2(di − d)2

(f − d)2
for d ≤ di ≤ d + f

2

1 − 2(di − d)2

(f − d)2
for

d + f

2
≤ di ≤ f

1 for di > f

(14)

Fig. 6 shows the correlation coefficient of this temperature com-
uting system. For example, if the input variable is VC (A1), then

he correlation coefficient value (0.9) is the weighting for A1.

Consider the following example: a < d1 < b, b < d2 < c, d < d3 < f.
ccording to the membership functions for di (Fig. 5), the d1 is
ither “Very close” (A1) or “Close” (A2), d2 is either “Close” (A2) or

Fig. 6. Correlation coefficient of input variables.
7  Close Medium Far
8  Close Medium Very Far

“Medium” (A3) and d3 is either “Far” (A4) or “Very far” (A5). There-
fore, the system has 8 = 23 fuzzy rules. Table 1 shows the fuzzy logic
rule system.

The fuzzy if–then rules in this temperature computing system
are as follows.

Where the distances from all points d1 to REF1, d2 to REF2 and
d3 to REF3. The temperatures at the three reference points are T1,
T2 and T3.

�d1A1 = �A1(d1), �d1A2 = �A2(d1), �d2A2 = �A2(d2),

�d2A3 = �A3(d2), �d3A4 = �A4(d3), �d3A5 = �A5(d3),

˛1 = 0.9, ˛2 = 0.7, ˛3 = 0.5, ˛4 = 0.3, ˛5 = 0.1

R1: IF d1 is very close and d2 is close and d3 is Far THEN Tem-
perature is TR1

TR1 = T1�d1A1˛1 + T2�d2A2˛2 + T3�d3A4˛4

�d1A1˛1 + �d2A2˛2 + �d3A4˛4
(15)

R2: IF d1 is very close and d2 is close and d3 is Very Far THEN
Temperature is TR2

TR2 = T1�d1A1˛1 + T2�d2A2˛2 + T3�d3A5˛4

�d1A1˛1 + �d2A2˛2 + �d3A5˛4
(16)

R3: IF d1 is very close and d2 is medium and d3 is Far THEN
Temperature is TR3

TR3 = T1�d1A1˛1 + T2�d2A3˛3 + T3�d3A4˛4

�d1A1˛1 + �d2A3˛3 + �d3A4˛4
(17)

R4: IF d1 is very close and d2 is medium and d3 is Very Far THEN
Temperature is TR4

TR4 = T1�d1A1˛1 + T2�d2A3˛3 + T3�d3A5˛5

�d1A1˛1 + �d2A3˛3 + �d3A5˛5
(18)

R5: IF d1 is close and d2 is close and d3 is Far THEN Temperature
is TR5

TR5 = T1�d1A2˛2 + T2�d2A2˛2 + T3�d3A4˛4

�d1A2˛2 + �d2A2˛2 + �d3A4˛4
(19)

R6: IF d1 is close and d2 is close and d3 is Very Far THEN Tem-
perature is TR6

TR6 = T1�d1A2˛2 + T2�d2A2˛2 + T3�d3A5˛5

�d1A2˛2 + �d2A2˛2 + �d3A5˛5
(20)

R7: IF d1 is close and d2 is medium and d3 is Far THEN Temper-

ature is TR7

TR7 = T1�d1A2˛2 + T2�d2A3˛3 + T3�d3A4˛4

�d1A2˛2 + �d2A3˛3 + �d3A4˛4
(21)
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Table 2
Eight fuzzy logic rules and temperatures for test points 1 and 2.

Rule
number

Antecedent
1

Antecedent
2

Antecedent
3

Point 1
(◦C)

Point 2
(◦C)

1 Very Close Close Medium 24.54 26.93
2 Very Close Close Far 26.18 27.82
3  Very Close Medium Medium 24.91 24.77
4  Very Close Medium Far 26.34 27.58
5  Close Close Medium 29.53 26.59
6  Close Close Far 31.72 27.84
Fig. 7. Weights for computing temperature using fuzzy rules.

R8: IF d1 is close and d2 is medium and d3 is Very Far THEN
emperature is TR8

R8 = T1�d1A2˛2 + T2�d2A3˛3 + T3�d3A5˛5

�d1A2˛2 + �d2A3˛3 + �d3A5˛5
(22)

Fig. 7 illustrates the fuzzy rule weight from computing the test
oint temperature. The rules in the flowchart are weighted as W1,
2, W3, W4, W5, W6, W7 and W8.
This section compares the fuzzy logic algorithm with the aver-

ge and adaptive methods.
According to (15)–(22) and Fig. 6, the test point temperature can

e computed by

test =
8∑

j=1

TRj Wj (23)

When the weight of each rule is the same for computing tem-
erature system,

test =
∑n

j=1TRj

n
(24)

here n is the total number of fuzzy rules; in this case n = 8.
This method is the average fuzzy logic algorithm.
Fig. 8 shows a flowchart of adaptive fuzzy logic algorithm, and

he following six steps are the algorithm in this paper.

tep 1: Defining the input and output variables for the temperature
computing system

Each fuzzy rule of the system is an input variable and each
fuzzy rule for test point temperature is an output variable.

tep 2: Defining the degree of distance between test points and
reference points

Classifying the distances from test points to reference
points as very close, close, medium, far, and very far.

tep 3: Choosing the optimal membership function with RMSE
results

Gaussian, triangle, trapezoid and Sigmoid functions are
the most common membership functions. The Gaussian
function has good local approximation ability for the
radial basis function (RBF) neural network. In the back-
propagation network (BPN), the Sigmoid function has a
better ability of finding the global optimum. In this study,
choosing the membership functions for input variables

based on the advantages of RBF and BPN. The Z-shaped
(Very close), S-shaped (Very far) and Gaussian membership
functions (Close, Medium, Far) are therefore used as vari-
ables to simplify the computations and to obtain an RMSE
7 Close Medium Medium 28.8 24.87
8 Close Medium Far 30.84 27.63

better than that of other membership functions in the fuzzy
logical temperature computing system.

Step 4: Calculating correlation coefficients
The correlation coefficients were used to fix for fast and

simple monitoring point temperature calculations instead
of using a function for that. The fixed correlation coef-
ficients in this system were calculated by averaging the
correlation coefficients, which were assigned values of 0.1,
0.3, 0.5, 0.7, and 0.9 from the smallest to the largest, respec-
tively and not arbitrary for this system.

Step 5: Establishing a system of fuzzy logic rules
According to the Steps 2 and 3, then the system of fuzzy

logic rules have to be established.
Step 6: Omitting the fuzzy logic rules for the condition ||TRj −

Ttest|| ≥ 1
First, omitting the fuzzy logic rules for the condition

||TRj − Ttest|| ≥ 0.5, ||TRj − Ttest|| ≥ 1, ||TRj − Ttest|| ≥ 1.5 and
||TRj − Ttest|| ≥ 2. Comparison of above four conditions with
RMSE results then show that the condition for ||TRj −
Ttest|| ≥ 1 is better than other conditions. Finally, com-
puting the each fuzzy rule for test point temperature
eliminates the fuzzy rules whose discrepancy with the out-
put is greater than 1 and then computes the output again.

Tmodify =
∑k

j=kTRk

k
(25)

where k is the rest number of fuzzy rules.

5. Experimental results and discussion

Temperature was  experimentally calculated for single or mul-
tiple (up to ten) points. Fig. 1 shows the experimental setup for
a three-point temperature calculation. Firstly, the position of test
point 1 is REF1 (T1 = 24 ◦C, d1 = 6 m),  REF2 (T2 = 28 ◦C, d2 = 13 m)
and REF3 (T3 = 33 ◦C, d3 = 19 m).  The position of test point 2 is
REF1 (T1 = 24 ◦C, d1 = 8 m),  REF2 (T2 = 28 ◦C, d2 = 10.6 m)  and REF3
(T3 = 33 ◦C, d3 = 18.6 m).  The membership function of the input vari-
ables is assumed to be (a = 5 m,  b = 10 m,  c = 15 m,  d = 20 m, f = 25 m)
According to Fig. 4, the total number of fuzzy rules in this case is 8.

Table 2 shows the fuzzy logic rules for this case. The fuzzy rules
given in (2) are used to compute temperature for each test point.
According to (24) the temperature at test point 1 is 27.86 ◦C, and
that at test point 2 is 26.75 ◦C. The respective values obtained by
(25) are 27.57 ◦C and 27.05 ◦C.

In this case, the positions for test point 3 are changed to
REF1 (T1 = 24 ◦C, d1 = 9 m),  REF2 (T2 = 28 ◦C, d2 = 15.6 m)  and REF3
(T3 = 33 ◦C, d3 = 15.6 m).  Similarly, Fig. 4 shows that this case has 8
fuzzy rules. Table 3 shows the fuzzy logic rules for this case. Each

fuzzy rule for measuring temperature at each test point is obtained
by (2).  Finally, according to (24), the temperature at test point 3 is
27.5 ◦C. Similarly, according to (25), the temperature at test point
3 is 27.87 ◦C.
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Fig. 8. Flowchart of the adapti

Table 3
Eight-rule fuzzy logic system and test point 3 temperatures.

Rule
number

Antecedent
1

Antecedent
2

Antecedent
3

Point 3
(◦C)

1 Very Close Medium Medium 30.03
2  Very Close Medium Far 27.5
3  Very Close Far Medium 31.76
4 Very  Close Far Far 24.66
5  Close Medium Medium 28.04

u
u
t
fi
t
t
c

u
X

F
e

6 Close Medium Far 25.83
7  Close Far Medium 28.06
8  Close Far Far 24.09

Fig. 9 shows how average and adaptive fuzzy logic methods are
sed to compute temperature at each test point. The fuzzy rules
sed in the computing temperature system (rules 1–8) and the
emperatures are given in the X-axis and Y-axis, respectively. The
gure shows the temperature curves calculated by fuzzy rule at
est points 1–3. The ninth point is the average of each fuzzy rule for
he monitored area temperature, and the tenth point is the value

alculated by adaptive method.

Fig. 10 shows that the temperature calculated for test point 1
sing the actual measurement with different time. In Fig. 10,  the
-axis is the estimated time (about 1200 h), and the Y-axis is the

ig. 9. Average and adaptive fuzzy logic methods for computing temperature at
ach test point.
ve fuzzy logic algorithm.

actual temperature measurement. Finally, the actual measurement
is stable at 27.65 ◦C.

Fig. 11(a)–(c) shows the temperature errors for the average and
adaptive fuzzy logic methods. In Fig. 9, the Y-axis is the error ratio
between the average and adaptive method with actual measure-
ment values. The X-axis is the total estimate time. In this study, the
authors performed twenty measurements. Fig. 11(a) shows that
average error ratios when using average and adaptive methods to
calculate temperature at test point 1 ranged from 0.15 to 1.66 and
from 0.01 to 1.91, respectively. The average error when using adap-
tive fuzzy logic method is lower than that when using average fuzzy
logic method when excluding the thirteenth and eighteenth esti-
mates as shown in Fig. 11(b). Similarly, Fig. 11(c) shows that the
average error ratio value at test point 3 varies from 0.11 to 0.98
when using adaptive fuzzy logic method. When average fuzzy logic
method is used, the values range from 0.36 to 2.14. The experiments
confirm that adaptive fuzzy logic method is better than average
fuzzy logic method.

The average error ratio in this system is estimated by
∑n
k=1||T ′ − Ttestk ||

T ′n
(26)

Fig. 10. Temperature at test point 1 calculated using actual measurement with
different time.
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in values obtained for the ten points in the monitored area. Sim-
ilarly, the figure shows that adaptive fuzzy logic method is better
than the average and standard Mandani fuzzy logic method.

Table 4
The RMSE in temperature calculations for each test point.
Fig. 11. Comparision of values obtained by avera

here n = 20, T′: computed value (by average or adaptive method),
nd Ttestk : kth measurement.

The equation used to calculate root mean square error (RMSE)
y average and adaptive fuzzy logic algorithms methods is

MSE =
√∑n

k=1||T ′ − Ttestk ||2
n

(27)

The performance of the fuzzy logic model performance is eval-
ated by using RMSE as a statistical indicator to numerically
epresent computing accuracy. The RMSE for these test points is
alculated using (25). Table 4 shows that the RMSE in temperature
alculated for each test point by adaptive and average fuzzy logic

ethods are accurate and better than standard Mandani method.

hen, Comparison of the two methods in terms of RMSE confirms
hat the adaptive fuzzy logic method is better than the average
uzzy logic method.
 adaptive fuzzy logic methods at test points 1–3.

The RMSE values obtained by the average and modified methods
confirm that both methods computed temperature very accurately.
The relatively low RMSE values and the graphical analysis provided
further confirmation. Next, the 3-point temperature calculation is
changed to a 10-point calculation to account for ten points in the
monitored area (red block in Fig. 1). Fig. 12 compares standard Man-
adani, average and adaptive fuzzy logic methods in terms of RMSE
Fuzzy logic algorithm Point 1 (◦C) Point 2 (◦C) Point 3 (◦C)

Standard Mandani method 1.224 1.215 1.107
Average method 0.485 0.484 0.475
Adaptive method 0.245 0.242 0.233
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Fig. 12. Comparison of RMSE in 10-point calculation by 

. Conclusions and future work

The experiments confirmed that the proposed fuzzy logic
pproach enables accurate temperature calculation in an area mon-
tored by a wireless sensor network. The fuzzy inference system
ridges the gap between numerical computing and readable lin-
uistic elements. The fuzzy logic tool is also effective for using WSNs
o compute temperature in a monitored area. The experimental
esults also confirm that adaptive fuzzy logic method outperforms
verage and standard Mandani fuzzy logic method. Clearly, the pro-
osed method has a potentially important role in this research area.
owever, this cannot fully handle all the uncertainty present in real
orld problems. Type-2 fuzzy logic can handle uncertainty because

t can model and reduce it to the minimum their effects and how
o use the type-2 method in fuzzy logic system is our future work.

Although the fuzzy algorithm system adequately accounts for
ncertainties, it cannot automatically adjust the weighting of fuzzy
ules. One proposed solution is artificial neural networks, which
ccount for uncertainties because of their superior learning capa-
ilities. However, the weighting of a computing temperature fuzzy
ule can be adjusted by using neural networks such as BPN, GRNN.
he weighting values in this model clearly require training for
ifferent experimental environments. In addition to the fuzzy
lgorithm, future works will consider neural network technolo-
ies such as generalization. Future works may  also further reduce
MSE by applying fuzzy inference systems, improving the learn-

ng capability of the neural network, simplifying fuzzy logic rules,
r adjusting the membership function. The potential benefits of
euro-fuzzy systems include fast and accurate learning, good gen-
ralization capabilities, capability to accommodate both data and
xpert knowledge, and excellent explanation facilities in the form
f semantically useful fuzzy rules.
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